基于图像处理的航空发动机叶片检测技术研究

基于图像处理的航空发动机叶片检测技术研究
基于图像处理的航空发动机叶片检测技术研究

航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

机械故障诊断综合大作业—航空发动机的状态监测和故障诊断

机械系统故障诊断 综合大作业 航空发动机的状态监测和故障诊断 1.研究背景与意义 航空发动机不但结构复杂,且工作在高温、大压力的苛刻条件下。从发动机发展现状看,无论设计、材料和工艺水平,抑或使用、维护和管理水平,都不可能完全保证其使用中的可靠性。而发动机故障在飞机飞行故障中往往是致命的,并且占有相当大的比例,因此常常因发动机的故障导致飞行中的灾难性事故。 随着航空科学技术的发展并总结航空发动机设计、研制和使用中的经验教训,航空发动机的可靠性和结构完整性已愈来愈受到关注。自70年代初期即逐步明确航空发动机的发展应全面满足适用性、可靠性和经济性的要求,也就是在保证达到发动机性能要求的同时,必须满足发动机的可靠性和经济性(维修性和耐久性)的要求。 可靠性工作应贯穿在发动机设计-生产-使用-维护全过程的始终。对新研制的发动机,应在设计阶段就同时进行可靠性设计、试验和预估;对在役的发动机,应经常进行可靠性评估、监视和维护。军机和民用飞机的主管部门,设计、生产、使用和维护等各部门,应形成有机的、闭环式的可靠性管理体制,共同促进航空发动机可靠性的完善和提高。 2.国内外进展 自70年代前期,国外一些先进的民用和军用航空公司即着手研究和装备发动机的状态监视和故障诊断系统。电子技术与计算机技术的迅速发展,大大促进了航空发动机的状态监视与故障诊断技术的发展。至今,监视与诊断技术作为一项综合技术,已发展成为一门独立的学科,其应用已日趋广泛和完善。 按民航适航条例规定航空发动机必须有15个以上的监视参数。现今美国普?惠公司由有限监视到扩展监视,逐步完善了其TEAMIII等系统,美国通用电气公司也不断在发展其ADEPT系统。 从各国空军飞机发动机的资料来看,大都采用了发动机状态监视与故障诊断系统。包括发动机监视系统EMS,发动机使用情况监视系统EUMS和低循环疲劳计数器LCFC等,同时为了帮助查找故障,近年来还发展了发动机故障诊断的专家系统,如XMAN和JET—X。美国自动车工程协会(SAE)E-32航空燃气涡轮监视委员会研究并颁布了一系列指南,包括航空燃气涡轮发动机监视系统指南、有限监视系统指南、滑油系统监视指南、振动监视系统指南、使用寿命监视及零件管理指南等。 我国相关民用航空公司和院校开展的发动机状态监测与故障诊断的研究工作已初见成效。并且对于新研制的高性能发动机已将实施状态监视列为重要的技、战术指标,因此正较全面的开展这方面的研究工作。但是总的看来,国内该项工作开展得还不够,亟待有计划、有步骤地借鉴国外的成功经验,发展并推广我们自己的状态监视与故障诊断技术,以适应飞机和发展的需要。

航空发动机典型故障处理报告

目录 第1章绪论 1.1 发动机概述··2 1.2 可靠性与故障··2 1.2.1 可靠性··2 1.2.2 故障··2 1.2.3 故障分析与排故方法··3 第2 章压气机喘振故障分析 2.1 概述··5 2.2 喘振时的现象··5 2.3 喘振的根本原因··5 2.4 压气机的防喘措施··6 第3 章压气机转子叶片故障分析 3.1 概述··9 3.2 压气机转子叶片受环境影响的损伤特征和有关安全准则与标准··9 3.3 压气机转子叶片故障模式及其分析··10 3.3.1 WP7系列压气机转子叶片现行检查标准﹙含判废标准﹚··10 3.4 WP7系列报废叶片主要失效模式统计分析··12 第4 章发动机篦齿盘均压孔裂纹故障分析及预防 4.1 概述··14 4.2 篦齿盘结构与工作状态分析··14 4.2.1 结构分析··14 4.2.2 工作状态分析··14 4.2.2.1 工作温度高··14 4.2.2.2 工作转速高··14 4.2.2.3 易产生振动··14 4.3 裂纹特征与产生原因分析··15 4.3.1 裂纹特征··15 4.3.2 裂纹原因分析··15 4.4 结论··16 结束语··17 致谢··18 文献··19

第1 章绪论 1.1发动机概述 二十世纪以来,特别是第二次世界大战以后,航空和空间技术有了飞跃的发展。现在,飞机已经成为一种重要的﹑不可缺少的作战武器和运输工具。飞机的飞行速度﹑高度﹑航程﹑载重量和机动作战的能力,都已达到了相当高的水平。这些成就的取得,在很大程度上取决于动力装置的发展。然而,航空发动机属于高速旋转式机械,处于高转速﹑高负荷(高应力)和高温环境下工作的;发动机是飞机的心脏,是体现飞机性能的主要部件。又由于发动机由许多零组件构成,即本身工作情况和外界环境都十分复杂,使发动机容易出现故障,因此航空发动机属于多发性故障的机械。经过多年的努力,在航空领域工作的研究人员已经了解和解决了发动机许多故障,然而,一些故障还是无法完全解决的,只能尽量减少故障对飞机的危害。本论文列举出发动机几种典型故障,并且尽可能的根据科学研究数据来研究分析这几种故障,给出科学的预防故障和排故方法。 1.2可靠性与故障 1.2.1可靠性 产品在规定的条件下和规定的时间内,完成规定功能的能力为产品的可靠性。所谓产品,是指任何元器件、零部件、组件、设备、分系统或系统。规定条件主要指环境条件和使用条件,如产品在工作中所承受的应力水平、温度、振动和腐蚀环境等。规定时间是指广义时间,除产品的工作小时外,还可指其循环次数等。 1.2.2故障 产品或产品的一部分不能或将不能完成预定功能的事件或状态。对某些产品如电子元器件、弹药等称失效。 产品的故障: a. 在规定的条件下,不能完成其规定的功能; b. 在规定的条件下,一个或几个性能参数不能保持在规定的范围内; c. 在规定的应力范围内工作时,发生产品的机械零部件、结构件或元器件的破裂、断裂、卡死等损坏状态,从而导致产品不能满足其规定功能。 故障率: 指工作到时刻t尚未发生故障产品,在该时刻后的单位时间内发生故障的

大修航空发动机涡轮叶片的检修技术

编订:__________________ 单位:__________________ 时间:__________________ 大修航空发动机涡轮叶片 的检修技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4381-88 大修航空发动机涡轮叶片的检修技 术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测

航空发动机涡扇叶片及其成形工艺

航空发动机涡扇叶片及其成形工艺 涡扇发动机具有耗油率低、起飞动力大、噪音低和迎风面积大等特点。60年代中期,它只应用于客机和轰炸机,当时人们普遍认为,它很难在高速歼击机上应用。自70年代以来,带加力的高推比涡扇发动机的相继问世,使战斗机的性能提高到了一个新的水平,从而彻底改变了人们对涡扇发动机的偏见。90年代中期,又为第四代战斗机成功研制了推重比10带加力的涡扇发动机。与此同时,为满足发展巨型、远程运输机、宽机身客机的需要,国外先进的发动机厂家又研制成功了大推力、低耗油率、大流量比的涡扇发动机。时至今日,涡扇发动机已是应用数量最多、范围最广和最有发展前景的航空发动机。 风扇叶片是涡扇发动机最具代表性的重要零件,涡扇发动机的性能与它的发展密切相关。初期的风扇叶片材料为钛合金,具有实心、窄弦、带阻尼凸台结构。现今,风扇叶片在材料、结构方面已改进许多。为了增强刚性,防止振动或颤振,提高风扇叶片的气动效率,用宽弦结构代表了窄弦、带阻尼凸台结构;为了减轻重量,用夹芯或空心结构取代了实心结构;为了增大流量比,提高大推力涡扇发动机推进效率,风扇转子直径已增大到了3242mm,风扇叶尖速度已高达457m/s。而这些材料新、叶身长、叶弦宽、结构复杂的风扇叶片的成形工艺是非常复杂的。因此,风扇叶片的成形工艺始终是涡扇发动机的关键制造技术之一。 1早期风扇叶片 早期风扇叶片为大尺寸实心结构,为防止共振及颤振,它的叶身中部常带有一个阻尼凸台(又称减振凸台)。所有叶片的凸台连成一环状,既增强了刚性又改变了叶片固有频率,减小了叶根弯曲和扭转应力。阻尼凸台接合面喷涂有耐磨合金,当叶片振动时,接合面相互摩擦可起阻尼作用。阻尼凸台一般位于距叶根约整个叶片长度的50%~70%处。阻尼凸台的存在带来一系列问题,如:由于它的存在及它与叶身连接处的局部加厚,使流道面积减少约2%,使空气流量降低,造成气流压力损失,使压气机效率下降,发动机耗油率增加;增加了叶身重量,使叶片离心力负荷加大;使叶片制造工艺更加复杂。在有些风扇叶片上,为了增强抗外物撞击损伤能力,叶身上除了阻尼凸台以外,还有较厚的加强筋。 CFM56-3和CFM56-5发动机风扇转子直径约1700mm,风扇叶片长约600mm,由整体钛合金锻件经机械加工而成。风扇叶片毛坯先镦锻出叶根和阻尼凸台,经预锻成形,再精锻、切边。叶身成形可用数控铣、数控仿形磨、电解加工和抛光等工艺。随着叶片批量生产的增加,应尽量采用精锻法生产出钛合金风扇叶片的锻坯,以提高材料的利用率,减少机械加工工作量和提高风扇叶片的使用寿命。但生产这样大的风扇叶片精锻毛坯,需要使用昂贵的高精度的万吨级机械压力机或螺旋压力机,所需模具的尺寸大、精度也高。因此,精锻工序的成本很高。4钛合金宽弦无凸台空心风扇叶片5高韧性环氧复合材料风扇叶片

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

航空发动机试验测试技术

航空发动机试验测试技 术 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验,一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。(3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量)所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。

航空发动机叶片裂纹检测技术及应用分析

航空发动机叶片裂纹检测技术及应用分析 航空发动机作为飞机动力的核心,是体现飞机性能的标准之一。大多采用复杂型面叶片,在运行过程中因为会受到应力、离心力已于弯矩应力的影响,所以容易生成疲劳裂纹、层间分离等损伤。这种损伤会降低航空发动机的性能,给装备带来安全隐患,甚至会引发灾难。因此发展、使用高效的检测技术是解决这类问题的关键。 大部分应用于航空发动机叶片检测的方法主要有孔探法以及常规的检测方法如磁粉、射线、涡流电磁法,其中孔探法是发动机外场检测应用最多的一种技术,这种技术检测时间长,对人力的要求很高,并且操作过程较为复杂且必须十分谨慎。常规的检测方法对复杂曲面结构缺陷的检测存在这一定的局限性。近年来已出现一些高效的无损检测方法如声波/超声波检测、电磁超声非线性检测、相控阵检测等已经逐步应用于发动机叶片的探伤。红外热成像技术亦是较为先进的无损检测技术之一,它主要是通过对被测结构件表面的温度变化进行捕捉,利用红外热成像仪采集表面因温度变化而产生的红外信号检测的。 红外热成像技术是用超声波对工件表面积局部进行激励进而进行加热,通过热成像仪捕捉裂纹区域的局部红外图像。由于在固体器件中超声波传播速度快,所以从发出激励信号到采集到反馈信号是极短时间的过程,又因为深度、裂纹大小不同,红外信号传播到试件表面并得到反馈是随着时间、裂纹规模变化的,最后经过图像处理可以对试件的裂纹进行识别与定位。 1 检测原理及方法概述 1.1 检测原理概述 超声红外热成像检测技术的原理是先将低频高能的超声波注入被测零件,被测零件会产生小幅的机械振动,如果存在裂纹,那么由于裂纹两侧因震动频率不同(即出现相位差)而出现部分热效应(即

航 空 发 动 机 叶 片 涂 层

航空发动机叶片涂层技术 一.涡轮叶片是先进航空发动机核心关键之一 航空发动机被称为现代工业“皇冠上的明珠”,航空发动机是飞机的“心脏”,价值一般占到整架飞机的20%-25%。目前,能独立研制、生产航空发动机的国家只有美、英、法、俄、中5个。但是,无论“昆仑”、“秦岭”发动机、还是“太行”系列,我国航空发动机的水平距离这一领域的“珠穆朗玛”依然存在不小的差距。美、俄、英、法四个顶级“玩家”能够自主研发先进航空发动机。西方四国由于对未来战场与市场的担忧,在航空发动机核心技术上一直对中国实施禁运和封锁。技术难关有很多。本人认为涡轮叶片是先进航空发动机的核心技术之一。 随着航空航天工业的发展,对发动机的性能要求越来越高,要使发动机具有高的推重比和大的推动力,所采用的主要措施是提高涡轮进口温度。国外在20世纪90年代,要求涡轮前燃气进口温度达1850-1950K。美国在IHPTET计划中要求:在海平面标准大气条件下,航空燃气涡轮机的的涡轮进口温度高达2366K。涡轮进口温度的提高要求发动机零件必须具有更高的抗热冲击、耐高温腐蚀、抗热交变和复杂应力的能力。对于舰载机,由于在海洋高盐雾环境下长期服役,要求发动机的叶片的耐腐蚀性更高;常在沙漠上飞行的飞机,发动机的叶片要具有更好的耐磨蚀。 众所周知:镍基和钴基高温合金具有优异的高温力学和腐蚀性

能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。这一步的改进仍难满足需要,且英国发展计划将取消冷却。二是涂层,常进行多材质多层次涂层。 PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。 二.涡轮叶片的涂层 高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发 Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys

航空发动机仿真测试方案

航空发动机仿真测试方案 挑战 发动机是飞机的心脏,其性能对飞机的发展有着至关重要的影响。由于安全性、经济性和可靠性等原因,在实际发动机上进行实验一般比较困难,而较多的是在实验室设备上进行试验。但是,对于新型的发动机的开发及测试,如发动机供油系统的测试,以及控制系统的测试,基于传统实验测试台架,既无法实现系统部件的性能测试,更无法在闭环的动态环境下进行控制系统综合性能的测试,这样使得开发过程中缺乏必要的测试和验证手段,将会给型号的研发过程造成不可预计的障碍。 基于上述客观条件的限制,提出建设发动机系统设计建模、仿真分析、动态测试和综合验证的一体化设计、分析和验证环境,通过一维离线仿真、半物理实时仿真、三维仿真等对发动机系统进行充分的功能和性能测试,以便在设计阶段就发现和解决潜在的问题与缺陷,减少实机测试和实验次数,缩短型号研发周期,从而节省开发费用、提高工作效率和产品可靠性。 解决方案 针对飞机发动机系统从设计开发到试验验证全过程的解决方案,能够设计飞机发动机系统的整体架构、仿真分析和验证发动机系统的功能和性能需求。解决方案的整体框架如下图所示。 解决方案框架 在管理计算机中,部署了多学科系统设计分析工具PROOSIS及专业的TURBO模型库,TURBO 库中包含超过70个发动机专业元件,如进气道、压气机、燃烧室、涡轮及喷管等,可用于建立涡喷、涡扇、涡轴、涡桨等各种发动机系统的模型,并进行参数化、敏感度分析、优化计算;设计点、非设计点计算;稳态、瞬态计算等,协助进行系统研发初期的动态性能指标确定并作为半实物仿真的环控系统对象模型。PROOSIS完美的多学科耦合分析,可以在同一个模型中综合分析控制、机械、电气、液压等耦合状况;

航空发动机的故障诊断方法研究

摘要 通过回顾航空维修理论及技术的发展历程,分析了以可靠性为中心的维修思想的优越性,阐述了几种航空维修方式各自的特点,指出了新维修思想所带来的革命性成果,即保证安全的前提下降低了维护成本和维修工作量。最后,对新维修思想在我国的应用途径与前景提出了自己的观点。 关键词: 可靠性; 航空维修; 视情; 事后。 1课题背景及其意义 航空维修是随着飞机的诞生而出现的,它是一门综合性的学科。随着科学技术的发展,航空维修经历了从经验维修、以预防为主的传统维修阶段到以可靠性为中心和逻辑决断法的现代维修阶段。目前航空维修已经是一门系统性的学科。 1传统和现代维修思想的对比 1.1传统的维修思想 按照传统的观念,航空维修就是对航空技术装备进行维护和修理的简称,即为保持和恢复航空技术装备实现规定功能而采取的一系列工程技术活动。其基本思想是安全第一,预防为主,也就是按使用时间进行预防性维修工作,通过定时检查、定期修理和翻修来控制飞机的可靠性。这种以定时维修为主的传统维修思想将飞机的安全性与各系统、部件、附件、零件的可靠性紧密相联,认为预防性维修工作做得越多,飞机就越可靠,翻修间隔期的长短是控制飞机可靠性的重要因素。西方通常将这种以定期全面翻修为主的预防维修思想也叫定时维修思想称之为翻修期控制思想。 1.2 现代维修思想的形成 随着航空工业的发展,飞机设计及可靠性、维修性都有了极大提高,特别是余度技术的采用使飞行安全基本有了保障。维修手段上检测设备日益完善,磁粉、着色、荧光、X光等无损探伤手段和电子计算机得到普遍运用。详细的寿命统计资料的积累、疲劳对飞机结构影响程度的掌握,充实了维修经验和理论知识,使可靠性理论和维修性理论得到发展。另外,维修的经济性、维修方针的适用性也越来越多地成为航空维修工作中必须考虑的问题。自此,新的维修思想应运而生,以可靠性为中心的现代维修思想在对传统的航空维修思想继承和发展的基础上对航空维修的历史。经验和理论知识进行概括和总结,除了仍坚持传统维修思想

航空发动机涡轮叶片相控阵超声检测研究

航空发动机涡轮叶片相控阵超声检测研究 江文文,柏逢明 (长春理工大学电子信息工程学院,长春 130022) 摘 要:超声波无损检测技术(UNT )是航空工件检测中应用较多的一种检测方法。本文对航空发动机涡轮叶片进行了超 声波无损检测;传统检测是用反射波形和波幅特征分析检测出发动机涡轮叶片缺陷;相控阵超声检测(PAUT )是利用相位延迟达到相控效果,形成清晰的图像,和传统超声波检测相比,更能直观的显示缺陷的位置和形状。关键词:超声波检测;相控阵;发动机叶片;相位延迟中图分类号:U464 文献标识码:A 文章编号:1672-9870(2011)04-0066-04 Phased Array Ultrasonic Nondestructive Testing for Aero-engine Turbine Blade JIANG Wenwen ,BAI Fengming (School of Electronics and Information Engineering ,Changchun University of Science and Technology ,Changchun 130022)Abstract :Ultrasonic Nondestructive Testing (UNT )is widely used in aviation component test .This paper adopts UNT in aero-engine turbine blade .Traditional detection uses reflection waveform and amplitude characteristic to check out flaw in engine turbine blade .Phased Array Ultrasonic nondestructive Testing (PAUT )takes advantage of phased delay to obtain phased effect and product clear image .Comparing with traditional ultrasonic detection ,PAUT shows po-sition and sharp of flaw more directly. Key words :ultrasonic testing ;phased arrays ;engine blade ;phased delay 航空发动机的涡轮叶片裂纹是危害飞行安全的重要因素,即使是微小的裂纹对飞机都可能造成无法挽回的后果。航空发动机涡轮叶片除了承受巨大的交变拉应力和扭转应力,还需要在高压腐蚀性燃气的冲击下高速旋转。此外还存在高温氧化、热腐蚀和磨损的问题。而叶片的生产成本很高,因此为了节省经济成本,必须寻找有效的检测手段,及时检测出飞机存在的危险因素。随着技术的发展,我们还需要对涡轮叶片进行定性和定量的分析,确定缺陷的大小和形状等。 超声波检测因其灵敏度高,穿透力强,分辨力好,检验速度快,成本低,设备简单和对人体无害等一系列优点广泛用于航空航天领域。 1传统超声波检测 传统超声波无损检测系统是由超声波换能器、发射电路、回波接受电路、主控电路和显示装置组成。超声波检测的基本原理[1]如图1 所示。 图1超声波检测原理图 Fig.1Ultrasonic testing schematic diagram 传统检测多用脉冲反射法。当工件完好时,超声波可顺利传播到达底面,示波屏中只有表示发射脉冲T 和底波回波B 两个信号。若工件中存在缺陷,在示波屏中有表示发射脉冲T 和底波回波B ,还有表示缺陷波的回波F 。如图2所示,根据缺陷回波 收稿日期:2011-07-01 作者简介:江文文(1987-),女,硕士研究生,主要从事检测技术与过程控制,E-mail :bingdongdeleishui1@https://www.360docs.net/doc/f315814034.html, 。 通讯作者:柏逢明(1956-),男,教授,博士生导师,主要从事非线性系统理论、保密通信检测及无线电技术应用研究,E-mail :baifm@https://www.360docs.net/doc/f315814034.html, 。 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition ) 第34卷第4期2011年12月 Vol.34No.4Dec.2011

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

航空发动机发展史

摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出 kW的功率,重量却有81 kg,功重比为daN。发动机通过两根自行车上那样的链条,带动两个直径为的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从daN提高到daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋

最新2016航空发动机典型故障分析

目录 第 1章绪论 1.1 发动机概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2 可靠性与故障〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2.1 可靠性〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2.2 故障〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2.3 故障分析与排故方法〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃3 第 2 章压气机喘振故障分析 2.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.2 喘振时的现象〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.3 喘振的根本原因〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.4 压气机的防喘措施〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃6 第 3 章压气机转子叶片故障分析 3.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 3.2 压气机转子叶片受环境影响的损伤特征和有关安全准则与标准〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 3.3 压气机转子叶片故障模式及其分析〃〃〃〃〃〃〃〃〃〃〃〃〃10 3.3.1 WP7系列压气机转子叶片现行检查标准﹙含判废标准﹚〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃10 3.4 WP7系列报废叶片主要失效模式统计分析〃〃〃〃〃12 第 4 章发动机篦齿盘均压孔裂纹故障分析及预防 4.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2 篦齿盘结构与工作状态分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.1 结构分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2 工作状态分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2.1 工作温度高〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2.2 工作转速高〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2.3 易产生振动〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.3 裂纹特征与产生原因分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃15 4.3.1 裂纹特征〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃15 4.3.2 裂纹原因分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃15 4.4 结论〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃16 结束语〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃17 致谢〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃18 文献〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃19

大修航空发动机涡轮叶片的检修技术通用版

解决方案编号:YTO-FS-PD367 大修航空发动机涡轮叶片的检修技术 通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

大修航空发动机涡轮叶片的检修技 术通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术

(7)航空发动机叶片-15页文档资料

发动机叶片 一、发动机与飞机 1.发动机种类 1)涡轮喷气发动机(WP)WP5、WP6、WP7、……WP13 2)涡轮螺桨发动机(WJ)WJ5、WJ6、WJ7 3)涡轮风扇发动机(WS)WS9、WS10、WS11 4)涡轮轴发动机(WZ)WZ5、WZ6、WZ8、WZ9 5)活塞发动机(HS)HS5、HS6、HS9 2.发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡

轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,

相关文档
最新文档