烧结温度曲线测试的意义

烧结温度曲线测试的意义
烧结温度曲线测试的意义

问题:什么是温度曲线测试?温度曲线测试是什么意思?

温度曲线测试是在产品通过传送带输送或间歇过程时记录并解读产品(和/或空气)温度的过程。数据被同时显示为图表(曲线图)和数值数据。这些信息以非常简单的形式告诉您产品处于某一特定温度以上的时间有多久、何时达到了最高温度以及最高温度是多少。这样一来,工艺工程师们便会知道其产品的理想温度曲线应该是什么样的,并且知道与理想状态的差异预示着潜在问题或不合格质量。通过分析温度曲线您就可以增加产量,解决生产问题并验证产品是否处于最佳质量。

烘炉、高温炉或窑炉是您业务的核心,其性能决定了成品的质量和可靠性。您或许对整个运行过程中的每道生产步骤都了如指掌,但您是否真正确切了解烘炉、高温炉或窑炉内正在发生一切?

日常的温度曲线测试可为您提供可靠数据以优化工艺,检验工艺控制并在必要时做出修正。

日常的温度曲线测试可帮助您:

迅速设置新工艺

预先弄清问题以免影响质量

快速发现故障

提高生产率

验证过程控制(ISO9000)

将生产消耗降低到最低限度

控制产品质量

温度曲线测试三步曲……

每个 Datapaq 系统都包含4个部分:数据记录器、保护数据记录器用的隔热箱、数据分析软件以及与产品相接的热电偶。温度曲线测试包含3个简单步骤。要得到准确可靠的温度曲线,您只需……

把数据记录器置于隔热箱内,并把热电偶连接到产品上。

使 Datapaq 系统通过热处理过程。

把数据记录器所采集的数据下载到计算机。用 Datapaq 软件来查看、分析并报告。

这种界面友好的软件可为您提供2种类型的数据:图形和数字。图形数据可与早先的曲线或公差带重叠以直接进行形状校验。数字数据可以方便地进行处理以生成行业专用的工艺性能测量值。一次击键即可得到一份单页的标准报告,这非常适合于制作 QC/ISO9000 文件或为客户提供过程控制的证明。

Datapaq 系统是很容易理解和使用的。可编程的软件可使您准确预定每位在线操作员所能执行的软件操作, 并最大限度地减少培训时间。

用户只需进行一次简单配置便可使画面和易调用的软件特性符合自己的需要。

Datapaq 可为许多不同的行业和过程提供温度曲线测试系统。请参阅“产品”部分以了解本公司所提供的产品系列的详细信息。

我们可对持续时间为10秒到10天的过程进行测试。我们可检测高达1650℃的温度,并备有任意规格的隔热箱(18mm~1m以上、0.32kg~455kg)。我们备有100多种不同款式的隔热箱以适应不同行业和工艺的需要。

测试有什么好处?

1. 迅速设置新工艺

通过对过程的例行测试,您便可以建立一个曲线信息数据库,以帮助您准确高效地开发新的过程。您将确切获知怎样的温度设置和线速度会带给您最好的产品质量。

2. 预先弄清问题以免影响质量

统计过程控制功能可发现潜在的问题,从而使您能够在方便的时候安排预防性维护。

3. 快速发现故障

当因加热不当而发生问题时,可快速确定原因和位置。分析曲线信息以确定必要的纠正措施,然后运行后续的曲线以证明所做的更改是成功的。

4. 提高生产率

曲线分析将告诉您如何和在哪里来优化操作。通过平衡处于温度的时间和加热速率,您便可增加线速度和产品产量。通过确切了解产品在过程中正在发生的情况,您就可以最大限度地减少花费在测试运行和过程设置上的时间,从而可以进行更多次有效益的运行。

5. 验证过程控制(ISO9000)

标准的单页报告是我们的系统验证过程控制的一种方法。所有数据文件也都可以完全追溯。除温度信息(您每天需要用这种信息来证明过程正处于受控和可重复的状态)外,每个数据文件还包括操作者姓名、产品类型、日期、时间和数据记录器序列号等。

6. 将生产消耗降低到最低限度

不断上升的生产消耗会严重影响您的营业预算。众所周知,费用越低,则利润越大。每个 Datapaq 系统都可为您提供所需的信息,以使您以最高的效率来制造尽可能好的产品。减少加热就等于减少生产消耗!并且更少的生产消耗也具有积极的环境作用。

7. 控制产品质量

不断增大的废品堆或越来越多的客户退货只能意味着一件事,那便是有些东西出错了。如果您确切知道在生产期间您的产品中正在发生的情况,您就能很容易地减少废品,减少返工,减少废品并减少退货。防患于未然将意味着更大的利润,并将继续确保顾客满意。

八年级物理温度与温度计教案

八年级物理温度与温度计教案 一、三维目标 ?知识与技能 1.知道温度的概念,能说出生活和自然环境中常见得温度值。能 用温度术语描述生活中的“热”现象。 2.了解体温计的工作原理,熟悉使用温度计的过程,掌握它的使用方法,并学会摄氏温度的读法和写法。 3.知道温度的常用单位和国际单位制中的单位。 ?过程与方法 养成使用仪器和探究其物理原理的好习惯,体验学会使用一种新仪器的愉悦心情。 ?情感、态度与价值观 1.通过探究,使学生体验探究的过程,激发学生主动学习的兴趣。 2.体会对温度进行准确测量的必要性,养成采集准确数据的好习惯。 3.培养学生的观察能力。 4.鼓励学生自己查找资料,培养学生自学的能力。 二、教学重、难点 1.重点 温度计的使用。 2.难点 温度计的使用。

三、教学方法 实验探究法、讲授法、讨论法、启发式教学法、阅读法。 四、教学器材 演示实验器材:各种温度计(各1支)、各种温度计挂图(各1副)、演示温度计(1支)、烧杯(3只),分别盛冷水、温水、开水。 学生实验:烧杯(2只)盛半杯冷水,一杯热水、温度计(各1只) 辅助教学资源:多媒体或小黑板。 五、教学过程 【引入新课】 热现象是指与物体的冷热程度有关的物理现象,例如,大家在小学 自然课中学过的物体的热胀冷缩就属于热现象。 我们生活中都用哪些词来形容物体的冷热程度。(学生思考探究) 在日常生活中我们常用冷、热、温、凉、烫等有限的形容词来形 容物体的冷热程度。这样是否就能准确区分物体的冷热程度呢? 学生议论。 教师讲述:这样的形容非常的粗糙。如:开水和烧红的铁块都很烫,但它们烫的程度又有很大的区别(认同所研究的问题)。所以,在物理 学中,为了准确地描述物体的冷热程度,我们引入了温度这一概念。 用温度的数值比较准确区分物体冷热程度。 【新课教学】 一、温度与温度计 1.温度:表示物体的冷热程度。 在生活与生产中常用摄氏度(℃)作为温度的单位。 在科学研究中使用热力学温度,有关热力学的温度,请同学们阅读 课文中“加油站”的内容。

如何正确设定回流炉温度曲线

如何正确设定回流炉温度曲线 前言 红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。 本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。 理想的温度曲线 图1 理想的温度曲线 图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有4-5个温度,以适应焊接的需要。 为了加深对理想的温度曲线的认识,现将各区的温度、停留时间以及焊锡膏在各区的变化情况,介绍如下: (1)预热区 预热区通常指由室温升至150℃左右的区域。在这个区域,SMA平稳升温,在预热区,焊膏中的部分溶剂能够及时挥发,元器件特别是IC器件缓缓升温,以适应以后的高温。但SMA表面由于元器件大小不一,其温度有不均匀现象,在预热区升温的速率通常控制在1.5℃-3℃/sec。若升温太快,由于热应力的作用,导致陶瓷电容的细微裂纹、PCB变形、IC芯片损坏,同时锡膏中溶剂挥发太快,导致飞珠的发生。炉子的预热区一般占加热信道长度的1/4-1/3,其停留时间计算如下:设环境温度为25℃,若升温速率按3℃/sec计算则(150-25)/3即为42sec,若升温速率按1.5℃/sec计算则(150-25)/ 1.5即为85sec。通常根据组件大小差异程度调整时间以调控升温速率在2℃/sec以下为最佳。 (2)保温区/活性区 保温区又称活性区,在保温区温度通常维持在150℃±10℃的区域,此时锡膏处于熔化前夕,焊膏中的挥发物进一步被去除,活化剂开始激活,并有效地去除焊接表面的氧化物,SMA表面温度受热风对流的影响,不同大小、不同质地的元器件温度能保持均匀,板面温度差△T接近最小值,曲线形态接近水平状,它也是评估回流炉工艺性的一个窗口,选择能维持平坦活性温度曲线的炉子将提高SMA的焊接效果,特别是防止立碑缺陷的产生。通常保温区在炉子的二、三区之间,维持时间约60-120s,若时间过长也会导致锡膏氧化问题,以致焊接后飞珠增多。 (3)回流区 回流区的温度最高,SMA进入该区后迅速升温,并超出锡膏熔点约30℃-40℃,即板面温度瞬时达到215℃-225℃(此温度又称之为峰值温度),时间约为5-10sec,在回流区焊膏很快熔化,并迅速润湿焊盘,随着温度的进一步提高,焊料表面张力降低,焊料爬至组件引脚的一定高度,形成一个"弯月面"。从微观

初中物理“温度与温度计”教学设计

“温度与温度计”教学设计 一、三维目标·知识与技能 1.知道温度的概念,能说出生活和自然环境中常见得温度值。能用温度术语描述生活中的“热”现象。 2.了解体温计的工作原理,熟悉使用温度计的过程,掌握它的使用方法,并学会摄氏温度的读法和写法。 3.知道温度的常用单位和国际单位制中的单位。 ·过程与方法 养成使用仪器和探究其物理原理的好习惯,体验学会使用一种新仪器的愉悦心情。 ·情感、态度与价值观 1.通过探究,使学生体验探究的过程,激发学生主动学习的兴趣。 2.体会对温度进行准确测量的必要性,养成采集准确数据的好习惯。 3.培养学生的观察能力。 4.鼓励学生自己查找资料,培养学生自学的能力。 二、教学重、难点 1.重点 温度计的使用。 2.难点

温度计的使用。 三、教学方法 实验探究法、讲授法、讨论法、启发式教学法、阅读法。 四、教学器材 演示实验器材:各种温度计(各1支)、各种温度计挂图(各1副)、演示温度计(1支)、烧杯(3只),分别盛冷水、温水、开水。 学生实验:烧杯(2只)盛半杯冷水,一杯热水、温度计(各1只) 辅助教学资源:多媒体或小黑板。 五、教学过程 【引入新课】 热现象是指与物体的冷热程度有关的物理现象,例如,大家在小学自然课中学过的物体的热胀冷缩就属于热现象。 我们生活中都用哪些词来形容物体的冷热程度。(学生思考探究) 在日常生活中我们常用冷、热、温、凉、烫等有限的形容词来形容物体的冷热程度。这样是否就能准确区分物体的冷热程度呢? 学生议论。 教师讲述:这样的形容非常的粗糙。如:开水和烧红的铁块都很烫,但它们烫的程度又有很大的区别(认同所研究的问题)。所以,在物理学中,为了准确地描述物体的冷热程度,我们引入了温度这一概念。用温度的数值比较准确区分物体冷热程度。

热阻测试仪说明书

热阻测试仪使用说明

测试概述: 1.可测试各类型散热器,散热模组测试热阻及温度监控. 2.电脑软件自动监控,自动计算温度及热阻,并自动绘制温度及热阻曲线。 3.使用简单,适用范围广。 4.测试精度:优于3% 5.实验方式:a、试样不同压力下热阻测试。b、材料导热系数测试。c、接触热阻测试。 6.计算机全自动测试,并可实现数据打印输出 使用手册(1本) 三.保修: 本产品自售出之日起6个月内,用户在遵守各项使用要求的情况下,产品质量出现问题,我方可免费维修。因违反操作规定和要求而造成损坏的,需缴纳器件费和维修费及相应的运输费用,如果模拟测试平台有明显的烧毁、烧糊情况原则上不予维修。如果本设备测试有问题,可以免费维修。验收标准,方法及提出异议期限:需方收到货后当场确认! 四.基本原理 热阻的计算公式:R=T1-T2/W T1=CPU表面温度 T2=环境温度 W=CPU最大运行功率 通过电源提供模拟电脑CPU热阻测试治具与真实电脑CPU运行最大功率时所需的相同功率,使电脑CPU热阻测试治具发热与真实电脑CPU基本相同。通过双通道温度测试仪测试出CPU表面温度和风扇进风口温度。然后通过电脑时时监控温度

变化和计算热阻绘制热阻曲线。 五.操作步骤 1.打开透明机箱盖 2.涂导热膏 3.將散热器固定于模拟测试平台上 4.连接风扇连接线,打开风扇电源开关

5.连接模拟测试平台连接线到电源 6.盖上透明机箱盖 7.将温度线联接到已联接到电脑的温度测试仪。打开电脑及测试软件! 8.开启模拟CPU电源开关(请一定确认COOLER已安装好) 7.调整正确的电流和电压数,在电脑上可时时监控温度CPU温度. 8.测试10~15分钟后,保存测试数据,关闭模拟CPU电源开关,非常重要!! 9.关闭温度测试表打开透明机箱盖待模拟制具稍冷却后关闭风扇电源拔取风扇 连接线取下COOLER清洁治具上及COOLER的导热膏盖上透明机箱盖。 10.通过电脑测试自动算出温度曲线,热阻曲线。

钢网制作及温度曲线设定

钢网制作及温度曲线 一、钢网制作 1、钢网厚度 我司MPC6535钢网制作厚度为0.12mm,其厚度是由器件的种类器件大小及管脚间距决定,一般以器件间距为基本依据。 钢网厚度以满足最小间距QFP、BGA为前提,兼顾最小CHIP元件 DFP引脚间距≤0.5mm钢网厚度选择0.13mm或0.12mm,引脚间距>0.5mm钢网厚度选择0.15mm或0.2mm;BGA球间距>1. 0mm,钢板选择0.15mm,0.5mm≤BGA球间距≤1. 0mm,钢网选择0.13mm,在效果不好的时候才选择0.12 2、钢网开口 钢网开口的大小形状一般有器件的封装,焊盘间距大小决定 1、一般钢网的开口大小及形状与焊盘一致,按1:1开口; 2、以印刷面为上面,网孔下开口应比上开口宽0.01mm或0.02mm,即倒锥形; 3、开口区域必须居中; 4、独立开口的尺寸不能太大,不能大于2mm,焊盘尺寸大于2mm的中间应加0.4mm的桥; 5、钢网下方应当刻有型号(MODEL),产品所有者,时间,钢网制作公司,钢网厚度等信息; 6、钢网开口的孔壁,要求光滑,进行抛光处理(特别是引脚间距小于0.5mm的QFP及CSP)。 3、钢网的特殊开口 1、对于引脚间距为0.5mm的QFP和CSP,宽度方向开孔比例为1:0.85,长度方向开孔比例为1:1.1,对于所有引脚间距为0.4mm的QFP和CSP,宽度方向开孔比例为1:0.8,长度方向开孔比例为1:1.1,且外切倒圆角,倒角半径r=0.12mm; 2、对于球间距为1.0mm以上的BGA,钢网开孔比例为1:1;对于球间距小于0.5mm的BGA,钢网开孔比例为1:0.95; 3、对于引脚间距为0.65mm的SOP元件,宽度方向应缩小10% 4、对于一般PLCC,宽度方向开口1:1,长度方向开口比例1:1.1 5、一般的SOT封装,大焊盘端开口比例为1:1.1,小焊盘宽度方向开口比例1:1长度方向开口比例1:1.1 6、CHIP式封装开口 V形开口 A、0402封装,开成内切圆或内切椭圆,保持内距0.4-0.5mm

初中物理“温度与温度计”教学设计

初中物理“温度与温度计”教学设计

“温度与温度计”教学设计 一、三维目标·知识与技能 1.知道温度的概念,能说出生活和自然环境中常见得温度值。能用温度术语描述生活中的“热”现象。 2.了解体温计的工作原理,熟悉使用温度计的过程,掌握它的使用方法,并学会摄氏温度的读法和写法。 3.知道温度的常用单位和国际单位制中的单位。 ·过程与方法 养成使用仪器和探究其物理原理的好习惯,体验学会使用一种新仪器的愉悦心情。 ·情感、态度与价值观 1.通过探究,使学生体验探究的过程,激发学生主动学习的兴趣。 2.体会对温度进行准确测量的必要性,养成采集准确数据的好习惯。 3.培养学生的观察能力。 4.鼓励学生自己查找资料,培养学生自学的能力。 二、教学重、难点 1.重点 温度计的使用。 2.难点

【新课教学】 一、温度与温度计 1.温度:表示物体的冷热程度。 在生活与生产中常用摄氏度(℃)作为温度的单位。 在科学研究中使用热力学温度,有关热力学的温度,请同学们阅读课文中“加油站”的内容。 2.单位: ①常用单位:摄氏度(℃) ②SI单位:开尔文(K) 3.热力学温度(T)与摄氏温度(t)的换算关系:T=273+t 教师讲述:温度与人类生活息息相关,如:地球平均气温的升高使人们看到环境的污染导致“温室效应”;“SARS”传播期间,发病的一个重要标志就是体温升高;许多食品、药品的保鲜、保质都要在一定的冷藏、冷冻温度范围内;气温的变化影响着人们的身体健康,农业生产、工业生产、科学研究的许多都要在一定温度环境下进行……因此,我们需要了解有关温度和温度测量的知识。 教师讲述:自然界中的物体,温度高低相差很悬殊。请大家读出图各种物体温度值,要求大家能说出生活中和自然环境中常见的温度值,并能用温度术语描述生活中的“热”现象。 说明:引导学生参与探讨,促进学生主动学习。

教你各类温度测试仪的正确使用方法!

教你各类温度测试仪的正确使用方法! 热电偶、无线炉温测试仪都是用来测量温度的仪器。使用它们,能够给我们的工作带来很大的便利。这种温度测试仪功率高、但是功耗低,使用寿命长;而且产品体积小,存储容量大,任何意外都不会丢掉数据。这就很好地解决了安全隐患问题。 虽然说这两种温度测试仪具有相同的用途,但是工作的原理是不一样的,产品结构不同,使用方法也是不同的。 那么,我们该如何正确使用它们呢?下面就分别来了解下吧。 一、热电偶的正确使用方法 众所周知,热电偶可以直接测量温度并把温度信号转换成热电动势信号,再转换成被测介质的温度。常作为测温元件用于跟踪仪中,所以跟踪仪热电偶的正确使用是非常重要,事关着温度曲线的变化情况。 在使用时最容易出现问题的地方就是热电偶了,热电偶是易耗品,但是可以进行维修的。掌握正确的使用方法势在必行,具体如下 一、跟踪仪热电偶在粘贴工件时一定得记住紧密贴合产品工件,不能让热电偶的焊点在里面晃动,特别是热电偶焊点当跟金属碰到一起的时候,容易产生瞬间电压,而导致测出来的温度曲线某个地方温度突然升得很高,这样又会引起分析软件Y轴坐标也跟着变得很高,那么整个曲线就会看起来很小了。 二、热电偶正确的接线方法是:红线接负极,黄线接正极,接的时候两股线一定要往上顶到公插头的三角处,防止裸露的部份短路 三、针对玻璃纤维的热电偶,在插拔时千万要记得用手捏住公插头往外拔,不要去拉线,这样容易造成保护套被拉松或拉出公插头,造成线芯裸露,而导致短路的现象。 四、使用时千万不要打结或折成90度以上,这样很容易造成内部的两根线芯断裂,断了之后你都不知道在哪里断的,那么这根热电偶就没用了,使用时要细心一点,不能野蛮施工。 在操作上要特别注意不要损坏热电偶,不然就会导致跟踪仪测量出来的温度曲线出现异常,影响产品的质量。 二、无线炉温测试仪的正确使用方法 温度测试仪可能你知道,但是大家对温度测试仪的操作方法知道多少,是不是只是照着说明书上面的看一看就开始操作起来了,而对于温度测试仪的操作要点仍然不了解多少。那么小编在这里就给大家详细介绍一下温度测试仪的具体操作方法。 1、首先将温度测试仪接通电源:断定“电压调理”旋钮已置“0”位,然后翻开电源开关。 2、设定“漏电流”值:按下开关“15”,调理“漏电流预置”电位器“14”将“漏电流”预置在所需值。 3、衔接被测件:依据被测件的需求,将测验线和被测件衔接好。 4、“守时测验”:将守时开关“17”置在“守时”方位,调理守时拨盘开关,设定所需的守时时刻,然后按下“发动”开关,并调理“电压调理”旋钮使输出电压至所需值。

用低纯碳化硅微粉烧结碳化硅陶瓷

第34卷第1期2O06年1月 硅酸盐学报 JOURNAL()FTHECHINFSECERAMICSoCIETY VoI.34,N()l January,2006用低纯碳化硅微粉烧结碳化硅陶瓷 武七德1,孙峰1,吉晓莉1,田庭燕2,郝慧1 1.武汉理工大学.畦酸盐材料工程教育部重点实验守,武汉430070;2山东大学 材料液态结构及其遗传性教育部重点实验室,济南25∞61) 摘要:用工业崖料坻纯w3.spmstc擞粉为原料,在№保护下娆结碳化硅(s,t、)陶瓷。研究了低纯slc徽粉中杂质对蜀c陶瓷力学性能的影响,对比了徽粉提纯后材料的性能‘』结构。通过扫描电镜、金相显馓镜分析材料的显微结构。结果表明:微粉杂质中st魄、金属氧化物在&c烧结温度下的放气反麻是影响陶瓷材料力学性能的主耍目素。由低纯s?c材制得的材料的烧结密度达到(3.15士o01)g/cm3,抗折强度达到(ddl±10)MPa。 关键词:碳化硅;反应烧结;显微结构 中圈分类号:T锄74文献标识码:A文章编号:04545648(2006)0】∞一05 SII.ICoNCARBIDECERAMICSPREPAREDWlTHL()WPURESILICoNCARBIDEMICRo—PoWDERSwuQ2dPl,su~凡n∥,JJxi40“1,1』ANTiwgy。n2,HA0¨“21 (1.KeyI,ab()raturyforS11LcateMatemIsscLcnceandEnglneeringofMmlstryofEducatlon,W1lhan UnlvcrsltyofTechn0109y WuI、an 430070;2.KeyLab。ratoryf01I.1quldStⅢLu rea11dHer列I‘y(】fMlnk【ryEduca¨on, ShandongUnjversl‘y?Jlnall2j0061,Chlna) Abstr{Ict:Reactlon—b(mdcdslJLc。ncarblde(RRS(:)ccranll刚erepreparedwlthindu“rLalscfapsIowpLlmySl(:叫ropowders.T11eaveragegralnslzcofL1】。powder】s3.5"ml、helnfluenceoflmpllⅢ1…)fpow山rsonthemate¨aI。smechanicalpropeftle8wasstudied,andacomparisonwasmade“)matcnakpr印ared州thpunfylngpowdtrbyhydrochlo¨ca虬dThIILIcro乱ructureofsI】£concarbldeccranIicswasInvesttgatedby黜Immg elecfro㈣c㈣ce)p㈨jdo阱lca】m£croscope.Thercsuhss}、owthatthekeyfactorstoL11enlaterlal’smechanlcaIpropertlesaretheexcludlngS102,andthe metalllc()xId㈣acLedwtthotherrawmatelr】alsandrelcasedgasathlghtemperaturesT}1esIntereddenslly()fthcmaLeflalmadeoflowpl】rltyS1Cls(315=001)g/cm。andtheflⅢralsIrenEth1s(d4】±10)MPaatroomtemDeraturc Keywo州s:slnconcarhId。;reacLl。11bonded;mlcr()structurc 反应烧结碳化硅(reaction_bondeds1Iiconca卜hide,RBsc)具有反应温度低且时间短,可近净尺寸烧结,可烧结复条形状制品等优点,自50年代发明以来就得到人们的广泛关注”。3]。但是,传统反应烧结T艺中所需两c原料的纯度较高,因而其制备能耗高,环境污染严重,生产成本大。目前,国内sic生产厂家每年都囤积大黾的收尘尾粉。网尾粉的牲度细,杂质含量高,成分波动大阻碍1r它的进一 收稿日期:200j—06—15。修改稿收到日期:z005—10一lo 第一作者:武已德(19t9~),男.教授。步利用。丈量尾粉既占用贮存用地又增加生产成本。凼此,允分利用尾粉已成为Sic生产厂家的当务之急。 实验中制备RBsc所需的sic微粉全部采用国内某两c磨料生产厂家提供的收尘器中的低纯Sjc尾粉,通过适当的工艺制备出最高密度为3.15g/cw,最大抗折强度为(441±10)MPa的RBsc陶瓷材料。 R戗eiveddate:2∞5—061j.Approveddate:20051010 Firsta砒hor;WUQ1小(1949).ⅢaI}+profe3soL E—mni-:Ⅵ1qIfk@nlall.whuteducn  万方数据

蓝牙无线温度测试仪手册

八通道炉温测试仪 TTrack 用户手册 ◎2014版◎

目录 前言 (1) 重要事项和安全说明 (1) 商标和有限责任 (1) 测温仪主机接线端口说明 (2) 一、安装TTrack软件与USB驱动程序 (3) 1.1建议PC配置: (3) 1.2软件安装方法: (3) 1.3USB驱动程序的安装: (4) 1.3.1XP系统USB安装步骤 (4) 1.3.2Win7系统USB安装步骤 (6) 1.4蓝牙适配器的安装与配置 (10) 1.4.1蓝牙适配器的安装 (10) 1.4.2蓝牙适配器的配置 (11) 1.4.3软件通过蓝牙与设备的连接步骤 (15) 二、TTrack软件介绍 (16) 2.1工具栏 (16) 2.2软件界面功能 (17) 2.2.1主机设置 (19) 2.2.2设置面板 (20) 2.2.3分析设置 (21) 2.2.4热电偶设置 (24) 2.2.5炉区设置 (25) 2.2.6制程设置 (27) 2.2.7其他设置 (31) 三、炉温测试仪操作步骤 (33) 3.1采样间隔设置 (33) 3.2进行温度数据测量步骤 (33) 3.3数据下载 (34) 3.3.1通讯端口选择 (34) 3.3.1.1使用USB进行通讯操作 (34) 3.3.1.2使用蓝牙进行通讯操作 (34) 3.3.2数据下载步骤 (34) 3.4打印报表 (34) 3.5USB充电 (36) 3.6注意事项 (36) 3.7蓝牙下载数据注意事项: (37) 3.8测温仪初始化步骤 (37) 3.9温度校正方法 (40) 3.10波峰焊测量规定 (43) 四、常见故障 (45) 4.1电脑识别不了WT-USB (45) 4.2测温结果有偏差 (45) 4.3无法进行数据下载或测温曲线严重偏差 (45) 4.4电脑识别不了蓝牙 (46)

烧结碳化硅方式对比__烧结碳化硅分类

烧结碳化硅方式对比__烧结碳化硅分类 烧结碳化硅烧结方式有哪三种呢?烧结碳化硅的三种烧结方式虽然各有千秋,但是在科技发展如此迅速的今天,迫切需要提高碳化硅陶瓷的性能,不断改进制造技术,降低生产成本,实现碳化硅陶瓷的低温烧结。以达到降低能耗,降低生产成本,推动碳化硅陶瓷产品产业化的目的。山东中鹏特种陶瓷有限公司生产的烧结碳化硅具有碳化硅材料耐强腐蚀性、耐磨性、高导电性、高温稳定性等性能,在新能源、化工、船舶及科研国防军事技术等领域应用。 【烧结碳化硅分类】 (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在

1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/f04630592.html,nge 研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能 制备形状简单的SiC部 件,而且一次热压烧结过 程中所制备的产品数量 很小,因此不利于工业化 生产。 (3)反应烧结 反应烧结SiC又称自结 合SiC,是由a-SiC粉和 石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反应生成β-SiC,把原来存在的a-SiC颗粒结合起来。 【烧结碳化硅方式对比】 1.热压烧结:只能制备简单形状的碳化硅部件,生产效率低,不利于大规模商业化生产。 2.无压烧结(常压烧结):能生产复杂形状和大尺寸碳化硅部件,是目前普遍认可的有优势的烧结方法。 3.反应烧结:能制备复杂形状的碳化硅部件,烧结温度低,但是产品高温性能不佳。 特点:如果允许完全渗Si,那么整个过程中可获得气孔率为零,无几何尺寸变化的材料。

回流炉温度曲线设定

怎样设定锡膏回流温度曲线 “正确的温度曲线将保证高品质的焊接锡点。” 约翰.希罗与约翰.马尔波尤夫(美) 在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线. 几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定.带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定.每个区所花的持续时间总和决定总共的处理时间。 每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差.增加区的设定温度允许机板更快地达到给定温度。因此,必须作出一个图形来决定PCB的温度曲线。接下来是这个步骤的轮廓,用以产生和优化图形. 在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表.可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身)。 现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。 热电偶必须长度足够,并可经受典型的炉膛温度。一般较小直径的热电偶,热质量小响应快,得到的结果精确。 有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。 另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住。 还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠. 附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间. ?(图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间) 锡膏特性参数表也是必要的,其包含的信息对温度曲线是至关重要的,如:所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度. 开始之前,必须理想的温度曲线有个基本的认识.理论上理想的曲线由四个部分或区间组成,前面三个区加热、最后一个区冷却。炉的温区越多,越能使温度曲线的轮廓达到更准确和接近设定。大多数锡膏都能用四个基本温区成功回流。

炉温测试仪回流温度曲线技术要求

炉温测试仪回流温度曲线技术要求 一般而言,回流温度曲线可分为三个阶段:预热阶段、回流阶段、冷却阶段。 ①预热阶段: 预热是指为了使锡水活性化为目的和为了避免浸锡时进行急剧高温加热引起部品不具合为目的所进行的加热行为。 ?预热温度:依使用锡膏的种类及厂商推荐的条件设定。一般设定在80~160℃范围内使其慢慢升温(最佳曲线);而对于传统曲线恒温区在140~160℃间,注意温度高则氧化速度会加快很多(在高温区会线性增大,在150℃左右的预热温度下,氧化速度是常温下的数倍,铜板温度与氧化速度的关系见附图)预热温度太低则助焊剂活性化不充分。 ?预热时间视PCB板上热容量最大的部品、PCB面积、PCB厚度以及所用锡膏性能而定。一般在80~160℃预热段内时间为60~120see,由此有效除去焊膏中易挥发的溶剂,减少对元件的热冲击,同时使助焊剂充分活化,并且使温度差变得较小。 ?预热段温度上升率:就加热阶段而言,温度范围在室温与溶点温度之间慢的上升率可望减少大部分的缺陷。对最佳曲线而言推荐以0.5~1℃/sec的慢上升率,对传统曲线而言要求在3~4℃/sec以下进行升温较好。 ②回流阶段: ?回流曲线的峰值温度通常是由焊锡的熔点温度、组装基板和元件的耐热温度决定的。一般最小峰值温度大约在焊锡熔点以上30℃左右(对于目前Sn63 - pb 焊锡,183℃熔融点,则最低峰值温度约210℃左右)。峰值温度过低就易产生冷接点及润湿不够,熔融不足而致生半田,一般最高温度约235℃,过高则环氧树脂基板和塑胶部分焦化和脱层易发生,再者超额的共界金属化合物将形成,并导致脆的焊接点(焊接强度影响)。 ?超过焊锡溶点以上的时间:由于共界金属化合物形成率、焊锡内盐基金属的分解率等因素,其产生及滤出不仅与温度成正比,且与超过焊锡溶点温度以上的时间成正比,为减少共界金属化合物的产生及滤出则超过熔点温度以上的时间必须减少,一般设定在45~90秒之间,此时间限制需要使用一个快速温升率,从熔点温度快速上升到峰值温度,同时考虑元件承受热应力因素,上升率须介于2.5~3.5℃/see之间,且最大改变率不可超过4℃/sec。 ③冷却阶段:

如何设定回流焊温度曲线

如何设定回流焊温度曲线 如何设定回流焊温度曲线 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值 2:各加热马达的温差 3:链条及网带的速度 4:锡膏的成份 5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 那么,如何正确的设定回流焊的温度曲线 下面我们以有铅锡膏来做一个简单的分析(Sn/pb) 一:预热区 预热区通常指由室温升至150度左右的区域,在这个区域,SMA平稳升温,在预热区锡膏的部分溶剂能够及时的发挥。元件特别是集成电路缓慢升温。以适应以后的高温,但是由于SMA表面元件大小不一。其温度有不均匀的现象。在些温区升温的速度应控制在1-3度/S 如果升温太快的话,由于热应力的影响会导致陶瓷电容破裂/PCB变形/IC芯片损坏同时锡膏中的溶剂挥发太快,导致锡珠的产生,回流焊的预热区一般占加热信道长度的1/4—1/3 时间一般为60—120S 二:恒温区 所谓恒温意思就是要相对保持平衡。在恒温区温度通常控制在150-170度的区域,此时锡膏处于融化前夕,锡膏中的挥发进一步被去除,活化剂开始激活,并有效的去除表面的氧化物,SMA表面温度受到热风对流的影响。不同大小/不同元件的温度能够保持平衡。板面的温差也接近最小数值,曲线状态接近水平,它也是评估回流焊工艺的一个窗口。选择能够维持平坦活性温度曲线的炉子将提高SMA的焊接效果。特别是防止立碑缺陷的产生。通常恒温区的在炉子的加热信道占60—120/S的时间,若时间太长也会导致锡膏氧化问题。导致锡珠增多,恒温渠温度过低时此时容易引起锡膏中溶剂得不到充分的挥发,当到回流区时锡膏中的溶剂受到高温容易引起激烈的挥发,其结果会导致飞珠的形成。恒温区的梯度过大。这意味

炉温均匀性测试作业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS) 进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产

品与上一次相同。 5.2 温度均匀性测试(TUS)步骤 5.2.1通常情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)并且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控温热电偶。如下图所附。

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/f04630592.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

炉温均匀性测试作业指导书

炉温均匀性测试作 业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。 4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。 4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS)

进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产品与上一次相同。 5.1 温度均匀性测试的设备: 5.2 温度均匀性测试(TUS)步骤 5.2.1一般情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)而且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控

无压烧结碳化硅技术开发样本

铝工业用大型薄壁无压烧结碳化硅管状制品的研究开发 一、项目背景 随着世界经济的快速发展和材料制备技术的持续进步, 无压烧结SiC材料已经进入民用工业, 在汽车、冶金、轻工、化工等行业应用呈现扩大趋势, 对促进相关领域的技术进步、节能和环保的积极作用越来越明显。高性能无压烧结SiC材料已列入工信部发布的《装备制造业技术进步和技术改造投资方向( ) 》报告中, 是中国经济建设需要的高技术产品。 国际上, 铝、锌、镁等有色金属或合金熔体的加热更多的向能量可高效利用的内加热方式发展, 长管状内加热管采用大型薄壁无压烧结SiC材料的理念受到重视, 应用越来越普遍, 国外部分铝业公司在铝加工业过程中已经大量采用这种材料, 仅非州某一家铝业公司年需求长度 mm, 内径150-200mm, 壁厚8-10mm, 一端敞口、一端球形封闭的内加热管近支, 产值近 -3000万元人民币。中国原铝产量居世界第一, 铝加工业的技术进步受世界瞩目, 少数铝加工企业引进国外的整套加热设备中已经使用了这种大型无压烧结SiC内加热管, 该材料是国产化先进加热设备重要的关键部件, 但当前国内尚不能生产该类产品, 只能依赖进口, 国内企业对这种高技术材料的需求较为迫切。总之, 这种大型薄壁无压烧结SiC管状制品的国内外市场前景极好。 本项目拟经过与中国科学院上海硅酸盐研究所合作研究开发, 解决大型薄壁无压烧结SiC管状制品工业化制备的关键技术, 掌握并稳定该材料的生产技术, 实现批量生产。项目实施成功后, 研制的高性能产品将极大地丰富我院碳化硅产品种类, 优化我院碳化硅产品结构, 进一步提升我院在铝工业的服务水平。 二、国内外研究现状及我院研发基础 国内外对无压烧结SiC陶瓷材料进行了大量的研究开发, 已有大量的产品用于民用和军工工业。世界500强之一的圣戈班( SAINT-GOBAIN) 公司是当前先进SiC

碳化硅陶瓷的烧结工艺

碳化硅陶瓷的合成方法综述 碳化硅陶瓷具有机械强度高、耐高温、抗氧化性强、热稳定性能好、热导率大、耐磨损性能好、耐化学腐蚀性能好、硬度高、抗热震性能好等优良的特性。碳化硅是所有非氧化物陶瓷中抗氧化性能最好的一种。碳化硅陶瓷不仅在高新技术领域发挥着重要的作用,而且在冶金、机械、能源和建材化工等热门领域也拥有广阔的市场。随着高新技术的不断发展,对碳化硅陶瓷的要求也越来越高,需要不同层次和不同性能的各种产品。早在20 世纪50 年代,Popper[ 1] 首次提出反应烧结制备碳化硅。其基本原理是:具有反应活性的液硅或硅合金,在毛细管力的作用下渗入含碳的多孔陶瓷素坯,并与其中的碳反应生成碳化硅,新生成的碳化硅原位结合素坯中原有的碳化硅颗粒,浸渗剂填充素坯中的剩余气孔,完成致密化的过程。 1.1 常压烧结 1.1.1 固相烧结 单一陶瓷粉体烧结常常属于典型的固相烧结,即在烧结过程中没有液相形成。陶瓷坯体的致密化主要是通过蒸发和凝聚、扩散传质等方式来实现的。其烧结过程主要由颗粒重排、气孔填充和晶粒生长等阶段组成。同时,固相烧结可以通过合适的颗粒级配、适当的烧结温度和较短的保温时间等工艺参数来实现致密化烧结。自20世纪7O年代,Prochazkal6在高纯度的SiC中加人少量的B和C作为烧结助剂,在2050℃成功地固相烧结出致密度高于98 的SiC陶瓷以来,固相烧结就一直很受关注。虽然SiC-B-C体系固相烧结SiC需要较高的烧结温度,烧结晶粒粗大,均匀性差,而且SiC陶瓷具有较低的断裂韧性、较高的裂纹强度敏感性和典型的穿晶断裂模式,但是固相烧结的烧结助剂含量低,杂质少,晶界几乎不残留低熔点物质,烧结后的SiC陶瓷高温稳定性好、热导能力强l7剖。因此,固相烧结在SiC陶瓷烧结中具有潜在的应用价值。目前,采用SiC-B-C烧结体系来进行固相烧结SiC陶瓷的厂家主要有美国的GE公司。 1.1.2 液相烧结 由于陶瓷粉体中总有少量的杂质,大多数材料在烧结过程中都会或多或少地出现液相。另外,即使在没有杂质的纯固相系统中,高温下还会出现“接触”熔融现象,因而纯粹的固相烧结实际上不易实现,大多数的烧结实属液相烧结。液相烧结是以一定数量的多元低共熔点氧化物为烧结助剂,在高温下烧结助剂形成共溶液相的烧结过程,烧结晶粒细小均匀呈等轴晶状。其烧结体系的传质方式为流动传质,可降低致密化所需要的能量,容易实现低温下的烧结致密化,缩短烧结时问。同时,低共溶液相的引入和独特的界面结合弱化,使材料的断裂模式为沿晶断裂模式,材料的断裂韧性和强度显著提高。Nakano等利用BeO 的高热导能力以及SiC与BeO在烧结过程中形成液相的特点,最终制备出热导率高达270W /(m ·K)的SiC陶瓷。Takada等在2200℃烧结平均粉末粒径为0.5Fro的SiC陶瓷的过程中,加入烧结助剂2 BeO、0.2 ~O.4 BC和0.2 ~O.3 C(质量分数),无压烧结0.5h,获得材料的电阻率和热导率分别为5×l0^12Q ·cm和140w/(m ·K)。在烧结过程中,均匀分布在SiC表面的B原子和C原子与Si原子反应,生成GB-C、Si-B-C、Si- Si 和Si—DSi键,促进Si原子的扩散,提高SiC陶瓷的致密度。 1.2 热压烧结 热压烧结是指在SiC加热烧结的同时,施加一定的轴向压力而进行的烧结。热压烧结可增大SiC粒子间接触面积,降低烧结温度,缩短烧结时间,增加烧结体的致密化,促进SiC烧结。为了使SiC粒子更容易烧结,热压烧结通常需要在SiC粉体中加入B、C、Al、B4C、Y2O3、A12O3。等烧结助剂来促进烧结。B、Al或BC固溶于SiC中,降低SiC 的界面能,C主要与SiC粒子表面的SiO。反应形成低温液相,促进B、A1的扩散。Liu 等以Y2O3和A12O3。为烧结助剂,在2000℃、30MPa的烧结条件下进行烧结,烧结出

相关文档
最新文档