肠道黏膜免疫系统SIgA的功能和调节研究
肠道微生物群与免疫调节的研究

肠道微生物群与免疫调节的研究肠道微生物群是指寄居在人体消化系统中的各种微生物,包括细菌、真菌和病毒等。
近年来,越来越多的研究表明,肠道微生物群与免疫调节之间存在着密切的关系。
本文将从宏观角度到微观机制逐步分析肠道微生物群对免疫调节的影响。
一、肠道微生物群与免疫系统相互作用1. 宏观观察:肠道菌群与免疫系统密切相关许多大规模人类和动物实验表明,改变肠道菌群结构会导致免疫系统失衡,并引发许多疾病,如自身免疫性疾病、过敏反应和感染等。
这些结果进一步说明了肠道微生物群对免疫调节所起到的重要作用。
2. 中观观察:肠道菌属差异与免疫系统功能差异有关不同个体之间及不同环境下菌属组成具有差异,而这些差异又可能导致免疫系统的变化。
一项研究发现,在小鼠实验中,富含增强了黏膜免疫功能,从而帮助抵御肠道感染。
3. 微观观察:肠道菌群与免疫细胞密切相互作用通过与免疫细胞相互作用,肠道微生物可以调节免疫细胞的数量、活性和功能。
例如,它们可以通过分泌代谢产物来影响免疫细胞的增殖和分化,从而调控整个免疫系统。
此外,一些特定菌株还可以激活抗原递呈细胞以产生特定的免疫反应。
二、具体机制解析1. 共代谢物假说共代谢物是指肠道微生物在分解食物时产生的代谢产物。
这些共代谢物包括各种有机酸、氨基酸和多肽等。
它们不仅为人体提供能量,还具有调节免疫功能的作用。
例如,在某些情况下,共代谢物可以促进抗原递呈细胞产生更多的促炎性因子,从而增强免疫应答。
2. 菌群结构调节免疫反应菌群结构是指肠道微生物种类及其丰度的组合模式。
一些研究发现,菌群结构的改变可以直接影响免疫反应。
例如,某些特定的螺旋链菌属在肠道内增加时,会导致肠道黏膜上皮屏障损伤,并引发慢性肠道炎症反应。
这进一步揭示了菌群结构与免疫调节之间的密切关系。
3. 核受体介导的信号传导核受体是一类能够和共代谢物结合的蛋白质,在调控机体对某些化合物和环境刺激作出反应方面起到重要作用。
最近的研究表明,核受体在介导肠道微生物与免疫系统相互作用中也具有重要地位。
粘膜免疫

肠道黏膜免疫抗寄生虫感染机制
胃肠道中不同的抗原诱导黏膜免疫反应或免疫耐受
黏膜免疫阻止机体对肠道正常菌群产生免疫应答
黏膜组织中DC的表型和功能
黏膜淋巴细胞归巢的分子调控机制
sIgA局部抗感染的免疫的主要机制
粘膜免疫
(Muc系统的组成 二、粘膜免疫系统的功能特征 三、粘膜免疫应答及其调节 四、粘膜免疫的意义
粘膜免疫系统的分布
胃肠道粘膜免疫系统
艰难梭菌入侵胃肠道
黏膜固有层和肠上皮层中的弥散免疫细胞
M细胞从肠腔摄取抗原、跨上皮转运至DC而活化T细胞
黏膜免疫ppt课件

MΦ 、FDC细胞
抗体sIgA 免疫诱导部位
8
淋巴滤泡(lymphoid
follicle):又称淋巴小结 (lmphoid nodule),淋巴 结浅皮质区内由大量B细胞 聚集而形成的结构。 分为初级淋巴滤泡和次级 淋巴滤泡。
9
派尔集合淋巴结(Peyer patch)
10
2. 弥散的黏膜淋巴组织
二、建立人群免疫屏障效率高。脊灰减活疫苗在消化道内繁殖后 还会排出体外,这些排出体外的疫苗病毒有可能通过阴性感染的 方式免疫周围的人群。脊灰灭活疫苗则无法繁殖和排出体外,其
预防效果只局限于受种者本人。
三、生产成本低廉。 四、接种操作简单。
19
脊髓灰质炎疫苗的发展历程
最初的脊髓灰质炎疫苗IPV
淋巴管离开淋巴组织,经胸导管进行血液循环,达全身 黏膜组织,B细胞定居分化为IgA浆细胞 IEL和LPL的免疫应答
sIgA占黏膜组织产生的 所有抗体的80%以上。
13
sIgA 的功能
阻抑黏附作用 免疫排除作用 中和毒素 中和病毒 促进天然抗菌因子
14
三、疫苗应用
常见人类口服使用的黏膜疫苗
16
脊髓灰质炎(poliomyelitis)
传染源 人是唯一贮存宿主 病人、隐性感染者及无症状病毒携带者是传染源 隐性感染者及无症状病毒携带者是主要传染源, 通过粪便排毒,排毒时间可达数月
SIgA表达功能及其在肠道疾病的作用

SIgA表达功能及其在肠道疾病的作用韩渤;刘玥宏;仇志强;张子卿;王雪;徐敬东【期刊名称】《世界华人消化杂志》【年(卷),期】2017(25)19【摘要】免疫球蛋白A(immunoglobulin A,IgA)在黏膜的免疫功能中起关键作用,是维持肠道黏膜稳态的重要物质.分泌型IgA(secretory IgA,SIgA)的分泌组分保护免疫球蛋白不被蛋白水解酶降解,SIgA在肠道内各种免疫因子、免疫细胞以及其他免疫球蛋白的参与下完成肠道内的免疫监视、免疫自稳、免疫调控.本文主要就肠道中SIgA的结构、合成转运、分泌调节、作用和其相关临床疾病的研究进展作一综述.【总页数】7页(P1757-1763)【关键词】分泌型免疫球蛋白A;胃肠黏膜;食物过敏;胃肠感染;应激性溃疡;非甾体类抗炎药肠病【作者】韩渤;刘玥宏;仇志强;张子卿;王雪;徐敬东【作者单位】首都医科大学病理生理学系【正文语种】中文【中图分类】R725.6【相关文献】1.甲状腺1.妇女甲状腺组织中胎儿细胞嵌全体可能与自身免疫性甲状腺疾病有关;2.糖尿病一级亲属中甲状腺胃(thyro-gastric)的自身抗体存在与年龄及先证者抗体状况有关; 3.亚临床甲状腺功能亢进老年人全因和心血管死亡率增高:低血清促甲状腺激素人群10a随访结果; 4.服用钙剂对肠道左旋甲状腺激素受体的表达影响;5.Graves 眼病患者中IL-6刺激促甲状披肝沥胆激素受体的表达; 骨质疏松 6.雌激素并不能减少绝经后妇女脑血管意外的病死率或复发危险 [J],2.慢性阻塞性肺疾病患者肺泡灌洗液SIgA表达水平与肺功能相关性研究 [J], 张继华;林明;张毅;高明;何荣华;沐黎3.慢性阻塞性肺疾病患者肺泡灌洗液SIgA表达水平与肺功能相关性研究 [J], 张继华;林明;张毅;高明;何荣华;沐黎;4.功能性便秘患儿肠道菌群对大鼠酸敏感离子通道3表达的影响及在肠道动力中的作用 [J], 赵军梅; 蔡洁; 朱克然; 李文亚; 桂明; 袁丽萍5.肠神经胶质细胞在肠道功能与肠道疾病中的作用 [J], 王亚梅;贾漪涛;李中信因版权原因,仅展示原文概要,查看原文内容请购买。
肠道调节作用研究报告范文

肠道调节作用研究报告范文肠道调节作用研究报告范文一、引言肠道是我们消化系统的一部分,拥有重要的消化及吸收功能。
然而,肠道在人体中的作用不仅仅局限于此,还承担着调节免疫功能、代谢功能以及维持肠道菌群平衡等重要功能。
近年来,越来越多的研究表明,肠道调节作用对于我们的整体健康至关重要。
本报告旨在综述肠道调节作用的最新研究进展,并对其对人类健康的影响进行探讨。
二、肠道调节作用及其机制1. 肠道调节功能概述肠道的调节功能主要体现在三个方面:免疫调节、代谢调节和菌群调节。
免疫调节意味着肠道通过控制免疫细胞活性来维持机体的免疫平衡;代谢调节则指肠道影响机体能量代谢和物质代谢的能力;而菌群调节指肠道菌群对机体健康的影响,以及肠道对菌群的调控。
2. 肠道调节的机制肠道调节作用凭借多种机制实现。
首先是肠道神经调节,包括肠道内外感觉神经的参与,通过神经传导,肠道能够感知到内外环境的变化,并做出相应的调节。
其次是肠道激素调节,肠道分泌多种激素,如胰高血糖素、胃液激素和肠肽等,这些激素可以调节机体的胃肠运动、分泌和免疫反应。
此外,肠道还可以通过对菌群的调控来实现调节作用,肠道菌群与机体之间相互作用密切,维护着微生物群落的平衡。
三、肠道调节作用的影响1. 免疫调节肠道免疫调节作用是肠道功能中最为重要的一部分。
肠道内有大量免疫细胞,如巨噬细胞、淋巴细胞和树突状细胞等,它们能够感知并应对外来病原体的入侵,维持机体的免疫平衡。
研究发现,肠道免疫调节异常与多种免疫相关疾病的发生密切相关,如自身免疫病、过敏性疾病和肿瘤等。
2. 代谢调节肠道调节作用对机体代谢有着重要影响。
肠道中分泌的激素能够影响食欲、胃肠运动和胰岛素分泌等,进而调节机体能量代谢和物质代谢。
近期的研究发现肠道菌群与肥胖和代谢综合征的关系密切,并且通过改变菌群组成可以对代谢疾病产生治疗效果。
3. 菌群调节肠道菌群在肠道调节中也扮演着重要的角色。
研究发现,肠道菌群与机体免疫反应、代谢水平和心理健康等密切相关。
动物胃肠道黏膜免疫简述_续_丁辉景

动物胃肠道黏膜免疫简述(续)丁辉景张力张明珠甘肃农业大学制病原体在黏膜表面的黏附及减少病原体的着生,并在黏膜腔内和黏膜下参与行使效应功能。
IgA经肠上皮细胞间隙内与上皮细胞产生的分泌片段结合,形成分泌型免疫球蛋白(S-IgA)。
S-IgA释放入肠腔,既可与相应抗原结合,抑制细菌增殖和中和毒素,保护肠黏膜,又能抵抗蛋白溶解酶作用,从而保护肠黏膜以防被消化。
S-IgA是黏膜组织免疫应答的特征,S-IgA抗体可通过阻碍黏膜与细菌和病毒的接触从而给黏膜表面提供特殊的免疫屏障。
黏膜相关淋巴组织(MALT)中S-I gA超过80%。
黏膜免疫系统可通过远距离位点的黏膜表面诱导抗原特异性S-I gA分泌。
S-IgA还可穿越上皮组织,在上皮内显示其抗微生物能力。
S-IgA以单体和二聚体2种分子形式存在。
单体存在于血清中;二聚体由呼吸道和消化道等部位黏膜固有层的浆细胞产生,是有2个单体经1条J 链连接构成的二聚体。
二聚体以受体介导方式及黏膜上皮或基底膜表达的pIGr或IgAFc段结合,介导该结合物的内吞,并转运至细胞顶膜,经酶解使结合有IgA的多聚免疫球蛋白受体(pIgR)胞外区脱落,并分泌至黏膜腔。
此外,由局部黏膜上皮细胞所合成的分泌成分SC在IgA通过黏膜的上皮细胞过程中,分泌成分与之结合形成S-IgA。
SC不仅具有促进上皮细胞积极地从组织中吸收S-IgA,并将其释放于胃肠道和呼吸道内的作用,同时分泌成分可防止S-IgA在消化道被蛋白酶降解,同时它的多链性、黏膜亲和性及抵抗蛋白酶的作用均有助于与病毒和细菌亲和,从而使S-I gA充分发挥免疫作用。
6动物肠道免疫的影响因素6.1细胞因子细胞因子在细胞生长、分化和凋亡等生理过程及黏膜免疫中淋巴细胞归巢和急慢性炎症等病理过程中发挥重要作用。
1)细胞因子中干扰素-C(IFN-C)和肿瘤坏死因子-A(TNF-A)对IgA的分泌有下调作用,IL-4、IL-5、IL-6和IL-10对I gA的分泌有增强和诱导作用,分泌这些因子的细胞主要存在于固有层内,与IgA浆细胞有着密切的空间关系。
SIgA在肠道免疫中的作用

( 稿 E 期 : 0 50 2 收 l 2 0 — 82 ) ( 文编辑 : 立明) 本 王
Байду номын сангаас
1 Br isMJ,Lukig YC,S ee sPB.e 1 An ur , 2I3; 8 un i n o tr ta. n S g (( 1
Y c a g 4 3 0 ) C ia 2 e a t n fP d a r s h Af i a e n j s i l f ih n ( 4 0 0 , h n ; .D p r me t o e i t c ,te f l t To g i i i d Hop t a o T n j d c l ol e f Hu z o g U ie s y o ce c a d T c n lg W u a ( 3 0 0 , h n og i Me i l g a h n n v ri f S in e n eh oo y, h n 4 0 3 ) C ia a C e o t
[ y w rs S g S ceo y c mp n n ; n et e Ke o d ] I A; e rt r o o e t I tsi ;Mu o a i n c s l mmu e n
Sg 分 泌 性 IA) 肠 粘 膜 的 主要 免 疫 球 蛋 I A( g 是
是由 B 2。 g 20 。IM 淋 巴 细 胞 在 原 位 生 成 的 , 且 而 AI 活 化诱 导 的胞 苷脱 氨酶 ) D( 在抗 原 类别 转 换 重组
Th ril e iws t e f r to n e u a i n o h I A,a l a h c iiy o h I A n t e i t si e e a tce r v e h o ma i n a d r g l to ft e S g s wel s t e a t t ft e S g i h n e tn . v
消化道免疫系统

小结:
消化道免疫系统是粘膜特殊防御 系统中的一部分,是全身免疫系统网络 中的第一道防线,它可以激发机体对病 原体产生有效的免疫反应,从而维护和 调节胃肠道的生理功能。
参考文献:
儿童免疫学 免疫学 tric
谢谢
三、肠道防御系统的组成和功能
4)其他免疫球蛋白的作用 IgM :作用与IgA相反,但肠液中浓度远低于IgA。 IgE:有抗寄生虫作用,与肠道局部炎症反应和免疫损
伤有关。 IgG:在生理情况下对胃肠道无重要免疫保护作用。急
性粘膜炎症时可经粘膜损伤处渗入肠壁,发挥暂 时性保护作用。 IgD:胃肠道无产IgD型浆细胞,肠液中也无IgD,其生 物学特性及生理功能仍不清楚。
三、肠道防御系统的组成和功能
2)SIgA肠肝循环: IgA+IgA受体
SC—IgA复合物(即SIgA)
胞饮
分泌
毛细胆管附近
胆汁
十二指肠。
SIgA肠肝循环可加强胆道和肠道免疫防御,将循 环内有害物和IgA免疫复合物排至肠内。
三、肠道防御系统的组成和功能
3)作用 预防细菌粘附和侵入是最主要的功能。 还能起封闭抗体的作用,阻止食物大分 子抗原吸收。
三、肠道防御系统的组成和功能
(2)分泌型IgA(SIgA) 1)分泌: SIgA是消化液中最主要的抗体。 肠腔分泌液中SIgA的量反映了粘膜局部 免疫水平。
gut blood Ab
bacteria food etc
M cells Peyer
lymph
A A blood
gland
other mucosal site A
肠黏膜免疫屏障及其保护措施

动物营养学报2014,26(5):1157⁃1163ChineseJournalofAnimalNutrition㊀doi:10.3969/j.issn.1006⁃267x.2014.05.005肠黏膜免疫屏障及其保护措施谢天宇1㊀胡红莲2㊀高㊀民2∗(1.内蒙古农业大学动物科学学院,呼和浩特010018;2.内蒙古农牧业科学院动物营养与饲料研究所,呼和浩特010031)摘㊀要:肠黏膜是构成动物体内与外界环境之间最大的接触表面,是易受病原体定植和入侵的最常见部位㊂肠黏膜免疫屏障作为保护动物机体免受外来病原微生物侵扰的重要防线,可在抗原的刺激下利用免疫细胞和免疫相关物质产生特异性免疫应答,同时可对无害抗原下调免疫反应或产生免疫耐受㊂研究肠黏膜免疫屏障功能作用的机制并通过人为保护性措施来预防和修复肠黏膜免疫功能损伤对于动物机体免疫屏障功能的正常发挥和生产实践具有重要意义㊂关键词:肠黏膜;免疫屏障;保护措施中图分类号:S852.2㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1006⁃267X(2014)05⁃1157⁃07收稿日期:2013-12-11基金项目:国家自然科学基金(31101739);现代农业(奶牛)产业技术体系建设专项资金资助(CARS⁃37)作者简介:谢天宇(1989 ),男,内蒙古乌兰浩特人,硕士研究生,研究方向为反刍动物营养与调控㊂E⁃mail:xie8803262@163.com∗通讯作者:高㊀民,研究员,硕士生导师,E⁃mail:gmyh1588@126.com㊀㊀我们通常所说的肠道屏障功能主要是依靠肠黏膜屏障功能来实现的,肠黏膜不仅是动物机体重要的消化吸收场所,同时也是抵御毒性大分子㊁防止机体感染的重要局部部位㊂正常情况下,肠黏膜处于低渗状态,肠黏膜上皮细胞的紧密连接结构状态和肠道相关淋巴组织(gut⁃associatedlymphoidtissue,GALT)的免疫防护作用可有效地阻止大分子物质通过,尤其是抑制细菌㊁毒素等通过肠黏膜向机体内部扩散的途径㊂但是肠黏膜屏障在受损时就会为细菌㊁组胺和内毒素等有害物质吸收入血提供通道,尤其是内毒素,其吸收入血会产生一系列的放大反应,轻则引起炎性反应㊁黏膜感染,重则导致动物多器官和系统性损伤,甚至导致机体不可抑制性的炎症反应,进而危及生命[1]㊂肠黏膜屏障主要包括机械屏障㊁生物屏障㊁化学屏障以及免疫屏障[2],本文主要对肠黏膜免疫屏障的功能特点㊁免疫机制以及保护性措施进行综述㊂1㊀肠黏膜免疫屏障的结构特点和免疫机制1.1㊀肠黏膜免疫屏障的结构特点㊀㊀肠黏膜免疫屏障是迄今为止动物和人类最重要的屏障之一[3-4]㊂肠黏膜免疫是区别于动物整体免疫系统的局部免疫,主要在抗原的刺激下产生局部的免疫反应,中和抗原物质,以避免机体本身受到损害㊂肠黏膜免疫屏障主要由GALT及其分泌的分泌型免疫球蛋白A(secretedimmunoglob⁃ulinA,sIgA)㊁细胞因子等免疫生成物质构成㊂GALT包括派伊氏结(peyer spatch,PP)㊁黏膜淋巴集合体㊁弥散黏膜淋巴组织以及免疫细胞,其中免疫细胞包含肠上皮细胞(intestinalepithelialcell,IEC)㊁上皮内淋巴细胞(intraepitheliallymphocyte,IEL)和固有层淋巴细胞(laminapropriallympho⁃cyte,LPL)等㊂1.2㊀肠黏膜免疫屏障的免疫机制㊀㊀肠黏膜免疫屏障主要是由摄取㊁递呈㊁处理抗原的诱导部位免疫细胞和发生免疫反应的效应部位免疫细胞共同发挥免疫功能构成的独立免疫体系,其以sIgA介导的体液免疫为主,细胞毒性介导的细胞免疫为辅㊂㊀㊀肠黏膜免疫应答是免疫系统的特殊免疫细胞对于潜在危害病原进行识别及处理的过程㊂首先,诱导免疫细胞,如PP内的微褶皱细胞(micro⁃foldcell,M细胞)选择性接触㊁黏附㊁摄取外部抗㊀动㊀物㊀营㊀养㊀学㊀报26卷原,将抗原吞噬并转运至胞膜另一侧递呈给抗原递呈细胞(antigen⁃presentingcell,APC),再进一步将其释放到肠黏膜固有层和皮下;其次,进入黏膜固有层及皮下的抗原刺激效应部位免疫细胞IEL㊁LPL,进而带动一系列效应免疫反应㊂IEL绝大多数为分化抗原簇(clusterofdifferentiation,CD)3+T细胞㊁CD4+T细胞和CD8+T细胞,以CD8+T细胞为主,可直接识别未加工的抗原,具有自然杀伤性(NK)细胞活性,同时释放细胞因子㊂LPL主要包括T细胞㊁B细胞㊁杀伤(K)细胞㊁NK细胞㊁巨噬细胞(macrophages,mø)㊁肥大细胞(mallcell,MC)和树突状细胞(dendriticcell,DC)等,以CD4+T细胞为主㊂通常情况下,GALT中CD4+/CD8+是检验动物机体肠道免疫功能正常与否的重要指标之一㊂固有层中存在两种相互协同的免疫方式,即:1)固有层中的大量CD4+T细胞分泌细胞因子,下调免疫反应;2)致敏后转移的B细胞在固有层中同型转换成免疫球蛋白(immunoglobulin,Ig)A,IgA产生后被释放到浆膜细胞外侧,与黏膜上皮细胞分泌片段结合形成复合物sIgA,最终分泌于黏膜或浆膜表面,从而发挥免疫效应㊂目前,以sIgA和细胞因子主导的肠黏膜免疫机制是免疫学研究的2大重点㊂1.2.1㊀sIgA主导肠黏膜免疫功能的正常发挥㊀㊀大多数病菌利用宿主肠黏膜表面作为入侵感染的第1个入口[5-6],而以sIgA为主的体液免疫在肠黏膜免疫系统中起主导作用,是阻止病菌在肠黏膜黏附和定植的重要防御前线[7]㊂sIgA是肠黏膜免疫屏障最主要的体液免疫防御因子,能包裹外来病菌,封闭病菌与IEC的特异结合位点,使其丧失吸附于IEC的黏附能力,这是避免细菌移位途径的重要依赖方式㊂作为肠黏膜免疫屏障的主要效应因子,sIgA不仅可阻止肠黏膜上皮细胞对细菌㊁毒素和其他有害分子的识别及摄取,并借助肠道机械蠕动清除病原体和毒素,还能减弱外部抗原刺激所引起的全身性免疫反应即免疫耐受的形成,阻止肠黏膜免疫屏障系统对肠道共栖的有益菌群产生免疫应答[8]㊂研究表明,适当的sIgA免疫应答对于维持肠道内环境稳态㊁降低细菌引起的炎症反应以及调控过敏反应等起着重要作用,同时肠道菌群的平衡程度也可反作用于sIgA,调节其分泌释放㊂值得注意的是,sIgA介导的肠黏膜免疫应答在很大程度上依赖于GALT的T细胞和白细胞介素(interleukin,IL)⁃4㊁IL⁃6㊁转化生长因子(transforminggrowthfactor,TGF)⁃β等细胞因子的参与㊂㊀㊀IgA蛋白水解酶作为水解sIgA的关键水解蛋白酶,具有水解sIgA㊁抑制细胞凋亡㊁刺激促炎症因子释放和诱导T细胞特异性反应等特殊作用以及其他潜在疾病治疗等多方面免疫功能,从而受到广泛关注㊂因此,对于肠黏膜IgA和sIgA的研究,有必要继续探究IgA蛋白水解酶的致病机理和生物学性能,同时有关于IgA㊁IgA蛋白水解酶㊁IgA蛋白酶水解抑制因子3者之间详细的互作关系亦有待进一步研究㊂1.2.2㊀细胞因子对肠黏膜免疫屏障的关键性调节作用㊀㊀在肠黏膜免疫系统被激活时,活化的免疫细胞释放细胞因子,介导免疫应答㊁炎症反应的效应分子,能在局部作用于特定的免疫细胞以发挥免疫效应,同时还能影响动物机体神经㊁内分泌等非免疫组织,在许多生理㊁病理过程中发挥重要作用㊂㊀㊀肠黏膜免疫屏障可产生多种细胞因子,包括淋巴因子㊁趋势化细胞因子㊁生长因子(GF)㊁肿瘤坏死因子(TNF)㊁白细胞介素(IL)㊁干扰素(IFN)等,目前研究较多的是炎性细胞因子(IL⁃2㊁IFN⁃γ㊁TNF⁃α)和抗炎性因子(IL⁃4㊁IL⁃5㊁IL⁃10)等㊂IL⁃2主要在于肠黏膜固有层中由T辅助细胞1(Thelp⁃ercell1,Th⁃1)产生,与sIgA一样属于分泌型免疫分子,可诱导调节T细胞㊁B细胞的生长分化,激活NK细胞,促进IgA的分泌,参与淋巴细胞归巢,介导炎症反应和创伤愈合,是具有明显的免疫增强和免疫治疗作用的免疫调节因子㊂IFN⁃γ对IgA的分泌起抑制或下调作用,还可与其他细胞因子联合作用,影响紧密连接蛋白基因表达,并参与肠黏膜细胞介导的免疫㊂TNF⁃α主要来源于巨噬细胞,能与其他细胞因子和相应的介质受体结合引起细胞凋亡和细胞因子的瀑布式释放从而进一步影响黏膜免疫效应;IL⁃4㊁IL⁃5等细胞因子由T辅助细胞2(Thelpercell2,Th⁃2)产生,对IgA免疫反应有明显增强作用㊂IL⁃10是一种免疫调节性细胞因子,可限制和终止炎症反应㊁调解多种免疫细胞的分化增殖㊁防止过度免疫应答所造成的损害[9],并在一定程度上影响紧密连接蛋白的表达,保证小肠上皮完整性㊂另外,一些趋势化细胞85115期谢天宇等:肠黏膜免疫屏障及其保护措施因子如胸腺表达趋势化细胞因子(TECK)㊁黏膜相关上皮趋势化细胞因子(MEC)等在对淋巴细胞㊁DC㊁NK细胞的吸引作用以及抗炎症反应等方面发挥明显的上调免疫反应作用㊂诸多细胞因子的免疫作用机制和治疗潜力对于开发免疫增强性疫苗㊁研究动物免疫疾病意义重大㊂2㊀肠黏膜免疫屏障的保护性措施㊀㊀鉴于肠黏膜免疫屏障对动物机体免疫健康影响意义重大,因此关于肠黏膜免疫屏障功能的调节与保护有必要进行深入研究,以下是常见的黏膜免疫屏障的调节保护性措施㊂2.1㊀益生菌㊀㊀肠道栖息着数量巨大的菌群,作为肠黏膜的潜在致病性抗原,不仅时刻威胁肠黏膜,还对黏膜免疫屏障具有明显的刺激作用㊂肠道菌群影响黏膜免疫抗原提呈通路的活化[10]㊁sIgA和细胞因子的生成以及免疫应答的激活等㊂现阶段,益生菌制剂的添加应用是维持肠道菌群平衡㊁改善肠黏膜免疫屏障功能最有效的保护措施之一㊂㊀㊀益生菌是一群可以在胃肠道内定植的有益微生物群落,主要包括乳酸菌㊁双歧杆菌㊁酵母菌㊁芽孢杆菌等,不仅可有效地维持肠道内菌群平衡,即抑制病原菌在肠道的黏附定植和腐败菌的过度生长㊁促进有益菌生长,还能与肠黏膜共同构成一道屏障,增强肠黏膜紧密连接蛋白的表达,并对于sIgA㊁细胞因子㊁肠黏膜淋巴细胞都有明显的调节作用,具有明显的维护正常肠道菌群环境㊁优化肠黏膜免疫系统㊁预防和治疗特殊病理状况的多重保护菌株特性㊂Yang等[11]在用芽孢杆菌㊁布拉氏酵母菌和嗜酸性乳酸杆菌的混合益生菌灌喂蛋鸡的试验中发现,益生菌可显著提高肠液中IgA的含量,IgA㊁IgM和IgG生成细胞数量也有显著增加趋势,同时伴有盲肠段T细胞数量的显著增加㊂研究显示,益生菌存在着通过多类型抗原识别受体Toll样受体(Tolllikereceptors,TLRs)㊁髓样分化因子88(myeloiddifferentiationprimaryresponsegene88,MyD88)信号转导途径㊁MyD88非依赖途径来影响肠黏膜免疫屏障功能的先天免疫防御机制[12],并对肠炎㊁过敏性皮肤炎㊁风湿性关节炎的实验小动物诱导产生积极的免疫效果㊂Galdeano等[13]在用益生菌干酪乳杆菌灌注小鼠诱导激活肠黏膜免疫的试验中发现,连续灌服后,试验组小鼠小肠中CD206+细胞数量与对照组相比显著增加且固有层中Toll样受体2(TLR⁃2)基因表达水平显著上调,IgA数量和IL⁃6生成细胞数量在灌注后期与对照组相比有明显的增加趋势㊂2.2㊀饲粮调控㊀㊀肠道是营养物质消化吸收的主要场所,动物机体肠内和肠外的特定营养状态很大程度上影响肠黏膜免疫屏障功能,适当调控饲粮营养因子水平是维持正常肠内营养供给㊁保证肠黏膜免疫屏障功能的最重要且最常见的调节㊁保护性措施,主要包括补饲精氨酸(arginine,Arg)㊁谷氨酰胺(glu⁃tamine,Gln)及锌(Zn)㊁硒(Se)和维生素A等微量元素㊂2.2.1㊀补饲Arg和Gln㊀㊀Arg是一种条件性必需氨基酸,作为一氧化氮(NO)的前提物质,不仅在营养代谢中起重要作用,参与蛋白质的合成以及尿素㊁肌酸㊁多胺和激素的合成与释放,还对肠黏膜免疫屏障功能起着至关重要的调节保护作用㊂Arg可促进肠道T细胞活化,增加吞噬细胞活性,强化肠道免疫屏障对外来病原体㊁内毒素的清除作用㊂研究表明,饲粮添加Arg对多种病理因素尤其脂多糖(LPS)㊁热应激等所致的肠黏膜损伤有明显的缓解作用,改善肠黏膜结构及免疫屏障功能[14]㊂Zhu等[15]研究发现,L⁃Arg对疟疾感染的小鼠有潜在治疗功能,可以提高宿主免疫应答,饲粮补充L⁃Arg,可显著增加感染早期小鼠的胃肠和脾脏CD4+T细胞㊁IFN⁃γT细胞以及巨噬细胞数量,同时伴随着CD4+㊁IFN⁃γT细胞㊁巨噬细胞数量明显增加,TNF⁃α和NO水平提升,此外,成熟DC的兼容性复合基因Ⅱ(MHC⁃Ⅱ)㊁CD86和TLR⁃9基因表达上调㊂Fan等[16]在对严重烧伤的小鼠试验中发现,肠内营养补充Arg改变肠道细胞因子浓度,sIgA数量较对照组显著升高,同时,IL⁃4和IL⁃10水平增加,而IFN⁃γ和IL⁃2水平显著降低㊂㊀㊀Gln是一种条件性必需氨基酸,是肠黏膜细胞蛋白㊁核酸合成的底物㊂Gln是肠道上皮细胞和淋巴细胞的最主要能源物质,同时又是细胞增殖分化的氮源,可满足上皮细胞快速增殖㊁修复的需要,充分保证肠道正常发育,尤其是降低应激状态所导致的肠黏膜通透性变化,稳定肠黏膜上皮细胞的紧密连接结构[17],抑制细菌和毒素的移位侵入途径,并大幅度增强肠黏膜免疫性能,提高淋巴9511㊀动㊀物㊀营㊀养㊀学㊀报26卷细胞㊁吞噬细胞功能㊂因此,在饲粮中可以考虑添加适量的Gln以维持上皮细胞增殖与修复的需要,进而保护肠道屏障功能,缓解多种因素所致的黏膜损伤状况㊂研究表明,动物机体受创㊁烧伤后,补充Gln能明显抑制TNF⁃α表达㊁增加肠黏膜sIgA的分泌和肠黏膜上皮内T细胞㊁B细胞增殖活力,减轻多种严重创伤导致的肠黏膜机械屏障和免疫屏障的损伤[18]㊂Han等[19]发现Gln对TNF⁃α㊁IL⁃2和IL⁃10的产生和释放以及炎性㊁抗炎性细胞因子之间的平衡有重要影响㊂在肠内㊁肠外营养添加Gln饲喂小鼠的试验1周后发现,肠内营养Gln组较对照组TNF⁃α含量显著下降;相同时间点内,肠外营养Gln组与对照组的TNF⁃α含量相比亦有显著下降的趋势;肠内营养Gln和对照组的IL⁃2水平较饲喂第4天显著上升,而IL⁃10水平显著下降㊂2.2.2㊀饲粮Zn㊁Se水平㊀㊀Zn㊁Se不仅是维持动物肠道健康的重要营养性微量元素,还可通过结合抗体和细胞因子来调节黏膜免疫应答㊂研究表明,饲粮中适宜的Zn水平可促进肠黏膜sIgA和IL⁃2的分泌,进而维持肠黏膜免疫屏障功能,同时针对动物机体抗氧化能力㊁生产性能以及肠炎症类疾病的防治具有较好的饲喂效果[20-21]㊂Zhang等[22]在饲粮中添加Zn对沙门氏菌攻毒肉仔鸡肠黏膜屏障功能影响的试验中发现,在鼠伤寒沙门氏菌感染的情况下,不同饲粮Zn水平有利于缓解伤寒沙门氏菌应激对于回肠黏膜SOD活性和sIgA含量的降低情况,增加紧密连接蛋白1(ZO⁃1)的含量,维持肠黏膜屏障功能㊂㊀㊀谷胱甘肽过氧化物酶(glutathioneperoxidase,GPx)是动物机体抗氧化和局部㊁整体免疫的关建酶[23],而Se作为GPx的重要组成成分,可维持肠黏膜屏障相对稳定㊂Smith等[24]在Se对小鼠胃肠特定线虫驱除以及免疫应答变化的研究中发现,饲粮缺Se会抑制小鼠小肠内局部TH2基因表达,进而抑制肠黏膜屏障的自我免疫保护;而饲喂充足Se饲粮的小鼠小肠内寄生虫诱导的局部免疫应答加强,分泌IL⁃4㊁IL⁃5㊁IL⁃6㊁IL⁃10和IL⁃13等细胞因子,可快速恢复黏膜免疫功能以及自我驱虫机制㊂值得注意的是,过量尤其是中毒剂量的Zn㊁Se水平严重影响胃肠黏膜结构完整性和上皮淋巴细胞数量㊁结构㊂因此,应控制饲粮适宜的微量元素水平,同时注意微量元素之间的协同㊁拮抗作用㊂2.2.3㊀饲粮维生素A水平㊀㊀维生素A动物机体内的代谢产物视黄酸影响肠黏膜DC数量㊁sIgA含量㊁T细胞和B细胞功能以及细胞因子的产生,同时VA也可减弱黏膜炎症和恢复维生素A缺乏所导致的黏膜免疫应答受损状况㊂DC是肠黏膜中功能最强的APC,其表面的TLR受体识别外源病原体刺激后,迅速诱导DC的成熟化并向次级淋巴组织迁移,进而与T细胞共同影响细胞因子和炎症因子的合成,产生一系列免疫应答㊂研究表明,维生素A显著调节肠黏膜DC的数量㊁变异性㊁成熟程度,进而影响识别受体模式TLR2㊁TLR4和MyD88基因表达[25]㊂另外,Dong等[26]发现,DC也是维生素A的关键靶细胞,且维生素A酸受体(retinoicacidreceptor,RAR)在维生素A黏膜免疫中对维生素A活性起重要作用㊂因此,从APC(如DC㊁巨噬细胞)这一免疫应答起始环节来研究维生素A作用黏膜免疫以抵抗黏膜感染症状的免疫研究被广泛认可㊂2.3 预防应激㊀㊀环境因素的突然变化(温度变化㊁饲粮变化㊁抗生素的使用等)㊁惊吓㊁束缚以及不可预见性的长时间慢性轻度应激等多种应激方式会对动物机体多系统多组织器官产生影响㊂肠道是最易受应激反应影响的器官之一,尤其肠黏膜结构的完整性受之影响更甚,诸多应激方式还会诱导肠黏膜免疫系统的免疫激活㊂其中热应激严重损伤动物机体的黏膜结构和黏膜免疫屏障性能,是动物生产性能和肠道健康的重要环境制约因素[27]㊂研究证实,热应激㊁氧化应激等抑制黏膜免疫功能的主要原因是其导致内毒素含量显著增加,进而诱导机体炎症反应㊂内毒素是革兰阴性细菌细胞壁外膜上的一种LPS与微量蛋白质的复合物㊂LPS对肠黏膜产生强烈的免疫刺激,使肠黏膜通透性增高㊁局部吞噬细胞和炎性介质数量增加,尤其破坏黏膜免疫的M细胞启动步骤,直接或间接损伤小肠黏膜屏障功能㊂Liu等[28]在内毒素改变小鼠胃肠黏膜免疫屏障功能的研究中对试验组小鼠进行尾静脉注射LPS(100mg/头)以刺激小鼠胃肠道,注射后2㊁6㊁12和24h分4个时间点观察肠道免疫指标变化,发现试验组在相同时间点内与对照组相比,小肠黏膜M细胞㊁DC细胞㊁CD8+T细胞㊁06115期谢天宇等:肠黏膜免疫屏障及其保护措施SIgA数量显著减少;相反,Tr细胞㊁CD4+T细胞以及凋亡淋巴细胞数量显著增加;同时,小肠黏膜IL⁃4㊁IFN⁃γ水平在不同时间段内呈现增加或减少的变化趋势㊂因此,多角度阐明LPS引起的免疫应激对肠黏膜免疫功能影响的作用机制,探究不同应激方式所附带的不同特异性免疫效应的潜在规律,将是今后研究应激的致病㊁防治工作的主要关键点㊂在束缚性应激㊁氧化应激㊁热应激等应激状态下,动物机体会产生一系列活性氧族(reactiveoxygenspecies,ROS),包括超氧阴离子(㊃O-2)㊁过氧化氢(H2O2)㊁羟自由基(OH㊃)等,这些活化氧过量表达时,肠黏膜组织受损,大分子发生过氧化[29],如DNA损伤㊁淋巴细胞功能丧失甚至凋亡㊁肠黏膜免疫屏障功能下降㊂另外,失血性休克㊁创伤㊁烧伤和肠内营养缺失[30-32]等重度应激状况可导致动物机体全身性的免疫失调,严重影响胃肠黏膜免疫屏障的防御功能,如动物在失血性休克时,各器官的血液供给发生变化,肠道会处于缺血缺氧的低灌注状态并且不易恢复,T细胞的分化能力降低,炎性细胞因子释放量增加㊂㊀㊀应对上述应激的预防措施主要有:1)减少氧化应激,如应用别嘌呤;2)饲粮中添加牛初乳和山羊奶粉;3)补饲Gln直接对上皮免疫细胞补充营养;4)使用低浓度一氧化碳(CO)以抑制LPS所致损伤;5)提前热应激处理㊂2.5㊀其㊀他㊀㊀近年来,肠黏膜免疫保护的研究更加趋向于多组织器官㊁多层次营养和多应用水平相结合的研究方向发展,除上述所介绍的预防保护措施外,神经干预㊁核苷酸㊁脂肪酸㊁N-乙酰半胱氨酸㊁酵母复合物以及异麦芽低聚糖㊁低聚果糖等功能性低聚糖也是常见且应用效果明显的影响黏膜免疫屏障的重要因素㊂例如,肠神经系统(ENS)和GALT的免疫细胞分泌的降钙素基因相关肽(cal⁃citoningene⁃relatedpeptide,CGRP)㊁血管活性肠肽(vasoactiveintestinalpeptide,VIP)和神经肽(neu⁃ropeptideY,NY)等相关神经介质在很大程度上影响淋巴细胞增生㊁细胞因子和IgA的合成释放进而诱导肠黏膜免疫应答,可通过运用神经活性药物或神经阻断等方式来调节肠黏膜免疫性能㊂3㊀小㊀结㊀㊀肠黏膜免疫屏障功能主要是依靠以sIgA为代表的分泌型免疫球蛋白和以IEL㊁LPL等为代表的免疫活性细胞以及诸多细胞因子共同的免疫调控来实现㊂针对性的采取有效措施以期改善肠黏膜免疫防御效果,加强肠黏膜免疫屏障性能必然是未来免疫学㊁营养学㊁动物生理学等领域的研究重点㊂目前,还有许多影响肠黏膜免疫屏障功能的制约因素被人们忽略或未被明确解析㊂例如,霉菌毒素对肠黏膜T细胞数量㊁巨噬细胞功能的抑制程度尚未明确;TLR2和TLR4等主要病原体识别受体识别外来危险信号与下游炎性介质㊁细胞因子激活合成的详细链接过程还不完全清楚;生长抑素㊁重组人生长激素㊁胰高血糖素样肽-2等肠道营养效应生长类激素在肠黏膜机械屏障和免疫屏障之间的综合应用效果以及部分免疫淋巴细胞和分子在神经-免疫-内分泌网络体系㊁肠黏膜免疫㊁炎症反应和过敏反应等生理病理过程之间的调节关联方式亦有待进一步重视和研究㊂针对这些问题,通过进一步的深入研究,以期更全面的为肠黏膜免疫的研究和肠道类免疫性疾病的防治提供科学依据㊂㊀㊀致谢:感谢国家自然科学基金(31101739)和现代农业(奶牛)产业技术体系建设专项资金(CARS⁃37)的资助,同时感谢马燕芬㊁杜瑞平㊁张兴夫老师在文稿写作中给予的宝贵意见㊂参考文献:[1]㊀黎介寿.肠衰竭 概念:营养支持与肠粘膜屏障维护[J].肠外与肠内营养,2004,11(2):65-67.[2]㊀LIUXX,LIHR,LUA,etal.Reductionofintestinalmucosalimmunefunctioninheat⁃stressedratsandbacterialtranslocation[J].InternationalJournalofHy⁃perthermia,2012,28(8):756-765.[3]㊀MACPHERSONAJ,MCCOYKD,JOHANSENFE,etal.TheimmunegeographyofIgAinductionandfunction[J].MucosalImmunology,2008,1(1):11-22.[4]㊀NAGPALK,MINOCHAVR,AGRAWALV,etal.Evaluationsofintestinalmucosalpermeabilityfunctioninpatientswithacutepancreatitis[J].TheAmericanJournalofSurgery,2006,192(1):24-28.[5]㊀KIMSH,LEEKY,JANGYS,etal.Mucosalim⁃munesystemandMcell⁃targetingstrategiesfororalmucosalvaccination[J].ImmuneNetwork,2012,12(5):165-175.1611㊀动㊀物㊀营㊀养㊀学㊀报26卷[6]㊀SATOS,KIYONOH.Themucosalimmunesystemoftherespiratorytract[J].CurrentOpinioninVirology,2012,2(3):225-232.[7]㊀ITOH,TAKEMURAN,SONOYAMAK,etal.De⁃greeofpolymerizationofinulin⁃typefructansdifferen⁃tiallyaffectsnumberoflacticacidbacteria,intestinalimmunefunctions,andimmunoglobulinasecretionintheratcecum[J].JournalofAgriculturalandFoodChemistry,2011,59(10):5771-5778.[8]㊀BRANDTER,HAYMANWA,CURRIEB,etal.FunctionalanalysisofIgAantibodiesspecificforaconservedepitopewithintheMproteinofgroupAstreptococcifromAustralianaboriginalendemiccom⁃munities[J].InternationalImmunology,1999,11(4):569-576.[9]㊀SUNXY,YANGH,NOSEK,etal.Declineinintes⁃tinalmucosalIL⁃10expressionanddecreasedintestinalbarrierfunctioninamousemodeloftotalparenteralnutrition[J].AmericanJournalofPhysiology:Gastro⁃intestinalandLiverPhysiology,2008,294(1):139-147.[10]㊀雷春龙,董国忠.肠道菌群对动物肠黏膜免疫的调控作用[J].动物营养学报,2012,24(3):416-422.[11]㊀YANGYR,SHERP,ZHENGSM,etal.Effectofprobioticsonintestinalmucosalimmunityandultra⁃structureofcecaltonsilsofchickens[J].ArchivesofAnimalNutrition,2005,59(4):237-246.[12]㊀FOLIGNEB,NUTTENS,GRANGETTEC,etal.Correlationbetweeninvitroandinvivoimmunomodu⁃latorypropertiesoflacticacidbacteria[J].WorldJournalofGastroenterology,2007,13(2):236-243.[13]㊀GALDEANOCM,PERDIGÓNG.Theprobioticbac⁃teriumLactobacilluscaseiinducesactivationofthegutmucosalimmunesystemthroughinnateimmunity[J].ClinicalandVaccineImmunology,2006,13(2):219-226.[14]㊀VIANAML,SANTOSRG,GENEROSOSV,etal.Pretreatmentwithargininepreservesintestinalbarrierintegrityandreducesbacterialtranslocationinmice[J].Nutrition,2010,26(2):218-223.[15]㊀ZHUX,PANY,LIY,etal.SupplementofL⁃Argim⁃provesprotectiveimmunityduringearly⁃stagePlasmo⁃diumyoelii17XLinfection[J].ParasiteImmunology,2012,34(8/9):412-420.[16]㊀FANJ,MENGQ,GUOG,etal.Effectsofearlyen⁃teralnutritionsupplementedwitharginineonintestinalmucosalimmunityinseverelyburnedmice[J].Clini⁃calNutrition,2009,29(1):124-130.[17]㊀LIY,CHENY,ZHANGJ,etal.Protectiveeffectofglutamine⁃enrichedearlyenteralnutritiononintestinalmucosalbarrierinjuryafterlivertransplantationinrats[J].TheAmericanJournalofSurgery,2010,199(1):35-42.[18]㊀KARIAGINAA,ROMANENKOD,RENSG,etal.Hypothalamic-pituitarycytokinenetwork[J].Endo⁃crinoliogy,2004,145(1):104-112.[19]㊀HANT,LIX,CAID,etal.Effectofglutamineonap⁃optosisofintestinalepithelialcellsofsevereacutepancreatitisratsreceivingnutritionalsupportindiffer⁃entways[J].InternationalJournalofClinicalandEx⁃perimentalPathology,2013,6(3):503-509.[20]㊀方洛云,邹晓庭,蒋树林,等.不同锌源对断奶仔猪免疫和抗氧化作用的影响[J].中国兽医学报,2005,25(2):201-203.[21]㊀岳双明.不同蛋白水平日粮添加高锌对早期断奶仔猪生产性能㊁抗氧化作用和肠道粘膜免疫的影响[D].硕士学位论文.雅安:四川农业大学,2008.[22]㊀ZHANGBK,SHAOYX,LIUD,etal.ZincpreventsSalmonellaentericaserovartyphimurium⁃inducedlossofintestinalmucosalbarrierfunctioninbroilerchick⁃ens[J].AvianPathology,2012,41(4):361-367.[23]㊀ZHANGLB,LIUXL,CHENLL,etal.Transcrip⁃tionalregulationofselenium⁃dependentglutathioneperoxidasefromVenerupisphilippinaruminresponsetopathogenandcontaminantschallenge[J].FishandShellfishImmunology,2011,31(6):831-837.[24]㊀SMITHAD,CHEUNGL,BESHAHE,etal.Seleni⁃umstatusalterstheimmuneresponseandexpulsionofadultHeligmosomoidesbakeriwormsinmice[J].In⁃fectionandImmunity,2013,81(7):2546-2553.[25]㊀YANGY,YUANYJ,TAOYH,etal.Effectsofvi⁃taminAdeficiencyonmucosalimmunityandresponsetointestinalinfectioninrats[J].Nutrition,2011,27(2):227-232.[26]㊀DONGP,TAOYH,YANGY,etal.ExpressionofretinoicacidreceptorsinintestinalmucosaandtheeffectofvitaminAonmucosalimmunity[J].Nutri⁃tion,2010,26(7/8):740-745.[27]㊀DENGW,DONGXF,TONGJM,etal.Theprobiot⁃icBacilluslicheniformisamelioratesheatstress-in⁃ducedimpairmentofeggproduction,gutmorphology,andintestinalmucosalimmunityinlayinghens[J].PoultryScience,2012,91(3):575-582.[28]㊀LIUC,LIA,WENGYB,etal.Changesinintestinal26115期谢天宇等:肠黏膜免疫屏障及其保护措施mucosalimmunebarrierinratswithendotoxemia[J].WorldJournalofGastroenterology,2009,15(46):5843-5850.[29]㊀FUMG,ZOUZH,LIUSF,etal.Selenium⁃depend⁃entglutathioneperoxidasegeneexpressionduringgo⁃naddevelopmentanditsresponsetoLPSandH2O2challengeinScyllaparamamosain[J].FishandShell⁃fishImmunology,2012,33(3):532-542.[30]㊀AHMADI⁃YAZDIC,WILLIAMSB,OAKESS,etal.Attenuationoftheeffectsofrathemorrhagicshockwithareperfusioninjury⁃inhibitingagentspecifictomice[J].Shock,2009,32(3):295-301.[31]㊀JONKERMA,HERMSENJL,SANOY,etal.Smallintestinemucosalimmunesystemresponsetoinjuryandtheimpactofparenteralnutrition[J].Surgery,2012,151(2):278-286.[32]㊀JIANGJX.Posttraumaticstressandimmunedisso⁃nance[J].ChineseJournalofTraumatology,2008,11(4):203-208.∗Correspondingauthor,professor,E⁃mail:gmyh1588@126.com(编辑㊀陈㊀燕)GutMucosalImmuneBarrierandtheProtectiveMeasuresXIETianyu1㊀HUHonglian2㊀GAOMin2∗(1.CollegeofAnimalScience,InnerMongoliaAgricultureUniversity,Hohhot010018,China;2.InstituteofAnimalNutritionandFeed,InnerMongoliaAcademyofAgriculturalandAnimalHusbandrySciences,Hohhot010031,China)Abstract:Gutmucosaconstitutesthelargestcontactsurfacebetweenthehostandtheexternalenvironment,anditisthemostcommonsiteofcolonizationandinvasionofsusceptiblepathogen.Asanimportantlineofde⁃fenseprotectinghostagainsttheinfestationofforeignpathogenicmicroorganisms,gutmucosalimmunebarriercantakeadvantageofimmunecellsandimmune⁃relatedmaterialtoproducespecificimmuneresponsesstimula⁃tedbyantigens.Anditcandown⁃regulatetheimmuneresponsesorproduceimmunetolerancetoharmlessanti⁃gens.Researchonmechanismofgutmucosalimmunebarrierandprotectivemeasurestopreventandrecoverimpairedimmunefunctioncanhavegreatsignificancefornormalimmunebarrierfunctionnormallyandproduc⁃tionpractice.[ChineseJournalofAnimalNutrition,2014,26(5):1157⁃1163]Keywords:gutmucosa;immunebarrier;protectivemeasures3611。
分泌型IgA对肠道黏膜免疫的研究进展

分泌型IgA对肠道黏膜免疫的研究进展赵雪;张辉;刘禹;李维;郭风;付志玲;杨艳红;吴天成;郑鑫【期刊名称】《中国畜牧兽医》【年(卷),期】2013(40)6【摘要】分泌型IgA(secretory IgA,SIgA)作为一种包被于肠道黏膜的抗体,能保护肠道免受病原微生物和毒素的攻击而不引起炎症反应,对激活黏膜免疫和维持肠道内环境稳态起到重要作用.在动物肠腔中,SIgA能通过调节肠道上皮细胞受体的识别能力,阻断病原微生物侵入黏膜相关淋巴组织,随后在肠道蠕动和黏液绒毛的协助运动下,最终将病原微生物清除;且最近也有报道揭示SIgA在肠上皮胞吞转运作用下的新机制.因此,作者主要阐述SIgA在肠道黏膜免疫及其内环境方面发挥关键的生物学特征和功能,以及探讨胞吞转运机制下SIgA的潜在作用.【总页数】4页(P96-99)【作者】赵雪;张辉;刘禹;李维;郭风;付志玲;杨艳红;吴天成;郑鑫【作者单位】吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118;吉林农业大学生命科学学院,吉林长春130118【正文语种】中文【中图分类】S852.4+2【相关文献】1.肠道微生物区系对断奶仔猪肠道黏膜免疫功能的调节作用研究进展 [J], 陈逸;董丽;喻礼怀2.IgA介导黏膜免疫及调节肠道菌群参与儿童哮喘发病的研究进展 [J], 候淑婷;陆远;赵霞3.肠道菌群与肠黏膜免疫系统相互作用研究进展 [J], 张敏;李双雨;吴亮;易承学4.反刍动物肠道菌群与宿主肠道黏膜免疫互作及其调控研究进展 [J], 杜梅;梁泽毅;张剑搏;丁学智5.肠道分节丝状菌对宿主肠黏膜免疫系统的影响及其在模式动物中的研究进展 [J], 钟奇祺;张海波;黎力之;廖晓鹏;关玮琨;郭冬生因版权原因,仅展示原文概要,查看原文内容请购买。
黏膜免疫系统研究进展

黏膜免疫系统研究进展摘要黏膜免疫系统(Mucosal immune system,MIS)是指广泛分布于呼吸道、胃肠道、泌尿生殖道粘膜下及一些外分泌腺体(唾液腺、泪腺、乳腺)处的淋巴组织,是执行局部特异性免疫功能的主要场所。
该系统在体内覆盖范围很广.是机体整个免疫网络的重要组成部分,并且又是具有独特结构和功能的独立免疫体系,它在抵抗感染方面起着极其重要的作用,黏膜表面与外界抗原(比如食物、共生菌、有害病原体等)直接接触,是机体抵抗感染的第一道防线[1]。
本文简述了黏膜免疫系统的结构及功能,就黏膜免疫的体液、细胞调节的研究进展做一综述。
关键字黏膜免疫系统黏膜免疫调节体液调节细胞调节前言自20世纪60年代黏膜免疫概念产生以来,黏膜免疫系统作为机体相对独立的免疫系统,就一直被国内外学者所关注。
动物机体黏膜组织是机体与外部环境进行交流的场所。
肠黏膜与肠腔内大量细菌及毒素广泛接触,是机体最重要的屏障,也是机体受威胁最大的部位,机体95%以上的感染发生于黏膜或从黏膜入侵。
为了预防局部黏膜疾病的发生,黏膜组织形成了严密的防御体系——黏膜免疫系统,构成动物有机体抵抗病原微生物入侵的第一道免疫屏障。
通过黏膜免疫后,黏膜局部的抗体比血清抗体出现的早,效价高,且维持的时间长。
黏膜免疫系统(Mucosal immune system,MIS)是指广泛分布于呼吸道、胃肠道、泌尿生殖道粘膜下及一些外分泌腺体处的淋巴组织,是执行局部特异性免疫功能的主要场所。
黏膜免疫系统由肠粘膜相关淋巴组织(GALT)、支气管粘膜相关淋巴组织(BALT)、眼结膜相关淋巴组织(CALT)和泌尿生殖道黏膜相关淋巴组织(UALT)四部分构成,它们在抗病毒免疫反应中起着非常重要的作用。
是形成生物体防御外界病原物入侵的首道屏障。
1.黏膜免疫的重要性黏膜广泛分布于机体的呼吸道、消化道及泌尿生殖道表面。
黏膜表面的上皮细胞彼此之间紧密排列,形成一道天然屏障,与皮肤一起将机体内环境与外界环境隔离开来,使机体免受外界多种病原微生物的侵扰。
免疫系统对肠道菌群的调节

免疫系统对肠道菌群的调节引言肠道菌群是指生活在人类肠道内的微生物群落,包括细菌、真菌、病毒和寄生虫等。
肠道菌群在维持人体健康方面起着重要作用,如帮助消化和吸收营养物质、产生维生素、调节免疫系统等。
本文将探讨免疫系统对肠道菌群的调节作用,深入了解免疫系统与肠道菌群之间的相互关系。
免疫系统的组成与功能免疫系统是人体抵御外界病原体入侵的防线,主要由免疫细胞和免疫分子组成。
免疫细胞包括巨噬细胞、淋巴细胞、粒细胞等,它们可以识别并销毁病原体。
免疫分子包括抗体、细胞因子等,它们可以中和和清除病原体。
免疫系统的主要功能包括抵御感染、清除异常细胞、调节炎症反应等。
肠道菌群的组成与功能肠道菌群是人体内微生物最丰富的群落之一,它包括多种细菌、真菌、病毒和寄生虫。
肠道菌群的组成在个体间存在差异,受遗传、环境和饮食等因素的影响。
肠道菌群对人体健康有着重要的影响,它与肠道屏障的完整性、免疫系统的发育和功能以及慢性疾病的发生等密切相关。
肠道菌群的功能主要包括促进食物消化、合成维生素、调节免疫系统以及抵抗病原体的侵袭等。
免疫系统对肠道菌群的调节机制免疫系统与肠道菌群的相互作用人体免疫系统与肠道菌群之间存在密切的相互作用关系。
一方面,肠道菌群可以通过影响免疫系统的发育和功能来调节免疫应答。
肠道菌群可以刺激免疫细胞的分化和增殖,促进免疫系统的发育。
此外,肠道菌群还可以通过调节抗炎和抗菌肽的产生来维持肠道屏障的完整性。
另一方面,免疫系统可以通过调节肠道菌群的组成和功能来维持肠道菌群的稳态。
免疫系统可以识别和清除肠道中的病原体,防止其过度生长,从而维护肠道菌群的平衡。
免疫系统对肠道菌群的调控机制免疫系统通过多种机制对肠道菌群进行调控。
首先,免疫细胞可以分泌抗菌肽和免疫球蛋白等物质,抑制或杀灭肠道中的病原菌,从而调节菌群的组成和功能。
其次,免疫系统可以通过调节肠道中的炎症反应来影响菌群的稳态。
炎症反应可以产生一系列的细胞因子,如肿瘤坏死因子-α(TNF-α)、白细胞介素-1(IL-1)等,这些细胞因子可以改变肠道环境,影响菌群的生长和代谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肠道黏膜免疫系统SIgA的功能和调节研究黏膜免疫系统(Mucosal immune system,MIS)是指广泛分布于胃肠道、呼吸道、泌尿生殖道黏膜以及一些分布于外分泌腺体处的淋巴组织,它们是执行局部特异性免疫功能的主要场所[1-2].肠道黏膜面积巨大,肠黏膜与细菌、毒素等病原广泛接触,是机体抵御感染最重要的屏障之一,同时也是机体受威胁最大的部位,机体95%以上的感染均发生于黏膜或者是从黏膜入侵[3].肠道黏膜的免疫屏障结构很容易受到外界因素的影响,当肠黏膜屏障功能被削弱时,外来病原微生物如细菌、病毒、寄生虫等极易入侵,轻者出现消化不良、腹泻等,重者可能会导致严重感染,甚至危及动物生命。
研究发现,通过肠道黏膜免疫后,肠黏膜局部产生的抗体比血清抗体出现得早,黏膜抗体效价高,且维持时间长[4].因此,研究肠道黏膜免疫系统的组成、功能,尤其是SIgA的功能和调节,无论在理论上还是在生产实践上均具有重要的现实意义。
1 肠道黏膜免疫系统的组成肠道黏膜免疫系统由肠黏膜上皮内和固有层的免疫细胞、免疫分子,以及肠淋巴集结(Peyer′spatches,PP)等肠黏膜相关淋巴组织等组成。
PP结为肠黏膜免疫诱导部位,肠黏膜上皮和固有层为黏膜免疫反应的主要效应部位[5].B、T 淋巴细胞在PP结诱导、分化、成熟后,移行到黏膜效应部位,发挥免疫功能。
肠淋巴集结是肠黏膜免疫系统的重要组成部分,也是肠黏膜免疫反应的诱导部位,它是小肠黏膜内的一组淋巴滤泡,淋巴集结表面覆盖着一层微皱褶细胞(M细胞)。
M细胞能识别胃肠道内的许多抗原物质,其主要功能是吞噬肠道中的病毒和病原菌,将其转交给免疫细胞,免疫细胞可对肠道抗原进行加工、转运和递呈[6].在此过程中被激活的免疫细胞经过淋巴细胞归巢过程返回到黏膜固有层,成为能够分泌IgA 的浆细胞和效应T 细胞,参与肠道黏膜局部的免疫应答反应。
肠道黏膜免疫的效应部位主要是肠道上皮内淋巴细胞和固有层淋巴细胞。
2 SIgA及其介导的黏膜免疫反应SIgA(Secretory immunoglobulin A)是在动物体外分泌液中发现的一种IgA 抗体,其主要存在于唾液、乳汁、呼吸道、胃肠道以及泌尿生殖道等外分泌液中,是黏膜免疫的主要抗体[7].肠道黏膜固有层淋巴细胞主要是IgA+浆细胞和CD4+T辅助细胞(TH-2)。
IgA+浆细胞能产生大量SIgA;CD4+T 辅助细胞能分泌IL-5,IL-6,促进IgA 阳性B 细胞向IgA浆细胞分化和成熟。
器官性黏膜相关淋巴组织主要由IgA+细胞、T 细胞和抗原提呈细胞(Antigen presenting cell,APC)组成。
这是抗原进入黏膜并产生特异性免疫应答的主要部位,由于其中含有丰富的IgA 浆细胞,在免疫应答时可产生大量的SIgA,故有人称黏膜免疫应答为黏膜SIgA应答[8].2.1 肠道SIgA概述肠道是SIgA的主要分泌器官,即SIgA的中枢器官。
SIgA分泌量最高可达30~100mg/d&·kg,是机体内分泌量最多的免疫球蛋白[8].SIgA的形成仅局限于黏膜区域,肠道SIgA主要由肠黏膜固有层中的IgA浆细胞分泌的。
IgA浆细胞在黏膜淋巴滤泡中发育成熟,它们多沿上皮层分布,弥散分布、定居于黏膜下层各位点。
此外,当IgM阳性B 细胞遭遇外界抗原刺激或在开关T细胞的调节下,可分化成IgA阳性B细胞;又可在CD4+T 辅助细胞(Th-2细胞)调节下发育为成熟IgA浆细胞。
因此,IgA阳性B细胞的分化不一定与T细胞有关;而IgA浆细胞的成熟则必须要有CD4+T辅助细胞(Th-2细胞)的协助。
资料显示,肠黏膜中IgA、IgG和IgM阳性细胞的比例为:81.9∶2.5∶15.7,以IgA阳性细胞的数量最多[9].2.2 SIgA 的组成IgA 在机体内有两种类型:一种是7s IgA 单体,其主要存在于血液,含量较低;另一种是11s IgA 二聚体,它与分泌成分(Secretory component,SC)及J链结合后形成分泌型IgA 即SIgA,SIgA 主要存在于黏膜免疫系统的外分泌液中,其含量较高。
Mr (SC):83000 的糖蛋白是IgA的特异受体,又称跨膜蛋白,它主要分布在分泌性腺体的上皮细胞基底侧膜及游离腔面的胞浆内,在SIgA 的合成、分泌及其转运中起着重要作用,该跨膜蛋白能保护SIgA不受蛋白水解酶的降解。
Mr(J 链):15600,是由合成免疫球蛋白的淋巴细胞和浆细胞产生,在SIgA的生成中起聚合的作用[10].2.3 SIgA 的合成SIgA 的合成过程是:IgA 阳性B细胞在抗原刺激下由黏膜下淋巴管进入血液循环,分化、增殖后流散到黏膜固有层中分化为成熟IgA 阳性浆细胞。
IgA 阳性浆细胞在胞浆内先合成α链、J链和IgA二聚体,再与上皮细胞内表面的分泌成分(SC)结合,并通过SC 转运到上皮细胞外表面形成SIgA,最后将其释放到外分泌液中。
2.4 SIgA 的功能细菌、病毒、寄生虫等病原微生物入侵时,当肠道黏膜上皮表面黏膜免疫相关细胞受到细菌粘附素刺激时,黏膜局部便可产生SIgA,SIgA 可阻止肠道病原微生物及其毒素分子对肠黏膜的攻击。
SIgA 的功能归纳为四点:(1)SIgA 可中和毒素、酶、病毒和其他抗原物质;(2)SIgA 可直接作用于细菌表位,降低病原体毒力;(3)SIgA 能增强单核细胞依赖的杀菌活性,调理黏膜多形核白细胞以及吞噬细胞的吞噬功能,抑制自然杀伤性细胞(NK 细胞)的活性及抗体依赖的细胞毒活性(Antibody-dependent cell-mediatedcytotoxicity,ADCC),调节T细胞活性,此外SIgA还参与介导嗜酸性粒细胞脱颗粒;(4)SIgA 可激活补体的C-3 旁路途径,同溶菌酶和补体共同参与抗菌[11].已有研究证实,初乳中的SIgA 可减少细菌表面的阴离子电荷,削弱IL-8多形核白细胞对沙门菌吞噬作用的敏感性;初乳中的SIgA 还可调节IgA,IgM 对鼠伤寒沙门菌、白色念珠菌脑膜炎和奈瑟氏菌的杀菌功效[12].研究发现,用甲醛化空肠弯曲菌可以引起小鼠小肠黏膜强烈的免疫应答反应,肠黏膜固有层内可见大量特异性抗体形成细胞(Antibody-containing cells,ACC),以IgA 阳性的ACC升高为主,这说明SIgA与肠道黏膜的免疫防御有密切关系[13].目前证实SIgA对胃肠道菌群中的革兰阴性菌有特异性亲和作用,SIgA可包绕这些细菌。
如果使用糖皮质激素、胃肠外营养等干扰SIgA的合成过程,则将导致SIgA合成减少而削弱肠道的免疫功能,引起肠道菌群失调、消化吸收障碍、甚至肠源性全身感染[14].3 肠道SIgA的调节机制肠道中存在大量的神经细胞、内分泌细胞和免疫细胞。
它们弥散分布在肠黏膜中、相互之间密切联系;在很多生物活性物质以及受体的作用下,肠道黏膜的神经系统、内分泌系统和免疫系统相互作用、相互调节,形成神经-内分泌-免疫网络。
肠黏膜SIgA是在这3个系统的共同调节下发挥作用的[15].肠道黏膜的神经-内分泌-免疫网络的主要因子有:P 物质(Substance P,SP)、血管活性肠肽(Vasoactine intrestinal peptide,VIP)、生长抑素(Somatostatin,SS)及CD4+T辅助细胞因子等[16].其中生长抑素可下调DNA合成及细胞分裂,抑制免疫球蛋白尤其是IgA 的合成;生长抑素受体(Somatostatin receptor,SSR)多分布于具有抑制/杀伤表型的T 细胞上,生长抑素除直接作用于淋巴细胞外,它还作用于其他细胞,间接的拮抗淋巴细胞分裂和免疫球蛋白的合成。
血管活性肠肽(vasoactine intrestinal peptide,VIP)对淋巴细胞的分裂和免疫球蛋白的合成也有明显的调节作用,其对IgA 合成的影响远远大于对IgM 和IgG 合成的影响[17].VIP受体主要在T细胞上分布。
VIP与其受体结合后可激活T 细胞膜上的环腺苷酶系统,致使DNA复制和细胞分裂受到抑制。
P物质能显着促进辅酶A刺激的淋巴小结中淋巴细胞和脾淋巴细胞的DNA 合成,它也能促进免疫球蛋白的合成,对IgA 合成的影响大于对IgM 合成的影响,但其对IgG的合成没有作用[18].肠道黏膜Th-1 细胞可产生IFN-γ、IL-2 等。
IFN-γ对肠道IgA 的分泌具有下调作用。
CD4+T辅助细胞(Th-2 细胞)可产生IL-4、IL-5、IL-6 以及IL-10 等,它们可增加肠道IgA 的分泌,IL-4、IL-5、IL-6 以及IL-10 的分泌细胞主要分布在肠黏膜固有层,与IgA 阳性浆细胞的分布有着密切的关系[19].很多体内实验研究发现,IL-5 能增强IgA的免疫应答反应;IL-6对IgA阳性浆细胞在肠道黏膜效应位点的定位、分化以及增殖有重要、关键作用;IL-4是SIgA阳性B细胞产生的重要开关因子,IL-4 缺陷小鼠其肠道黏膜产生IgA 抗体的能力大大削减[20].4 结语肠道黏膜免疫系统是由多种免疫成分组成的,黏膜免疫的效应机制中,浆细胞分泌的分泌型IgA 即SIgA 发挥重要的作用,以SIgA 为主的体液免疫起着主导作用,它是防御病原菌及抗原物质在肠道黏膜粘附、定植的第一道防线。
目前,对肠道黏膜免疫方面的研究已取得了较大的进展,但是还有一些问题等待解决,例如肠相关淋巴组织(Gut-associated lymphoid tissue,GALT)摄取肠腔内抗原的机制、SIgA神经内分泌的调节环路问题、SIgA网络调节中的信息传导机理以及肠道上皮细胞是否参与免疫调节等。
这些机制的阐明将会为黏膜免疫增强剂、口服疫苗的研制开发及过敏性或自身免疫性疾病的治疗提供更多的思路和方法。
参考文献:[1] 董玉兰,王树迎。
动物黏膜免疫细胞研究进展[J].动物医学进展,2003(1):79-83.[2] 杨淑静。
黏膜免疫[J].国外医学免疫学分册,2001,24(6):296-299.。