模拟地和数字地的分割
几幅草图教你区分数字地、模拟地、电源地,单点接地

几幅草图教你区分数字地、模拟地、电源地,单点接地广告我们在进行pcb布线时总会面临一块板上有两种、三种地的情况,傻瓜式的做法当然是不管三七二十一,只要是地,就整块敷铜了。
这种对于低速板或者对干扰不敏感的板子来讲还是没问题的,否则可能导致板子就没法正常工作了。
当然若碰到一块板子上有多种地时,即使板子没什么要求,但从做事严谨认真的角度来讲,咱们也还是有必要采用本文即将讲到的方法去布线,以将整个系统最优化,使其性能发挥到极致!当然关于这些地的一些基础概念、为什么要将它们分开,本文就不讲了,不懂的同学自己查哈!一、对于板子上有数字地、模拟地、电源地这种情况:从这个图可以看出:模拟地和数字地是完全分开的,最后都单点接到了电源地,这样可以防止地信号的相互串扰而影响某些敏感元件,众所周知数字元件对干扰的容忍度要强于模拟元件,而数字地上的噪声一般比较大所以将它们的地分开就可以降低这种影响了。
还有单点接地的位置应该尽量靠近板子电源地的入口(起始位置),这样利用电流总是按最短路径流回的原理可将干扰降到最小。
二、对于板子上只有数字地、电源地这种情况:从此图可以看出:只在电源地和数字地之间用一个0欧电阻或磁珠之类的单点接地就行了,同样单点接地的位置应该尽量靠近板子电源地的入口(起始位置)。
三、展示一些第二种情况的pcb系统1、地线分区2、0欧电阻单点接地3、板子正面图总结:本文图解非常适合于单片机控制系统的pcb地线布局,其它系统也可参考!第二届立创商城电子制作节第二届立创商城电子制作节开始报名啦!超低门槛、自由发挥、轻松入围,更有第三方专家评委点评打分、荣誉证书和定制奖杯!一等奖1名,奖励税后10000元;二等奖2名,各奖税后6000元;三等奖3名,各奖税后3000元;入围奖若干名,入围即获500元奖励。
报名成功越早设计时间越充足,按要求简单发帖即完成报名,赶紧参加吧!官网介绍:/go/17523dej。
关于模拟地、数字地的理解

关于模拟地、数字地的理解
通常说来,很多资料上都要求数字地和模拟地分开走线并在最后一点接地,但至于为什幺要做这个要求,这样做和不这样做有那些弊端和好处?如果弄清楚了问题的实质,那幺事情就很好处理了。
理解一、数字地和模拟地要求分开走线是处于模拟信号完整性的要求,我们都知道数字电路往往存在大量的快速门翻转动作,这些动作将造成数字部分的电源上有很大的谐波存在,谐波产生的原因无非是门电路动作的时候,对电源电流的消耗申请是各不相同的,为了帮助理解可以用现实中的电感帮助分析,门电路只有0/1两种状态,对应着电感的通断两种状态,我们很容易明白,在电感两断快速的通断电流将会产生很大量的谐波,当然数字电路肯定不能如此简单等效,如此举例,纯粹是为了帮助没有理解力的初学者理解方便。
理解二、大量的谐波对模拟信号是致命的,这个属于常识问题,不需要做太详细的解释,举例来说,一个模拟信号送给了一个AD芯片采集,如果在这个模拟信号叠加了大量的谐波成分,那幺AD采集的结果必然是不准确的,特别是对现在很多高精度的西格玛-迭尔塔型的AD芯片,这个影响可能会更大,因为它对谐波更敏感。
理解三、分开走线和不分开走线谁更好?
没有谁最好的结论,按照电路按模块布局的要求也应该分开走线,但不分。
电路设计为什么要分数字地和模拟地?如何对模拟地与数字地隔离?

电路设计为什么要分数字地和模拟地?如何对模拟地与数字地隔离? 做过电路设计的同学都会知道,电路设计中对于数字地,模拟地和电源地的区分在某些应⽤中要求是⼗分严格的。
有的同学就会不明⽩:那么这些地有什么区别呢,为什么要区分这些地呢? ⾸先要明确数字(DIGTAL)和模拟(ANALOG)的概念。
所谓数字,即0和1、真(TRUE)和假(FALSE)、低(LOW)和⾼(HIGH)。
也就是说在数字电路⾥,1代表着⾼电平,0代表着低电平在不同的数字电路中,这些⾼电平代表的范围也不同。
现在我们参考常⽤的TTL电平,在TTL电平中+5V代表⾼电平即1,0V代表低电平即0。
但是实际中⾼低电平是有⼀个范围的,例如0~0.8V都是低电平,当这个范围内的电压输⼊到数字器件⾥,⽐如我输⼊0.2V就会被识别为低电平,⾼电平也是同理。
通过这个例⼦可以看出来数字电路对于噪声是有⼀定的容忍能⼒的。
所谓模拟,就是线性的量,只要是线性变化的就可以看做是模拟量。
例如电压、电流就是典型的模拟量。
很多模拟器件输出都是电压。
模拟量不同于数字,它对于噪声是零容忍,对于模拟量来说,噪声越低越好,对于数字量⽽⾔0.2V的噪声可能不会带来什么影响,但是对于模拟量来说,0.2V的噪声就会对结果造成⼗分巨⼤的误差。
例如我使⽤STM32的ADC来读取光强传感器的数值,STM32ADC的读取范围是0~3.3V,假设本来我读出来的光强转换为电压为0.4V,这个时候来⼀个0.2V的噪声,就变成了0.2V或者0.6V,相⽐0.4V来说就产⽣了50%的误差,最终我转换出来的光强值就相差了50%。
从这个例字就可以看出来,模拟量对噪声是不可容忍的。
既然明⽩了模拟和数字,那么为什么他们要隔离呢?既然都知道数字是⽆数的0和1组成的,那么也以将数字量看成⽆数脉冲。
根据信号与系统中学习的傅⾥叶变换,这些脉冲是可以分解成⽆数频率不同的正弦/余弦曲线的,也就是噪声。
如果将数字地与模拟地直接相连,这些噪声将会进⼊模拟端,对模拟量产⽣影响。
模拟地和数字地的区别

为什么数字地和模拟地要分开在做简单电路时,是可以不用分开的。
但为什么大家都说要把他们分开接呢?其实本质是对的,就是数字地,模拟地都是地,并不是他们俩头上长角,十分的怪异,要明白为什么要分开,先听我说一个故事我们公司所在的商务楼共有3楼,2楼是搞模拟的,3楼是做数字的,整幢楼只有一部电梯,平时人少的时候还好办,上2楼,上3楼互不影像,但每天早上上下班的时候就不得了了,人多得很,搞数字的要上3楼,总是被2楼的模拟影响,2楼模拟的人要下楼,总是要等电梯上了3楼,再下来,互相影响很是麻烦,商务楼的物业为解决这个问题,提出了2个方案,第1个(笑死人了)电梯扩大,可以装更多的人,电梯大了是好,但公司会招人,人又多了,再换电梯,再招人...永远死循环,有一个办法到挺好,大家索性不要电梯,直接往下跳,不管2楼的,3楼的,肯定解决问题,但肯定会出问题(第1个被枪毙掉了)第2个装2部电梯,一部专门上2楼,另一部专门上3楼WondeRFul!太机智了,这样2层楼面的工作人员就互不影响了。
End明白了否?数字地,模拟地互相会影响不是因为一个叫数字,一个叫模拟,而是他们用了同一部电梯--地,而这部电梯所用的井道就是我们在PCB上布得地线。
模拟回路的电流走这条线,数字回路的电流也走这条线,本来无可厚非,线布着就是用来导通电流的,可问题处在这根线上有电阻!而且最根本的问题是走这条线的电流要去2个不同的回路。
假设一下,有2股电流,数流,模流同时从地出发。
有2个器件,数件,模件。
若2个回路不分开,数流,模流回走到数件的接地端前的时候,损耗的电压为vv=(数流+模流)x走线电阻相当于数字器件的接地端相对于地端升高了v数字器件不满意了,我承认会升高少许电压,数流的那部分我认了,但模流的为什么要加在我头上?同理模拟器件也会同样抱怨2个解决方案第1个:你布的PCB线没有阻抗,自然不会引起干扰,就像2、3楼直接往下跳,那是井道最宽的时候,也就是可以装一个无限大的电梯,自然谁都不影响谁,但谁都知道,this ismission impossible第2个:2条回路分开走,数流,模流分开,既数地、模地分开。
PCB板电路设计中的数字地和模拟地考虑

PCB板电路设计中的数字地和模拟地考虑1 为什么要分数字地和模拟地因为虽然是相通的,但是距离长了,就不一样了。
同一条导线,不同的点的电压可能是不一样的,特别是电流较大时。
因为导线存在着电阻,电流流过时就会产生压降。
另外,导线还有分布电感,在交流信号下,分布电感的影响就会表现出来。
所以我们要分成数字地和模拟地,因为数字信号的高频噪声很大,如果模拟地和数字地混合的话,就会把噪声传到模拟部分,造成干扰。
如果分开接地的话,高频噪声可以在电源处通过滤波来隔离掉。
但如果两个地混合,就不好滤波了。
2 如何设计数字地和模拟地在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。
在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。
尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。
最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。
在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。
流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。
最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。
电路设计中的模拟地和数字地

电路设计中的模拟地和数字地电路设计中的模拟地和数字地2011年05月24日星期二19:531为什么要分数字地和模拟地数字地和模拟地因为虽然是相通的,但是距离长了,就不一样了。
同一条导线,不同的点的电压可能是不一样的,特别是电流较大时。
因为导线存在着电阻,电流流过时就会产生压降。
另外,导线还有分布电感,在交流信号下,分布电感的影响就会表现出来。
所以我们要分成数字地和模拟地,因为数字信号的高频噪声很大,如果模拟地和数字地混合的话,就会把噪声传到模拟部分,造成干扰。
如果分开接地的话,高频噪声可以在电源处通过滤波来隔离掉。
但如果两个地混合,就不好滤波了。
2如何设计数字地和模拟地在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。
在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。
尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。
最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。
在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
如图1所示,我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。
流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。
数字地、模拟地隔离——系统抗干扰

数字地与模拟地的隔离探讨1.数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
但是,制做PCB板时一般都做铺铜走线,而走线都与GND相联,请问,铺铜之后,模拟地和数字地还能区分出来吗,还能像上面说的那样,只有一个联接点吗?两个地起不同的名字,分别辅铜,最后可以用一个10uH电感或0欧姆电阻连起来。
模拟部分的器件尽量集中,放置在与其它板子接口的附近,减小信号衰减。
数字部分线路长一些没关系。
先对模拟地敷铜,然后对整个板敷数字地。
模拟地和数字地之间会自动分隔,用一个1uH的电感或0欧的电阻作为共地点。
2在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。
形成干扰的基本要素有三个:(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt 大的地方就是干扰源。
如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。
典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。
如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
(类似于传染病的预防)1 抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
模拟地与数字地的问题

模拟地与数字地隔离问题模拟电路与数字电路分别辅铜,最后可以用一个10uH电感或0欧姆电阻连起来。
模拟部分的器件尽量集中,放置在与其它板子接口的附近,减小信号衰减。
数字部分线路长一些没关系。
先对模拟地敷铜,然后对整个板敷数字地。
模拟地和数字地之间会自动分隔,用一个1uH的电感或0欧的电阻作为共地点。
2在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。
:抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
1 抑制干扰源抑制干扰源的常用措施如下:(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。
仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。
注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
2 切断干扰传播路径的常用措施如下:(1)充分考虑电源对单片机的影响。
电源做得好,整个电路的抗干扰就解决了一大半。
许多单片机对电源噪声很敏感, 要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。
比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
将数字地和模拟地分开的方法

将数字地和模拟地分开的方法
将数字地和模拟地分开的方法主要是为了避免两者之间的相互干扰,从而提高电路的稳定性和性能。
以下是实现这一目标的一些常见方法:
1.使用独立的地线:为数字电路和模拟电路分别设置独立的地线,这样可以确保它们
之间的干扰最小化。
这种方法在电路板设计中很常见,通过合理规划布线,使数字地和模拟地分别连接到不同的接地点。
2.使用磁珠或电感:在数字地和模拟地之间加入磁珠或电感,可以减小两者之间的干
扰。
磁珠和电感具有抑制高频噪声的作用,通过将它们连接在数字地和模拟地之间,可以降低噪声对模拟电路的影响。
3.使用地线隔离器:地线隔离器是一种专门用于隔离数字地和模拟地的设备。
它可以
通过电容耦合或变压器耦合等方式,将数字地和模拟地隔离开来,从而减小它们之间的干扰。
4.优化布线设计:在电路板布线时,要注意避免数字地和模拟地之间的交叉布线,以
减少它们之间的耦合。
此外,还可以采用地线加粗、地线敷铜等措施,提高地线的导电性能,降低电阻和电感,从而减小干扰。
需要注意的是,虽然将数字地和模拟地分开可以降低干扰,但并不能完全消除干扰。
因此,在实际应用中,还需要根据具体需求和电路设计情况,采取其他措施来进一步减小干扰,提高电路的稳定性和性能。
模拟地与数字地

这是因为虽然是相通的,但是距离长了,就不一样了。
同一条导线,不同的点的电压可能是不一样的,特别是电流较大时。
因为导线存在着电阻,电流流过时就会产生压降。
另外,导线还有分布电感,在交流信号下,分布电感的影响就会表现出来。
在将A/D转换器的模拟地和数字地管脚连接在一起时,大多数的A/D转换器厂商会建议:将AGND和DGND管脚通过最短的引线连接到同一个低阻抗的地上「注:因为大多数A/D转换器芯片内部没有将模拟地和数字地连接在一起,必须通过外部管脚实现模拟和数字地的连接」,任何与DGND连接的外部阻抗都会通过寄生电容将更多的数字噪声耦合到IC内部的模拟电路上。按照这个建议,需要把A/D转换器的AGND和DGND管脚都连接到模拟地上,但这种方法会产生诸如数字信号去耦电容的接地端应该接到模拟地还是数字地的问题。
所以我们要分成数字地和模拟地,因为数字信号的高频噪声很大,如果模拟地和数字地混合的话,就会把噪声传到模拟部分,造成干扰。如果分开接地的话,高频噪声可以在电源处通过滤波来隔离掉。但如果两个地混合,就不好滤波了。
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地
________________________________________
采用光隔离器件或变压器也能实现信号跨越分割间隙。对于前者,跨越分割间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁场。还有一种可行的办法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为回流路径。
要深入探讨数字信号对模拟信号的干扰必须先了解高频电流的特性。高频电流总是选择阻抗最小「电感最低」,直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个临近层是电源层还是地线层。
数字地与模拟地的区别

简单来说,数字地是数字信号的对地,模拟地是模拟信号的对地。
一.分为数字地和模拟地的原因:由于数字信号一般为矩形波,带有大量的谐波。
如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。
当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。
存在问题的根本原因是,谁也无法保证电路板上铜箔的电阻为零,在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的共地电阻降到最小。
二.数字地和模拟地处理的基本原则如下:1.模拟地和数字地之间链接(1)模拟地和数字地间串接电感一般取值多大?一般用几uH到数十uH。
(2)用0欧电阻是最佳选择a.可保证直流电位相等b.单点接地(限制噪声)c.对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。
磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。
电容不通直流,会导致压差和静电积累,摸机壳会麻手。
如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。
串联的话就显得不伦不类。
电感特性不稳定,离散分布参数不好控制,体积大。
电感也是陷波,LC谐振(分布电容),对噪点有特效。
总之,关键是模拟地和数字地要一点接地。
建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。
2. 磁珠采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。
主要参数:标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆.一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。
额定电流:额定电流是指能保证电路正常工作允许通过电流.3.电感与磁珠的区别:有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠;电感是储能元件,而磁珠是能量转换(消耗)器件;电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题;电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用磁珠.磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。
数字地(逻辑地)和模拟地区别

这是几个不同的问题:模拟地和数字地,顾名思意也就是模拟电路和数字电路接地。
1. 数字地和模拟地应分开;在高要求电路中,数字地与模拟地必需分开。
即使是对于A/D、D/A转换器同一芯片上两种“地”最好也要分开,仅在系统一点上把两种“地”连接起来。
2.浮地与接地;系统浮地,是将系统电路的各部分的地线浮置起来,不与大地相连。
这种接法,有一定抗干扰能力。
但系统与地的绝缘电阻不能小于50MΩ,一旦绝缘性能下降,就会带来干扰。
通常采用系统浮地,机壳接地,可使抗干扰能力增强,安全可靠。
3.一点接地;在低频电路中,布线和元件之间不会产生太大影响。
通常频率小于1MHz的电路,采用一点接地。
4.多点接地。
在高频电路中,寄生电容和电感的影响较大。
通常频率大于10MHz的电路,采用多点接地.如果把模拟地和数字地大面积直接相连,会导致互相干扰。
不短接又不妥,理由如上有四种方法解决此问题∶1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。
磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。
对于频率不确定或无法预知的情况,磁珠不合。
电容隔直通交,造成浮地。
电感体积大,杂散参数多,不稳定。
0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。
电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。
下面再说说机壳地与数字地,模拟地的关系:一般机壳地接交流供电电源的地线(不是零线),目的是为了防止操作人员触电(机壳与大地、人体等电位)。
机壳地一般可和设备的电源地连接在一起,但是:数字电路、模拟电路的工作地原则上严禁与设备的电源地直接连接!原因为设备本身发生漏电或遭遇强电磁场干扰时,数字电路、模拟电路会受此噪声干扰导致错误动作,严重的会导致机器毁损!!!主要因为数字电路、模拟电路的工作电平一般为3.3-15.5V(15.5V一般用于232接口通讯的最高电平);而通常电源回路的电平一般在市电范围(AC220V±10%),远远大于数字电路、模拟电路的工作电平。
数字地和模拟地为什么要分开

Q1:为什么要接地?Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。
同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。
随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。
比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。
而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。
最近,高速信号的信号回流技术中也引入了“地”的概念。
Q2:接地的定义Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。
一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。
注意要求是”低阻抗”和“通路”。
Q3:常见的接地符号Answer: PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地Q4:合适的接地方式Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。
而单点接地又分为串联单点接地和并联单点接地。
一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。
当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。
Q5:信号回流和跨分割的介绍Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。
PCB设置中注意数字地和模拟地的不同

模拟地与数字地简单来说,数字地是数字电路部分的公共基准端,即数字电压信号的基准端;模拟地是模拟电路部分的公共基准端,模拟信号的电压基准端(零电位点)。
一、分为数字地和模拟地的原因:由于数字信号一般为矩形波,带有大量的谐波。
如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。
当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。
模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。
既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。
存在问题的根本原因是,无法保证电路板上铜箔的电阻为零,在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的共地电阻降到最小。
二、数字地和模拟地处理的基本原则如下:如果把模拟地和数字地大面积直接相连,会导致互相干扰。
不短接又不妥。
对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。
而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。
另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。
不要有无用的大面积铜箔。
地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。
但如果只是低频电路,则应避免地线环路。
数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。
低频中没有多大影响,但建议模拟和数字一点接地。
高频时,可通过磁珠把模拟和数字地一点共地。
三、四种解决方法模拟地和数字地间串接1)用磁珠连接;2)用电容连接;3)用电感连接;4)用0欧姆电阻连接。
数字地和模拟地的分割

如何降低数字信号和模拟信号间的相互干扰呢?在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。
在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。
尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。
最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。
在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
如图1所示,我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。
流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。
最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。
另外,模拟地和数字地通过一个长导线连接在一起会构成偶极天线。
了解电流回流到地的路径和方式是优化混合信号电路板设计的关键。
许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。
如果必须对地线层进行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后通过该连接桥布线。
这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。
采用光隔离器件或变压器也能实现信号跨越分割间隙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中
国产品研发易站w w w .r d e a s y .c n 有关模拟地和数字地分割的介绍
如何降低数字信号和模拟信号间的相互干扰呢?在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。
在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。
尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。
最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。
在PCB 设计中最常见的问题就是信号线跨越分割地或电源而产生EMI 问题。
我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。
流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。
最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。
另外,模拟地和数字地通过一个长导线连接在一起会构成偶极天线。
了解电流回流到地的路径和方式是优化混合信号电路板设计的关键。
许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。
如果必须对地线层进行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后通过该连接桥布线。
这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。
采用光隔离器件或变压器也能实现信号跨越分割间隙。
对于前者,跨越分割间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁场。
还有一种可行的办法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为回流路径。
要深入探讨数字信号对模拟信号的干扰必须先了解高频电流的特性。
高频电流总是选择阻抗最小(电感最低),直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个临近层是电源层还是地线层。
在实际工作中一般倾向于使用统一地,而将PCB 分区为模拟部分和数字部分。
模拟信号在电路板所有层的模拟区内布线,而数字信号在数字电路区内布线。
在这种情况下,数字信号返回电流不会流入到模拟信号的地。
只有将数字信号布线在电路板的模拟部分之上或者将模拟信号布线在电路板的数字部分之上时,才会出现数字信号对模拟信号的干扰。
出现这种问题并不是因为没有分割地,真正的原因是数字信号的布线不
适当。
PCB 设计采用统一地,通过数字电路和模拟电路分区以及合适的信号布线,通常可以解决一些比较困难的布局布线问题,同时也不会产生因地分割带来的一些潜在的麻烦。
在这种情况下,元器件的布局和分区就成为决定设计优劣的关键。
如果布局布线合理,数字地电流将限制在电路板的数字部分,不会干扰模拟
中
国产品研发易站w w w .r d e a s y .c n 信号。
对于这样的布线必须仔细地检查和核对,要保证百分之百遵守布线规则。
否则,一条信号线走线不当就会彻底破坏一个本来非常不错的电路板。
在将A/D 转换器的模拟地和数字地管脚连接在一起时,大多数的A/D 转换器厂商会建议:将AGND 和DGND 管脚通过最短的引线连接到同一个低阻抗的地上(注:因为大多数A/D 转换器芯片内部没有将模拟地和数字地连接在一起,必须通过外部管脚实现模拟和数字地的连接),任何与DGND 连接的外部阻抗都会通过寄生电容将更多的数字噪声耦合到IC 内部的模拟电路上。
按照这个建议,需要把A/D 转换器的AGND 和DGND 管脚都连接到模拟地上,但这种方法会产生诸如数字信号去耦电容的接地端应该接到模拟地还是数字地的问题。
如果系统仅有一个A/D 转换器,上面的问题就很容易解决。
如图3中所示,将地分割开,在A/D 转换器下面把模拟地和数字地部分连接在一起。
采取该方法时,必须保证两个地之间的连接桥宽度与IC 等宽,并且任何信号线都不能跨越分割间隙。
如果系统中A/D 转换器较多,例如10个A/D 转换器怎样连接呢?如果在每一个A/D 转换器的下面都将模拟地和数字地连接在一起,则产生多点相连,模拟地和数字地之间的隔离就毫无意义。
而如果不这样连接,就违反了厂商的要求。
最好的办法是开始时就用统一地。
如图4所示,将统一的地分为模拟部分和数字部分。
这样的布局布线既满足了IC 器件厂商对模拟地和数字地管脚低阻抗连接的要求,同时又不会形成环路天线或偶极天线而产生EMC 问题。
如果对混合信号PCB 设计采用统一地的做法心存疑虑,可以采用地线层分割的方法对整个电路板布局布线,在设计时注意尽量使电路板在后边实验时易于用间距小于1/2英寸的跳线或0欧姆电阻将分割地连接在一起。
注意分区和布线,确保在所有的层上没有数字信号线位于模拟部分之上,也没有任何模拟信号线位于数字部分之上。
而且,任何信号线都不能跨越地间隙或是分割电源之间的间隙。
要测试该电路板的功能和EMC 性能,然后将两个地通过0欧姆电阻或跳线连接在一起,重新测试该电路板的功能和EMC 性能。
比较测试结果,会发现几乎在所有的情况下,统一地的方案在功能和EMC 性能方面比分割地更优越。
分割地的方法还有用吗? 在以下三种情况可以用到这种方法:一些医疗设备要求在与病人连接的电路和系统之间的漏电流很低;一些工业过程控制设备的输出可能连接到噪声很大而且功率高的机电设备上;另外一种情况就是在PCB 的布局受到特定限制时。
在混合信号PCB 板上通常有独立的数字和模拟电源,能够而且应该采用分割电源面。
但是紧邻电源层的信号线不能跨越电源之间的间隙,而所有跨越该间隙的信号线都必须位于紧邻大面积地的电路层上。
在有些情况下,将模拟电源以PCB 连接线而不是一个面来设计可以避免电源面的分割问题。
混合信号PCB 设计是一个复杂的过程,设计过程要注意以下几点:
1.将PCB 分区为独立的模拟部分和数字部分。
2.合适的元器件布局。
3.A/D 转换器跨分区放置。
4.不要对地进行分割。
在电路板的模拟部分和数字部分下面敷设统一地。
中
国产品研发易站w w w .r d e a s y .c n 5.在电路板的所有层中,数字信号只能在电路板的数字部分布线。
6.在电路板的所有层中,模拟信号只能在电路板的模拟部分布线。
7.实现模拟和数字电源分割。
8.布线不能跨越分割电源面之间的间隙。
9.必须跨越分割电源之间间隙的信号线要位于紧邻大面积地的布线层上。
10.分析返回地电流实际流过的路径和方式。
11.采用正确的布线规则。