压敏电阻及应用

压敏电阻及应用
压敏电阻及应用

压敏电阻及应用

压敏电阻器简称压敏电阻.它是在某一特定的电压范围内其电导随电压的增加而急剧增大的一种敏感元件。由其具有稳压和过电压保护等功能,故人们也将其称为“限幅器”、“斩波器”或“浪涌吸收器”.还称其为是家用电器和各种电器设备及电子器件的“安全卫士”或“警卫员”。

一、压敏电阻的主要特性

转载请注明转自“维修吧”https://www.360docs.net/doc/ff6461842.html,

压敏电阻的种类很多.其中最有代表性的当首推氧化锌压敏电阻。这种电子陶瓷半导体元件的微观结构如图1.其基片是由大量的氧化锌晶粒及晶粒周围呈P型半导体性质的以氧化铋为主要成份的晶界层所组成。每个晶粒与晶界层形成一个相当齐纳二极管的PN结势垒.构

成一个单元。很明显,基片内串联的单元越多.击穿电压也就越高;并联的单元越多。

横截面积越大.其通流容量也就越大。氧化锌压敏电阻的伏安特性如图2。这种对称型的伏安特性可用于吸收交流或直流正、负极性的浪涌电压。在一定的电压范围内.其阻抗接近于开路状态.只有微安级的漏电流通过,故功耗甚微。该元件的适用电压范围特别广.可从几伏到几十万伏,而且对过电压的响应时间非常快.一般不大干50 n S:当电压达到一

定值。压敏电阻中的电流陡然增大。它承受电流的能力非常惊人,可达几十千安,而且不会导致电流的上升速率增大.不会产生续流和放电延迟现象。虽然压敏电阻的瞬时功率非常大,但平均持续功率却很小.故不能长时间工作于导通状态。

表示压敏电阻特性的参数有数个.其中最重要的就是压敏电压和通流容量。所谓压敏电压。是指压敏电阻在一定沮度范围内规定电流下的电压降。通常规定电流为1m A直流,该基准电流下的压敏电压记作V lmA。必须指出的是。压敏电阻的残压与压敏电压并非同一概念,它是压敏电阻通过某一给定的脉冲电流在其两端产生的电压降。压敏电阻的耐浪涌能力用通流容量表示。所谓通流容量。是指按规定的时间间隔和次数,在压敏电阻上施加规定的波形电流冲击时,压敏电压参数变化不超过规定值的最大峰值电流。目前测试该参数大多采用8×20uS的冲击波形,要求VlmA的变化率不超过±lO%。

压敏电阻的外形封装主要有片状引线型、环型、芯轴型和圆柱型油浸罐式几种。其中.大通流容量的压敏电阻采用后两种封装形式。

二,压敏电阻的正确选用

压敏电阻的图形符号如图3。

其中图3(a)、(b)分别为国标规定符号和国内常用符号;图3(c)、(d)分别为日本及其它国家所采用的符号。压敏电阻用字母R或RV表示。

正确选用压敏电阻,首先必须了解压敏电阻型号的组成与含义。压敏电阻的型号通常由以下五部分组成:

M Y口-口口口

其中。第1部分“M Y”表示压敏电阻;第Ⅱ部分用汉语拼音字母表示产品的分类与用途,如果J、W、G、L、H、Z、B、D等分别代表家用、稳压、过压保护、防雷、灭弧、消噪、补偿、通用;第Ⅲ部分表示以mm作为计量单位的基片直径;第Ⅳ部分用字母表示电压允许误差.如K±lO%.M±20%;第V部分表看标称压敏电压,可以带计量单位。当不带计量单位(V)采用三位数字表示压敏电压时.若V lmA是两位数,后面要加“O”。20则表示82V;如V lmA 是三位数且末位数是0,如820V,应用82l表示;而8200 V则用822表示。例如型号MYGlOK47l 表示是过压保护用压敏电阻,瓷片直径lO m m,允许偏差±lO%.标称电压是.470 V。由于目前国内在该产品的型号组成上尚未达到完全统一。故选用时应以产品样本为准。例如,某压敏电阻型号为M Y L 30-470V/5K A-K.则表示防雷用压敏电阻,基体直径30mm,压敏电压470V.通流容量5kA,电压允差±10%。

压敏电阻的正确选择和使用.要注意以下几点:

1.压敏电压参数的选择。该参数的选取,要根据实际电路和电源情况而定。若压敏电阻用于过压保护,其标称电压必须高于实际电路的电压值。在直流电压Vdc下,一般取V1mA=(1.5~2.2)Vdc;当用于交流电压Vac(有效值)下时.则取VlmA=(1.8~2.5)Vac;若压敏电阻上的电压是脉冲电压,则Vlma=(1.4~2)×脉冲电压幅值。如果压敏电阻在电路中处于间断工作状态.以上各式的系数宜取得小一些;若其长时间工作于不间断状态,系数应取大一点。V1mA的上限则由被保护器件或装置的耐压所决定。压敏电阻在吸收过电压时的残压应被抑制在器件或装置的耐压以下。虽然压敏电压选择低一些有利于提高

保护效果,但如果选择过低,电压稍一升高压敏电阻就会导通漉过大电流,易引起元件温升加剧甚至被烧毁。

2.通流容量的选取。为延长压敏电阻的使用寿命并为电子线路提供可靠保护,该参数的

选择应留有充分余量。根据经验,一般用于操作过电压保护时,压敏电阻的通漉容量选择1 KA~5 KA;如用于防雷浪涌保护,可选用2 KA~20KA的元件。

3.当压敏电阻串联使用时,应确保每只压敏电阻的通流容量相同,特性相近。串联后的最大允许电路电压等于各只压敏电阻最大允许电路电压之和。在浪涌电流特别大的情况下也可将若干只压敏电阻并联使用,但要保证每只元件的压敏电压相同和伏安特性一致。并联后的压敏电压不变,总通流容量为各个压敏电阻的通流容量之和。由于串并联的只数增加往往使-口可靠性降低,故应控制串并联压敏电阻的数量。

4.由于压敏电阻的固有静态电容从几百到几千徽微法,在频率较高时应选用容值小的压敏电阻,并要在压敏电阻上串接高频阻流圈,以减小高频信号衰减。

此外,使用压敏电阻还要使引线与接线尽可能短。用作雷浪涌吸收时务必注意要可靠接地。

三、压敏电阻应用实例

家用电器及各种电子设备可靠性与安全性要求的日益提高,使压敏电阻的应用也日益广泛。现仅就其在过电压保护方面的应用作一简单介绍,期望起到抛砖引玉之作用。

(一)电源电路的过压保护

压敏电阻用于彩色电视机电源输入端的电路如图4。

交流电源一旦因某种因素导致电压升高或因错相引入380 V的电压而超过压敏电阻R V 1的压敏电压,R V 1即刻导通流过大电流,使F熔断,从而防止了电源过电压侵入到机内把电子元器件毁坏。F延时熔断后氖泡点亮,发出F熔断的警告。在消磁电路中,与P T C热敏电

阻和消磁线圈串接的压敏电阻R V 2,既对消磁电路起到保护作用,又可降低P T C元件的耐压要求。东芝G R系列电冰箱控

制电路电源输入侧就采用了T N R80l 15G 471 K型压敏电阻,F55录象机则采用了EN B 46l D型压敏电阻。压敏电阻用作按键式电话机电源过压保护的电路如图5。

图6示出了新一代高灵敏度漏电保护器电路。

交流电源一旦出现过电压,R V立刻导通。零序互感器次级随即产生感生电流,并通过电阻转换成电压输入到I C放大器。放大后的信号使S C R导通,脱扣器动作,在O.1 S内切断交流电源。

压敏电阻不仅可用于电源变压器或整流器的输入端,也可用到其输出侧。象夏普彩电直流电源采用一仅115V~135 V的R I MV型稳压二极管作过压保护,该器件在市场上不易买到,在维修时若采用压敏电阻取而代之,非常经济方便。

(二)电子器件的保护典型的晶体管过压保护电路如图7。

在此类电路中,R V的压敏电

压必须高于电源电压但又必须低于晶体管的击穿电压BVceo。其中,图7(b)是电视机的场输出级电路。在帧回扫期问,晶体管的集电极电压等于电源电压与扼流圈产生的反峰电压之和。R V的作用是将该反峰电压抑制在R V的残压之下,使晶体管免遭击穿。用R V作为集成电路(IC)浪涌吸收器的电路如图8。R V将过电压限幅再经R C积分电路进一步消除噪声影响,使I C得到保护。除此之外,压敏电阻还可用于功率二极臂,晶闸管和固态继电器等电

子器件或组件的保护。特别是采用压敏电阻器去消除显象管的极问跳火.要比放电管或金属间隙片可靠得多,

(三)操作过电压保护

在含有继电器、接触器、电磁离合器等感性负载的电路中,当切断电路瞬间.电漉在负荷与电源两侧产生的过电压可以超过电源电压的数十倍,在触点间产生电弧和火花放电.不仅易损坏触头,导致器件击穿,面且会使其它系统产生误动作。将压敏电阻与继电器电感线圈或触点并联,如图9,感性负载储存的能量可通过R V泄放吸收。

(四)雷浪涌保护

直击雷、感应雷或沿电源线进入系统的浸入波这种大气过电压所产生的电流上升时间非常快,持续时问仅几十徽秒.峰值电流达几十安到几百安,对电力等系统的用电设备破坏作用很大。压敏电阻用作避雷器,如图10,雷浪涌电压和电流可经线一地问的R V入地,而且它们的对地电压之差又受到线~线问R V的进一步抑制。图11示出了公用天线电规(CATV)系统的CA放大器、混合器的过电压保护电路示意图。

压敏电阻的应用实例繁花似锦.而且正继续向一切可能应用的领域渗透。

稳压管,TVS管,压敏电阻,FUSE的作用和原理

稳压管、TVS管、压敏电阻、FUSE 稳压管: 1、浪涌保护电路:稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜.图中的稳压二极管D是作为过压保护器件.只要电源电压VS超过二极管的稳压值D就导通,使继电器J吸合负载RL就与电源分开. 2、电视机里的过压保护电路:EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态. 3、电弧抑制电路:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它. 4、串联型稳压电路:在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用 瞬态电压抑制二极管(TVS管) 瞬态电压抑制二极管(TVS管)常称为防雷管,是一种安全保护器件。这种器件在电路系统中起到分流、箝位作用,可以有效降低由于雷电、电路中开关通断时产生的高压脉冲,避免雷电、高压脉冲损坏其它器件。其工作原理是交流到直流震荡产生直流波,用TVS去掉尖峰,直接并接在次级被保护的设备之前。TVS是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,从而把它的两端电压箝制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。正因为如此,TVS可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。 TVS管有单向、双向两种。单向的图形符号与稳压管相似,TVS器件按极性可分为单极性和双极性两种;按用途可分为通用型和专用型;按封装和内部结构可分为轴向引线二极管、双列直插TVS阵列、贴片式和大功率模块等[1]。轴向引线的产品峰值功率可达400 W、500 W、600W、1500W和5 000W。其中大功率的产品主要用在电源馈线上,低功率产品主要用在高密度安装场合。对于高密度安装的场合,也可以选择双列直插和表面贴装等封装形式。 应用电路。当输入端有高压浪涌脉冲引入时,不论脉冲方向如何,TVS管能快速进入击穿状态,对输入电压进行箝位。在电源端用TVS比较好。电源主要保护有两种: AC/DC电源输入防雷过压保护: AC/DC电源输入过压保护: 常用的电能有二种AC,DC.国内电网供电通常为AC220/AC380V,但是由于电网通常不稳定,所以要在选型的时候考虑相应的浮动电压。当用于低压电源(通常属于次级保护)我们可以选用TVS。 常用的双向TVS管参数: 截止电压(V)击穿电压(Vmin)击穿电压(Vmax)测试电流(mA)最大箝位电压(V)最高脉冲电流(A)反向漏电流(uA) 在选用TVS时,应考虑以下几个主要因素: (1)若TVS有可能承受来自两个方向的尖峰脉冲电压(浪涌电压)冲击时,应当选用双极性的,否则可选用单极性。 (2)所选用TVS的Vc值应低于被保护元件的最高电压。Vc是二极管在截止状态的电压,也就是在ESD冲击状态时通过TVS的电压,它不能大于被保护回路的可承受极限电压,否则器件面临被损坏的危险。(3)TVS在正常工作状态下不要处于击穿状态,最好处于VR以下,应综合考虑VR和VC两方面的要求来

压敏电阻的型号及参数选用

压敏电阻的型号及参数选用 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) >M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号

270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。(2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量 涠疃ㄈ萘渴保 姑舻缱杌嵋蚬 榷 鸹担 饕 硐治 搪贰⒖ 贰?br /> MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况) 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3× UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。

压敏电阻14D

压敏电阻14D 优恩半导体(UN) 1、压敏电阻14D型号: 14D180K、14D180KJ、14D220K、14D220KJ、14D270K、14D270KJ、14D330K、14D330KJ、14D390K、14D390KJ、14D470K、14D470KJ、14D560K、14D560KJ、14D680K、14D680KJ、14D820K、14D820KJ、14D101K、14D101KJ、14D121K、14D121KJ、14D151K、14D151KJ、14D181K、14D181KJ、14D201K、14D201KJ、14D221K、14D221KJ、14D241K、14D241KJ、14D271K、14D271KJ、14D301K、14D301KJ、14D331K、14D331KJ、14D361K、14D361KJ、14D391K、14D391KJ、14D431K、14D431KJ、14D471K、14D471KJ、14D511K、14D511KJ、14D561K、14D561KJ、14D621K、14D621KJ、14D681K、14D681KJ、14D751K、14D751KJ、14D781K、14D781KJ、14D821K、14D821KJ、14D911K、14D911KJ、14D102K、14D102KJ、14D112K、14D112KJ、14D122K、14D122KJ、14D182K、14D182KJ。 2、压敏电阻14D产品图片及描述:

压敏电阻14D系列,在14D系列的插件压敏电阻最大峰值电流可达6KA(8/20μs脉冲),可作为间接雷击干扰保护应用方案中的器件,防止高浪涌峰值对设备的影响。 3、压敏电阻14D产品特性: *电压范围宽(8V~1800V) *通流容量大 *响应时间快 *漏电流低 4、压敏电阻14D应用领域: *三极管,二极管,集成电路,可控硅或可控硅半导器件保护*在消费类电子产品浪涌保护 *在工业电子产品浪涌保护 *在家电,燃气等浪涌保护 *继电器和电磁阀浪涌保护 5、压敏电阻14D规格及特性参数:

气体放电管和压敏电阻组合构成的抑制电路原理

气体放电管和压敏电阻组合构成的抑制电路原理 上传者:dolphin 由于压敏电阻(VDR)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。图1 中,将压敏电阻与气体放电管串联,由于气体放电管寄生电容很小,可使串联支路的总电容减至几个pF。在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图2 的R2、G、R3 的反应时间为150ns,为改善反应时间加入R1 压敏电阻,这样可使反应时间为25ns。 金属氧化物压敏电阻(MOV)的电压-电流特性见图3,金属氧化物压敏电阻(MOV)特性参数见表1。气体放电管(GDT)的电压-电流特性见图4,气体放电管(GDT)特性参数见表2。

金属氧化物压敏电阻(MOV)特性参数 由于浪涌干扰所致,一旦加在气体放电管两端的电压超过火花放电电压(图4 的u1)时,放电管内部气体被电离,放电管开始放电。放电管端的压降迅速下降至辉光放电电压(图4 的u2)(u2 在表2 中的数值为140V 或180V,与管子本身的特性有关),管内电流开始升高。随着放电电流的进一步增大,放电管便进入弧光放电状态。在这种状态下,管子两端电压(弧光电压)跌得很低(图4的u3)(u3 在表2 中数值为15V 或20V,与管子本身的特性有关),且弧光电压在相当宽的电流变动范围(从图4 的i1→i2 过程中)内保持稳定。因此,外界的高电压浪涌干扰,由于气体放电管的放电作用,被化解成了低电压和大电流的受保护情况(u3 和i2),且这个电流(从图4 的i2→i3)经由气体放电管本身流回到干扰源里,免除了干扰对灯具可能带来的危害。随着浪涌过电压的消退,流过气体放电管的电流降到维持弧光放电状态所需的最小值以下(约为10mA~100mA,与管子本身的特性关),弧光放电便停止,并再次通过辉光放电状态后,结束整个放电状态(熄弧)。

压敏电阻型号及选用

压敏电阻的型号及选用方法 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号

270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3×UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。 压敏电阻的检测。用指针式万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。 压敏电阻的先择与使用2007-03-12 10:42:18

常用压敏电阻主要参数_图文(精)

型号电压 (V 用电压(V AC DC 电压 V C (V 电流 I P (A 电容 P F 型号 电压 (V 用电压(V AC DC 电压 V C (V 电流 I P (A电容 P F

MYD-05K180 MYD-07K180 MYD-10K180 MYD-14K180 MYD-20K180 18 11 14 40 36 36 36 36 MYD-05K820 MYD-07K820 MYD-10K820 MYD-14K820 MYD-20K820 82 50 65 145 135 135 135 135 MYD-07K220 MYD-10K220 MYD-14K220 MYD-20K220 22 14 18 43 43 43

43 MYD-07K101 MYD-10K101 MYD-14K101 MYD-20K101 100 60 85 165 165 165 165 MYD-05K270 MYD-07K270 MYD-10K270 MYD-14K270 MYD-20K270 27 17 22 60 53 53 53 53 MYD-05K121 MYD-07K121 MYD-10K121 MYD-14K121 MYD-20K121

120 75 100 210 200 200 200 200 MYD-05K330 MYD-07K330 MYD-10K330 MYD-14K330 MYD-20K330 33 20 26 73 65 65 65 65 MYD-05K151 MYD-07K151 MYD-10K151 MYD-14K151 MYD-20K151 150 95 125 260 250 250 250 250 MYD-05K390 MYD-07K390 MYD-10K390 MYD-14K390 MYD-20K390 39 25 31 86

热敏电阻在电源电路中的作用

本文以问答的形式介绍了NTC PTC热敏电阻在电源电路中的作用。 问题1: NTC电阻串联在交流电路中主要是起什么作用!它是怎样工作!请大侠指点!谢谢! 问题2: 压敏电阻并联在交流侧电路中主要是起什么作用!它是怎样工作!如果 没有以上两个元器件!会造成什么影响!谢谢!! NTC电阻串联在交流电路中主要是起“电流保险”作用. 压敏电阻并联在交流侧电路中主要是起“限制电压超高”作用. 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 压敏电阻的工作原理:比如一个“标称300V”的压敏电阻在220V的工作中,突然220V上升到310V!这时压敏电阻被击穿,通过很大的电流,熔断了保险丝后,就保护了后面的电路,然后压敏电阻又恢复了原来的状态. 我的故事讲完了. 老人家:按照你说的意思是压敏电阻设计时最好是放在保险管后面咯,那样压敏电阻导通时不会对电网有什么危害吗而保险管一般都是慢断的! 是NTC没错. 没通电时,NTC的阻值高,一通电霎那,阻值仍高,限制了涌流,随着NTC有电流流过,温度增加,阻值下降到很低,可以忽略. 明白了,但是这样的话,正常工作时,电流小,阻值就小,那么突然来一个浪涌电流,或者电路那段路使得电流增大,那就起不了保护作用了吧,也就是说只能拿来防通电时的浪涌了吗 正常工作后基本就没有浪涌电流了吧只有浪涌电压.如果真有浪涌电流,例如电源短路了,由于NTC已经导通了,对它也无能为力,只有靠保险丝起作用.记住NTC 只是起开机保护的就可以了. 试想若电路已经正常上电,NTC已低阻,这时遭遇高压NTC是无能为力的 说的不错,在电源正常工作一段时间后,再进行频繁开关机,会对电源造成伤害的,因为这时由于NTC的温度上升,阻值下降,对浪涌的抑制能力已经及其有限了 说的对,采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了.

压敏电阻器(VSR)结构原理、应用知识

压敏电阻器(VSR)结构原理、应用知识 压敏电阻器是一种具有瞬态电压抑制功能的元件,一般用于电路浪涌和瞬变防护电路。可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对集成电路等重要元件以及其它电路和设备进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。使用时只需将压敏电阻器并接于被保护的电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,阻止瞬间过压而起到保护元器件或电路的作用;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作。 压敏电阻器(VSR)是电压灵敏电阻器的简称,它是一种新型过压保护元件。压敏电阻器是以氧化锌为主要材料而制成的金属-氧化物-半导体陶瓷元件,构成压敏电阻的核心材料为氧化锌,氧化锌又包括氧化锌晶粒和晶粒周围的晶界层,氧化锌晶粒的电阻率很低,而晶界层电阻率很高,相接触的两个晶粒之间形成一个相当于齐纳二极管的势垒,成为一个压敏电阻单元,许多单元通过串联,并联组成压敏电阻器基体。压敏电阻器在工作时,每个压敏电阻单元都承担浪涌能量,而这些压敏电阻单元是大体上均匀分布在整个电阻体内的,也就是整个电阻体都承担能量,而不像齐纳二极稳压管那样只是结区承担电功率,这就是陶瓷压敏电阻器具有比齐纳二极稳压管大得很多的通流和能量定额的原因。其电阻值随端电压而变化。 压敏电阻器的主要特点是工作电压范围宽(6—3000伏,分若干档),对过压脉冲响应快(几至几十纳秒),耐冲击电流的能力强(可达100安培-20千安培),漏电流小(低于几至几十微安),电阻温度系数小,性优价廉,体积小,是一种理想的保护元件。由它可构成过压保护电路,消噪电路,消火花电路,吸收回路。压敏电阻的电路符号,外形和内部结构见图1。 压敏电阻的结构就象两个特性一致的背靠背联接的稳压管,其性质基本相同。压敏电阻的主要特性是,当两端所加电压在标称额定值以内时,它的电阻值几乎为无穷大,处于高阻状态,其漏电流<50微安,当它两端的电压稍微超过额定电压时,其电阻值急剧下降,立即处于导通状态,工作电流增加几个数量级,反应时间仅在毫微秒级。压敏电阻在国外俗称“斩波器”和”限幅器”,这是从它的实际作用而得名的。

压敏电阻型号及选用方法

2019-01-18压敏电阻的型号及选用方法 根据标准SJ1152-82《敏感元件型号命名方法》的规定,敏感电阻器的产品型号由下列四部分组成: 第一部分:主称(用字母表示); 第二部分:类别(用字母表示); 第三部分:用途或特征(用字母或数字表示); 第四部分:序号(用数字表示)。 (1)主称、类别部分的符号及意义如表1-5所示。 (2)用途或特征部分用数字表示时,应符合表1-6的规定;用字母表示时,应符合的规定。 (3)序号部分用数字表示。 表1-5 敏感电阻器型号中主称、类别部分的符号所表示的意义 表1-6敏感电阻器型号中用途或特征部分的数字所表示的意义 表1-7 敏感电阻器型号中用途或特征部分的数字所表示的意义

SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。

例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号 270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3×UC U1mA ---- 压敏电压

压敏电阻的响应时间

压敏电阻的响应时间 ZnO压敏电阻这种半导体材料,在电场下的导电过程,基本上是电子过程,因此,它对测量电压/电流的响应是很快的。美国GE公司的测量结果表明,ZnO压敏电阻抑制冲击过电压的时间小于1ns。按过冲定义计算的响应时间,对于 ZnO-Bi2O3配方系统,大体在(20~25)nS。但这种材料内部,还有一定程度的离子电导,这使得电阻体从一种电阻状态到另一种电阻状态的稳定时间,需要几时毫秒到10秒钟左右的时间。这就是说ZnO压敏电阻从"截止"到"导通",或从"导通"到"截止",不是瞬时完成的,它需要一段稳定时间。下述这些现象就是这一特性的表现。 压敏电阻冲击电流减额特性 通流量指标给定了压敏电阻能承受的8/20电流波冲击一次和二次的最大电流值。当电流波的时间宽度τ增大时,或冲击次数n增多试,允许的电流峰值Ip应随之减小。曲线 Ip=f(τ,n)称作冲击电流减额特性。 压敏电阻电容量 电容量压敏电阻器的固有电容量Co,随着规格的不同,大体在几个PF到104PF左右,它与压敏电阻的电阻成分相并联,对测试过程产生影响。测试信号刚一加上是首先对它充电,测试信号结束后,这个Co上存储的电荷要放电。为此,在测试过程中应注意:(1)在相同的加压比下,压敏电阻器的工频交流漏电流比直流漏电大。(2)施加在试样上的测量电压(电流),应保持足够的时间,使电容上的电荷状态稳定,然后才能读取测试结果。(3)若试样电容量较大,且测试电压较高,则在测试信号结束后,应使试样充分放电,以免试样在测量过程中储存的电荷对人体造成电击。 压敏电阻极性现象 极性现象极性是指压敏电阻两个方向的测试结果不一致,低压压敏电阻的这一现象尤为明显。从前面几章的讨论可以知道,产生这一现象的原因有两个:一是电阻体内正方向的势垒与反方向的势垒本来就不是完全相同的,二是压敏电阻经电流电压作用后产生了劣化,使得两

压敏电阻的特性与参数以及如何选用

压敏电阻的特性与参数以及如何选用 压敏电阻的特性与参数以及如何选用 如果电机是AC24V的,在电机方向线对地接一个470K压敏电阻;如果电机是AC220V,则加471K压敏电阻。意义重要是消除电机换相产生的尖峰高压。 压敏电阻的测量:压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。压敏电阻在电路中,常用于电源过压保护和稳压。测量时将万用表置10k档,表笔接于电阻两端,万用表上应显示出压敏电阻上标示的阻值,如果超出这个数值很大,则说明压敏电阻已损 压敏电阻标称参数 压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一般选择标称压敏电压V1mA 和通流容量两个参数。 1、所谓压敏电压,即击穿电压或阈值电压。指在规定

电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10 -9000V不等。可根据具体需要正确选用。一般 V1mA=1.5Vp=2.2V AC,式中,Vp为电路额定电压的峰值。V AC为额定交流电压的有效值。ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。如一台用电器的额定电源电压为220V,则压敏电阻电压值 V1mA=1.5Vp=1.5×1.414×220V=476V,V1mA=2.2V AC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470-480V 之间。 2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过±10%时的最大脉冲电流值。为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。然而从保护效果出发,要求所选用的通流量大一些好。在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA的产品。如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。 压敏电阻器的应用原理

压敏电阻器的型号命名及含义

压敏电阻器的型号命名及含义 一部分:主称 第二部分:类别 第三部分:用途或特征 第四部分:序号 字母 含义 字母 含义 字母 含义 M 敏感 电阻器 Y 压敏 电阻器 无 普通型 用数字表示序号,有的在序号的后面还标有标称电压通流容量或电阻体直径、标称电压、电压误差等。 D 通用 B 补偿用 C

消磁用 E 消噪用 G 过压保护用 H 灭弧用 K 高可靠用 L 防雷用 M 防静电用 N 高能型 P 高频用 S 元器件保护用 T 特殊型 W 稳压用 Y 环型 Z 组合型 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用

31——序号 1-1——序号 270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数: 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。 (2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。 MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况): 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3× UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。 压敏电阻的检测。用指针式万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

国内外压敏电阻型号及参数

国内外压敏电阻型号及参数压敏电阻 220V电压的电路 国内型号:MYG14K471(对应的国外型号:US 470NR-14D) MYG05K471(对应的国外型号:US 470NR-5D) 22V左右的电路 国内型号:MYG14K470(对应的国外型号:US 470NR-14D) MYG05K470(对应的国外型号:US 470NR-5D)。

压敏电阻型号及参数 压敏电阻

百科名片 压敏电阻 “压敏电阻"是中国大陆的名词,意思是在一定电流电压范围内电阻值随电压而变,或者是说"电阻值对电压敏感"的阻器。英文名称叫“Voltage Dependent Resistor”简写为“VDR”,或者叫做“Varistor"。压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。在中国台湾,压敏电阻器称为"突波吸收器",有时也称为“电冲击(浪涌)抑制器(吸收器)”。 目录[隐藏] 1、压敏电阻电路的“安全阀”作用 2、压敏电阻的应用类型 3、保护用压敏电阻的基本性能 4. 压敏电阻的基本参数 1、压敏电阻电路的“安全阀”作用 2、压敏电阻的应用类型 3、保护用压敏电阻的基本性能 4. 压敏电阻的基本参数 [编辑本段] 1、压敏电阻电路的“安全阀”作用 压敏电阻有什么用?压敏电阻的最大特点是当加在它上面的电压低于它的阀值" UN"时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。 [编辑本段]

ESD器件防护工作原理

ESD器件防护工作原理 这里介绍手机中比较常用的TVS管和压敏电阻。 一、ESD器件的主要性能参数 1、最大工作电压(Max Working Voltage) 允许长期连续施加在ESD保护器件两端的电压(有效值),在此工作状态下ESD器件不导通,保持高阻状态,反向漏电流很小。 2、击穿电压(Breakdown Voltage) ESD器件开始动作(导通)的电压。一般地,TVS管动作电压比压敏电阻低。 3、钳位电压(Clamping Voltage) ESD器件流过峰值电流时,其两端呈现的电压,超过此电压,可能造成ESD永久性损伤。 4、漏电流(Leakage Current) 在指定的直流电压(一般指不超过最大工作电压)的作用下,流过ESD器件的电流。一般地,TVS管的反向漏电流是nA级,压敏电阻漏电流是μA级,此电流越小,对保护电路影响越小。 5、电容(Capacitance) 在给定电压、频率条件下测得的值,此值越小,对保护电路的信号传输影响越小。比如硅半导体TVS管的结电容(pF级),压敏电阻的寄生电容(nF级) 6、响应时间(Response Time) 指ESD器件对输入的大电压钳制到预定电压的时间。一般地,TVS管的响应时间是ns级,压敏电阻是μs级,此时间越小,更能有效的保护电路中元器件。 7、寿命(ESD Pulse Withstanding) TVS技术利用的是半导体的钳位原理,在经受瞬时高压时,会立即将能量释放出去,基本上没有寿命限制;而压敏电阻采用的是物理吸收原理,因此每经过一次ESD事件,材料就会受到一定的物理损伤,形成无法恢复的漏电通道,会随着使用次数的增多性能下降,存在寿命限制。 二、TVS管(硅半导体) 瞬态抑制二极管(Transient Voltage Suppressor)简称TVS,是一种二极管形式的高效能保护器件,利用P-N 结的反向击穿工作原理,将静电的高压脉冲导入地,从而保护了电器内部对静电敏感的元件。以TVS二极管为例:当瞬时电压超过电路正常工作电压后,TVS二极管便发生雪崩,提供给瞬时电流一个超低电阻通路,其结果是瞬时电流通过二极管被引开,避开被保护器件,并且在电压恢复正常值之前使被保护回路一直保持截止电压。当瞬时脉冲结束以后,TVS二极管自动回复高阻状态,整个回路进入正常电压。TVS管的失效模式主要是短路,但当通过的过电流太大时,也可能造成TVS管被炸裂而开路。 TVS管有单向和双向两种,单向TVS管的特性与稳压二极管相似,双向TVS管的特性相当于两个稳压二极管反向串联,其I-V曲线特性图见图1,图中性能参数注解: ①反向断态电压(截止电压) V RWM与反向漏电流I R:反向断态电压(截止电压)V RWM表示TVS管不导通的最 高电压,在这个电压下只有很小的反向漏电流I R。 ②击穿电压V BR:TVS管通过规定的测试电流I T时的电压,这是表示TVS管导通的标志电压。 ③脉冲峰值电流I PP:TVS管允许通过的10/1000μs波的最大峰值电流(8/20μs波的峰值电流约为其5 倍左右,8/20μs是定义I PP脉冲波电流,请参考下图2),超过这个电流值就可能造成永久性损坏。 在同一个系列中,击穿电压越高的管子允许通过的峰值电流越小。 ④最大箝位电压V C:TVS管流过脉冲峰值电流I PP时两端所呈现的电压。 ⑤正向导通电压V F:TVS通过正向导通电流I F的压降。 除上述性能参数外,TVS管还有一个关键参数:P-N结电容C j。

压敏电阻07D系列型号参数规格书

Specifications 规格说明:□Varistor Voltage Range 压敏电阻动作电压范围 18V~1800V(dc)□Peak Current For 8/20us Current Wave 在8/20us 电流波形最大通流量 100A~1800A □Energy Range For 10/1000us Current Wave 在10/1000us 电流波形的能量范围0.4J~1092J □Storage Temperature Range 储存温度范围 -40℃~125℃□Operation Ambient Temperature Range 作业环境温度范围储存温度范围-40℃~85℃□Typical Response Time 反应时间 〈25ns □Insulation Resistance 绝缘电阻 ≧1000MΩ D K 05,07.10142025 Chip Diameter 芯片直径Φ5mm Φ7mm Φ10mm Φ14mm Φ20mm Φ25mm Chip .Shape 芯片形状Varistor Voltage 压敏电阻动作电压例如Examples:47×100=47V 47×101=470V 11×102=1100V 4704 7 1 1 1 2 Tolerance 误差K .±10%L .±15%M .±20%Or Customer Special Requirem ent 圆形 Disc HighSurge/Lead Style 高焦/脚型 □空白常规□J 高能品□S 直脚□O 外弯脚□I 内弯脚□H 高低脚 Part Number Code 7 471

压敏电阻的工作原理的作用

压敏电阻的工作原理的作用 对于我们设备中使用的压敏电阻,原选用型号为14D101K,实际运行3个月中,此型号压敏电阻经常烧毁。后改为14D121K,实际运行3个月,没有发现烧坏。所以,为指导以后工作,整理并学习此资料,并在整理过程中,发现压敏电阻不应该直接并接在元件的输入端。具体压敏电阻的资料如下 一、压敏电阻的原理 压敏电阻意思是”在一定电流电压范围内电阻值随电压而变”,或者是说”电阻值对电压敏感”的阻器。相应的英文名称叫“VoltageDependentResistor”简写为“VDR”。 随着加在它上面的电压不断增大,它的电阻值可以从MΩ(兆欧)级变到mΩ(毫欧)级。当电压较低时,压敏电阻工作于漏电流区,呈现很大的电阻,漏电流很小;当电压升高进入非线性区后,电流在相当大的范围内变化时,电压变化不大,呈现较好的限压特性;电压再升高,压敏电阻进入饱和区,呈现一个很小的线性电阻,由于电流很大,时

间一长就会使压敏电阻过热烧毁甚至炸裂。正常使用时压敏电阻处于漏电流区,受到浪涌冲击时进入非线性区泄放浪涌电流,一般不能进入饱和区 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的”氧化锌”(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。 二、压敏电阻的作用 压敏电阻的最大特点是当加在它上面的电压低于它的阀值”UN”时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。 压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对IC及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。使用时只需将压敏电阻器并接于被保护的IC或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC或电器设备;当电压低于压敏

压敏电阻对照表

压敏电阻对照表 主要型号:MYD-05K180 MYG2-05K11 MYD-05K220 MYG2-05K14 MYD-05K270 MYG2-05K17 MYD-05K330 MYG2-05K20 MYD-05K390 MYG2-05K25 MYD-05K470 MYG2-05K30 MYD-05K560 MYG2-05K35 MYD-05K680 MYG2-05K40 MYD-05K820 MYG3-05K50 MYD-05K101 MYG3-05K60 MYD-05K121 MYG3-05K75 MYD-05K151 MYG3-05K95 MYD-05K181 MYG3-05K115 MYD-05K201 MYG3-05K130 MYD-05K221 MYG3-05K140 MYD-05K241 MYG3-05K150 MYD-05K271 MYG3-05K175 MYD-05K301 MYG3-05K190 MYD-05K331 MYG3-05K210 MYD-05K361 MYG3-05K230 MYD-05K391 MYG3-05K250 MYD-05K431 MYG3-05K275 MYD-05K471 MYG3-05K300 MYD-07K180 MYG2-07K11 MYD-07K220 MYG2-07K14 MYD-07K270 MYG2-07K17 MYD-07K330 MYG2-07K20 MYD-07K390 MYG2-07K25 MYD-07K470 MYG2-07K30 MYD-07K560 MYG2-07K35 MYD-07K680 MYG2-07K40 MYD-07K820 MYG3-07K50 MYD-07K101 MYG3-07K60 MYD-07K121 MYG3-07K75 MYD-07K151 MYG3-07K95 MYD-07K181 MYG3-07K115 MYD-07K201 MYG3-07K130 MYD-07K221 MYG3-07K140 MYD-07K241 MYG3-07K150 MYD-07K271 MYG3-07K175 MYD-07K301 MYG3-07K190 MYD-07K331 MYG3-07K210 MYD-07K361 MYG3-07K230

相关文档
最新文档