2020全品高考第二轮专题 数学(理科)作业答案

合集下载

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

2020年高考数学(理)二轮专题学与练 20 坐标系与参数方程(考点解读)(解析版)

2020年高考数学(理)二轮专题学与练 20 坐标系与参数方程(考点解读)(解析版)

专题20 坐标系与参数方程1.考查参数方程与普通方程、极坐标方程与直角坐标方程的互化.2.考查利用曲线的参数方程、极坐标方程计算某些量或讨论某些量之间的关系.知识点一、直角坐标与极坐标的互化如图,把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0.【特别提醒】在曲线方程进行互化时,一定要注意变量的范围,要注意转化的等价性. 知识点二、直线、圆的极坐标方程 (1)直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置直线的极坐标方程 ①直线过极点:θ=α;②直线过点M (a ,0)且垂直于极轴:ρcos θ=a ; ③直线过点M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . (2)几个特殊位置圆的极坐标方程 ①圆心位于极点,半径为r :ρ=r ;②圆心位于M (r ,0),半径为r :ρ=2r cos θ;③圆心位于M ⎝⎛⎭⎫r ,π2,半径为r :ρ=2r sin θ. 【特别提醒】当圆心不在直角坐标系的坐标轴上时,要建立圆的极坐标方程,通常把极点放置在圆心处,极轴与x 轴同向,然后运用极坐标与直角坐标的变换公式.知识点三、参数方程 (1)直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆、椭圆的参数方程①圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).②椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).【特别提醒】在参数方程和普通方程的互化中,必须使x ,y 的取值范围保持一致.高频考点一 坐标系与极坐标例1.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫ ⎪⎝⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos 3θ=,解得π6θ=; 若π3π44θ≤≤,则2sin 3θ=,解得π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos 3θ-=,解得5π6θ=. 综上,P 的极坐标为π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫⎪⎝⎭.【变式探究】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 【变式探究】在极坐标系中,直线cos 3sin 10ρθρθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【解析】直线310x y -=过圆22(1)1x y -+=的圆心,因此 2.AB =【变式探究】在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( ) A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R )和ρcos θ=1【解析】由ρ=2cos θ得x 2+y 2-2x =0. ∴(x -1)2+y 2=1,圆的两条垂直于x 轴的切线方程为x =0和x =2. 故极坐标方程为θ=π2(ρ∈R )和ρcos θ=2,故选B.【答案】B高频考点二 参数方程例2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=. (2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ+=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.【变式探究】在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t t y =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】5【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C上,设()22,P s ,从而点P 到直线l 的的距离224s d +==,当s =min d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l 的距离取到最小值5. 【考点】参数方程化普通方程【变式探究】在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II)直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【答案】(I)圆,222sin 10a ρρθ-+-=(II)1【解析】解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅰ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .【变式探究】已知直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.【解析】直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).【答案】(2,π)【变式探究】若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4【解析】∵cos ,sin ,x y ρθρθ=⎧⎨=⎩∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤π2.故选A.【答案】A1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是( )A .15B .25C .45D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. 【答案】(1)5;(2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=, 则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. 1. (2018年全国I 卷理数)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程. 【答案】 (1). (2)的方程为.【解析】 (1)由,得的直角坐标方程为 .(2)由(1)知是圆心为,半径为的圆. 由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.2. (2018年全国Ⅰ卷理数)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.3. (2018年全国Ⅰ卷理数)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是 为参数, .4. (2018年江苏卷)在极坐标系中,直线l 的方程为,曲线C 的方程为,求直线l 被曲线C 截得的弦长.【答案】直线l 被曲线C 截得的弦长为 【解析】因为曲线C 的极坐标方程为,所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为,则直线l 过A (4,0),倾斜角为, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =.连结OB ,因为OA 为直径,从而∠OBA =, 所以.因此,直线l 被曲线C 截得的弦长为. 1.【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 2. 【2017北京,理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.【答案】1【解析】将圆的极坐标方程化为普通方程为222440x y x y +--+= ,整理为()()22121x y -+-= ,圆心()1,2C ,点P 是圆外一点,所以AP 的最小值就是211AC r -=-=.3. 【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la. 【答案】(1)C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭;(2)8a =或16a =-. 【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430{ 19x y x y +-=+=解得3{ 0x y ==或2125{ 2425x y =-=. 从而C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭. (2)直线l 的普通方程为440x y a +--=,故C 上的点()3cos ,sin θθ到l 的距离为d =当4a ≥-时, d=8a =; 当4a <-时, d=16a =-.综上, 8a =或16a =-.【2017·江苏】[选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】5【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C上,设()22,P s ,从而点P 到直线l 的的距离224s d +==,当s =min d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l 的距离取到最小值5. 1.【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【解析】直线10x -=过圆22(1)1x y -+=的圆心,因此 2.AB = 2.【2016高考新课标1卷】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II)直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【答案】(I)圆,222sin 10a ρρθ-+-=(II)1【解析】解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅰ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .3.【2016高考新课标2理数】选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅰ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅰ)3±. 【解析】(I)由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II)在(I)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=22121212||||()4144cos 44,AB ρρρρρρα=-=+-=-由||10AB =得2315cos,tan 8αα==±, 所以l 的斜率为153或153-. 4. 【2016高考新课标3理数】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为3()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=(I)写出1C 的普通方程和2C 的直角坐标方程;(II)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅰ)31(,)22. 【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. (Ⅰ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,|3cos sin 4|()2sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α取得最小值,2,此时P 的直角坐标为31(,)22.。

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案6

【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案6
专题能力训练 6 函数与方程及函数的应用 一、能力突破训练
1.B 解析 由题意得 f(x)单调递增,f(1)=-1<0,f(2)=>0,所以 f(x)=+log2x 的零点落在区间(1,2)内. 2.C 解析 依题意得 g-2<0,g=1>0,则 x2 若 f(x)=1-10x,
则有 x1=0,此时|x1-x2|>,因此选 C. 3.B 解析 设 AD 长为 x cm,则 CD 长为(16-x)cm,
f(x)+f(2-x)= 所以函数 y=f(x)-g(x)=f(x)-3+f(2-x)= 其图象如图所示. 显然函数图象与 x 轴有 2 个交点,故函数有 2 个零点. 13.(1)-1 (2)[2,+∞) 解析 (1)当 a=1 时,f(x)= 当 x<1 时,2x-1∈(-1,1); 当 x≥1 时,4(x-1)(x-2)∈[-1,+∞). 故 f(x)的最小值为-1. (2)若函数 f(x)=2x-a 的图象在 x<1 时与 x 轴有一个交点,则 a>0,并 且当 x=1 时,f(1)=2-a>0,所以 0<a<2. 同时函数 f(x)=4(x-a)(x-2a)的图象在 x≥1 时与 x 轴有一个交点,所 以 a<1. 若函数 f(x)=2x-a 的图象在 x<1 时与 x 轴没有交点,则函数 f(x)=4(x-a)(x-2a)的图象在 x≥1 时与 x 轴有两个不同的交点,当 a≤0 时,函数 f(x)=2x-a 的图象与 x 轴无交点,函数 f(x)=4(x-a)(x-2a)的图象 在 x≥1 上与 x 轴也无交点,不满足题意. 当 21-a≤0,即 a≥2 时,函数 f(x)=4(x-a)·(x-2a)的图象与 x 轴的两 个交点 x1=a,x2=2a 都满足题意. 综上,a 的取值范围为[2,+∞). 14.解 (1)当 0<x≤10 时,W=xR(x)-(10+2.7x)=8.1x--10; 当 x>10 时,W=xR(x)-(10+2.7x)=98--2.7x. 故 W= (2)①当 0<x≤10 时,由 W'=8.1-=0,得 x=9.当 x∈(0,9)时,W'>0;当 x∈(9,10]时,W'<0. 所以当 x=9 时,W 取得最大值, 即 Wmax=8.1×9-93-10=38.6.

2020年高考数学(理)二轮专项复习专题08 解析几何含答案

2020年高考数学(理)二轮专项复习专题08 解析几何含答案

专题08 解析几何平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题.在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题.§8-1 直角坐标系【知识要点】1.数轴上的基本公式设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是d (A ,B )=|AB |=|x 2-x 1|.2.平面直角坐标系中的基本公式设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-==A ,B 两点的中点M (x ,y )的坐标公式是⋅+=+=2,22121y y y x x x 3.空间直角坐标系在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是.)()()(||),(212212212z z y y x x AB B A d -+-+-==【复习要求】1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题.2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】例1 解下列方程或不等式:(1)|x-3|=1;(2)|x-3|≤4;(3)1<|x-3|≤4.略解:(1)设直线坐标系上点A,B的坐标分别为x,3,则|x-3|=1表示点A到点B的距离等于1,如图8-1-1所示,图8-1-1所以,原方程的解为x=4或x=2.(2)与(1)类似,如图8-1-2,图8-1-2则|x-3|≤4表示直线坐标系上点A到点B的距离小于或等于4,所以,原不等式的解集为{x|-1≤x≤7}.(3)与(2)类似,解不等式1<|x-3|,得解集{x|x>4,或x<2},将此与不等式|x-3|≤4的解集{x|-1≤x≤7}取交集,得不等式1<|x-3|≤4的解集为{x|-1≤x<2,或4<x≤7}.【评析】解绝对值方程或不等式时,如果未知数x的次数和系数都为1,那么可以利用绝对值的几何意义来解绝对值方程或不等式.|x-a|的几何意义:表示数轴(直线坐标系)上点A(x)到点B(a)的距离.例2 已知矩形ABCD及同一平面上一点P,求证:P A2+PC2=PB2+PD2.解:如图8-1-3,以点A为原点,以AB为x轴,向右为正方向,以AD为y轴,向上为正方向,建立平面直角坐标系.图8-1-3设AB=a,AD=b,则A(0,0),B(a,0),C(a,b),D(0,b),设P (x ,y ),则22222222))()(()(b y a x y x PC PA -+-++=+=x 2+y 2+(x -a )2+(y -b )2,22222222))(())((b y x y a x PD PB -+++-=+=x 2+y 2+(x -a )2+(y -b )2,所以P A 2+PC 2=PB 2+PD 2.【评析】坐标法是解析几何的一个基本方法,非常重要.坐标法中要注意坐标系的建立,理论上,可以任意建立坐标系,但是坐标系的位置会影响问题解决的复杂程度,适当的坐标系可以使解题过程较为简便.例3 已知空间直角坐标系中有两点A (1,2,-1),B (2,0,2). (1)求A ,B 两点的距离;(2)在x 轴上求一点P ,使|P A |=|PB |;(3)设M 为xOy 平面内的一点,若|MA |=|MB |,求M 点的轨迹方程. 解:(1)由两点间的距离公式,得.14)21()02()21(||222=--+-+-=AB(2)设P (a ,0,0)为x 轴上任一点,由题意得222)10()20()1(++-+-a,即a 2-2a +6=a 2-4a +8,解得a =1,所以P (1,0,0). (3)设M (x ,y ,0),则有整理可得x -2y -1=0.所以,M 点的轨迹方程为x -2y -1=0.【评析】由两点间的距离公式建立等量关系,体现了方程思想的应用.练习8-1一、选择题1.数轴上三点A ,B ,C 的坐标分别为3,-1,-5,则AC +CB 等于( )40)2(2++-=a ,4)0()2()10()2()1(22222+-+-=++-+-y x y xA .-4B .4C .-12D .122.若数轴上有两点A (x ),B (x 2)(其中x ∈R ),则向量的数量的最小值为( )A .B .0C .D . 3.在空间直角坐标系中,点(1,-2,3)关于yOz 平面的对称点是( ) A .(1,-2,-3)B .(1,2,3)C .(-1,-2,3)D .(-1,2,3)4.已知平面直角坐标内有三点A (-2,5),B (1,-4),P (x ,y ),且|AP |=|BP |,则实数x ,y 满足的方程为( )A .x +3y -2=0B .x -3y +2=0C .x +3y +2=0D .x -3y -2=0二、填空题5.方程|x +2|=3的解是______;不等式|x +3|≥2的解为______. 6.点A (2,3)关于点B (-4,1)的对称点为______. 7.方程|x +2|-|x -3|=4的解为______.8.如图8-1-4,在长方体ABCD -A 1B 1C 1D 1中,|DA |=3,|DC |=4,|DD 1|=2,A 1C 的中点为M ,则点B 1的坐标是______,点M 的坐标是______,M 关于点B 1的对称点为______.图8-1-4三、解答题9.求证:平行四边形ABCD 满足AB 2+BC 2+CD 2+DA 2=AC 2+BD 2.AB 21414110.求证:以A (4,3,1),B (7,1,2),C (5,2,3)三点为顶点的三角形是一个等腰三角形.11.在平面直角坐标系中,设A (1,3),B (4,5),点P 在x 轴上,求|P A |+|PB |的最小值.§8-2 直线的方程【知识要点】1.直线方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程.....,这条直线叫做这个方程的直线...... 2.直线的倾斜角和斜率x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角....并规定,与x 轴平行或重合的直线的倾斜角为零度角.因此,倾斜角α 的取值范围是0°≤α <180°.我们把直线y =kx +b 中的系数k 叫做这条直线的斜率...设A (x 1,y 1),B (x 2,y 2)为直线y =kx +b 上任意两点,其中x 1≠x 2,则斜率倾斜角为90°的直线的斜率不存在,倾斜角为α 的直线的斜率k =tan α (α ≠90°). 3.直线方程的几种形式 点斜式:y -y 1=k (x -x 1); 斜截式:y =kx +b ;两点式:一般式:Ax +By +C =0(A 2+B 2≠0). 4.两条直线相交、平行与重合的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则⋅--=1212x x yy k );,(2121121121y y x x x x xx y y y y =/=/--=--(1)l 1与l 2相交A 1B 2-A 2B 1≠0或(2)l 1与l 2平行(3)l 1与l 2重合 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则 l 1与l 2相交k 1≠k 2; l 1∥l 2k 1=k 2,b 1≠b 2; l 1与l 2重合k 1=k 2,b 1=b 2. 5.两条直线垂直的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2A 1A 2+B 1 B 2=0. 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,则l 1⊥l 2k 1k 2=-1. 6.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d 的计算公式【复习要求】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系.2.掌握两条直线平行与垂直的条件,点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系,能用解方程组的方法求两直线的交点坐标. 【例题分析】例1(1)直线的斜率是______,倾斜角为______;(2)设A (2,3),B (-3,2),C (-1,-1),过点C 且斜率为k 的直线l 与线段AB 相交,则斜率k 的取值⇔)0(222121=/=/B A B B A A ⇔⎪⎪⎩⎪⎪⎨⎧=/=/=≠-≠-=-).0(;00,0222212121211221211221C B A C CB B A AC A C A B C C B B A B A 或或而⇔⎪⎩⎪⎨⎧=/==≠===).0();0(,,222212121222111C B A C C B B A A C C B B A A 或λλλλ⇔⇔⇔⇔⇔⋅+++=2211||BA C By Ax d 082=-+y x范围为______.略解:(1)直线可以化简为 所以此直线的斜率为,倾斜角(2)如图8-2-1,设直线AC 的倾斜角为α ,图8-2-1因为此直线的斜率为,所以 设直线BC 的倾斜角为β ,因为此直线的斜率为所以 因为直线l 与线段AB 相交,所以直线l 的倾斜角θ 满足α ≤θ ≤β , 由正切函数图象,得tan θ ≥tan α 或tan θ≤tan β, 故l 斜率k 的取值范围为. 【评析】(1)求直线的斜率常用方法有三种: ①已知直线的倾斜角α,当α≠90°时,k =tan α;②已知直线上两点的坐标(x 1,y 1),(x 2,y 2),当x 1≠x 2时,k =;③已知直线的方程Ax +By +C =0,当B ≠0时,k =. (2)已知直线的斜率k 求倾斜角α 时,要注意当k >0时,α =arctan k ;当k <0时,α =π-arctan |k |. 例2 根据下列条件求直线方程:082=-+y x ,22822+-=x y 22-;22tan arc π-=α341213=++=AC k ;34tan =α,231312-=+-+=BC k ⋅-=23tan β]23,[],34[-∞+∞∈Y k 1212x x y y --BA -(1)过点A (2,3),且在两坐标轴上截距相等;(2)过点P (-2,1),且点Q (-1,-2)到直线的距离为1. 解:(1)设所求直线方程为y -3=k (x -2),或x =2(舍), 令y =0,得x =2-(k ≠0);令x =0,得y =3-2k , 由题意,得2-=3-2k ,解得k =或k =-1, 所以,所求直线方程为3x -2y =0或x +y -5=0; (2)设所求直线方程为y -1=k (x +2)或x =-2, 当直线为y -1=k (x +2),即kx —y +(2k +1)=0时,由点Q (-1,-2)到直线的距离为1,得=1,解得, 所以,直线,即4x +3y +5=0符合题意; 当直线为x =-2时,检验知其符合题意. 所以,所求直线方程为4x +3y +5=0或x =-2.【评析】求直线方程,应从条件出发,合理选择直线方程的形式,并注意每种形式的适应条件.特别地,在解题过程中要注意“无斜率”,“零截距”的情况.例3 已知直线l 1:(m -2)x +(m +2)y +1=0,l 2:(m 2-4)x —my -3=0, (1)若l 1∥l 2,求实数m 的值; (2)若l 1⊥l 2,求实数m 的值.解法一:(1)因为l 1∥l 2,所以(m -2)(-m )=(m +2)(m 2-4), 解得m =2或m =-1或m =-4, 验证知两直线不重合,所以m =2或m =-1或m =-4时,l 1∥l 2;(2)因为l 1⊥l 2,所以(m -2)(m 2-4)+(-m )(m +2)=0, 解得m =-2或m =1或m =4.解法二:当l 1斜率不存在,即m =-2时,代入直线方程,知l 1⊥l 2;k3k 3231|122|2++++-k k k 34-=k 03534=---y x当l 2斜率不存在,即m =0时,代入直线方程,知l 1与l 2既不平行又不垂直; 当l 1,l 2斜率存在,即m ≠0,m ≠-2时,可求l 1,l 2,如的斜率分别为k 1=-,k 2=,截距b 1=-,b 2=,若l 1∥l 2,由k 1=k 2,b 1≠b 2,解得m =2或m =-1或m =-4, 若l 1⊥l 2,由k 1k 2=-1,解得m =1或m =4 综上,(1)当m =2或m =-1或m =-4时,l 1∥l 2; (2)当m =-2或m =1或m =4时,l 1⊥l 2.【评析】两条直线平行与垂直的充要条件有几个,但各有利弊.简洁的(如解法一)相互之间易混淆,好记的要注意使用条件(如解法二,易丢“无斜率”的情况),解题过程中要注意正确使用.例4 已知直线l 过两直线l 1:3x -y -1=0与l 2:x +y -3=0的交点,且点A (3,3)和B (5,2)到l 的距离相等,求直线l 的方程.【分析】所求直线l 有两种情况:一是l 与AB 平行;二是点A ,B 在l 的两侧,此时l 过线段AB 的中点.解:解方程组得交点(1,2),由题意,当①l 与AB 平行;或②l 过A ,B 的中点时.可以使得点A ,B 到l 的距离相等. ①当l ∥AB 时,因为,此时,即x +2y -5=0;②当l 过AB 的中点时,因为AB 的中点坐标为所以 即l :x -6y +11=0.综上,所求的直线l 的方程为x +2y -5=0或l :x -6y +11=0.例5 已知直线l 1:y =kx +2k 与l 2:x +y =5的交点在第一象限,求实数k 的取值范围.解法一:解方程组,得交点 22-+m m m m 42-21+m m3-⎩⎨⎧=-+=--03013y x y x 215323-=--=AB k )1(212:--=-x y l ),25,4(M ,1412252:--=--x y l ⎩⎨⎧=++=52y x k kx y ),1255,125(+--+-k kk k由题意,得,解得解法二:如图8-2-2,由l 1:y =k (x +2),知l 1过定点P (-2,0),图8-2-2由l 2:x +y =5,知l 2坐标轴相交于点A (0,5),B (5,0), 因为 由题意,得 【评析】在例4,例5中,要充分利用平面几何知识解决问题,体会数形结合的思想与方法;要会联立两个曲线(直线)的方程,解方程得到曲线的交点,体会方程思想.例6 如图8-2-3,过点P (4,4)的直线l 与直线l 1:y =4x 相交于点A (在第一象限),与x 轴正半轴相交于点B ,求△ABO 面积的最小值.图8-2-3解:设B (a ,0),则 将y =4x 代入直线l 的方程,⎪⎪⎩⎪⎪⎨⎧>+-->+-012550125k k k k⋅<<250k ,0,252005==+-=BP AP k k ⋅<<250k ),4(4044:---=-x ay l得点A 的坐标为 则△ABO 的面积 所以当a =6时,△ABO 的面积S 取到最小值24.练习8-2一、选择题1.若直线l 的倾斜角的正弦为,则l 的斜率k 是( ) A . B .C .或D .或 2.点P (a +b ,ab )在第二象限内,则bx +ay -ab =0直线不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.“”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.若直线与直线2x +3y -6=0的交点位于第一象限,则l 的倾角的取值范围( )A .B .C .D .二、填空题5.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =_______. 6.已知点A (3,0),B (0,4),则过点B 且与A 的距离为3的直线方程为_______. 7.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则a +2b =_______. 8.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则的值等于_______. 三、解答题9.已知点P 在直线2x +3y -2=0上,点A (1,3),B (-1,-5).),3)(34,3(>--a a a a a ,121)611(3234212+--=-⨯⨯=a a a a S 5343-4343-433434-21=m 3:-=kx y l )3π,6π[)2π,3π()2π,6π(]2π,6π[ba 11+(1)求|P A|的最小值;(2)若|P A|=|PB|,求点P坐标.10.若直线l夹在两条直线l1:x-3y+10=0与l2:2x+y-8=0之间的线段恰好被点P(0,1)平分,求直线l 的方程.211.已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1.求直线PN的方程.§8-3 简单的线性规划问题【知识要点】1.二元一次不等式(组)所表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面区域中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(开半平面),且不含边界线.不等式Ax+By+C≥0所表示的平面区域包括边界线(闭半平面).(2)由几个不等式组成的不等式组所表示的平面区域,是指各个不等式组所表示的平面区域的公共部分.(3)可在直线Ax+By+C=0的某一侧任取一点,一般地取特殊点(x0,y0),从Ax0+By0+C的正(或负)来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.当C≠0时,常把原点(0,0)作为特殊点.(4)也可以利用如下结论判断区域在直线哪一侧:①y>kx+b表示直线上方的半平面区域;y<kx+b表示直线下方的半平面区域.②当B>0时,Ax+By+C>0表示直线上方区域,Ax+By+C<0表示直线下方区域.2.简单线性规划(1)基本概念目标函数:关于x ,y 的要求最大值或最小值的函数,如z =x +y ,z =x 2+y 2等. 约束条件:目标函数中的变量所满足的不等式组. 线性目标函数:目标函数是关于变量的一次函数.线性约束条件:约束条件是关于变量的一次不等式(或等式).线性规划问题:在线性约束条件下,求线性目标函数的最大值或最小值问题. 最优解:使目标函数达到最大值或最小值的点的坐标,称为问题的最优解. 可行解:满足线性约束条件的解(x ,y )叫可行解. 可行域:由所有可行解组成的集合叫可行域. (2)用图解法解决线性规划问题的一般步骤: ①分析并将已知数据列出表格; ②确定线性约束条件; ③确定线性目标函数; ④画出可行域;⑤利用线性目标函数,求出最优解;⑥实际问题需要整数解时,应适当调整确定最优解. 【复习要求】1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 【例题分析】例1 (1)若点(3,1)在直线3x -2y +a =0的上方,则实数a 的取值范围是______; (2)若点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则实数a 的取值范围是______. 解:(1)将直线化为 由题意,得,解得a <-7. (2)由题意,将两点代入直线方程的左侧所得符号相反, 则(3×3-2+a )[3×(-4)-12+a ]<0,即(a +7)(a -24)<0,,223a x y +=23231a+⨯>所以,实数a 的取值范围是(-7,24).例2 (1)如图8-3-1,写出能表示图中阴影部分的不等式组;图8-3-1(2)如果函数y =ax 2+bx +a 的图象与x 轴有两个交点,试在aOb 坐标平面内画出点(a ,b )表示的平面区域.略解:(1) (2)由题意,得b 2-4a 2>0,即(2a +b )(2a -b )<0,所以或,点(a ,b )表示的平面区域如图8-3-2.图8-3-2【评析】除了掌握二元一次不等式表示平面区域外,还应关注给定平面区域如何用不等式表示这个逆问题.例3 已知x ,y 满足求:(1)z 1=x +y 的最大值; (2)z 2=x -y 的最大值;,0221⎪⎩⎪⎨⎧≥+-->≤y x y x ⎩⎨⎧<->+0202b a b a ⎩⎨⎧>-<+0202b a ba ⎪⎩⎪⎨⎧≤--≥+-≥-+.033,042,022y x y x y x(3)z 3=x 2+y 2的最小值; (4)的取值范围(x ≠1). 略解:如图8-3-3,作出已知不等式组表示的平面区域.图8-3-3易求得M (2,3),A (1,0),B (0,2).(1)作直线x +y =0,通过平移,知在M 点,z 1有最大值5; (2)作直线x -y =0,通过平移,知在A 点,z 2有最大值1;(3)作圆x 2+y 2=r 2,显然当圆与直线2x +y -2=0相切时,r 2有最小值,即z 3有最小值(4)可看作(1,0)与(x ,y )两点连线的斜率,所以z 4的取值范围是(-∞,-2]∪[3,+∞). 【评析】对于非线性目标函数在线性约束条件下的最值问题,要充分挖掘其目标函数z 的几何意义.z 的几何意义常见的有:直线的截距、斜率、圆的半径等.例4 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件则z =10x +10y 的最大值是( )(A)80(B)85(C)90(D)95略解:由题意,根据已知不等式组及可得到点(x ,y )的可行域.如图8-3-4.14-=x yz 2)52(;541-x y⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x ⎩⎨⎧≥≥0y x图8-3-4作直线x +y =0,通过平移,知在M 点,z =10x +10y 有最大值,易得 又由题意,知x ,y ∈N ,作适当调整,知可行域内点(5,4)可使z 取最大值, 所以,z max =10×5+10×4=90,选C . 【评析】实际问题中,要关注是否需要整数解.例5 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?解:设此工厂每日需甲种原料x 吨,乙种原料y 吨,则可得产品z =90x +100y (千克).由题意,得上述不等式组表示的平面区域如图8-3-5所示,阴影部分(含边界)即为可行域.图8-3-5作直线l :90x +100y =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的M 点,且与直线l 的距离最大,此时目标函数达到最大值.这里M 点是直线2x +3y =12和5x +4y =20的交点,容易解得M,此时z 取到最大值),29,211(M ⎪⎩⎪⎨⎧≥≥≤+≤+⇒⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,2045,1232.0,0,2000400500,600015001000y x y x y x y x y x yx )720,712(71290⨯答:当每天提供甲原料吨,乙原料吨时,每日最多可生产440千克产品. 例6 设函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4. (1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,求f (-2)的取值范围. 解:(1)∵f (-1)=a -b ,f (1)=a +b ,∴即如图8-3-6,在平面直角坐标系aOb 中,作出满足上述不等式组的区域,阴影部分(含边界)即为可行域.图8-3-6(2)目标函数f (-2)=4a -2b .在平面直角坐标系aOb 中,作直线l :4a -2b =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的B 点,且与直线l 的距离最大,此时目标函数达到最大值.这里B 点是直线a -b =2和a +b =4的交点,容易解得B (3,1), 此时f (-2)取到最大值4×3-2×1=10.同理,其中有一条直线经过可行域上的C 点,此时目标函数达到最小值.这里C 点是直线a -b =1和a +b =2的交点,容易解得此时f (-2)取到最小值 所以5≤f (-2)≤10..440720100=⨯+712720⎩⎨⎧≤+≤≤-≤.42,21b a b a ⎪⎪⎩⎪⎪⎨⎧<+≥+≤-≥-.4,2,2,1b a b a b a ba ),21,23(C .5212234=⨯-⨯【评析】线性规划知识是解决“与二元一次不等式组有关的最值(或范围)问题”的常见方法之一.练习8-3一、选择题1.原点(0,0)和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是 ( ) A .a <0或a >2B .a =0或a =2C .0<a <2D .0≤a ≤22.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是( ) A .-1B .1C .2D .-23.已知x 和y 是正整数,且满足约束条件则z =2x +3y 的最小值是( )A .24B .14C .13D .11.54.根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α 方向行走-段时间后,再向正北方向行走一段时间,但α 的大小以及何时改变方向不定.如图8-3-7.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 可以用不等式组表示为( )图8-3-7A .B .C .D .二、填空题⎪⎩⎪⎨⎧≥≤-≤+.72,2,10x y x y x )2π0(≤≤α⎩⎨⎧≤≤≤≤200200y x ⎩⎨⎧≥+≤+2040022y x y x ⎪⎩⎪⎨⎧≥≥≤+0040022y x y x ⎪⎩⎪⎨⎧≤≤≥+202020y x y x5.在平面直角坐标系中,不等式组表示的平面区域的面积是______.6.若实数x 、y 满足,则的取值范围是______.7.点P (x ,y )在直线4x +3y =0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是______.8.若当实数x ,y 满足时,z =x +3y 的最小值为-6,则实数a 等于______.三、解答题9.如果点P 在平面区域内,点Q (2,2),求|PQ |的最小值.10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(),可能的最大亏损率分别为30%和10%(),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投多少万元,才能使可能的盈利最大?11.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0.⎪⎩⎪⎨⎧≤≥+-≥-+20202x y x y x ⎪⎩⎪⎨⎧≤>≤+-2001x x y x x y ⎪⎩⎪⎨⎧≤≥+≥+-a x y x y x 005⎪⎩⎪⎨⎧≥-+≤-+≥+-0102022y x y x y x %100⨯=投资额盈利额盈利率投资额亏损额亏损率=%100⨯(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,指出a 的取值范围.§8-4 圆的方程【知识要点】1.圆的方程(1)标准方程:(x -a )2+(y -b )2=r 2(r >0),其中点(a ,b )为圆心,r 为半径. (2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),其中圆心为,半径为2.点和圆的位置关系设圆的半径为r ,点到圆的圆心距离为d ,则 d >r 点在圆外; d =r 点在圆上; d <r 点在圆内. 3.直线与圆的位置关系(1)代数法:联立直线与圆的方程,解方程组,消去字母y ,得关于x 的一元二次方程,则>0方程组有两解直线和圆相交; =0方程组有一解直线和圆相切; <0方程组无解直线和圆相离.(2)几何法(重点):计算圆心到直线的距离d ,设圆的半径为r ,则 d <r 直线和圆相交; d =r 直线和圆相切; d >r 直线和圆相离.)2,2(E D --21.422F E D -+⇔⇔⇔∆⇔⇔∆⇔⇔∆⇔⇔⇔⇔⇔4.圆与圆的位置关系设两圆的半径分别为R ,r (R ≥r ),两圆的圆心距为d (d >0),则d >R +r 两圆相离;d =R +r 两圆外切;R -r <d <R +r 两圆相交;d =R -r 两圆内切;d <R -r 两圆内含.【复习要求】1.掌握圆的标准方程与一般方程,能根据条件,求出圆的方程.2.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系,解决一些简单问题.【例题分析】例1根据下列条件,求圆的方程:(1)一条直径的端点是A (3,2),B (-4,1);(2)经过两点A (1,-1)和B (-1,1),且圆心在直线x +y -2=0上;(3)经过两点A (4,2)和B (-1,3),且在两坐标轴上的四个截距之和为2.【分析】求圆的方程,可以用待定系数法.若已知条件与圆心、半径有关,则设圆的标准方程,如第(2)问.若已知条件与圆心、半径关系不大,则设圆的一般方程,如第(3)问.解:(1)由题意圆心为AB 的中点M ,即, 因为所以圆的半径 所以,所求圆的方程为 (2)方法一:设圆的方程为(x -a )2+(y -b )2=r 2(r >0),则⇔⇔⇔⇔⇔)212,243(+-)23,21(-M ,50)12()43(||22=-++=AB ⋅==250||21AB r ⋅=-++225)23()21(22y x,解得所以,所求圆的方程为(x -1)2+(y -1)2=4.方法二:由圆的几何性质可知,圆心一定在弦AB 的垂直平分线上.易得AB 的垂直平分线为y =x .由题意,解方程组,得圆心C 为(1,1),于是,半径r =|AC |=2,所以,所求圆的方程为(x -1)2+(y -1)2=4.(3)设所求圆的方程为x 2+y 2+Dx +Ey +F =0,因为圆过点A ,B ,所以4D +2E +F +20=0,①-D +3E +F +10=0,②在圆的方程中,令y =0,得x 2+Dx +F =0,设圆在x 轴上的截距为x 1,x 2,则x 1+x 2=-D .在圆的方程中,令x =0,得y 2+Ey +F =0,设圆在y 轴上的截距为y 1,y 2,则y 1+y 2=-E .由题意,得-D +(-E )=2,③解①②③,得D =-2,E =0,F =-12,所以,所求圆的方程为x 2+y 2-2x -12=0.【评析】①以A (x 1,y 1),B (x 2,y 2)为一直径端点的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.②求圆的方程时,要注意挖掘题中圆的几何意义(如第(2)问);③待定系数法求圆的方程时,要恰当选择的圆的方程(如第(3)问),这样有时能大大减少运算量.例2 (1)点P (a ,b )在圆C :x 2+y 2=r 2(r >0)上,求过点P 的圆的切线方程;(2)若点P (a ,b )在圆C :x 2+y 2=r 2(r >0)内,判断直线ax +by =r 2与圆C 的位置关系.解:(1)方法一:因为切线l 与半径OP 垂直,又可求出直线OP 的斜率,所以可得切线l 的斜率,再由点斜式得到切线方程.但要注意斜率是否存在(详细过程略).⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=--+-=-+222222)1()1()1()1(02r b a r b a b a ⎪⎩⎪⎨⎧===2,11r b a ⎩⎨⎧=-+=02y x x y方法二:设Q (x ,y )为所求切线上任一点,则,即(x -a ,y -b )·(a ,b )=0.整理得ax +by =a 2+b 2,又因为P 在圆上,所以a 2+b2=r 2,故所求的切线方程为ax +by =r 2.(2)由已知,得a 2+b 2<r 2,则圆心O (0,0)到直线ax +by =r 2的距离所以此直线与圆C 相离.【评析】随着点P (a ,b )与圆C :x 2+y 2=r 2的位置关系的变化,直线l :ax +by =r 2与圆C 的位置关系也在变化.①当点P 在圆C 上时,直线l 与圆C 相切;②当点P 在圆C 内时,直线l 与圆C 相离;③当点P 在圆外时,直线l 与圆C 相交.例3 已知点A (a ,3),圆C :(x -1)2+(y -2)2=4.(1)设a =3,求过点A 且与圆C 相切的直线方程;(2)设a =4,直线l 过点A 且被圆C 截得的弦长为2,求直线l 的方程;(3)设a =2,直线l 1过点A ,求l 1被圆C 截得的线段的最短长度,并求此时l 1的方程.解:(1)如图8-4-1,此时A (3,3),图8-4-1设切线为y -3=k (x -3)或x =3,验证知x =3符合题意;当切线为y -3=k (x -3),即kx -y -3k +3=0时,0=⋅OP PQ .||22222r r r b a r d =>+=3圆心(1,2)到切线的距离解得所以,切线方程为3x +4y -21=0或x =3.(2)如图8-4-2,此时A (4,3),图8-4-2设直线l 为y -3=k (x -4)或x =4(舍),设弦PQ 的中点为M ,则|CP |=r =2,所以,即圆心到直线l 的距离为1, 于是,解得k =0或, 所以,直线l 的方程为或y =3. (3)如图8-4-3,此时A (2,3),设所截得的线段为DE ,圆心到直线l 1的距离为d ,图8-4-3,21|332|2=++--=k k k d ,43-=k ,3||=PM ,1||||||22=-=PM CP CM 11|342|2=++--=k k k d 43x y 43=则,即 因为直线l 1过点A ,所以圆心到直线l 1的距离为d ≤|CA |=故当d =时,,此时AC ⊥l 1,因为 所以=-1,故直线l 1方程为y -3=-(x -2),即x +y -5=0.【评析】(1)用点斜式设直线方程时,要注意斜率是否存在;(2)涉及直线与圆的位置关系问题时,用与圆有关的几何意义解题较为方便,常见的有:①比较圆心到直线的距离与半径的大小;②如图8-4-2,在由弦心距、半径及弦组成的Rt △CMP 中,有|CM |2+|MP |2=|CP |2,CM ⊥MP 等;③如图8-4-1,由切线段、半径组成的Rt △AB C .例4 已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求证:不论m 取何值,直线l 与圆C 恒交于两点.【分析】要证明直线l 与圆C 恒交于两点,可以用圆心到直线的距离小于半径,也可以联立直线和圆的方程,消去y 后用判别式大于零去证明,但此题这两种方法计算量都很大.如果能说明直线l 恒过圆内一定点,那么直线l 与圆C 显然有两个交点.解:因为直线l :mx +y +m =0可化为y =-m (x +1),所以直线l 恒过点A (-1,0),又圆C :(x -1)2+(y -2)2=25的圆心为(1,2),半径为5,且点A 到圆C 的圆心的距离等于所以点A 为圆C 内一点,则直线l 恒过圆内一点A ,所以直线l 与圆C 恒交于两点.例5 四边形ABCD 的顶点A (4,3),B (0,5),C (-3,-4),D O 为坐标原点.(1)此四边形是否有外接圆,若有,求出外接圆的方程,若没有,请说明理由;222|)|21(r d DE =+,42||2d DE -=,2222||min =DE ,11223=--=AC k 1l k ,522)2()11(22<=-+--).1,62((2)记△ABC 的外接圆为W ,过W 上的点E (x 0,y 0)(x 0>0,y 0>0)作圆W 的切线l ,设l 与x 轴、y 轴的正半轴分别交于点P 、Q ,求△OPQ 面积的最小值.【分析】判断四点是否共圆,初中的方法是证明一组对角之和为180°,此题此法不易做.如何用所学知识解决问题是此题的关键,如果想到三点共圆,那么可以求出过三点的圆的方程,然后再判断第四点是否在圆上,问题就迎刃而解.解:(1)设△ABC 的外接圆为W ,圆心M (a ,b ),半径为r (r >0).则W 为:(x -a )2+(y -b )2=r 2.由题意,得,解得,所以W :x 2+y 2=25. 将点D 的坐标代入W 的方程,适合.所以点D 在△ABC 的外接圆W 上,故四边形ABCD 有外接圆,且外接圆的方程为x 2+y 2=25.(2)设切线l 的斜率为k ,直线ME (即OE )的斜率为k 1,∵圆的切线l 垂直于过切点的半径,∴ ∴切线,整理得而,∵点E (x 0,y 0)在圆W 上,即,∴切线l :x 0x +y 0y =25.在l 的方程中,令x =0,得,同理 ∴△OPQ 的面积 ∵,(其中x 0>0,y 0>0)⎪⎪⎪⎩⎪⎪⎪⎨⎧=--+--=-+-=-+-222222222)4()3()5()0()3()4(r b a r b a r b a ⎪⎩⎪⎨⎧===500r b a ,11k k -=Θ,,00001y x k x y k -=∴=)(:0000x x y xy y l --=-202000y x y y x x +=+252020=+y x )25,0(,2500y Q y y ∴=).0,25(0x P ,26252525210000y x y x S OPQ ==⋅⋅∆002020225y x y x ≥=+∴当且仅当时,等号成立. 即当时,△OPQ 的面积有最小值25. 练习8-4一、选择题1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=92.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( )A .B .C .1D .53.若直线与圆x 2+y 2=1有公共点,则( ) A .a 2+b 2≤1 B .a 2+b 2≥1 C . D . 4.圆(x +2)2+y 2=5关于点(1,2)对称的圆的方程为( )A .(x +4)2+(y -2)2=5B .(x -4)2+(y -4)2=5C .(x +4)2+(y +4)2=5D .(x +4)2+(y +2)2=5 二、填空题5.由点P (-1,4)向圆x 2+y 2-4x -6y +12=0所引的切线长是______.6.若半径为1的圆分别与y 轴的正半轴和射线相切,则这个圆的方程为______. 7.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为的点共有______个.8.若不等式x 2+2x +a ≥-y 2-2y 对任意的实数x 、y 都成立,则实数a 的取值范围是______.三、解答题9.已知直线l :x -y +2=0与圆C :(x -a )2+(y -2)2=4相交于A 、B 两点.(1)当a =-2时,求弦AB 的垂直平分线方程;.2525625262500=≥=∆y x S OPQ 22500==y x )225225(,E 62251=+by a x 11122≤+b a 11122≥+b a )0(33≥=x x y 2(2)当l 被圆C 截得弦长为时,求a 的值.10.已知圆满足以下三个条件:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为.求该圆的方程.11.已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求直线l 被圆C 截得的线段的最短长度,以及此时l 的方程.§8-5 曲线与方程【知识要点】1.轨迹方程一般地,一条曲线可以看成动点运动的轨迹,曲线的方程又常称为满足某种条件的点的轨迹方程.2.曲线与方程在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间有如下关系:(1)曲线C 上点的坐标都是方程F (x ,y )=0的解;(2)以方程F (x ,y )=0的解为坐标的点都在曲线C 上.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程.3.曲线的交点已知两条曲线C 1和C 2的方程分别是F (x ,y )=0,G (x ,y )=0,那么求两条曲线C 1和C 2的交点坐标,只3255要求方程组的实数解就可以得到.【复习要求】1.了解曲线与方程的对应关系,体会数形结合的思想、方程思想.2.会求简单的轨迹方程;能根据方程研究曲线的简单性质.【例题分析】例1 已知点A (-1,0),B (2,0),动点P 到点A 的距离与它到点B 的距离之比为2,求动点P 的轨迹方程.解:设P (x ,y ),则,即 化简得x 2+y 2-6x +5=0,所以动点P 的轨迹方程为x 2+y 2-6x +5=0.【评析】动点轨迹法是求轨迹方程的重要方法,其一般步骤是:①建立平面直角坐标系;②设所求动点的坐标为(x ,y );③找出动点满足的几何关系;④几何关系代数化,并将其化简;⑤检验以方程的解为坐标的点是否都在所求轨迹上.例2 已知P 为抛物线y =x 2+1上一动点,A (2,3),P 关于A 的对称点为点P ′,求动点P ′的轨迹方程.解:设P '(x ,y ),P (x 0,y 0),由题意,得所以x 0=4-x ,y 0=6-y ,因为点P (x 0,y 0)在抛物线y =x 2+1上,所以6-y =(4-x )2+1,即动点P '的轨迹方程为y =-(x -4)2+5.例3 已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数2.求动点M 的轨迹方程,并说明轨迹的形状.解:如图8-5-1,设直线MN 切圆于N ,⎩⎨⎧==0),(0),(y x G y x F 2||||=PB PA ,2)2()1(2222=+-++yx y x ,32,2200=+=+y y x x。

2020高考数学(理科)二轮专题复习 跟踪检测: 专题2 三角函数、解三角形与平面向量 第1部分 专题2 第3讲

2020高考数学(理科)二轮专题复习 跟踪检测: 专题2 三角函数、解三角形与平面向量 第1部分 专题2 第3讲

O→A O→B
O→ C
| |=| |=1,| |=
2,tan∠AOB=-43,∠BOC=45°,O→C=mO→A+nO→B,则mn =( )
5 A.7
7 B.5
3 C. 7
7 D.3
A 解析 以 OA 所在的直线为 x 轴,过 O 作与 OA 垂直的直线为 y 轴,建立平面直角坐
标系如图所示.
O→A O→B 因为| |=| |=1,且
A.9 C. 109
B.3 D.3 10
D 解析 向量 a=(2,-4),b=(-3,x),c=(1,-1),所以 2a+b=(1,x-8),由
(2a+b)⊥c,可得 1+8-x=0,解得 x=9,则|b|= -32+92=3 10.故选 D 项. 6.(2019·广东东莞统考)如图所示,△ABC 中,B→D=2D→C,点 E 是线段 AD 的中点,则
C→A C→B +y ,且
x+y=1,所以
O
在边
AB
上,所以当
CO⊥AB
时,|C→O|最小,|C→O|min=12.
1
答案 2
12.(2019·江西上饶模拟)平行四边形 ABCD 中,AB=4,AD=2,A→B·A→D=4,点 P 在
边 CD 上,则P→A·P→C的取值范围是________.
解析
( ) 设|P→D|=x,x∈[0,4],则P→A·P→C=(P→D+D→A)·P→C=
(2)设 c=(0,1),若 a+b=c,求 α,β 的值.
解析 (1)a-b=(cos α-cos β,sin α-sin β),则|a-b|= 2-2cosα-β= 2,所以 π
cos(α-β)=0,而 0<β<α<π,所以 0<α-β<π,所以 α-β=2.所以向量 a 在 b 上的投影 a·b

2020年高考理科数学(2卷):答案详细解析(word版)

2020年高考理科数学(2卷):答案详细解析(word版)

2020年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,有一项是符合题目要求的.1. (集合)已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2B =,则()C U A B =A. {}2,3-B. {}2,2,3-C. {}2,1,0,3--D. {}2,1,0,2,3--【解析】∵{1,0,1,2}A B =-,∴(){}C 2,3U AB =-. 【答案】A2. (三角函数)若α为第四象限角,则A. cos20α>B. cos20α<C. sin 20α>D. sin 20α<【解析】α为第四象限角,即π2π2π2k k α-+<<,∴π4π24πk k α-+<<, ∴2α是第三或第四象限角,∴sin 20α<.【答案】D3. (概率统计,同文3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05. 志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B4.(数列)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块. 下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块. 已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块【解析】设每一层有n 环,由题意可知从内到外每环的扇面形石板块数之间构成等差数列,且19a =,9d =,由等差数列性质可知,n S 、2n n S S -、32n n S S -也构成等差数列,且公差229d n d n '==.因下层比中层多729块,故有2322()()9729n n n n S S S S n ---==,解得9n =. 因此三层共有扇面形石板的块数为327127262726==272799=340222n S S a d ⨯⨯+=⨯+⨯. 【答案】C5. (解析几何,同文8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .5 B. 25 C. 35 D. 45【解析】如图A5所示,设圆的方程为222()()x a y b r -+-=,∵ 圆过点(2, 1)且与两坐标轴都相切,∴ 222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===, 即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=22211325521⨯--+或22255325=521⨯--+.图A5【答案】B6.(数列)数列()n a 中,12a =,m n m n a a a +=,若1551210...22k k k a a a ++++++=-,则k =A. 2B. 3C. 4D. 5【解析】∵m n m n a a a +=,∴211211n k n k k k a a a a a a a +--===,故有1210111551210...(222)(22)22k k k k k a a a a a ++++++=+++=-=-,∴42k a =又∵2111211112n n n n n n a a a a a a a a ---======,∴ 422k k a ==,∴4k =.【答案】C7.(立体几何)下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.E B.F C.G D.H【解析】由三视图的特点,如图A7所示,该端点在侧视图中对应的点为E.图A7【答案】A8.(解析几何,同文9)设O为坐标原点,直线x a=与双曲线C:22221 x ya b-=(a>0,b>0)的两条渐近线分别交于D,E两点,若ODE∆的面积为8,则C的焦距的最小值为A.4B.8C.16D.32【解析】如图A8所示,双曲线C:22221x ya b-=(a>0,b>0)的渐近线为by xa=±,由题意可知,(,)D a b ,(,)E a b -,∴ 1282ODE S a b ab ∆=⋅==, ∴ 焦距22226422248c a b a a =+=+≥⨯=,当且仅当22a =时,等号成立. 故C 的焦距的最小值为8.图A8【答案】B9.(函数)设函数()ln |21|ln |21|f x x x =+--,则()f xA.是偶函数,且在1(,)2+∞单调递增 B.是奇函数,且在11(,)22-单调递减 C.是偶函数,且在1(,)2-∞-单调递增 D.是奇函数,且在1(,)2-∞-单调递减 【解析】∵()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,∴()f x 是奇函数,∵()ln ||g x x =,1()g x x '=,(即ln ||x 与ln x ,二者的导函数相同) ∴224()2121(21)(21)f x x x x x -'=-=+--+, 当1(,)2x ∈-∞-时,()0f x '<,()f x 在1(,)2-∞-单调递减. 当11()22x ∈-,时,()0f x '>,()f x 在1(,)2-∞-单调递增.当1()2x ∈+∞,时,()0f x '<,()f x 在1(,)2-∞-单调递减. 【答案】D10.(立体几何,同文11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32 C .1 D .32【解析】由题意可知239344ABC S AB ∆==,∴3AB =, 如图A10所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心, 故123333O A == O 到平面ABC 的距离22111OO R O A =-=.图A10【答案】C11. (函数,同文12)若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<【解析】2233x y x y ---<-可化为2323x x y y ---<-,设1()2323x x x x f x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴ x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A12. (概率统计)0-1周期序列在通信技术中有着重要应用,若序列12...n a a a 满足 {}0,1(1,2,...)i a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为0-1周期序列,并满足(1,2,...)i m i a a i +==的最小正整数m 为这个序列的周期,对于周期为m 的0-1序列12...n a a a ,11()(1,2,...1)i m i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1的序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A. 11010...B. 11011...C. 10001...D. 11001...【解析】解法一(计数思想):由5111()(1,2,3,4)55i i k i C k a a k +==≤=∑,可得511i i k i a a +=≤∑. 因0=1i i k a a +⎧⎨⎩,故对于每一个(1,2,3,4)k k =,1i i k a a +=的个数不超过1,所以对于所有的(1,2,3,4)k k =,1i i k a a +=的总个数不能超过4.A 选项:1i i k a a +=的个数为236A =,故A 选项不符合题意.B 选项:1i i k a a +=的个数为2412A =,故B 选项不符合题意. D 选项:1i i k a a +=的个数为236A =,故D 选项不符合题意.C 选项:1i i k a a +=的个数为222A =,即151(4)a a k ==和511(1)a a k ==,因此可推出1(1)(4)5C C ==,(2)(3)0C C ==,故C 选项符合题意. 解法二(排除法): 由解法一可知,对于每一个(1,2,3,4)k k =,1i i k a a +=的个数不超过1.A 选项:当2k =时,241a a =,411a a =,故A 选项不符合题意.B 选项:当1k =时,121a a =,451a a =,故B 选项不符合题意.D 选项:当1k =时,121a a =,511a a =,故D 选项不符合题意.C 选项:序列的一个周期内只有两个1,1i i k a a +=的情况只有151(4)a a k ==和511(1)a a k ==,因此可推出1(1)(4)5C C ==,(2)(3)0C C ==,故C 选项符合题意.解法三(答案验证法):按照题设的定义11()(1,2,...1)i mi k i C k a a k m m +===-∑,逐个验证答案,使用排除法,即可得到正确选项. 如A 选项,121(2)(01010)=555C =++++>,排除A 选项,其余的这里不再赘述. 【答案】C二、填空题:本题共4小题,每小题5分,共20分.13.(平面向量)已知单位向量a ,b 的夹角为45°,k -a b 与a 垂直,则k =_______. 【解析】∵()ka b a -⊥,∴22()02ka b a ka a b k -⋅=-⋅=-=,∴22=k . 【答案】22 14.(概率统计)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种.【解析】根据题意,先把4名同学分为3组,其中1组有两人,2组各有一人,即从4名同学中任选两人即可,故有24C 种选法;将分成的3组同学安排到3个小区,共有33A 种方法;所以不同的安排方法共有234336=C A 种.【答案】36 15.(复数)设复数1z ,2z 满足122z z ==,则123z z i +,则12z z -=_______.【解析】解法一:在复平面内,用向量思想求解,原问题等价于:平面向量b a ,满足2||||==b a ,且,1)3(=+b a ,求||b a -.∵2222||2||2||||b a b a b a +=-++,∴16||42=-+b a ,∴12||2=-b a ,∴32||=-b a . 即1223-=z z解法二:在复平面内,如图A15所示,因12122==+=z z z z ,则1z ,2z ,12+z z 组成一个等边三角形,所以1z ,2z 之间的夹角为120°,所以22o 1212122cos120=44423-=+-++=z z z z z z .图A15【答案】316.(立体几何,同文16)设有下列4个命题:1P :两两相交且不过同一点的三条直线必在同一平面内.2P :过空间中任意三点有且仅有一个平面.3P :若空间两条直线不相交,则这两条直线平行.4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是_________① 14p p ∧ ② 12p p ∧ ③ 23p p ⌝∨ ④ 34p p ⌝∨⌝【解析】由公理2可知,p 1为真,p 2为假,2p ⌝为真;若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3为假,3p ⌝为真;由线面垂直的定义可知p 4为真;所以①14p p ∧为真命题,②12p p ∧为假命题,③23p p ⌝∨为真命题,④34p p ⌝∨⌝为真命题,故真命题的序号是①③④.【答案】①③④三、解答题:共70分. 解答应写出文字说明、证明过程或演算步骤. 第17~21题为必考题,每个试题考生都必须作答. 第22、23题为选考题,考生根据要求作答.(一)必考题,共60分.17.(12分)(三角函数)ABC ∆中,222sin sin sin sin sin A B C B C --=,(1)求A ;(2)若3BC =,求ABC ∆周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,△ 由余弦定理得2222cos BC AC AB AC AB A =+-⋅, △ 由△,△得1cos 2A =-. 因为0πA <<,所以2π3A =. (2)由正弦定理及(1)得23sin sin sin AC AB BC B C A ===,从而 23AC B =,3π)3cos 3AB A B B B =--=-. 故π333cos 323)3BC AC AB B B B ++=+=++. 又π03B <<,所以当π6B =时,ABC △周长取得最大值33+. 18.(12分)(概率统计,同文18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()1,220i i x y i =⋅⋅⋅,,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得()()()()22202020202011111601200-80-9000--800ii i i i i i i i i i xy x xy yx x y y ==========∑∑∑∑∑,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()(),1,2,,20i i x y i =⋯的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由。

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲
7.已知数列{an}的前 n 项和 Sn=3+2n,则数列{an}的通项公式为________. 解析 因为 Sn=3+2n,所以 n≥2 时,an=Sn-Sn-1=2n-1,而 n=1 时,a1=S1=5 不适
合上式,所以 an=Error!
答案 an=Error!
1
1
8.(2019·广东深圳适应性考试)在数列{an}中,a1=2 019,an+1=an+nn+1(n∈N*),
2n =n2+1-2n.故选 A
项.
3.1-4+9-16+…+(-1)n+1n2=( )
nn+1 A. 2
nn+1 B.- 2
nn+1 C.(-1)n+1 2
D.以上均不正确
C 解析 当 n 为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-
n 3+2n-1 2
nn+1
2 =- 2 ;当 n 为奇数时,1-4+9-16+…+(-1)
n-1 [3+2n-1-1]
2
nn+1
n+1n2=-3-7-…-[2(n-1)-1]+n2=-
2
+n2= 2 .综上可得,原
nn+1 式=(-1)n+1 2 .故选 C 项.
4.已知数列{an}的前 n 项和 Sn=an-1(a≠0),则{an}( )
2×3 3 4
n n+1
则 3Tn= 30 +30+31+…+3n-3+3n-2,②
1 1-
3n-1
( ) 1 1
1 n+1
1 n+1 15
1+ + +…+
1-
②-①得 2Tn=6+ 3 32
3n-2 -3n-1=6+ 3 -3n-1= 2 -
2n+5
2·3n-1.

2020年高考全国卷Ⅱ数学(理)试卷(含解析)

2020年高考全国卷Ⅱ数学(理)试卷(含解析)

2020年高考全国卷Ⅱ数学(理)试卷一、选择题1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√556.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k=()A.2B.3C.4D.57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H8.设O为坐标原点,直线x=a与双曲线C:x 2a −y2b=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.329.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A.是偶函数,且(12,+∞)在单调递增B.是奇函数,且(−12,12)在单调递减C.是偶函数,且(−∞,−12)在单调递增D.是奇函数,且(−∞,−12)在单调递减10.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√3211.若2x−2y<3−x−3−y,则()A.ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012.0−1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1, 2, ⋯)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2⋯a n⋯,C(k)=1m ∑a i m i=1a 1+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( )A.11010⋯B.11011⋯C.10001⋯D.11001⋯二、填空题13.已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.15.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下列命题中所有真命题的序号是________.①p 1∧p 4;②p 1∧p 2;③¬p 2∨p 3;④¬p 3∨¬p 4.三、解答题17.△ABC 中,sin 2A −sin 2B −sin 2C =sinBsinC .(1)求A ;(2)若BC =3,求△ABC 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i20i=1=60,∑y i 20i=1=1200,∑(x i −x ¯)220i=1=80,∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1,√2≈1.414.19已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合.C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点.且|CD|=43|AB|.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程.20.如图已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.22.已知曲线C1,C2的参数方程分别为C1:{x=4cos2θ,y=4sin2θ(B为参数),{x=t+1t,y=t−1t(t为参数).(1)(2)以坐标原点为极点,α轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2020年高考全国卷Ⅱ数学(理)试卷一、选择1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【解答】解:由题意可知(A∪B)={−1,0,1,2},故∁U(A∪B)={−2,3}.故选A.2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0【解答】解:∵α为第四象限角,+2kπ<α<2kπ,∴−π2∴−π+4kπ<2α<4kπ,∴2α是第三或第四象限角,∴当2α在第三象限时,cos2α<0,当2α在第四象限时,cos2α>0,故A,B错误;无论2α在第三还是在第四象限,都有sin2α<0.故选D.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为:1600+500−1200=18名.50故选B.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9.由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,解得n=9,则三层共有扇形面石板为S3n=S27=27a1+27×262×9=3402块.故选C.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(a−2)2+(a−1)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=√5=2√55.故选B.6.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k=()A.2B.3C.4D.5【解答】解:a m+n=a m a n,取m=1,则a1+n=a1a n.又a1=2,所以a n+1a n=2,所以{a n}是首项,公比均为2等比数列,则a n=2n,所以a k+1+a k+2+⋯+a k+10=2k+1(1−210)1−2=2k+1⋅210−2k+1=215−25,解得k=4.故选C7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【解答】解:该几何体是两个长方体拼接而成,如图所示,显然所求点对应的为E点.故选A.8.设O为坐标原点,直线x=a与双曲线C:x 2a −y2b=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【解答】解:双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别为y=±bax,则容易得到|DE|=2b,则S△ODE=ab=8.又因为c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.9.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A.是偶函数,且(12,+∞)在单调递增B.是奇函数,且(−12,12)在单调递减C.是偶函数,且(−∞,−12)在单调递增D.是奇函数,且(−∞,−12)在单调递减【解答】解:函数f(−x)=ln|−2x+1|−ln|−2x−1|=ln|1−2x|−ln|2x+1|=−f(x),∴f(x)为奇函数.当x∈(12,∞,)时,f(x)=ln(2x+1)−ln(2x−1)=ln2x+12x−1=ln(1+22x−1),单调递减;当x∈(−12,12)时,f(x)=ln(2x+1)−ln(1−2x),单调递增;当x∈(−∞,−12)时,f(x)=ln(−2x−1)−ln(1−2x)=ln2x+12x−1=ln(1+22x−1),单调递减.故选D.10.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√32【解答】解:设ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O半径为R,等边三角形△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,所以r=√3=√3.由题知球O的表面积为16π,则R=2,由R2=r2+d2,易得d=1,即O到平面ABC的距离为1.故选C.11.若2x−2y<3−x−3−y,则()A.ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<0【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,∴函数f(x)在R上单调递增,∵f(x)<f(y),所以x<y,则y−x+1>1,∴ln(y−x+1)>0.故选A.12.0−1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1, 2, ⋯)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2⋯a n⋯,C(k)=1 m ∑a imi=1a1+k(k=1, 2, ⋯, m−1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)−25>15,不满足,排除;对于B 选项,C (1)=15∑a i 5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C 选项,C (1)=15∑a i 5i=1a i+1=15(0+0+0+0+1)=15,C (2)=15∑a i 5i=1a i+2=15(0+0+0+0+0)=0,C (3)=15∑a i 5i=1a i+3=15(0+0+0+0+0)=0,C (4)=15∑a i 5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D 选项,C (1)=15∑a i 5i=1a i+1=15(1+0+0+0+1)=25>0,不满足,排除.故选C .二、填空题已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.【解答】解:∵单位向量a →、b →的夹角为45∘,a →−b →与a →垂直,∴(ka →−b →)⋅a →=k −√22=0, ∴k =√22. 故答案为:√22.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.【解答】解:由题意可得,不同的安排方法有C 42A 33=36种.故答案为:36.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.【解答】解:由题设z 1=a +bi ,则z 2=(√3−a)+(1−b )i ,故|z 1|2=a 2+b 2=4,|z2|2=(√3−a)2+(1−b)2=a2+b2−2√3a−2b+4=4,则|z1−z2|2=(2a−√3)2+(2b−1)2=4a2+4b2−4√3a+4b+4=2(a2+b2)+2(a2+b2−2√3a−2b)+4=2×4+4=12,故|z1−z2|=2√3.故答案为:2√3.设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下列命题中所有真命题的序号是________.①p1∧p4;②p1∧p2;③¬p2∨p3;④¬p3∨¬p4.【解答】解:对于p1:可设l1与l2相交,所得平面为α.若l3与l1相交,则交点A必在α内,同理,与l2交点B在α内,故直线AB在α内,即l3在α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数多平面,故p2为假命题.对于p3:空间中两条直线的位置关系有相交、平行、异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知:p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为:①③④.三、解答题△ABC中,sin2A−sin2B−sin2C=sinBsinC.(1)求A;(2)若BC=3,求△ABC周长的最大值.【解答】解:(1)在△ABC 中,设内角A,B,C 的对边分别为a,b,c ,∵sin 2A −sin 2B −sin 2C =sinBsinC ,由正弦定理得,a 2−b 2−c 2=bc ,即b 2+c 2−a 2=−bc ,由余弦定理得,cosA =b 2+c 2−a 22bc =−12.∵0<A <π,∴A =2π3. (2)由(1)知A =2π3,因为BC =3,即a =3,由余弦定理得,a 2=b 2+c 2−2bccosA ,∴9=b 2+c 2+bc =(b +c )2−bc ,由基本不等式√bc ≤b+c 2知bc ≤(b+c )24, 结合上式得9=(b +c )2−bc ≥34(b +c )2,(b +c )2≤12,∴b +c ≤2√3,当且仅当b =c =√3时取等号,∴△ABC 周长的最大值为3+2√3.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i20i=1=60,∑y i 20i=1=1200,∑(x i −x ¯)220i=1=80,∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r=∑(x−x¯)n(y−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1,√2≈1.414.【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物短盖面积差异很大,因此在调查时,先确定该地区各地块间植物短盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合.C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点.且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.【解答】解:(1)F为C1的焦点且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB|.C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍),从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x 2+y2=1,y2=12x.如图已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.【解答】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1∴AA1//MN,又∵MN∩A1N=N,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.【解答】(1)解:∵f (x )=2sin 3xcosx ,∴f ′(x )=2sin 2x (3cos 2x −sin 2x )=−8sin 2xsin (x +π3)sin (x −π3).当x ∈(0,π3)时,f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时,f ′(x )<0, f (x )单调递减; 当x ∈(2π3,π)时,f ′(x )>0, f (x )单调递增;(2)证明:由f (x )=2sin 3xcosx 得,f (x )为R 上的奇函数. f 2(x )=4sin 6xcos 2x=4(1−cos 2x )3cos 2x=4(1−cos 2x )3×3cos 2x ≤43×((3−3cos 2x+3cos 2x)4)4=(34)3.当1−cos 2x =3cos 2x ,即cosx =±12时等号成立,故|f (x )|≤3√38. (3)证明:由(2)知:sin 2xsin2x ≤3√38=(34)32; sin 22xsin4x ≤3√38=(34)32; sin 222xsin23x ≤3√38=(34)32;⋯; sin 22n−1xsin2n x ≤3√38=(34)32, ∴sin 2xsin 32xsin 34x ⋯sin 32n−1xsin 22n x ≤(34)3n 2,∴sin 3xsin 32xsin 34x ⋯sin 32n−1xsin 32n x =sinx(sin 2xsin 32xsin 34x ⋯sin 32n−1xsin 22n x)sin2n x ≤(34)3n 2, ∴sin 2xsin 22xsin 24x ⋯sin 22n x ≤3n 4n .已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(B 为参数),{x =t +1t ,y =t −1t (t 为参数).(1)(2)以坐标原点为极点,α轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解答】11已知函数f (x )=|x −a 2|+|x −2a +1|.(1)当a =2时,求不等式f (x )≥4的解集;(2)若f (x )≥4,求a 的取值范围.【解答】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时,f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时,f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).。

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)专题7 高效解答客观题-2

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)专题7 高效解答客观题-2

专题限时训练建议用时:45分钟一、选择题1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0B.存在x0∈R,2x0>0C.对任意x∈R,2x≤0D.对任意x∈R,2x>0答案:D解析:本题主要考查全称命题与特称命题.由题意知,原命题的否定为“对任意x ∈R,2x>0”.2.下列命题中的假命题是()A.∀x∈R,e x>0B.∀x∈R,x2≥0C.∃x0∈R,sin x0=2D.∃x0∈R,2x0>x20答案:C解析:本题考查命题真假的判定.∀x∈R,sin x≤1<2,所以C选项是假命题.3.(2019·中卫一模)命题“若a2+b2=0,则a=0且b=0”的逆否命题是() A.若a2+b2≠0,则a≠0且b≠0”B.若a2+b2≠0,则a≠0或b≠0”C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0答案:D解析:命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”.4.已知p:x≤1;q:x2-x>0,则p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:本题考查充要条件的判定.依题意,¬q:x2-x≤0,即0≤x≤1;由x≤1不能得知0≤x≤1;反过来,由0≤x≤1可得x≤1.因此,p是¬q成立的必要不充分条件.5.(2019·绵阳模拟)已知命题p:∃x0∈R,使得lgcos x0>0;命题q:∀x<0,3x>0,则下列命题为真命题的是()A.p∧q B.p∨¬qC.¬p∧¬q D.p∨q答案:D解析:命题p:∃x0∈R,使得lgcos x0>0,∵-1≤cos x≤1,∴lgcos x≤0,∴命题p为假命题,命题q:∀x<0,3x>0,是真命题,∴p∧q为假命题,p∨¬q为假命题,¬p∧¬q为假命题,p∨q为真命题.6.若“0<x<1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,则实数a的取值范围是()A.(-∞,0]∪[1,+∞)B.(-1,0)C.[-1,0]D.(-∞,-1)∪(0,+∞)答案:C解析:(x-a)[x-(a+2)]≤0⇒a≤x≤a+2,由集合的包含关系知⎩⎪⎨⎪⎧a ≤0,a +2≥1⇒a ∈[-1,0]. 7.已知命题p :∀x >0,x +4x ≥4;命题q :∃x 0∈(0,+∞),2x 0=12.则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧¬q 是真命题D .¬p ∧q 是真命题 答案:C解析:因为当x >0时,x +4x ≥2x ·4x =4,当且仅当x =2时等号成立,所以p 是真命题,当x 0>0时,2x 0>1,所以q 是假命题,所以p ∧¬q 是真命题,¬p ∧q 是假命题.8.若x ,y ∈R ,则x >y 的一个充分不必要条件是( )A .|x |>|y |B .x 2>y 2 C.x >yD .x 3>y 3答案:C解析:本题考查充要条件的判断.由|x |>|y |,x 2>y 2未必能推出x >y ,排除A,B ;由x >y 可推出x >y ,反之,未必成立,而x 3>y 3是x >y 的充要条件.9.“a ≤-2”是“函数f (x )=|x -a |在[-1,+∞)上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:结合图象可知函数f (x )=|x -a |在[a ,+∞)上单调递增,易知当a ≤-2时,函数f (x )=|x -a |在[-1,+∞)上单调递增,但反之不一定成立.10.(2019·南昌二模)已知函数f (x )=ax 2+x +a ,命题p :∃x 0∈R ,f (x 0)=0,若p 为假命题,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12B.⎝ ⎛⎭⎪⎫-12,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞ 答案:C解析:因为p 为假命题,所以¬p 为真命题,即∀x ∈R ,f (x )≠0,故Δ=1-4a 2<0,解得a >12或a <-12.11.下列命题正确的个数是( )①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件;③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0”.A .1B .2C .3D .4答案:B解析:易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a ·b <0时向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0且a 与b 不反向”,故④不正确.12.(2019·珠海二模)“-1≤x +y ≤1且-1≤x -y ≤1”是“x 2+y 2≤1”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件答案:A解析:作出不等式组对应的平面区域如图.则“-1≤x+y≤1且-1≤x-y≤1对应的区域在单位圆内,则“-1≤x+y≤1且-1≤x-y≤1”是“x2+y2≤1”的充分不必要条件.二、填空题13.已知命题p:∃x∈R,sin x>a,若¬p是真命题,则实数a的取值范围为__________.答案:a≥1解析:依题意得,∀x∈R,sin x≤a恒成立,于是有a≥1.14.(2019春·思明区校级月考)命题p:|x|>1;命题q:x<m,若¬p是¬q的充分不必要条件,则实数m的取值范围为__________.答案:(-∞,-1]解析:由|x|>1得x>1或x<-1,若¬p是¬q的充分不必要条件,则q是p的充分不必要条件,即m≤1,即实数m的取值范围是(-∞,-1].15.(2019春·西湖区校级月考)命题p:若直线与抛物线有且只有一个公共点,则直线与抛物线相切.命题p是__________(真,假)命题,命题p的否命题是__________(真,假)命题.答案:假真解析:当直线和抛物线的对称轴平行时,满足只有一个交点,但此时直线和抛物线是相交关系,即命题p是假命题.命题p的逆命题为:若直线与抛物线相切,则直线与抛物线有且只有一个公共点,正确.命题的否命题和逆命题互为逆否命题,则命题的否命题为真命题.16.已知命题p:∃x0∈R,mx20+2≤0;命题q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是________.答案:[1,+∞)解析:因为p∨q是假命题,所以命题p和q都是假命题.由命题p:∃x0∈R,mx20+2≤0为假命题知,¬p:∀x∈R,mx2+2>0为真命题,所以m≥0.①由命题q:∀x∈R,x2-2mx+1>0为假命题知,¬q:∃x0∈R,x20-2mx0+1≤0为真命题,所以Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②由①和②得m≥1.。

2020版高考数学大二轮专题突破理科通用客观题12+4标准练D及答案解析(10页)

2020版高考数学大二轮专题突破理科通用客观题12+4标准练D及答案解析(10页)

2020版高考数学大二轮专题突破理科通用客观题12+4标准练D一、选择题1.(2019山西临汾一中、忻州一中、长治二中等五校高三联考,理2)复数的共轭复数在复平面内对应的点位于() A.第一象限 B.第二象限C.第三象限D.第四象限2.(2019河北邢台二中二模,理1)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B的真子集个数为()A.0B.1C.2D.33.若实数x,y满足|x-1|-ln y=0,则y关于x的函数图象的大致形状是()4.(2019辽宁丹东高三质检二,文7)据中国古代数学名著《九章算术》中记载,公元前344年,先秦法家代表人物商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),其体积为12.6立方寸.若取圆周率π=3,则图中的x值为()A.1.5B.2C.3D.3.15.若数列{a n}是正项数列,且+…+2+n,则a1++…+等于()A.2n2+2nB.n2+2nC.2n2+nD.2(n2+2n)6.将函数f(x)=cos2sin-2cos+(ω>0)的图象向左平移个单位长度,得到函数y=g(x)的图象,若y=g(x)在0,上为增函数,则ω的最大值为()A.2B.4C.6D.87.(2019黑龙江齐齐哈尔高三二模,理7)已知椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F1作垂直于x轴的直线交椭圆E于A,B两点,点A在x轴上方.若|AB|=3,△ABF2的内切圆的面积为,则直线AF2的方程是()A.2x+3y-5=0B.2x+3y-2=0C.4x+3y-4=0D.3x+4y-3=08.如图是计算函数y=---的值的程序框图,则在①②③处应分别填入的是()A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x29.设等差数列{a n}的前n项和为S n,已知a1=9,a2为整数,且S n≤S5,则数列的前9项和为()A.-B.-C.-9D.810.已知函数f(x)=e x+-ln x的极值点为x1,函数g(x)=e x+x-2的零点为x2,函数h(x)=的最大值为x3,则()A.x1>x2>x3B.x2>x1>x3C.x3>x1>x2D.x3>x2>x111.抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线=1(a>0,b>0)的左焦点,点M为这两条曲线的一个交点,且|MF|=p,则双曲线的离心率为()A.B.2C.D.+112.已知函数f(x),若在其定义域内存在实数x满足f(-x)=-f(x),则称函数f(x)为“局部奇函数”,若函数f(x)=4x-m·2x-3是定义在R上的“局部奇函数”,则实数m的取值范围是()A.[-)B.[-2,+∞)C.(-∞,2)D.[-2)二、填空题13.已知向量m=(1,2),n=(2,3),则m在m-n方向上的投影为.14.(2019辽宁沈阳高三四模,理)已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率为.15.(2019山东济宁高三二模,文16)已知三棱锥P-ABC的四个顶点均在体积为36π的球面上,其中PA⊥平面ABC,底面ABC为正三角形,则三棱锥P-ABC体积的最大值为.16.(2019江苏苏、锡、常、镇四市高三二调,14)已知e为自然对数的底数,函数f(x)=e x-ax2的图象恒在直线y=ax上方,则实数a的取值范围为.参考答案考前强化练4客观题12+4标准练D1.A解析因为z=-i,所以i,故选A.2.D解析集合A中,x2+y2=1,表示以原点为圆心,1为半径的圆,集合B中y=x,表示一条直线,在同一个坐标系中画出图象,得到两函数有两个交点,则A∩B真子集的个数是22-1=3.故选D.3.A解析由实数x,y满足|x-1|-ln y=0,可得y=e|x-1|=--因为e>1,故函数在[1,+∞)上为增函数,由y=e|x-1|知其图象关于直线x=1对称,对照选项,只有A正确,故选A.4.C解析由三视图可知,该几何体是由一个圆柱和一个长方体组合而成,由题意可知,12.6=π×2×1.6+(5.4-1.6)×1×x,解得x=3.5.A解析+…+=n2+n,∴n=1时,=2,解得a1=4.n≥2时,+…+-=(n-1)2+n-1,相减可得=2n,∴a n=4n2.n=1时也满足=4n.则a1++…+=4(1+2+…+n)=4=2n2+2n.故选A.6.C解析f(x)=cos2sin-2cos+=sin ωx-2=sin ωx-cos ωx=2sinωx-,f(x)的图象向左平移个单位长度,得y=2sinωx+-的图象,∴函数y=g(x)=2sin ωx.又y=g(x)在0,上为增函数,,即,解得ω≤6 所以ω的最大值为6.7.D解析设内切圆半径为r,则πr2=,∴r=F1(-c,0),∴内切圆圆心为-c+,0 ,由|AB|=3知A-c,,又F2(c,0),所以AF2方程为3x+4cy-3c=0.由内切圆圆心到直线AF2的距离为r,即--,得c=1,所以直线AF2的方程为3x+4y-3=0.故选D.8.B解析由题意及框图可知,在①应填“y=-x”;在②应填“y=x2”;在③应填“y=0”.9.A解析由题意S n=n2+a1-n=n2+9-n,d<0,d∈Z,对称轴n=,当d=-1时,对称轴n=,不满足S n≤S5,若d=-2,对称轴n=5满足题意,∴d=-2,a n=a1+(n-1)×(-2)=11-2n,而=-,∴前9项和为+…+=-++…+=-=---=-10.A解析∵f'(x)=e x+x-在(0,+∞)上单调递增,且f'=>0,f'=<0,∴x1∈且+x1-=0.∵函数g(x)=e x+x-2在(0,+∞)上单调递增,且g =>0,g=-2<0,∴x2∈.又g(x1)=+x1-2=-x1+x1-2=-2>0=g(x2),且g(x)单调递增,∴x1>x2.由h'(x)=-,可得h(x)max=h(e)=,即x3=,∴x1>x2>x3.故选A.11.D解析抛物线y2=2px(p>0)的焦点为F,其准线方程为x=-,∵准线经过双曲线的左焦点,∴c=∵点M为这两条曲线的一个交点,且|MF|=p,∴M的横坐标为,代入抛物线方程,可得M的纵坐标为±p.将M的坐标代入双曲线方程,可得=1,∴a=-p,∴e=1+故选D.12.B解析根据“局部奇函数”的定义可知,方程f(-x)=-f(x)有解即可,即4-x-m·2-x-3=-(4x-m·2x-3),∴4-x+4x-m(2-x+2x)-6=0,化为(2-x+2x)2-m(2-x+2x)-8=0有解,令2-x+2x=t(t≥2 则有t2-mt-8=0在[2,+∞)上有解,设g(t)=t2-mt-8,图象抛物线的对称轴为t=,①若m≥4 则Δ=m2+32>0,满足方程有解;②若m<4,要使t2-mt-8=0在t≥2时有解,则需:--解得-2≤m<4.综上得实数m的取值范围为[-2,+∞).13.-解析∵向量m=(1,2),n=(2,3),∴m-n=(-1,-1).∴m·(m-n)=-1-2=-3,=-则m在m-n方向上的投影为--14解析记“三人中至少有两人解答正确”为事件A;“甲解答不正确”为事件B,则P(A)=2+3=;P(AB)=,∴P(B|A)=15.9解析由球的体积公式可得R3=36π,解得R=3.不妨设底面正三角形的边长为2a,则S△ABC=2a·2a·sin 60°=a2.设棱锥的高为h,由三棱锥的性质可得R2=a2+2=9,解得h2=36-a2,据此可得:h2-△=3a4·36-a2=12--3=64=81.81,V P-ABC≤9 当且仅当=12-a2,a2=时等号成立.故-综上可得,三棱锥P-ABC体积的最大值为9.16.(-2e-1,0]解析因为函数f(x)=e x-ax2的图象恒在直线y=ax的上方, 所以∀x∈R,e x-ax2>ax恒成立,即e x>a x2+x恒成立.当a>0时,若x→-∞,则e x→0 a x2+x→+∞,不满足e x>a x2+x恒成立.当a=0时,e x>0×x2+x=0恒成立.当a<0时,不等式e x>a x2+x恒成立等价于<min,记h(x)=,则h'(x)=--,此时,h(x)在(-∞,-1)上递减,在-1,上递增,在,+∞上递减,其简图如下:所以h(x)min=h(-1)=---=-,所以<-又a<0,解得-<a<0.综上所述:-<a≤0.。

2020年高考数学(理)二轮专项复习专题04 导数(含答案)

2020年高考数学(理)二轮专项复习专题04 导数(含答案)

2020年高考数学(理)二轮专项复习专题04 导数导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用.在本专题中,我们将复习导数的概念及其运算,体会导数的思想及其内涵;应用导数探索函数的单调性、极值等性质,感受导数在解决数学问题和实际问题中的作用.导数的相关问题主要围绕以下三个方面:导数的概念与运算,导数的应用,定积分与微积分基本定理.§4-1 导数概念与导数的运算【知识要点】1.导数概念:(1)平均变化率:对于函数y =f (x ),定义1212)()(x x x f x f --为函数y =f (x )从x 1到x 2的平均变化率.换言之,如果自变量x 在x 0处有增量∆x ,那么函数f (x )相应地有增量f (x 0+∆x )-f (x 0),则比值xx f x x f ∆-∆+)()(00就叫做函数y =f (x )从x 0到x 0+∆x 之间的平均变化率.(2)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率是xx f x x f x ∆-∆+→∆)()(lim000,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即xx f x x f x f x ∆-∆+='→∆)()(lim )(0000.(3)函数y =f (x )的导函数(导数):当x 变化时,f ′(x )是x 的一个函数,我们称它为函数y =f (x )的导函数(简称导数),即xx f x x f x f x ∆-∆+='→∆)()(lim)(0.2.导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0). 3.导数的运算:(1)几种常见函数的导数: ①(C )′=0(C 为常数);②(x n )′=nx n -1(x >0,n ∈Q *); ③(sin x )′=cos x ; ④(cos x )′=-sin x ; ⑤(e x )′=e x ;⑥(a x )′=a x ln a (a >0,且a ≠1);⑦x x 1)(ln =; ⑧e xx a a log 1)(log =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x );②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . (3)简单的复合函数(仅限于形如f (ax +b ))的导数:设函数y =f (u ),u =g (x ),则函数y =f (u )=f [g (x )]称为复合函数.其求导步骤是:x y '=u f '·x g ',其中u f '表示f 对u 求导,x g '表示g 对x 求导.f 对u 求导后应把u 换成g (x ). 【复习要求】1.了解导数概念的实际背景; 2.理解导数的几何意义;3.能根据导数定义求函数y =C ,y =x ,y =x 2,y =x 3,x y xy ==,1的导数; 4.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 5.理解简单复合函数(仅限于形如f (ax +b ))导数的求法. 【例题分析】例1 求下列函数的导数:(1)y =(x +1)(x 2-1);(2)11+-=x x y ; (3)y =sin2x ; (4)y =e x ·ln x .解:(1)方法一:y ′=(x +1)′(x 2-1)+(x +1)(x 2-1)′=x 2-1+(x +1)·2x =3x 2+2x -1.方法二:∵y =(x +1)(x 2-1)=x 3+x 2-x -1,∴y ′=(x 3+x 2-x -1)′=3x 2+2x -1.(2)方法一:⋅+=+--+=+'+--+'-='+-='222)1(2)1()1()1()1()1)(1()1()1()11(x x x x x x x x x x x y 方法二:∵12111.+-=+-=x x x y ,∴2)1(2)12()121('+='+-='+-=x x x y . (3)方法一:y'=(sin2x )'=(2sin x · cos x )'=2[(sin x )'·cos x +sin x ·(cos x )']=2(cos 2x -sin 2x )=2cos2x . 方法二:y'=(sin2x )'·(2x )'=cos2x ·2=2cos2x .(4))(ln e ln )e ('+'='⋅⋅x x y xx=xx xxx x x e )1(ln e ln e ⋅⋅+=+.【评析】理解和掌握求导法则和式子的结构特点是求导运算的前提条件.运用公式和求导法则求导数的基本步骤为:①分析函数y =f (x )的结构特征;②选择恰当的求导法则和导数公式求导数; ③化简整理结果.应注意:在可能的情况下,求导时应尽量减少使用乘法的求导法则,可在求导前利用代数、三角恒等变形等方法对函数式进行化简,然后再求导,这样可减少运算量.(如(1)(2)题的方法二较方法一简捷).对于(3),方法一是使用积的导数运算公式求解,即使用三角公式将sin2x 表示为sin x 和cos x 的乘积形式,然后求导数;方法二是从复合函数导数的角度求解.方法二较方法一简捷.对利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数要熟练、准确. 例2 (1)求曲线y =x 2在点(1,1)处的切线方程;(2)过点(1,-3)作曲线y =x 2的切线,求切线的方程.【分析】对于(1),根据导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,可求出切线的斜率,进而由直线方程的点斜式求得切线方程.对于(2),注意到点(1,-3)不在曲线y =x 2上,所以可设出切点,并通过导数的几何意义确定切点的坐标,进而求出切线方程.解:(1)曲线y =x 2在点(1,1)处的切线斜率为y ′=2x |x =1=2, 从而切线的方程为y -1=2(x -1),即2x -y -1=0.(2)设切点的坐标为),(20x x . 根据导数的几何意义知,切线的斜率为y '=2x |0x x ==2x 0,从而切线的方程为).(20020x x x x y -=- 因为这条切线过点(1,-3),所以有)1(23002x x x -=--, 整理得03202=--x x ,解得x 0=-1,或x 0=3. 从而切线的方程为y -1=-2(x +1),或y -9=6(x -3),即切线的方程为2x +y +1=0,或6x -y -9=0.【评析】用导数求曲线的切线方程,常依据的条件是:①函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率, 即k =f '(x 0);②切点既在切线上又在曲线上,即切点的坐标同时满足切线与曲线的方程.例3设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f '(x )的最小值为-12.求a ,b ,c 的值. 【分析】本题考查函数的奇偶性、二次函数的最值、导数的几何意义等基础知识,以及推理能力和运算能力.题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、b 、c 的值. 解:∵f (x )为奇函数, ∴f (-x )=-f (x ), 即-ax 3-bx +c =-ax 3-bx -c , ∴c =0.∵f '(x )=3ax 2+b 的最小值为-12, ∴b =-12. 又直线x -6y -7=0的斜率为61,因此,f '(1)=3a +b =-6, ∴a =2. 综上,a =2,b =-12,c =0. 例4 已知a >0,函数a x x f -=1)(,x ∈(0,+∞).设ax 201<<,记曲线y =f (x )在点M (x 1,f (x 1))处的切线为l .(1)求l 的方程;(2)设l 与x 轴的交点是(x 2,0),证明:ax 102≤<. 【分析】对于(1),根据导数的几何意义,不难求出l 的方程;对于(2),涉及到不等式的证明,依题意求出用x 1表示的x 2后,将x 2视为x 1的函数,即x 2=g (x 1),结合要证明的结论进行推理. 解:(1)对f (x )求导数,得21)(x x f -=',由此得切线l 的方程为: )(1)1(1211x x x a x y --=--. (2)依题意,切线方程中令y =0,得211112122)1(ax x x a x x x -=+-=.由ax 201<<,及)2(2112112ax x ax x x -=-=,有x 2>0; 另一方面,aa x a ax x x 1)1(2212112+--=-=,从而有ax 102≤<,当且仅当a x 11=时,a x 12=.【评析】本题考查的重点是导数的概念和计算、导数的几何意义及不等式的证明.涉及的基础知识都比较基本,题目难度也不大,但把导数的相关知识与不等式等内容有机整合,具有一定新意,体现了导数作为工具分析和解决一些函数性质问题的方法.本题中的(2)在证明ax 102≤<时,还可用如下方法: ①作法,.0)1(1211212112≥-=+-=-ax aax x a x a②利用平均值不等式,aax ax a ax ax a ax x x 1)22(1)2)((1)2(21111112=-+≤-=-=.例5 设函数),(1)('Z ∈++=b a bx ax x f ,曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f'(x )的解析式;(2)证明:曲线y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 解:(1)2)(1)('b x a x f +-=,于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,12122b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a 因为a ,b ∈Z ,所以⋅-+=11)(x x x f(2)证明:已知函数y 1=x ,xy 12=都是奇函数, 所以函数xx x g 1)(+=也是奇函数,其图象是以原点为中心的中心对称图形. 而1111)(+-+-=x x x f , 可知,函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点)11,(000-+x x x . 由200)1(11)('--=x x f 知,过此点的切线方程为)]()1(11[110200020x x x x x x y ---=-+--. 令x =1得1100-+=x x y ,切线与直线x =1交点为)11,1(00-+x x ; 令y =x 得y =2x 0-1,切线与直线y =x 交点为(2x 0-1,2x 0-1).直线x =1与直线y =x 的交点为(1,1); 从而所围三角形的面积为2|22||12|21|112||111|2100000=--=----+⋅⋅x x x x x . 所以,所围三角形的面积为定值2. 练习4-1一、选择题:1.(tan x )′等于( ) (A)x2sin 1(B)x2sin 1-(C)x 2cos 1(D)x2cos 1-2.设f (x )=x ln x ,若f '(x 0)=2,则x 0等于( ) (A)e 2(B)e(C)22ln (D)ln23.函数y =ax 2+1的图象与直线y =x 相切,则a 等于( ) (A)81 (B)41 (C)21 (D)14.曲线x y 21e =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )(A)2e 29 (B)4e 2(C)2e 2(D)e 2二、填空题: 5.f '(x )是1231)(3++=x x x f 的导函数,则f '(-1)=______. 6.若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =x +2,则f (1)+f '(1)=______. 7.过原点作曲线y =e x 的切线,则切点的坐标为______;切线的斜率为______. 8.设函数f (x )=xe kx (k ≠0),则曲线y =f (x )在点(0,f (0))处的切线方程是______. 三、解答题:9.求下列函数的导数: (1)y =x -e x ; (2)y =x 3+cos x ; (3)y =(x +1)(x +2)(x +3);(4)⋅=xxy ln10.已知抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1),且该曲线在点B 处的切线方程为y =x -3,求a 、b 、c 的值.11.求曲线24121232-=-=x y x y 与在交点处的两条切线的夹角的大小.§4-2 导数的应用【知识要点】1.利用导数判断函数的单调性:(1)函数的单调性与其导函数的正负有如下关系:设函数f (x )在区间(a ,b )内可导, ①如果恒有f '(x )>0,那么函数f (x )在区间(a ,b )内单调递增; ②如果恒有f '(x )<0,那么函数f (x )在区间(a ,b )内单调递减.值得注意的是,若函数f (x )在区间(a ,b )内有f '(x )≥0(或f '(x )≤0),但其中只有有限个点使得f '(x )=0,则函数f (x )在区间(a ,b )内仍是增函数(或减函数).(2)一般地,如果一个函数在某一范围内的导数的绝对值越大,说明这个函数在这个范围内变化得快.这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就比较“平缓”.2.利用导数研究函数的极值:(1)设函数f (x )在点x 0附近有定义,如果对x 0附近所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,x 0是极大值点;如果对x 0附近所有的点,都有f (x )>f (x 0),就说f (x 0)是函数f (x )的一个极小值,x 0是极小值点.(2)需要注意,可导函数的极值点必是导数为零的点,但导数为零的点不一定是极值点.如y =x 3在x =0处的导数值为零,但x =0不是函数y =x 3的极值点.也就是说可导函数f (x )在x 0处的导数f '(x 0)=0是该函数在x 0处取得极值的必要但不充分条件.(3)函数f (x )在区间[a ,b ]上的最值:f (x )在区间[a ,b ]上的最大值(或最小值)是f (x )在区间(a ,b )内的极大值(或极小值)及f (a )、f (b )中的最大者(或最小者).(4)应注意,极值只是相对一点附近的局部性质,而最值是相对整个定义域内的整体性质. 【复习要求】1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次);3.会利用导数解决某些实际问题. 【例题分析】例1 求下列函数的单调区间: (1)f (x )=x 3-3x ; (2)f (x )=3x 2-2ln x ; (3)2)1(2)(--=x bx x f .解:(1)f (x )的定义域是R ,且f '(x )=3x 2-3,所以函数f (x )的减区间是(-1,1),增区间是(-∞,-1)和(1,+∞). (2)f (x )的定义域是(0,+∞),且xx x f 26)(-=', 令f ′(x )=0,得33,3321-==x x .列表分析如下:所以函数f (x )的减区间是)33,0(,增区间是),33(+∞. (3)f (x )的定义域为(-∞,1)∪(1,+∞),求导数得3342)1()1(2)1(222)1()1(2)2()1(2)(---=--+-=-----='⋅x x b x b x x x b x x x f .令f ′(x )=0,得x =b -1.①当b -1<1,即b <2时,f ′(x )的变化情况如下表:所以,当b <2时,函数f (x )在(-∞,b -1)上单调递减,在(b -1,1)上单调递增,在(1,+∞)上单调递减. ②当b -1>1,即b >2时,f ′(x )的变化情况如下表:所以,当b >2时,f (x )在(-∞,1)上单调递减,在(1,b -1)上单调递增,在(b -1,+∞)上单调递减. ③当b -1=1,即b =2时,12)(-=x x f ,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递减. 【评析】求函数f (x )的单调区间的步骤是:①确定f (x )的定义域(这一步必不可少,单调区间是定义域的子集); ②计算导数f ′(x );③求出方程f ′(x )=0的根;④列表考察f ′(x )的符号,进而确定f (x )的单调区间(必要时要进行分类讨论). 例2求函数44313+-=x x y 的极值. 解:y ′=x 2-4=(x +2)(x -2),令y ′=0,解得x 1=-2,x 2=2. 列表分析如下:所以当x =-2时,y 有极大值3;当x =2时,y 有极小值3-. 【评析】求函数f (x )的极值的步骤是:①计算导数f ′(x );②求出方程f ′(x )=0的根;③列表考察f ′(x )=0的根左右值的符号:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.例3 已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 解:(1)f ′(x )=-3x 2+6x +9.令f ′(x )<0,解得x <-1或x >3.所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,所以f (2)>f (-2).因为在(-1,3)上f ′(x )>0,所以f (x )在[-1,2]上单调递增,又由于f (x )在[-2,-1]上单调递减,因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值.于是有22+a =20,解得a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7, 即函数f (x )在区间[-2,2]上的最小值为-7.【评析】求函数f (x )在闭区间[a ,b ]上最值的方法: ①计算导数f ′(x );②求出方程f ′(x )=0的根x 1,x 2,…;③比较函数值f (x 1),f (x 2),…及f (a )、f (b )的大小,其中的最大(小)者就是f (x )在闭区间[a ,b ]上最大(小)值. 例4 设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)【分析】本题给出的信息量较大,并且还都是抽象符号函数.解答时,首先要标出重要的已知条件,从这些条件入手,不断深入研究.由f ′(x )g (x )+f (x )g ′(x )>0你能产生什么联想?它和积的导数公式很类似,整理可得[f (x )g (x )]′>0.令h (x )=f (x )g (x ),则当x <0时,h (x )是增函数.再考虑奇偶性,函数h (x )是奇函数.还有一个已知条件g (-3)=0,进而可得h (-3)=f (-3)g (-3)=0,这样我们就可以画出函数h (x )的示意图,借助直观求解.答案:D.例5 求证:当x >0时,1+x <e x .分析:不等式两边都是关于x 的函数,且函数类型不同,故可考虑构造函数f (x )=1+x -e x ,通过研究函数f (x )的单调性来辅助证明不等式.证明:构造函数f (x )=1+x -e x ,则f ′(x )=1-e x . 当x >0时,有e x >1,从而f ′(x )=1-e x <0,所以函数f (x )=1+x -e x 在(0,+∞)上单调递减, 从而当x >0时,f (x )<f (0)=0, 即当x >0时,1+x <e x .【评析】通过构造函数,利用函数的单调性证明不等式是常用方法之一,而借助导数研究函数单调性辅助证明不等式突出了导数的工具性作用.例6用总长14.8 m 的钢条制作一个长方体容器的框架,如果容器底面的长比宽多0.5 m ,那么长和宽分别为多少时容器的容积最大?并求出它的最大容积.解:设容器底面长方形宽为x m ,则长为(x +0.5)m ,依题意,容器的高为x x x 22.3)]5.0(448.14[41-=+--.显然⎩⎨⎧>->,022.3,0x x ⇒0<x <1.6,即x 的取值范围是(0,1.6).记容器的容积为y m 3,则y =x (x +0.5)(3.2-2x )=-2x 3+2.2x 2+1.6x x ∈(0,1.6). 对此函数求导得,y ′=-6x 2+4.4x +1.6.令y ′>0,解得0<x <1;令y ′<0,解得1<x <1.6.所以,当x =1时,y 取得最大值1.8,这时容器的长为1+0.5=1.5.答:容器底面的长为1.5m 、宽为1m 时,容器的容积最大,最大容积为1.8m 3.【评析】解决实际优化问题的关键在于建立数学模型(目标函数),通过把题目中的主要关系(等量和不等量关系)形式化,把实际问题抽象成数学问题,再选择适当的方法求解.例7 已知f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2. (1)求f (x )的解析式;(2)证明对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.【分析】对于(1)题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、c 、d 的值;对于(2)可通过研究函数f (x )的最值加以解决.解:(1)由f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,知f (0)=0,解得d =0, 所以f (x )=ax 3+cx (a ≠0),f ′(x )=3ax 2+c (a ≠0).由当x =1时,f (x )取得极值-2,得f (1)=a +c =-2,且f ′(1)=3a +c =0,解得 a =1,c =-3, 所以f (x )=x 3-3x .(2)令f ′(x )>0,解得x <-1,或x >1;令f ′(x )<0,解得-1<x <1,从而函数f (x )在区间(-∞,-1)内为增函数,(-1,1)内为减函数,在(1,+∞)内为增函数. 故当x ∈[-1,1]时,f (x )的最大值是f (-1)=2,最小值是f (1)=-2, 所以,对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<2-(-2)=4.【评析】使用导数判断函数的单调性,进而解决极值(最值)问题是常用方法,较为简便. 例8 已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x .令f ′(x )>0,解得e 1>x ; 令f ′(x )<0,解得e 10<<x . 从而f (x )在)e 1,0(单调递减,在),e 1(+∞单调递增.所以,当e 1=x 时,f (x )取得最小值e1-.(2)解法一:令g (x )=f (x )-(ax -1),则g ′(x )=f ′(x )-a =1-a +ln x ,①若a ≤1,当x >1时,g ′(x )=1-a +ln x >1-a ≥0, 故g (x )在(1,+∞)上为增函数,所以,x ≥1时,g (x )≥g (1)=1-a ≥0,即f (x )≥ax -1.②若a >1,方程g ′(x )=0的根为x 0=e a -1,此时,若x ∈(1,x 0),则g ′(x )<0,故g (x )在该区间为减函数. 所以,x ∈(1,x 0)时,g (x )<g (1)=1-a <0, 即f (x )<ax -1,与题设f (x )≥ax -1相矛盾. 综上,满足条件的a 的取值范围是(-∞,1].解法二:依题意,得f (x )≥ax -1在[1,+∞)上恒成立,即不等式x x a 1ln +≤对于x ∈[1,+∞)恒成立. 令xx x g 1ln )(+=,则)11(111)(2x x x x x g -=-='.当x >1时,因为0)11(1)(>-='xx x g ,故g (x )是(1,+∞)上的增函数,所以g (x )的最小值是g (1)=1,从而a 的取值范围是(-∞,1]. 例9 已知函数)1ln()1(1)(-+-=x a x x f n,其中n ∈N *,a 为常数. (1)当n =2时,求函数f (x )的极值;(2)当a =1时,证明:对任意的正整数n ,当x ≥2时,有f (x )≤x -1. 解:(1)由已知得函数f (x )的定义域为{x |x >1},当n =2时,)1ln()1(1)(2-+-=x a x x f ,所以32)1()1(2)('x x a x f ---=. ①当a >0时,由f (x )=0得121,12121<-=>+=ax a x , 此时321)1())(()(x x x x x a x f ----='. 当x ∈(1,x 1)时,f ′(x )<0,f (x )单调递减; 当x ∈(x 1,+∞)时,f ′(x )>0,f (x )单调递增. ②当a ≤0,f ′(x )<0恒成立,所以f (x )无极值. 综上所述,n =2时, 当a >0时,f (x )在ax 21+=处取得极小值,极小值为)2ln 1(2)21(a a a f +=+. 当a ≤0时,f (x )无极值.(2)证法一:因为a =1,所以)1ln()1(1)(-+-=x x x f n. 当n 为偶数时,令)1ln()1(11)(-----=x x x x g n,则)2(0)1(1211)1(1)(11≥>-+--=---+='++x x nx x x x n x g n n .所以当x ≥2时,g (x )单调递增,又g (2)=0, 因此0)2()1ln()1(11)(=≥-----=g x x x x g n恒成立,所以f (x )≤x -1成立.当n 为奇数时,要证f (x )≤x -1,由于0)1(1<-nx ,所以只需证ln(x -1)≤x -1, 令h (x )=x -1-ln(x -1), 则)2(012111)(≥≥--=--='x x x x x h . 所以,当x ≥2时,h (x )=x -1-ln(x -1)单调递增,又h (2)=1>0, 所以,当x ≥2时,恒有h (x )>0,即ln(x -1)<x -1成立. 综上所述,结论成立. 证法二:当a =1时,)1ln()1(1)(-+-=x x x f n.当x ≥2时,对任意的正整数n ,恒有1)1(1≤-nx ,故只需证明1+ln(x -1)≤x -1.令h (x )=x -1-[1+ln(x -1)]=x -2-ln(x -1),x ∈[2,+∞), 则12111)(--=--='x x x x h , 当x ≥2时,h ′(x )≥0,故h (x )在[2,+∞)上单调递增,因此当x ≥2时,h (x )≥h (2)=0,即1+ln(x -1)≤x -1成立. 故当x ≥2时,有1)1ln()1(1-≤-+-x x x n, 即f (x )≤x -1.练习4-2一、选择题:1.函数y =1+3x -x 3有( ) (A)极小值-2,极大值2 (B)极小值-2,极大值3 (C)极小值-1,极大值1(D)极小值-1,极大值32.f '(x )是函数y =f (x )的导函数,y =f '(x )图象如图所示,则y =f (x )的图象最有可能是( )3.函数f (x )=ax 3-x 在R 上为减函数,则a 的取值范围是( ) (A)a <0(B)a ≤0(C)31<a (D)31≤a 4.设a ∈R ,若函数f (x )=e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是( ) (A)a <-1 (B)a >-1(C)e1-<a (D)e1->a 二、填空题:5.函数f (x )=x 3-3ax 2+2bx 在x =1处取得极小值-1,则a +b =______. 6.函数y =x (1-x 2)在[0,1]上的最大值为______.7.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上的最小值为-37,则实数a =______.8.有一块边长为6m 的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器,为使其容积最大,截下的小正方形边长为______m . 三、解答题:9.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象过点P (1,2),且在点P 处的切线斜率为8. (1)求a ,b 的值;(2)求函数f (x )的单调区间;(3)求函数f (x )在区间[-1,1]上的最大值与最小值.10.当)2π,0( x 时,证明:tan x >x .11.已知函数f (x )=e x -e -x .(1)证明:f (x )的导数f '(x )≥2;(2)若对所有x ≥0都有f (x )≥ax ,求a 的取值范围.专题04 导数参考答案练习4-1一、选择题:1.C 2.B 3.B 4.D二、填空题:5.3 6.4 7.(1,e);e 8.y =x 三、解答题:9.(1)y '=1-e x ;(2)y '=3x 2-sin x ;(3)y '=3x 2+12x +11;(4)2ln 1xxy -=10.略解:因为抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1)两点,所以a +b +c =1.① 4a +2b +c =-1.②因为y '=2ax +b ,所以y '|x =2=4a +b .故4a +b =1.③ 联立①、②、③,解得a =3,b =-11,c =9.11.解:由01622412122332=-+⇒⎪⎪⎩⎪⎪⎨⎧-=-=x x x y x y ,所以(x -2)(x 2+4x +8)=0,故x =2,所以两条曲线只有一个交点(2,0).对函数2212x y -=求导数,得y ′=-x , 从而曲线2212x y -=在点(2,0)处切线的斜率是-2.对函数2413-=x y 求导数,得243'x y =,从而曲线2413-=x y 在点(2,0)处切线的斜率是3.设两条切线的夹角为α ,则1|3)2(132|tan =⨯-+--=α,所以两条切线的夹角的大小是45°. 练习4-2一、选择题:1.D 2.C 3.B 4.A 二、填空题: 5.61-6.932 7.3 8.1三、解答题:9.解:(1)a =4,b =-3.(2)函数f (x )的单调增区间为(-∞,-3),),31(+∞;减区间为)31,3(-. (3)函数f (x )在[-1,1]上的最小值为2714-,最大值为6. 10.证明:设f (x )=tan x -x ,)2π,0(∈x .则0tan 1cos 11)'cos sin ()(2.2>=-=-='x xx x x f ,所以函数f (x )=tan x -x 在区间)2π,0(内单调递增. 又f (0)=0,从而当)2π,0(∈x 时,f (x )>f (0)恒成立, 即当)2π,0(∈x 时,tan x >x . 11.解:(1)f (x )的导数f '(x )=e x +e -x .由于2e e 2ee =≥+--⋅x x xx ,故f '(x )≥2,当且仅当x =0时,等号成立.(2)令g (x )=f (x )-ax ,则g '(x )=f '(x )-a =e x +e -x -a ,①若a ≤2,当x >0时,g '(x )=e x +e -x -a >2-a ≥0, 故g (x )在(0,+∞)上为增函数,所以,x ≥0时,g (x )≥g (0),即f (x )≥ax .②若a >2,方程g '(x )=0的正根为24ln 21-+=a a x ,此时,若x ∈(0,x 1),则g ′(x )<0,故g (x )在该区间为减函数.所以,x ∈(0,x 1)时,g (x )<g (0)=0,即f (x )<ax ,与题设f (x )≥ax 相矛盾. 综上,满足条件的a 的取值范围是(-∞,2].习题4一、选择题:1.B 2.B 3.A 4.D 5.C 二、填空题:6.1 7.-2 8.5;-15 9.y =-3x 10.61 三、解答题:11.(1)f '(x )=(1+kx )e kx ,令(1+kx )e kx =0,得)0(1=/-=k kx . 若k >0,则当)1,(k x --∞∈时,f '(x )<0,函数f (x )单调递减;当),1(+∞-∈kx 时,f '(x )>0,函数f (x )单调递增.若k <0,则当)1,(kx --∞∈时,f '(x )>0,函数f (x )单调递增;当),1(+∞-∈kx 时,f '(x )<0,函数f (x )单调递减.(2)若k >0,则当且仅当11-≤-k,即k ≤1时,函数f (x )在区间(-1,1)内单调递增;若k <0,则当且仅当11≥-k ,即k ≥-1时,函数f (x )在区间(-1,1)内单调递增.综上,函数f (x )在区间(-1,1)内单调递增时,k 的取值范围是[-1,0)∪(0,1]. 12.解:(1)f '(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2取得极值,则有f '(1)=0,f '(2)=0.即⎩⎨⎧=++=++.031224,0366b a b a 解得a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f '(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f '(x )>0;当x ∈(1,2)时,f '(x )<0;当x ∈(2,3)时,f '(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以 9+8c <c 2,解得c <-1或c >9,因此c 的取值范围为(-∞,-1)∪(9,+∞).13.解:对函数f (x )求导得:f '(x )=e ax (ax +2)(x -1).(1)当a =2时,f '(x )=e 2x (2x +2)(x -1). 令f '(x )>0,解得x >1或x <-1; 令f '(x )<0,解得-1<x <1.所以,f (x )单调增区间为(-∞,-1),(1,+∞);f (x )单调减区间为(-1,1).(2)令f '(x )=0,即(ax +2)(x -1)=0,解得ax 2-=,或x =1. 由a >0时,列表分析得:当a x -<时,因为0,,02>>->a a x x ,所以02>--a x x ,从而f (x )>0. 对于a x 2-≥时,由表可知函数在x =1时取得最小值01)1(<-=a e af ,所以,当x ∈R 时,a af x f e 1)1()(min -==.由题意,不等式03)(≥+ax f 对x ∈R 恒成立,所以得031≥+-ae a a ,解得0<a ≤ln3.14.(1)解:对函数f (x )求导数,得x a x x f 21)('++=.依题意有f '(-1)=0,故23=a .从而23)1)(12(23132)(2+++=+++='x x x x x x x f . f (x )的定义域为),23(+∞-,当123-<<-x 时,f '(x )>0; 当211-<<-x 时,f '(x )<0; 当21->x 时,f ′(x )>0. 从而,f (x )分别在区间),21(),1,23(+∞---内单调递增,在区间)21,1(--内单调递减.(2)解:f (x )的定义域为(-a ,+∞),ax ax x x f +++=122)(2.方程2x 2+2ax +1=0的判别式∆=4a 2-8. ①若∆<0,即22<<-a ,在f (x )的定义域内f '(x )>0,故f (x )无极值.②若∆=0,则2=a 或.2-=a若⋅++='+∞-∈=2)12()(),,2(,22x x x f x a 当22-=x 时,f '(x )=0, 当)22,2(--∈x 或),22(+∞-∈x 时,f '(x )>0,所以f (x )无极值.若),2(,2+∞∈-=x a ,f '(x )2)12(2--=x x >0,f (x )也无极值.③若∆>0,即2>a 或2-<a ,则2x 2+2ax +1=0有两个不同的实数根22,222221-+-=---=a a x a a x .当2-<a 时,x 1<-a ,x 2<-a ,从而f ′(x )在f (x )的定义域内没有零点,故f (x )无极值. 当2>a 时,x 1>-a ,x 2>-a ,f '(x )在f (x )的定义域内有两个不同的零点,所以f (x )在x =x 1,x =x 2处取得极值.综上,f (x )存在极值时,a 的取值范围为),2(+∞. f (x )的极值之和为f (x 1)+f (x 2)=ln(x 1+a )+x 12+ln(x 2+a )+x 22 =ln[(x 1+a )(x 2+a )]+(x 1+x 2)2-2x 1x 2=ln21+a 2-1>1-ln2=ln 2e.。

2020年高考数学(理)二轮专题学与练 14 直线与圆(高考押题)(解析版)

2020年高考数学(理)二轮专题学与练 14 直线与圆(高考押题)(解析版)

高考押题专练1.已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( ) A .0 B.3 C.33或0 D.3或0【答案】D【解析】因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k 2=1,解得k =0或k =3,故选D.2.圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+2 B .2 C .1+22D .2+22【答案】A【解析】将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1.3.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件.4.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( ) A .2个 B .3个 C .4个 D .6个 【答案】C【解析】三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0 【答案】C【解析】由(a -1)x -y +a +1=0得(x +1)a -(x +y -1)=0,由x +1=0且x +y -1=0,解得x =-1,y =2,即该直线恒过点(-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.6.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( ) A .(x +2)2+(y -2)2=2 B .(x -2)2+(y +2)2=2 C .(x +2)2+(y +2)2=2 D .(x -2)2+(y -2)2=2 【答案】D【解析】由题意知,曲线方程为(x -6)2+(y -6)2=(32)2,过圆心(6,6)作直线x +y -2=0的垂线,垂线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上,又圆心(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为52-322=2,圆心坐标为(2,2),所以标准方程为(x -2)2+(y -2)2=2.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【答案】C【解析】设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫±332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43,故选C.8.设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0【答案】B【解析】由题可知,圆心C(1,1),半径r=2.当直线l的斜率不存在时,直线方程为x=0,计算出弦长为23,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为23可知,圆心到该直线的距离为1,从而有|k+2|k2+1=1,解得k=-34,所以直线l的方程为y=-34x+3,即3x+4y-12=0.综上,直线l的方程为x=0或3x+4y-12=0,故选B.9.关于曲线C:x2+y4=1,给出下列四个命题:①曲线C有两条对称轴,一个对称中心;②曲线C上的点到原点距离的最小值为1;③曲线C的长度l满足l>42;④曲线C所围成图形的面积S满足π<S<4.上述命题中,真命题的个数是()A.4 B.3 C.2D.1【答案】A【解析】①将(x,-y),(-x,y),(-x,-y)代入,方程不变,则可以确定曲线关于x轴,y轴对称,关于原点对称,故①是真命题.②由x2+y4=1得0≤x2≤1,0≤y4≤1,故x2+y2≥x2+y2·y2=x2+y4=1,即曲线C上的点到原点的距离为x2+y2≥1,故②是真命题.③由②知,x2+y4=1的图象位于单位圆x2+y2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l>42,故③是真命题.④由③知,π×12<S<2×2,即π<S<4,故④是真命题.综上,真命题的个数为4.10.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( ) A .2 B .4 2 C .6D .210【答案】C【解析】由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,解得a =-1,∴A (-4,-1),|AC |2=(-4-2)2+(-1-1)2=40.又r =2,∴|AB |2=40-4=36,即|AB |=6.11.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R)与C 2:x 2+y 2-2by -1+b 2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( ) A .32 B .-32 C .6D .-6【答案】B【解析】两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4,圆C 2:x 2+(y -b )2=1,所以C 1(-a,0),C 2(0,b ),||C 1C 2=a 2+b 2=2+1=3,即a 2+b 2=9.由⎝⎛⎭⎫a +b 22≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时等号成立.所以a +b 的最小值为-3 2.12.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5] 【答案】A【解析】设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.13.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【解析】因为圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5.又直线x -y +m =0被圆截得的弦长为2 3.所以圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,所以m =1或m =-3. 【答案】C14.已知过点(-2,0)的直线与圆C :x 2+y 2-4x =0相切于点P (P 在第一象限内),则过点P 且与直线3x -y =0垂直的直线l 的方程为( ) A .x +3y -2=0 B .x +3y -4=0 C.3x +y -2=0D .x +3y -6=0【解析】圆C :x 2+y 2-4x =0的标准方程(x -2)2+y 2=4, 所以圆心C (2,0),半径r =2.又过点(-2,0)的直线与圆C 相切于第一象限, 所以易知倾斜角θ=30°,切点P (1,3), 设直线l 的方程为x +3y +c =0,把点 P (1,3)代入,所以1+3+c =0,所以c =-4. 所以直线l 的方程为x +3y -4=0. 【答案】B15.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43 B .-34C. 3 D .2 【答案】A【解析】因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.16.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0 【答案】D【解析】直线x -2y +3=0的斜率为12,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y +1=-2(x -2),即2x +y -3=0,故选D.17.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5 【答案】D【解析】设圆心坐标为C ⎝⎛⎭⎫a ,2a (a >0),则半径r =2a +2a +15≥22a ×2a +15=5,当且仅当2a =2a ,即a =1时取等号.所以当a =1时圆的半径最小,此时r =5,C (1,2),所以面积最小的圆的方程为(x -1)2+(y -2)2=5.18.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( ) A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ] 【答案】A【解析】由圆的方程可知圆心为O (0,0),半径为2,因为圆上的点到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <2+1=3,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32),故选A. 19.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2 【答案】B【解析】根据约束条件画出可行域,如图中阴影部分所示,设点P 到圆心的距离为d ,则求最短弦长,等价于求到圆心的距离最大的点,即为图中的P 点,其坐标为(1,3),则d =1+32=10,此时|AB |min =214-10=4,故选B.20.过原点且与直线6x -3y +1=0平行的直线l 被圆x 2+(y -3)2=7所截得的弦长为________. 【解析】由题意可得l 的方程为2x -y =0,∵圆心(0,3)到l 的距离为d =1,∴所求弦长=2R 2-d 2=27-1=2 6. 【答案】2621.已知f (x )=x 3+ax -2b ,如果f (x )的图象在切点P (1,-2) 处的切线与圆(x -2)2+(y +4)2=5相切,那么3a +2b =________.【解析】由题意得f (1)=-2⇒a -2b =-3,又∵f ′(x )=3x 2+a ,∴f (x )的图象在点P (1,-2)处的切线方程为y +2=(3+a )(x -1),即(3+a )x -y -a -5=0,∴|(3+a )×2+4-a -5|(3+a )2+12=5⇒a =-52,∴b =14,∴3a +2b =-7.【答案】-722.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【解析】∵f (x )=x 2+4x +20+x 2+2x +10=(x +2)2+(0-4)2+(x +1)2+(0-3)2,∴f (x )的几何意义为点M (x ,0)到两定点A (-2,4)与B (-1,3)的距离之和,设点A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=(-1+2)2+(3+4)2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2. 【答案】5223.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________. 【解析】圆C 的标准方程为(x -4)2+(y -1)2=9, 所以圆C 的圆心C (4,1),半径r =3. 又直线y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线的方程为y =-(x -3),即x +y -3=0. 【答案】x +y -3=024.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . 【解析】(1)由圆C :x 2+y 2-4x -6y +12=0,配方, 得(x -2)2+(y -3)2=1,圆心C (2,3). 当斜率存在时,设过点A 的圆的切线方程为 y -5=k (x -3), 即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,点C 到直线OA 的距离为 d =|5×2-3×3|52+32=134,又|OA |=32+52=34, 所以S =12|OA |d =12.25.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 【解析】(1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m , 因为圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, 所以圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r , 所以圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0, 因为|MN |=23,半径r =2,所以圆心(-2,1)到直线MN 的距离为22-(3)2=1. 则|-4-1+c |5=1,所以c =5±5, 所以直线MN 的方程为2x -y +5± 5=0.26.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由. 【解析】(1)设圆心C (a ,0)⎝⎛⎭⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C :x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0. 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t=0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。

高考数学(理)二轮专题练习:解析几何(含答案)

高考数学(理)二轮专题练习:解析几何(含答案)

解析几何1.直线的倾斜角与斜率 (1)倾斜角的范围为[0,π). (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y 1-y 2x 1-x 2(x 1≠x 2);③直线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC . [问题1] (1)直线的倾斜角θ越大,斜率k 就越大,这种说法正确吗? (2)直线x cos θ+3y -2=0的倾斜角的范围是________. 答案 (1)错 (2)[0,π6]∪[5π6,π)2.直线的方程(1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线.(2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线.(3)两点式:已知直线经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标轴的直线.(4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +yb =1,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式.[问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. 答案 5x -y =0或x +y -6=03.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2;(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2. [问题3] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________.答案152613 4.两直线的平行与垂直①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.②l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.特别提醒:(1)A 1A 2=B 1B 2≠C 1C 2、A 1A 2≠B 1B 2、A 1A 2=B 1B 2=C 1C 2仅是两直线平行、相交、重合的充分不必要条件;(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线.[问题4] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合. 答案 -1 12 m ≠3且m ≠-1 35.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为(-D 2,-E 2),半径为12D 2+E 2-4F 的圆.[问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. 答案 -16.直线、圆的位置关系 (1)直线与圆的位置关系直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切.可从代数和几何两个方面来判断:①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交;Δ<0⇔相离;Δ=0⇔相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交;d >r ⇔相离;d =r ⇔相切. (2)圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当|O 1O 2|>r 1+r 2时,两圆外离;②当|O 1O 2|=r 1+r 2时,两圆外切;③当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交;④当|O 1O 2|=|r 1-r 2|时,两圆内切;⑤当0≤|O 1O 2|<|r 1-r 2|时,两圆内含.[问题6] 双曲线x 2a 2-y 2b 2=1的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆的位置关系为________.答案 内切7.对圆锥曲线的定义要做到“咬文嚼字”,抓住关键词,例如椭圆中定长大于定点之间的距离,双曲线定义中是到两定点距离之差的“绝对值”,否则只是双曲线的其中一支.在抛物线的定义中必须注意条件:Fl ,否则定点的轨迹可能是过点F 且垂直于直线l 的一条直线.[问题7] 已知平面内两定点A (0,1),B (0,-1),动点M 到两定点A 、B 的距离之和为4,则动点M 的轨迹方程是________. 答案 x 23+y 24=18.求椭圆、双曲线及抛物线的标准方程,一般遵循先定位,再定型,后定量的步骤,即先确定焦点的位置,再设出其方程,求出待定系数.(1)椭圆标准方程:焦点在x 轴上,x 2a 2+y 2b 2=1(a >b >0);焦点在y 轴上,y 2a 2+x 2b 2=1(a >b >0).(2)双曲线标准方程:焦点在x 轴上,x 2a 2-y 2b 2=1(a >0,b >0);焦点在y 轴上,y 2a 2-x 2b 2=1(a >0,b >0).(3)与双曲线x 2a 2-y 2b 2=1具有共同渐近线的双曲线系为x 2a 2-y 2b 2=λ(λ≠0).(4)抛物线标准方程焦点在x 轴上:y 2=±2px (p >0); 焦点在y 轴上:x 2=±2py (p >0).[问题8] 与双曲线x 29-y 216=1有相同的渐近线,且过点(-3,23)的双曲线方程为________.答案 4x 29-y 24=19.(1)在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意二次项的系数是否为零,利用解的情况可判断位置关系:有两解时相交;无解时相离;有唯一解时,在椭圆中相切.在双曲线中需注意直线与渐近线的关系,在抛物线中需注意直线与对称轴的关系,而后判断是否相切.(2)直线与圆锥曲线相交时的弦长问题斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长 |P 1P 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]或|P 1P 2|=(1+1k2)[(y 1+y 2)2-4y 1y 2].(3)过抛物线y 2=2px (p >0)焦点F 的直线l 交抛物线于C (x 1,y 1)、D (x 2,y 2),则(1)焦半径|CF |=x 1+p 2;(2)弦长|CD |=x 1+x 2+p ;(3)x 1x 2=p 24,y 1y 2=-p 2.[问题9] 已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为________.答案 54解析 ∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.易错点1 直线倾斜角与斜率关系不清致误例1 已知直线x sin α+y =0,则该直线的倾斜角的变化范围是__________. 错解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,直线的倾斜角的变化范围是⎣⎡⎦⎤π4,34π.找准失分点 直线斜率k =tan β(β为直线的倾斜角)在[0,π)上是不单调的且不连续. 正解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,当-1≤k <0时,倾斜角的变化范围是⎣⎡⎭⎫34π,π;当0≤k ≤1时,倾斜角的变化范围是⎣⎡⎦⎤0,π4. 故直线的倾斜角的变化范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π. 答案 ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π 易错点2 忽视斜率不存在情形致误例2 已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.错解 直线l 1的斜率k 1=-t +21-t, 直线l 2的斜率k 2=-t -12t +3,∵l 1⊥l 2,∴k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1, 解得t =-1.找准失分点 (1)盲目认为两直线的斜率存在,忽视对参数的讨论.(2)忽视两直线有一条直线斜率为0,另一条直线斜率不存在时,两直线垂直这一情形. 正解 方法一 (1)当l 1,l 2的斜率都存在时,由k 1·k 2=-1得,t =-1. (2)若l 1的斜率不存在,此时t =1,l 1的方程为x =13,l 2的方程为y =-25,显然l 1⊥l 2,符合条件;若l 2的斜率不存在,此时t =-32,易知l 1与l 2不垂直,综上t =-1或t =1.方法二 l 1⊥l 2⇔(t +2)(t -1)+(1-t )(2t +3)=0⇔t =1或t =-1. 答案 -1或1易错点3 忽视“判别式”致误例3 已知双曲线x 2-y 22=1,过点A (1,1)能否作直线l ,使l 与双曲线交于P 、Q 两点,并且A为线段PQ 的中点?若存在,求出直线l 的方程;若不存在,说明理由. 错解1 设被A (1,1)所平分的弦所在直线方程为 y =k (x -1)+1.代入双曲线方程x 2-y 22=1,整理得(2-k 2)x 2+2k (k -1)x -3+2k -k 2=0, 设直线与双曲线交点为M (x 1,y 1),N (x 2,y 2), 由根与系数的关系,得x 1+x 2=2k (k -1)k 2-2,点A (1,1)是弦中点,则x 1+x 22=1.∴k (k -1)k 2-2=1,解得k =2, 故所求直线方程为2x -y -1=0.错解2 设符合题意的直线l 存在,并设P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 21-y 212=1①x 22-y222=1 ②式①-②得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2)③因为A (1,1)为线段PQ 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=2 ④y 1+y 2=2 ⑤将式④、⑤代入式③,得x 1-x 2=12(y 1-y 2).若x 1≠x 2,则直线l 的斜率k =y 1-y 2x 1-x 2=2.所以符合题设条件的直线的方程为2x -y -1=0.找准失分点 没有判断直线2x -y -1=0与双曲线是否相交. 正解1 设被A (1,1)所平分的弦所在直线方程为 y =k (x -1)+1.代入双曲线方程x 2-y 22=1,整理得,(2-k 2)x 2+2k (k -1)x -3+2k -k 2=0, 由Δ=4k 2(k -1)2-4(2-k 2)(2k -3-k 2)>0, 解得k <32.设直线与双曲线交点为M (x 1,y 1),N (x 2,y 2), 由根与系数的关系,得x 1+x 2=2k (k -1)k 2-2,点A (1,1)是弦中点,则x 1+x 22=1.∴k (k -1)k 2-2=1,解得k =2>32, 故不存在被点A (1,1)平分的弦.正解2 设符合题意的直线l 存在,并设P (x 1,y 1)、Q (x 2,y 2), 则⎩⎨⎧x 21-y 212=1①x 22-y222=1 ②式①-②得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2)③因为A (1,1)为线段PQ 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=2 ④y 1+y 2=2 ⑤将式④、⑤代入式③,得x 1-x 2=12(y 1-y 2).若x 1≠x 2,则直线l 的斜率k =y 1-y 2x 1-x 2=2.所以直线l 的方程为2x -y -1=0, 再由⎩⎪⎨⎪⎧y =2x -1x 2-y 22=1,得2x 2-4x +3=0.根据Δ=-8<0,所以所求直线不存在.1.(2014·安徽)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3 答案 D解析 方法一 如图,过点P 作圆的切线P A ,PB ,切点为A ,B . 由题意知|OP |=2,OA =1, 则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.故D. 方法二 设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是[0,π3].2.(2014·广东)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等答案 A解析 因为0<k <9,所以两条曲线都表示双曲线.双曲线x 225-y 29-k =1的实半轴长为5,虚半轴长为9-k ,焦距为225+(9-k )=234-k ,离心率为34-k 5.双曲线x 225-k -y 29=1的实半轴长为25-k ,虚半轴长为3,焦距为2(25-k )+9=234-k ,离心率为34-k25-k,故两曲线只有焦距相等.故选A.3.若椭圆x 2m +y 2n =1(m >0,n >0)与曲线x 2+y 2=|m -n |无交点,则椭圆的离心率e 的取值范围是( ) A.⎝⎛⎭⎫32,1 B.⎝⎛⎭⎫0,32 C.⎝⎛⎭⎫22,1 D.⎝⎛⎭⎫0,22解析 由于m 、n 可互换而不影响,可令m >n ,则⎩⎪⎨⎪⎧x 2m +y 2n =1,x 2+y 2=m -n ,则x 2=2m ·n -m 2n -m ,若两曲线无交点,则x 2<0,即m <2n ,则e = m -nm< m -m 2m =22, 又∵0<e <1,∴0<e <22. 4.已知点F 1、F 2是椭圆x 2+2y 2=2的左、右两个焦点,点P 是该椭圆上的一个动点,那么|PF→1+PF →2|的最小值是()A .0B .1C .2D .2 2 答案 C解析 设P (x 0,y 0),则PF →1=(-1-x 0,-y 0), PF →2=(1-x 0,-y 0).∴PF →1+PF →2=(-2x 0,-2y 0),∴|PF →1+PF →2|=4x 20+4y 20=22-2y 20+y 20 =2-y 20+2,∵点P 在椭圆上,∴0≤y 20≤1.∴当y 20=1时,|PF →1+PF →2|取最小值为2.5.(2014·课标全国Ⅰ)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |等于( ) A.72 B.52 C .3 D .2 答案 C解析 ∵FP →=4FQ →,∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′, 设l 与x 轴的交点为A ,则|AF |=4, ∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C.6.(2014·陕西)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为答案 x 2+(y -1)2=1解析 圆C 的圆心为(0,1),半径为1,标准方程为x 2+(y -1)2=1.7.一直线过点P ⎝⎛⎭⎫-3,-32,且被圆x 2+y 2=25截得的弦长为8,则此弦所在的直线方程为________.答案 x +3=0或3x +4y +15=0解析 ①当斜率k 不存在时,过点P 的直线方程为x =-3, 代入x 2+y 2=25,得y 1=4,y 2=-4. 所以弦长为|y 1-y 2|=8,符合题意.②当斜率k 存在时,设所求直线方程为y +32=k (x +3),即kx -y +3k -32=0.由已知,弦心距|OM |=52-42=3, 所以|k ·0-0+3k -32|k 2+1=3,解得k =-34,所以此直线方程为y +32=-34(x +3),即3x +4y +15=0.所以所求直线方程为x +3=0或3x +4y +15=0.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2. 整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 向其一条渐近线作垂线,垂足为M ,已知∠MFO=30°(O 为坐标原点),则该双曲线的离心率为________. 答案 2解析 由已知得点F 的坐标为(c,0)(c =a 2+b 2), 其中一条渐近线方程为bx -ay =0,则|MF |=bca 2+b 2=b , 由∠MFO =30°可得|MF ||OF |=b c =cos 30°=32,所以c 2-a 2c =32,所以e =ca=2.10.(2014·浙江)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 答案52解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x .由⎩⎪⎨⎪⎧ y =b a x ,x -3y +m =0得A (am 3b -a ,bm3b -a),由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0得B (-am a +3b ,bm a +3b),所以AB 的中点C 坐标为(a 2m 9b 2-a 2,3b 2m 9b 2-a 2).设直线l :x -3y +m =0(m ≠0), 因为|P A |=|PB |,所以PC ⊥l , 所以k PC =-3,化简得a 2=4b 2. 在双曲线中,c 2=a 2+b 2=5b 2, 所以e =c a =52.。

2019-2020学年高中毕业班第二次统测数学(理科)答案(1)

2019-2020学年高中毕业班第二次统测数学(理科)答案(1)

2020届高中毕业班第二次统一检测题理科数学参考答案及评分标准一、选择题13. 2- 14. 1-或4- 15. 316. 68π 三、解答题(17)(本小题满分10分)解:(1)由sin sin sin sin b B a C a A c C +=+及正弦定理可得222b ac a c +=+ (2分) 由余弦定理可得222221cos 222a cb b ac b B ac ac +-+-=== (4分)又因为()0,B π∈,所以3B π= (6分)(2)因为11sin 2224ABC S ac B a ∆==⨯= (8分) 所以1a =. (9分) 又因为1,3a c B π===,所以ABC ∆是等边三角形,所以3C π=(12分)(18)(本小题满分12分) (1)由频率分布直方图可得:()()12160.290.1120.80.6826P X <<=+⨯=> (1分) ()()10180.040.290.110.0320.940.9544P X <<=+++⨯=< (2分)()()8200.0050.040.290.110.030.01520.980.9744P X <<=+++++⨯=< (3分)由上述可知:符合①,不符合②③,故该生产线需要检修. (5分) (2)由(1)知()47220.9450P X μσμσ-<<+==所以从该生产线加工的产品中任意抽取一件次品的概率为30.0650=且32,50Y B ⎛⎫⎪⎝⎭:, (7分)所以()24722090502500P Y ⎛⎫=== ⎪⎝⎭()124732821411=505025001250P Y C ==⨯= ()2392502500P Y ⎛⎫===⎪⎝⎭ (10分) 分布列如下Y1 2P 22092500 2822500925009301225002500250025EY =⨯+⨯+⨯= (或3325025EY nP ==⨯=) (12分) (19)(本小题满分12分)(1)证明:连接AC 交BD 于G ,则G 是AC 的中点,连接EG , (1分) 则EG 是PAC ∆的中位线,所以//PA EG , (2分) 有因为,PA EDB EG EDB ⊄⊂面面,所以//PA 平面EDB (4分) (2)法一:如图以D 为原点,,,DA DC DP u u u r u u u r u u u r方向分别为x 轴,y 轴,z 轴正半轴建立空间直角坐标系。

2020年高考数学(理)二轮专题学与练 13 立体几何中的向量方法(高考押题)(解析版)

2020年高考数学(理)二轮专题学与练 13 立体几何中的向量方法(高考押题)(解析版)

高考押题专练1.在三棱柱ABC ­A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32 B.22 C.104D.64【解析】如图,建立空间直角坐标系,易求点D ⎝⎛⎭⎫32,12,1.平面AA 1C 1C 的一个法向量是n =(1,0,0), 所以cos 〈n ,AD →〉=322=64,则sin α=64. 【答案】D2.在三棱锥P ­ABC 中,侧面P AC 与底面ABC 均是等腰直角三角形.O 是斜边AC 的中点,平面P AC ⊥平面ABC ,且AC =4,设θ是二面角P ­AB ­C 的大小,则sin θ=( )A.23B.53C.63D.73【解析】连接PO ,过O 作OD ⊥AB ,连接PD (如图).因为平面P AC ⊥平面ABC ,PO ⊥AC , 所以PO ⊥平面ABC ,PO ⊥AB .又OD ⊥AB .从而AB ⊥平面POD ,PD ⊥AB ,所以∠PDO 为二面角P ­AB ­C 的平面角,即θ=∠PDO . 由题设,OD =12BC =12×22=2,OP =2,所以PD =PO 2+OD 2= 6. 故sin θ=sin ∠PDO =PO PD =26=63.【答案】C3.如图所示,在正方体AC 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.【解析】连接BD ,⎩⎪⎨⎪⎧AC ⊥BD AC ⊥BB 1⇒AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面AD 1,则β=∠EDF ,cos(α-β)=cos ⎝⎛⎭⎫π2-∠EDF =sin ∠EDF =66. 【答案】664.如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =CC 1=2,AC =23,m 是AC 的中点,则异面直线CB 1与C 1M 所成角的余弦值为________.【解析】在直三棱柱ABC ­A 1B 1C 1中,AB =BC =CC 1=2,AC =23,M 是AC 的中点, 所以BM ⊥AC ,BM =4-3=1.以M 为原点,MA 为x 轴,MB 为y 轴,过M 作AC 的垂线为z 轴,建立空间直角坐标系,则C (-3,0,0),B 1(0,1,2),C 1(-3,0,2),M (0,0,0),所以CB 1→=(3,1,2),MC 1→=(-3,0,2),设异面直线CB 1与C 1M 所成角为θ, 则cos θ=|CB 1→·MC 1→||CB 1→|·|MC 1→|=18·7=1428.所以异面直线CB 1与C 1M 所成角的余弦值为1428. 【答案】14285.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ;(2)求二面角C ­BE ­D 的余弦值的大小.【解析】设AD =DE =2AB =2a ,以AC 、AB 所在的直线分别作为x 轴、z 轴,以过点A 在平面ACD 上作出以AC 垂直的直线作为y 轴,建立如图所示的坐标系,A (0,0,0),C (2a ,0,0),B (0,0,a ),D (a ,3a ,0),E (a ,3a ,2a ).因为F 为CD 的中点,所以F ⎝⎛⎭⎫32a ,3a 2,0.(1)【证明】AF →=⎝⎛⎭⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a ,0,-a ),所以AF →=12(BE →+BC →),AF ⊄平面BCE ,所以AF ∥平面BCE .[来源:学科网](2)设平面BCE 的法向量m =(x ,y ,z ),则⎩⎨⎧m ·BE →=0,m ·BC →=0,即⎩⎨⎧x +3y +z =0,2x -z =0,不妨令x =1可得m =(1,-3,2).设平面BDE 的法向量n =(x 0,y 0,z 0),则⎩⎨⎧n ·BE →=0,n ·BD →=0,即⎩⎨⎧x 0+3y 0+z 0=0,x 0+3y 0-z 0=0.令x 0=3可得n =(3,-1,0). 于是cos 〈m ,n 〉=m ·n |m |×|n |=64.故二面角C ­BE ­D 的余弦值为64. 6.如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中∠BAE =∠GAD =45°,AB =2AD =2,∠BAD =60°.(1)求证:BD ⊥平面ADG ;(2)求直线GB 与平面AEFG 所成角的正弦值.(1)【证明】在△BAD 中,因为AB =2AD =2,∠BAD =60°. 由余弦定理,BD 2=AD 2+AB 2-2AB ·AD cos 60°,BD =3, 因为AB 2=AD 2+DB 2,所以AD ⊥DB ,在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD ,所以GD ⊥DB , 又AD ∩GD =D ,所以BD ⊥平面ADG .(2)【解析】如图以D 为原点建立空间直角坐标系D ­xyz ,因为∠BAE =∠GAD =45°,AB =2AD =2,所以A (1,0,0),B (0,3,0),E (0,3,2),G (0,0,1),AE →=(-1,3,2),AG →=(-1,0,1),GB →=(0,3,-1). 设平面AEFG 的法向量n =(x ,y ,z ),⎩⎨⎧n ·AE →=-x +3y +2z =0,n ·AG →=-x +z =0,令x =1,得y =-33,z =1,所以n =⎝⎛⎭⎫1,-33,1. 设直线GB 和平面AEFG 的夹角为θ, 所以sin θ=|cos 〈GB →,n 〉|=⎪⎪⎪⎪⎪⎪GB →·n |GB →|·|n |=217, 所以直线GB 与平面AEFG 所成角的正弦值为217. 7.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成角的大小为45°时,求AE 的长度. (1)【证明】因为四边形ABCD 是菱形,所以BD ⊥AC . 因为AE ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥AE .又AC ⊂平面ACFE ,AE ⊂平面ACFE ,AC ∩AE =A , 所以BD ⊥平面ACFE .[来源:](2)【解析】以O 为原点,以OA ,OB 所在直线为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系,则B (0,3,0),D (0,-3,0),F (-1,0,3).设AE =a ,则E (1,0,a ),所以OF →=(-1,0,3),DB →=(0,23,0),EB →=(-1,3,-a ),设平面BDE 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·DB →=0,n ·EB →=0,即⎩⎨⎧23y =0,-x +3y -az =0.令z =1,得n =(-a ,0,1),所以cos 〈n ,OF →〉=n ·OF→|n ||OF →|=a +310 a 2+1 .因为直线FO 与平面BED 所成角的大小为45°, 所以a +310 a 2+1=22,解得a =2或a =-12(舍), 所以|AE |=2.8.如图,在三棱锥A ­BCD 中,∠ABC =∠BCD =∠CDA =90°,AC =63,BC =CD =6,点E 在平面BCD 内,EC =BD ,EC ⊥BD .(1)求证:AE ⊥平面BCDE ;(2)在棱AC 上,是否存在点G ,使得二面角C ­EG ­D 的余弦值为105?若存在点G ,求出CGGA的值,若不存在,说明理由.(1)【证明】因为△BCD 是等腰直角三角形,CO ⊥BD ,所以CO =12BD .又EC =BD ,所以点O 是BD 和CE 的中点.因为EC ⊥BD ,所以四边形BCDE 是正方形.则CD ⊥ED ,又CD ⊥AD ,AD ∩ED =D , 所以CD ⊥平面ADE ,CD ⊥AE . 同理BC ⊥AE ,BC ∩CD =C , 所以AE ⊥平面BCDE .(2)【解析】由(1)的证明过程知四边形BCDE 为正方形,建立如图所示的坐标系,则E (0,0,0),D (0,6,0),A (0,0,6),B (6,0,0),C (6,6,0).假设在棱AC 上存在点G ,使得二面角C ­EG ­D 的余弦值为105, 设CGGA=t (t >0),G (x ,y ,z ), 由CG →=tGA →可得G ⎝⎛⎭⎫61+t ,61+t ,6t1+t ,则ED →=(0,6,0),EG →=⎝⎛⎭⎫61+t ,61+t ,6t 1+t .易知平面CEG 的一个法向量为DB →=(6,-6,0). 设平面DEG 的一个法向量为n =(x 0,y 0,z 0), 则⎩⎨⎧n ·ED →=0,n ·EG →=0,即⎩⎪⎨⎪⎧6y 0=0,61+tx 0+61+t y 0+6t1+t z 0=0. 令x 0=1得z 0=-1t ,n =⎝⎛⎭⎫1,0,-1t , 所以DB →·n |DB →|·|n |=105,662·1+1t 2=105,解得t =2.故存在点G (2,2,4),使得二面角C ­EG ­D 的余弦值为105,此时CG GA=2. 9.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成的角的余弦值大小. 【解析】(1)【证明】∵四边形ABCD 是菱形,∴BD ⊥AC . ∵AE ⊥平面ABCD ,BD ⊂平面ABCD , ∴BD ⊥AE .∵AC ∩AE =A ,∴BD ⊥平面ACFE .(2)以O 为原点,OA →,OB →的方向为x ,y 轴正方向,过O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系O -xyz ,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·OB →=0n ·OE →=0,即⎩⎨⎧3y =0x +2z =0,令z =1,则n =(-2,0,1),由题意得sin45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22,解得a =3或-13.由a >0,得a =3,OF →=(-1,0,3),BE →=(1,-3,2), cos 〈OF →,BE →〉=-1+610×8=54,故异面直线OF 与BE 所成的角的余弦值为54.10.如图所示,已知正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,点D 为AC 的中点,点E 在线段AA 1上.(1)当AE EA 1=12时,求证:DE ⊥BC 1;(2)是否存在点E ,使二面角D ­BE ­A 等于60°?若存在,求AE 的长;若不存在,请说明理由. 【解析】(1)【证明】连接DC 1,因为ABC -A 1B 1C 1为正三棱柱,所以△ABC 为正三角形. 又因为D 为AC 的中点, 所以BD ⊥AC .又平面ABC ⊥平面ACC 1A 1,所以BD ⊥平面ACC 1A 1. 所以BD ⊥DE .因为AE EA 1=12,AB =2,AA 1=3, 所以AE =33,AD =1. 所以在Rt △ADE 中,∠ADE =30°. 在Rt △DCC 1中,∠C 1DC =60°.所以∠EDC 1=90°,即ED ⊥DC 1,DC 1∩BD =D . 所以DE ⊥平面BDC 1, 又因为BC 1⊂平面BDC 1, 所以ED ⊥BC 1.(2)假设存在点E 满足条件,设AE =h .取A 1C 1的中点D 1,连接DD 1,则DD 1⊥平面ABC , 所以DD 1⊥AD ,DD 1⊥BD .如图,分别以DA ,DB ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),E (1,0,h ).所以DB →=(0,3,0),DE →=(1,0,h ),AB →=(-1,3,0),AE →=(0,0,h ). 设平面DBE 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎨⎧n 1·DB →=0,n 1·DE →=0,即⎩⎨⎧3y 1=0,x 1+hz 1=0.令z 1=1,得n 1=(-h,0,1).同理,设平面ABE 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎨⎧n 2·AB →=0n 2·AE →=0,即⎩⎨⎧-x 2+3y 2=0hz 2=0,得n 2=(3,1,0). 所以|cos 〈n 1,n 2〉|=|-3h |h 2+1×2=cos 60°=12.解得h =22<3,故存在点E 满足条件. 当AE =22时,二面角D ­BE ­A 等于60°. 11.已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:B 1F ⊥平面AEF .【证明】以A 为原点,AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4),B 1F →=(-2,2,-4),EF →=(2,-2,-2), B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, ∴B 1F →⊥EF →,B 1F ⊥EF ,B 1F →·AF →=(-2)×2+2×2+(-4)×0=0, ∴B 1F →⊥AF →,∴B 1F ⊥AF . ∵AF ∩EF =F ,∴B 1F ⊥平面AEF .12.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ; (2)求证:平面C 1E 1F ⊥平面CEF .【证明】以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎫1,12,2.(1)设平面C 1E 1F 的法向量为n =(x ,y ,z ). 因为C 1E 1→=⎝⎛⎭⎫1,-12,0, FC 1→=(-1,0,1),所以⎩⎨⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x -12y =0,-x +z =0,令x =1,得n =(1,2,1). 因为CE →=(1,-1,1), n ·CE →=1-2+1=0,所以CE →⊥n .又因为CE ⊄平面C 1E 1F ,所以CE ∥平面C 1E 1F . (2)设平面EFC 的法向量为m =(a ,b ,c ), 由EF →=(0,1,0),FC →=(-1,0,-1),所以⎩⎨⎧m ·EF →=0,m ·FC →=0,即⎩⎪⎨⎪⎧b =0,-a -c =0.令a =-1,得m =(-1,0,1).因为m ·n =1×(-1)+2×0+1×1=-1+1=0, 所以平面C 1E 1F ⊥平面CEF .13.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ).设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎨⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .14.设a 1=2i -j +k ,a 2=i +3j -2k ,a 3=-2i +j -3k ,a 4=3i +2j +5k ,试问是否存在实数λ、μ、v 使a 4=λa 1+μa 2+v a 3成立?如果存在,算出λ、μ、v 的值,如果不存在,请给出证明.【解析】假设a 4=λa 1+μa 2+v a 3成立.∵a 1=(2,-1,1),a 2=(1,3,-2),a 3=(-2,1,-3),a 4=(3,2,5), ∴(2λ+μ-2v ,-λ+3μ+v ,λ-2μ-3v )=(3,2,5), ∴⎩⎪⎨⎪⎧2λ+μ-2v =3,-λ+3μ+v =2,λ-2μ-3v =5,解之得⎩⎪⎨⎪⎧λ=-2,μ=1,v =-3.故有a 4=-2a 1+a 2-3a 3.15.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标. 【解析】(1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2), 所以cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12,所以sin 〈AB →,AC →〉=32,所以以AB →,AC →为边的平行四边形的面积: S =2×12|AB →||AC →|sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ), 由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0,解得⎩⎪⎨⎪⎧x =1,y =1,z =1或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1.所以a =(1,1,1)或a =(-1,-1,-1).16.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →; (3)EG 的长.【解析】设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c ,(1)EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a ) =12a 2-12a ·c =14. (2)EF →·DC →=12(c -a )·(b -c )=12(b ·c -a ·b -c 2+a ·c )=-14. (3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22.17.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,∠BCF =90°,AD =3,BE =3,CF =4,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A ­EF ­C 的大小为60°?【解析】因为平面ABCD ⊥平面BEFC ,平面ABCD ∩平面BEFC =BC ,DC ⊂平面ABCD ,且DC ⊥BC ,所以DC ⊥平面BEFC .以点C 为坐标原点,分别以CB ,CF ,CD 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系C ­xyz .设AB =a ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,3,0),F (0,4,0),D (0,0,a ). (1)证明:因为AE →=(0,3,-a ),CB →=(3,0,0),CF →=(0,4,0),CD →=(0,0,a ),所以CB →·CD →=0,CB →·CF →=0,又CD ∩CF =C ,所以CB ⊥平面CDF ,即CB →为平面CDF 的一个法向量. 又CB →·AE →=0,所以CB ⊥AE ,又AE ⊄平面CDF , 所以AE ∥平面DCF .(2)设n =(x ,y ,z )与平面AEF 垂直, AE →=(0,3,-a ),EF →=(-3,1,0), 由⎩⎪⎨⎪⎧n ·EF →=0n ·AE →=0,得⎩⎨⎧-3x +y =03y -az =0,取x =1,则n =⎝⎛⎭⎫1,3,33a . BA ⊥平面BEFC ,BA →=(0,0,a ), 由|cos 〈n ,BA →〉|=|BA →·n ||BA →|·|n |=33a 4+27a 2=12,得a =92.所以当AB =92时,二面角A ­EF ­C 的大小为60°.18.如图所示多面体ABCDEF ,其底面ABCD 为矩形,且AB =23,BC =2,四边形BDEF 为平行四边形,点F 在底面ABCD 内的投影恰好是BC 的中点.(1)已知G 为线段FC 的中点,证明:BG ∥平面AEF ;(2)若二面角F ­BD ­C 的大小为π3,求直线AE 与平面BDEF 所成角的正弦值.【解析】(1)证明:如图,连接AC 交BD 于H ,连接GH ,则GH 为△ACF 的中位线, 所以GH ∥AF .因为GH ⊄平面AEF ,AF ⊂平面AEF ,所以GH ∥平面AEF . 又BD ∥EF ,BD ⊄平面AEF ,EF ⊂平面AEF ,所以BD ∥平面AEF .连接DG ,因为BD ∩GH =H ,BD ⊂平面BDG ,GH ⊂平面BDG ,所以平面BDG ∥平面AEF ,因为BG ⊂平面BDG ,所以BG ∥平面AEF .(2)取BC 的中点O ,AD 的中点M ,连接OF ,OM ,则OF ⊥平面ABCD ,OM ⊥BC ,以O 为坐标原点,OC ,OM ,OF 所在的直线分别为x ,y ,z 轴建立空间直角坐标系,则O (0,0,0),B (-1,0,0),C (1,0,0),D (1,23,0),所以BD →=(2,23,0).设OF =a (a >0),则F (0,0,a ),所以BF →=(1,0,a ).设平面BDEF 的法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·BD →=0n 1·BF →=0,得⎩⎨⎧x +3y =0x +az =0,令x =-3a ,得n 1=(-3a ,a ,3). 易得平面ABCD 的一个法向量为n 2=(0,0,1).因为二面角F ­BD ­C 的大小为π3,所以|cos 〈n 1,n 2〉|=|n 1·n 2|n 1||n 2||=34a 2+3=12,解得a =32.设直线AE 与平面BDEF 所成的角为θ,因为AE →=AD →+DE →=BC →+BF →=(2,0,0)+⎝⎛⎭⎫1,0,32=⎝⎛⎭⎫3,0,32, 且n 1=⎝⎛⎭⎫-332,32,3,所以sin θ=|cos 〈AE →,n 1〉|=|AE →·n 1|AE →|·|n 1||=33352×23=55.故直线AE 与平面BDEF 所成角的正弦值为55. 19.如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明:直线BC ∥平面OEF .(2)在线段DF 上是否存在一点M ,使得二面角M ­OE ­D 的余弦值是31313?若不存在,请说明理由;若存在,请求出M 点所在的位置.【解析】(1)证明:依题意,在平面ADFC 中,∠CAO =∠FOD =60°,所以AC ∥OF , 又OF ⊂平面OEF ,所以AC ∥平面OEF . 在平面ABED 中,∠BAO =∠EOD =60°,所以AB ∥OE ,又OE ⊂平面OEF ,所以AB ∥平面OEF .因为AB ∩AC =A ,AB ⊄平面OEF ,AC ⊄平面OEF ,AB ⊂平面ABC ,AC ⊂平面ABC ,所以平面ABC ∥平面OEF .又BC ⊂平面ABC ,所以直线BC ∥平面OEF .(2)设OD 的中点为G ,如图,连接GE ,GF ,由题意可得GE ,GD ,GF 两两垂直,以G 为坐标原点,GE ,GD ,GF 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,易知,O (0,-1,0),E (3,0,0),F (0,0,3),D (0,1,0).假设在线段DF 上存在一点M ,使得二面角M ­OE ­D 的余弦值是31313,设DM →=λDF →,λ∈[0,1],则M (0,1-λ,3λ),OM →=(0,2-λ,3λ).设n =(x ,y ,z )为平面MOE 的法向量,由⎩⎪⎨⎪⎧n ·OM →=0n ·OE →=0得⎩⎨⎧(2-λ)·y +3λ·z =03x +y =0,可取x =-λ,则y =3λ,z =λ-2,n =(-λ,3λ,λ-2).又平面OED 的一个法向量m =(0,0,1), 所以31313=|cos 〈m ,n 〉|=|λ-2|4λ2+(λ-2)2,所以(2λ-1)(λ+1)=0,又λ∈[0,1],所以λ=12.所以存在满足条件的点M ,M 为DF 的中点.20.如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 的中点,将△ADE沿AE 折到△APE 的位置.(1)证明:AE ⊥PB ;(2)当四棱锥P ­ABCE 的体积最大时,求二面角A ­PE ­C 的余弦值.【解析】(1)证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O , 因为AB ∥CE ,AB =CE ,所以四边形ABCE 为平行四边形, 所以AE =BC =AD =DE ,所以△ADE 为等边三角形, 所以在等腰梯形ABCD 中,∠C =∠ADE =π3,BD ⊥BC ,所以BD ⊥AE .翻折后可得OP ⊥AE ,OB ⊥AE ,又OP ⊂平面POB ,OB ⊂平面POB ,OP ∩OB =O ,所以AE ⊥平面POB , 因为PB ⊂平面POB ,所以AE ⊥PB .(2)当四棱锥P ­ABCE 的体积最大时,平面P AE ⊥平面ABCE .又平面P AE ∩平面ABCE =AE ,PO ⊂平面P AE ,PO ⊥AE ,所以OP ⊥平面ABCE .以O 为坐标原点,OE 所在的直线为x 轴,OB 所在的直线为y 轴,OP 所在的直线为z 轴,建立空间直角坐标系,由题意得,P ⎝⎛⎭⎫0,0,32,E ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫1,32,0,所以PE →=⎝⎛⎭⎫12,0,-32,EC →=⎝⎛⎭⎫12,32,0,设平面PCE 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧PE →·n 1=0EC →·n 1=0,即⎩⎨⎧12x -32z =012x +32y =0,设x =3,则y =-1,z =1,所以n 1=(3,-1,1)为平面PCE 的一个法向量,易知平面P AE 的一个法向量为n 2=(0,1,0), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-11×5=-55.5由图知所求二面角A­PE­C为钝角,所以二面角A­PE­C的余弦值为-5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档