铅酸蓄电池培训课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铅酸蓄电池培训讲义
一、铅酸蓄电池基本原理
1.蓄电池也称为二次电池,是相对于原电池(一次电池)而言。
原电池是将化学能转化为电能的装置,当其内部参与化学反应的物质耗损到一定程度,其寿命便告终止,无法再将原来的化学能予以恢复。
蓄电池是其将储存化学能转变为电能后(放电:化学能转变成电能),当采用充电装置对其输入直流电能时,又可将耗损的化学能予以恢复(充电:电能转变成化学能)。可以完成多次充放电循环。2.铅酸蓄电池是以铅及其合金、硫酸为主要原料的蓄电池,其正极活性物质为深褐色或棕褐色二氧化铅,负极活性物质为灰色绒状铅,电解质为稀硫酸。阀控式密封铅酸蓄电池基本结构为:电池槽盖、正负极板、汇流排、玻璃纤维隔板、稀硫酸电解液、铅零件、端极柱、安全阀等。
3.铅酸蓄电池的型号命名与识别,见表1。
表1
4.铅酸蓄电池充放电机理:
放电:加负载将蓄电池正负极连通后,由于正极电势高,电子从负极流向正极,通过负载产生电流。同时电池负极发生氧化反应,绒状铅被氧化,释放出电子,其电化学反应式为:Pb+HSO4--2e=PbSO4+H+;电池正极发生还原反应,接受从电池负极输送过来的电子,二氧化铅被还原,其电化学反应式为:PbO2+3H++HSO4-+2e=PbSO4+2H2O。伴随着电化学反应的发生,正极(进行阴极过程)的二氧化铅活性物质和负极(进行阳极过程)的绒状铅活性物质均转化成硫酸铅,电解液中硫酸被消耗,视比重变低。
充电:给电池附加一电压值高于电池电动势的外部直流电源回路,电源正极与电池正极相连、电源负极与电池负极相连,电子从电源负极流向蓄电池负极,蓄电池负极发生还原反应,其电化学反应式为:PbSO4+H++2e=Pb+HSO4-;蓄电池正极发生氧化反应,其电化学反应式为:PbSO4+2H2O-2e= PbO2+3H++HSO4-。伴随着电化学反应的发生,
正极(进行阳极过程)和负极(进行阴极过程)的硫酸铅逐渐被溶解,分别生成二氧化铅和绒状铅,同时发生水的电解和硫酸的生成,电解液浓度增加。
由于蓄电池在放电过程中,正负极的的活性物质均转化成硫酸铅,电化学上将此理论称之为“双极硫酸盐化理论”。
5.铅酸蓄电池充电过程中的附加反应(副反应):
铅酸蓄电池在充电后期或铅酸蓄电池极板化成后期,当正负极电压升高至2.4V以上时,正极发生水的电解反应,消耗部分电能,其电化学反应式为:H2O-2e=2H++1/2O2↑。这种不需要的反应称为附加反应或副反应,由于副反应的存在,使蓄电池在充电或极板化成时实际消耗的电量大于理论消耗的电量。产生的氧气穿过隔板孔隙及其它通道进入负极进行复合,此时负极发生还原反应,为阴极,故亦称阀控式密封铅酸蓄电池为阴极吸收式电池。其电化学反应式为:1/2O2+Pb+H2SO4=PbSO4+H2O。当负极电势达到析氢电势值时,负极上有氢气析出,其电化学反应式为:2H++2e=H2↑。
铅酸蓄电池中玻璃纤维隔板吸附电解液饱合度一般不高于90%,若太高,隔板孔隙被电解液填满,正极产生的氧气便无法通过隔板孔隙到达负极进行复合,复合反应效率低,电池内压升高,安全阀频繁开启,造成电池失水严重,寿命缩短。
6.铅酸蓄电池电特性:
(1)电动势:蓄电池正极平衡电极电势与负极平衡电极电势之差。蓄电池电动势值由电池进行反应的性质和条件决定,与电池的大小和
形状无关。
(2)平衡电极电势的产生:将一金属电极插入含有该金属离子的溶液中,由于该金属离子在金属中与在溶液中的化学势不同,因而发生金属离子在金属电极和溶液之间的转移。在静电力的的作用下,这种转移很快达到动态平衡,这时金属电极表面所带符号与金属电极表面附近溶液中离子所带电荷符号相反,数量相等,于是在金属电极与溶液界面处形成双电层,对应于双电层的建立,金属电极和溶液内便产生一定的电势差,称为平衡电极电势,其绝对值无法测得,只能是相对值。
(3)开路电压:电池处于开路时正极的稳定电极电势与负极的稳定电极电势之差。开路电压范围:2V系列单体,2.13~2.18V。
(4)稳定电极电势:如上述平衡电极电势建立所述,当电极处在可逆状态下,金属与金属离子处于动态平衡,这是一种理想状态,事实上,在电解质水溶液中,电极上不但存在着金属与金属离子一对氧化还原反应,同时还存在着H+的还原和H2的氧化(或者是H2O的氧化和O2的还原)的另一对电化学反应。其电化学反应式为:
Me-ze Me z+…………①
H2-2e 2H+…………②
H2O-2e 2H++1/2O2………③
理想状态下,只存在着反应①,实际上反应①和②或③同时存在,氧化反应所失去的电子为还原反应所得,这样就能保持电极上电子的平衡,然而其荷电状态与只存在反应①不同,这时建立的电极电势称
为稳定电极电势。由于反应①和②同时存在,金属将不断溶解,H2将不断析出,但金属溶解和H2析出的速度均很慢,电极电荷状态与只有反应①时变化不大,故稳定电极电势与平衡电极电势值很接近,但如果析氢过电位很小的情况下,二者电势值的差别将很明显。所以在一般情况下,可将电池的开路电压视同为电池的电动势。
(5)开路电压的应用:
A:从充足电并开路搁置48h以上电池所测得的开路电压值可以大略判断该电池电解液密度(开路电压值=0.85+ρ,ρ为电解液密度)。
B:判断电池的荷电状态,估算电池自放电程度,确定电池是否需要补充电。
C:判断电池失效原因:若为极板硫酸盐化电池,其开路电压值下降,充电时电压值高;若为活性物质软化脱落电池,其开路电压值正常,但放电容量低。
(6)容量:蓄电池以一定的放电电流,在规定的放电终止电压条件下,放电时能释放出的电能。
A:不同种类和用途电池,其额定容量规定不同,如固定型阀控式密封铅酸蓄电池的额定容量为10h率放电容量,起动用铅酸蓄电池的额定容量为20h率放电容量,内燃机车用密封铅酸蓄电池的额定容量为5h率放电容量,电动助力车用铅酸蓄电池的额定容量为2h率放电容量。
B:蓄电池容量与放电电流有关,放电电流愈大,其放电容量愈