MDSC技术原理
MDSC的免疫调节机制及其在免疫治疗中的作用
MDSC的免疫调节机制及其在免疫治疗中的作用2017-06-15 08:05:36 中国医学创新2017年13期李诗+杨志刚【摘要】肿瘤微环境由通过癌细胞和周围基质细胞之间复杂的相互作用产生的免疫抑制性网络组成。
这种环境的一个关键组成部分是髓源性抑制细胞(MDSC),代表未成熟骨髓细胞的异质群体,在分化的不同阶段停滞,并响应各种肿瘤因子而扩增。
此外,这些细胞获得抑制表型,表达抗炎细胞因子和活性氧和氮物质,并抑制T细胞免疫应答。
MDSC在调节免疫效应细胞和恶性细胞之间的相互作用中发挥不同的作用,其数量增加与肿瘤发生进展,不良预后和免疫治疗策略有效性降低相关。
了解MDSC的免疫调节功能及机制有助于探求有效的免疫治疗策略。
【关键词】髓源抑制性细胞;肿瘤;免疫调节;免疫治疗【Abstract】Tumor microenvironment is composed of immunosuppressive networks produced by complex interactions between cancer cells and surrounding stromal cells.A key component of the environment is myeloid-derived suppressor cells(MDSCs),heterogeneous populations representing immature bone marrow cells,stagnating at different stages of differentiation,and amplifying in response to various tumor factors.In addition,these cells obtained inhibition of phenotype,expressed anti-inflammatory cytokines,reactive oxygen species and nitrogen substances,and inhibited the T cell immune response.MDSC plays a different role in regulating the interaction between immune effector cells and malignant cells,and the expansion of MDSCs is associated with tumor progression, poor prognosis and reduced efficacy of immunotherapy strategies.Understanding the immune function and mechanism of MDSC can help to explore effective immunotherapy strategies.【Key words】 Myeloid-derived suppressor cells; Tumor;Immunomodulation; ImmunotherapyFirst-authors address:Affiliated Hospital of Guangdong Medical University,Zhanjiang 524003,Chinadoi:10.3969/j.issn.1674-4985.2017.13.0401 MDSC的生物学功能及表型特征髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)作为专业术语在2007年第一次被用于描述癌症患者体内富含的骨髓来源的非淋巴细胞免疫抑制细胞群体。
MDSCs简介
MDSCs该词条缺少词条分类,补充相关内容帮助词条更加完善!立刻编辑>>定义:骨髓来源的抑制性细胞(Myeloid-derivedsuppressorcells ,MDSCs )是骨髓来源的一群异质性细胞,是树突状细胞(dendriticcells ,DCs )、巨噬细胞和(或)粒细胞的前体,中文名骨髓来源的抑制性细胞 英文简称 MDSCs 外文名 Myeloid-derived suppressor cells 作 用 抑制免疫细胞应答 目录•1MDSCs 的定义 •MDSCs 的生物特征 •MDSCs 扩增的机制 •MDSCs 活化的机制 • MDSCs 靶向治疗1MDSCs 的定义编辑骨髓来源的抑制性细胞(Myeloid-derived suppressor cells,MDSCs)是骨髓来源的一群异质性细胞,是树突状细胞(dendritic cells,DCs)、巨噬细胞和(或)粒细胞的前体,具有显著抑制免疫细胞应答的能力。
MDSCs的生物特征20多年前在癌症病人中最先发现并描述骨髓来源的抑制性细胞。
然而这群细胞在免疫系统中的重要作用最近才被认识到,大量的证据证明它们在癌症和其他疾病中具有负向调控免疫应答的功能。
MDSCs通过多种途径和机制发挥免疫抑制功能,可通过分泌Arg-1、iNOS、ROS抑制淋巴细胞,还可以诱导Treg 产生间接抑制机体免疫应答等。
MDSCs来源于骨髓祖细胞和未成熟髓细胞(immature myeloid cells,IMCs)。
正常情况下,是树突状细胞(DC)、巨噬细胞和粒细胞的前体,能迅速地分化为成熟的粒细胞、DCs 和巨噬细胞,并进入相应的器官、组织,发挥正常免疫功能,IMCs占外周血单个核细胞的0.5%左右。
在肿瘤、感染、炎症、败血症、外科损伤等其它病理条件下,受细胞因子的作用,这些髓系来源的前体细胞成熟受阻,因而停留在各个分化阶段,成为具有免疫抑制功能的MDSCs。
循环和肿瘤组织内中性粒细胞促肿瘤机制_
当接收到细菌、真 菌 等 病 原 体 强 信 号 时, 骨 髓 中 的 中
性粒细胞会快速 动 员、 释 放, 吞 噬 作 用 显 著 增 加, 通 过 脱
颗粒作用产生活性 氧 及 溶 菌 酶 等 细 胞 毒 性 物 质, 杀 伤 病 原
体 [8]。有趣的是,在血 液 循 环 中, 中 性 粒 细 胞 经 过 核 膜 裂
化成熟阶段产生巨 大 差 别 [2]。 正 常 功 能 的 中 性 粒 细 胞 通 常
新的治疗手段。
1 中性粒细胞的起源及生理功能
是在细菌、真菌病原 体 强 信 号 的 刺 激 下 大 量 动 员, 并 在 成
中性粒细胞是人 体 内 最 丰 富 的 白 细 胞 种 类, 约 占 白 细
胞总数的 50%~70% ,在免疫应 答 的 启 动 中 发 挥 着 重 要 作
i
a
l
-me
s
enchyma
lt
r
ans
i
t
i
on t
he
r
eby agg
r
ava
t
i
ng
t
umo
rp
r
og
r
e
s
s
i
on Neu
t
r
oph
i
l
sp
l
ayanimpo
r
t
an
tr
o
l
ei
nt
hede
ve
l
opmen
to
ft
umo
r
i
s
i
s Th
i
s
gene
a
r
1用MDSC测量聚合物,玻璃及陶瓷的热导率
用MDSC测量聚合物、玻璃及陶瓷的热导率环境中。
(如图1)热流由欧姆定律的热平衡方程获得。
dQ/dt=dT/R其中:Q─热量t─时间T─温度R─电热片热阻[4, 5]一些学者如Chiu[6], Sircar[7], Keating[8], Duswalt[9]都曾用热流型DSC测量诸如热塑性固体,弹性体,热塑性熔体,烟火等绝缘材料的热导率。
在他们所做的实验中,试件被放在DSC样品池中,与样品平台接触,热电偶测量试件一面的温度和流入热量。
一已知温度的散热片与试件的另一面接触。
由测知的热流值和DSC样品池与散热片之间的温度差,按以下公式计算热导率:dQ/dt=-KA(dT/dx) (1)其中:Q─热量,Jt─时间(sec.)K─热导率(w/℃m)T─温度(℃)x─试件厚度(m)A─试件横截面积(m2)这种热导率测量实施尚好,但要求对市售的DSC样品池做修正,且需十分小心注意实验细节操作。
最近在传统DSC基础上推出的MDSC就免除了这些限制。
MDSC是TA 仪器公司的专利技术,它是在线性升温基础上叠加一正弦振荡控温程式,产生类似图2 (实线)所示的振荡升温程式。
这一振荡升温程式所得的实验结果经数学转换,不仅可得到传统DSC给出的"总热流"值,而且将这一总热流值接转换为可逆(与热容有关)和不可逆(动力学)两部份。
由是对材料具有独特的分析能力:l分离可逆与不可逆过程[10]。
l增进了相近反应和叠合转变的解析能力[11,12]。
l增加细微转变的测量灵敏度[13]。
l直接测量比热值。
其中直接测量比热值的功能在本研究中尤为重要,因为比热与热导率是相关性质。
MDSC使用者们发现,当实验条件使样品整体温度达到最均匀时可获得最佳比热值。
这种最佳实验条件包括:小而薄的试样,较长的振荡周期,及将试样完全密封在高热导率的样品盘中[14]。
若实验条件不符合上述要求,测得的比热值将偏低,这可能是由于材料热导率使试样难以达到均匀温度条件。
MDSC的免疫调节机制及其在免疫治疗中的作用
MDSC的免疫调节机制及其在免疫治疗中的作用作者:李诗杨志刚来源:《中国医学创新》2017年第13期【摘要】肿瘤微环境由通过癌细胞和周围基质细胞之间复杂的相互作用产生的免疫抑制性网络组成。
这种环境的一个关键组成部分是髓源性抑制细胞(MDSC),代表未成熟骨髓细胞的异质群体,在分化的不同阶段停滞,并响应各种肿瘤因子而扩增。
此外,这些细胞获得抑制表型,表达抗炎细胞因子和活性氧和氮物质,并抑制T细胞免疫应答。
MDSC在调节免疫效应细胞和恶性细胞之间的相互作用中发挥不同的作用,其数量增加与肿瘤发生进展,不良预后和免疫治疗策略有效性降低相关。
了解MDSC的免疫调节功能及机制有助于探求有效的免疫治疗策略。
【关键词】髓源抑制性细胞;肿瘤;免疫调节;免疫治疗【Abstract】 Tumor microenvironment is composed of immunosuppressive networks produced by complex interactions between cancer cells and surrounding stromal cells.A key component of the environment is myeloid-derived suppressor cells(MDSCs),heterogeneous populations representing immature bone marrow cells,stagnating at different stages of differentiation,and amplifying in response to various tumor factors.In addition,these cells obtained inhibition of phenotype,expressed anti-inflammatory cytokines,reactive oxygen species and nitrogen substances,and inhibited the T cell immune response.MDSC plays a different role in regulating the interaction between immune effector cells and malignant cells,and the expansion of MDSCs is associated with tumor progression, poor prognosis and reduced efficacy of immunotherapy strategies.Understanding the immune function and mechanism of MDSC can help to explore effective immunotherapy strategies.【Key words】 Myeloid-derived suppressor cells; Tumor; Immunomodulation;ImmunotherapyFirst-author’s address:Affiliated Hospital of Guangdong Medical University,Zhanjiang 524003,Chinadoi:10.3969/j.issn.1674-4985.2017.13.0401 MDSC的生物学功能及表型特征髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)作为专业术语在2007年第一次被用于描述癌症患者体内富含的骨髓来源的非淋巴细胞免疫抑制细胞群体。
MDSC在食管部品和免疫抑制微环境形成中的作用的开题报告
MDSC在食管部品和免疫抑制微环境形成中的作用
的开题报告
标题:MDSC在食管部品和免疫抑制微环境形成中的作用
背景和意义:
食管癌是一种常见的恶性肿瘤,世界范围内每年确诊率急速上升。
在食管癌的治疗中,免疫抑制微环境是一个严重的障碍,特别是当使用
免疫检查点抑制剂时。
MDSC是免疫抑制中的一种类型,它可以影响免疫细胞的功能,从而导致免疫抑制。
研究目的:
本研究旨在探讨MDSC在食管部品和免疫抑制微环境形成中的作用,以便我们能更好地理解免疫治疗在食管癌治疗中的作用机制。
研究内容:
1. 食管癌患者中MDSC的分布和数目。
2. 探讨MDSC如何干扰免疫抑制,以及如何促进组织生长和侵袭。
3. 研究抑制MDSC的新型药物,以及这些药物如何影响免疫抑制微
环境。
预期结果:
本研究预计将有助于我们更好地了解MDSC在食管癌治疗中的作用,以便我们能够开发出更有效的免疫治疗策略。
此外,本研究还可以为其
他类型的癌症免疫治疗提供有关MDSC的有用信息。
研究方法:
通过病例对照研究和分子生物学技术,本研究将收集和分析与食管
癌患者和MDSC有关的临床和实验数据。
时间安排:
该研究预计需要12个月的时间来完成,其中包括六个月的数据收集和六个月的分析和撰写报告。
实验111 采用MDSC法准确测量半结晶聚合物的初始结晶度
置于
制好样的半结晶聚合 物的样品皿
盖上炉盖
Q200DSC 测量池中
大 学 通 用 化 学 实 验 技 术
10/20
2. 仪器
根据实验条件 按照仪器的操作步骤
输入样品质量信息 及相关实验参数
采 用 聚 合 物 法
实验
实验 实验 线
的 准 初 确 始 测 结 量 晶 半 度 结 晶
在线答疑: 在线答疑: lhfdlx@
传统标准型DSC是测量试样和参比样的热流速率差随 传统标准型DSC是测量试样和参比样的热流速率差随 DSC 试样升温、 降温或恒温的变化, 试样升温 、 降温或恒温的变化 , 产生的热流速率差信号 mW(mJ/min)为单位对温度或时间作图 对于标准型DSC, 为单位对温度或时间作图。 以mW(mJ/min)为单位对温度或时间作图。对于标准型DSC,
采 用 聚
学习用MDSC MDSC的方法正确分析半结晶聚合物的初 (3) 学习用MDSC的方法正确分析半结晶聚合物的初 始结晶度。 始结晶度。
合 物 法 的 准 初 确 始 测 结 量 晶 半 度 结 晶
在线答疑: 在线答疑: lhfdlx@
hhe@
111.2 实验原理
大 学 通 用 化 学 实 验 技 术
8/20
长,否则需要降低升温速率,从而增加实验时间; 否则需要降低升温速率,从而增加实验时间;
采 用 聚
(2)温度调制振幅要适当,以便获得较高的灵敏度; 温度调制振幅要适当,以便获得较高的灵敏度; 平均升温速率的选择原则是尽可能快以提高效率, (3) 平均升温速率的选择原则是尽可能快以提高效率 , 但必须足够慢, 但必须足够慢,以便在感兴趣的转变附近有足够的调制周 期数(最少4 期数(最少4个)。
MDSC在骨髓增生异常综合征中免疫抑制作用的研究的开题报告
MDSC在骨髓增生异常综合征中免疫抑制作用的研
究的开题报告
题目:MDSC在骨髓增生异常综合征中免疫抑制作用的研究
背景:骨髓增生异常综合征(MDS)是一组临床异质性及染色体异
常性的造血干细胞疾病,患者存在多种骨髓减少症状,包括贫血、出血、感染等。
目前常见的治疗方法包括化疗、造血干细胞移植等,但是治疗
效果不如人意且容易复发。
因此,探究MDS的发病机制以及寻找新的治疗靶点十分必要。
研究目的:研究MDSC在MDS患者骨髓中的分布情况及免疫抑制作用,探究MDSC在MDS中的作用机制,为MDS的治疗提供新的方向。
研究方法:选取MDS患者及正常对照组的骨髓进行采集和分离,通过流式细胞术分离出骨髓中的MDSC,分析其在MDS患者体内的分布情况。
采用CCK-8实验,检测MDSC对T细胞和NK细胞的免疫抑制作用。
接着通过Western blot技术检测MDSC在MDS发病过程中的信号通路变化。
预期结果:预计发现MDSC在MDS患者骨髓中分布增多,对T细胞和NK细胞的免疫抑制作用增强。
同时预期发现MDSC通过向NF-κB信
号通路靠近,实现免疫抑制作用。
意义:本研究将为深入探究MDS的发病机制提供基础。
同时,结果还将有助于设计新的MDS治疗方案,并发展新的免疫抑制治疗方法。
髓系来源的抑制细胞(MDSCs):肿瘤治疗的潜在靶点
髓系来源的抑制细胞(MDSCs):肿瘤治疗的潜在靶点髓系来源的抑制细胞(MDSCs)起源于造血干细胞(HSCs),是骨髓生成改变的结果。
在稳态下,骨髓生成是一个维持宿主髓系细胞稳定供应的结构化过程。
骨髓来源的造血干细胞可分化为未成熟的髓样细胞(IMCs),最终分化为单核细胞(进一步分化为巨噬细胞和树突状细胞(DC))和粒细胞(包括中性粒细胞、嗜碱性粒细胞和嗜酸性粒细胞)。
各种病理情况,如感染或组织损伤,可启动紧急造血,以消除对宿主的潜在威胁。
在这些情况下,骨髓细胞迅速从BM中动员,并且响应于诸如toll样受体(TLR)配体,损伤相关分子模式(DAMP)和病原体相关分子模式(PAMP)的致病信号而被激活,导致吞噬作用和促炎细胞因子的上调。
这种短暂的骨髓生成在刺激消除后终止,然后髓系细胞的稳态得以恢复。
然而,一些病理情况,如慢性炎症、癌症和自身免疫性疾病,可能会导致异常的、持续的骨髓生成,以防止宿主因未解决的炎症而造成广泛的组织损伤。
在这些情况下,持续的炎症信号使IMCs偏离正常分化,并在病理上被激活。
与生理分化的髓样细胞相比,这些间充质干细胞具有明显的特点,如表型和形态不成熟,吞噬功能相对较弱,以及抗炎和免疫抑制功能。
根据其功能和髓样来源,这种异质细胞群体被称为现在统称为髓系来源的抑制细胞(MDSCs)(图1)。
越来越多的证据表明,MDSCs是恶性肿瘤的基本特征之一,也是肿瘤治疗的潜在靶点。
图1. MDSCs的形成过程肿瘤MDSCs研究简史对MDSCs在癌症中的研究可以追溯到20世纪初,当时Sonnenfeld等人研究发现,在恶性血液病患者中,髓外造血和中性粒细胞增多伴随着肿瘤的进展。
20世纪60年代中期,A-280荷瘤小鼠出现病理性类白血病反应,髓系细胞浸润增多,受肿瘤衍生因子刺激,与肿瘤生长呈正相关。
此外,在炎症和造血过程中也发现了这些髓样细胞,如新生小鼠的脾脏和接受全淋巴照射的成年小鼠的脾脏。
UC恶性转化中MDSC的诱导作用机制研究的开题报告
UC恶性转化中MDSC的诱导作用机制研究的开题报告一、研究背景UC(结肠炎)是一种以慢性、周期性、反复发作的结肠黏膜和粘膜下层炎症为主要表现的疾病。
UC生物学的特征是肠道上皮细胞与免疫细胞间的相互作用受到了破坏,包括免疫细胞失控、肠道上皮细胞的炎症造成的损伤和增殖等。
最终导致UC以及后续的CRC(结肠直肠癌)的发生。
MDSCs(髓系衍生抑制性细胞)是一类免疫抑制性的细胞,已经证实可以在包括UC和CRC在内的多种类型的炎症和癌症过程中产生。
介导了T细胞的免疫耐受性与免疫治疗的耐受性。
由于MDSCs在UC的恶性转化过程中起着重要作用,因此通过研究MDSC诱导UC恶性转化的机制,有助于深入了解UC恶性转化的病理生理学和分子机制,并为设计新的免疫治疗方案提供基础。
二、研究内容本研究旨在探究MDSCs是否参与UC恶性转化,并进一步研究MDSCs在UC恶性转化过程中的诱导作用机制。
具体实验设计包括以下几个方面:1.文献调研通过文献调研深入了解MDSCs与UC恶性转化之间的关系,搜集相关的研究数据和资料。
2.实验材料的准备使用UC模型文献建立人UC模型,选择UC模型中的MDSCs,制备试验所需的细胞和试剂。
3.细胞培养将制备好的MDSCs和UC细胞进行共同培养,并记录其相关的生化指标和细胞增殖情况。
4.诱导MDSCs转化UC的实验基于前期文献所调研到的机制和特性,利用不同细胞激活制剂,进行MDSCs诱导UC转化的实验,并监测在实验条件下MDSCs诱导UC的特点和指标变化。
5.数据分析对实验结果进行统计分析,以确定在MDSCs诱导UC转化过程中的关键介导机制。
三、预期结果预期结果是可以发现MDSCs参与UC恶性转化过程中的重要作用和机制,并进一步探寻MDSCs诱导UC转化的介导因素和能力。
对UC的治疗提供科学依据,并为UC恶性转化新的预防和治疗方法提供基础。
骨髓源的抑制性细胞(MDSC)
骨髓源的抑制性细胞(MDSC)R&DSystems提供癌症研究领域包括信号转导、细胞凋亡、DNA 损伤与修复、血管生成和细胞粘附等在内的众多产品。
细胞增殖在从发育到修复损伤组织等许多生理过程中起重要作用。
多种机制参与细胞增殖的严谨调节。
例如,原癌基因的活性可通过肿瘤抑制因子的作用来平衡;DNA损伤与修复的存在降低了基因突变和细胞恶性转化的风险;免疫系统可以识别并清除癌症细胞。
稳态调控机制的持续性被破坏必然导致细胞增殖过度从而形成癌症。
骨髓来源的抑制性细胞(MDSC)是一个异质群体,包含早期骨髓组细胞、幼稚粒细胞、巨噬细胞和不同分化阶段的树突状细胞。
这些细胞引起了极大的兴趣,因为它们既能够抑制自然杀伤细胞和NKT 细胞的细胞毒性,又能够抑制CD4+和CD8+细胞介导的适应性免疫反应。
尽管NK细胞抑制的机制仍不是很清楚,但多个通路负责了MDSC介导的T细胞抑制,包括:1)精氨酸酶1/ARG1的产生和2)一氧化氮合成酶2(NOS2)的上调。
ARG1和NOS2参与L-精氨酸代谢,一起或单独阻断了T细胞CD3 zeta链的翻译、抑制T细胞增殖,并促进T细胞凋亡。
此外,MDSC分泌了免疫抑制细胞因子,并诱导调节性T细胞发育。
在小鼠中,MDSC被广泛定义为CD11b+Gr-1/Ly-6G+细胞,而Ly-6G和Ly-6C的相对表达水平确定了两个特异的亚群。
人MDSC普遍表达Siglec-3/CD33,并缺乏谱系标志物和HLA-DR,但CD14和CD15的异质表达表明多个亚群的存在。
MDSC是由促炎症细胞因子诱导的,在感染和炎症病理条件下的数量增多。
它们在荷瘤小鼠的血液、骨髓和二级淋巴器官中积累,而它们在肿瘤微环境中的存在表明在促进肿瘤相关免疫抑制上起作用。
尽管MDSC显然可作为防止肿瘤发展的靶标,但还需要进一步鉴定,以确定如何鉴定MDSC、它们如何积累、通过哪种有效机制可抑制它们。
R&D Systems提供了广泛的试剂,可用于MDSC的鉴定和功能分析。
MDSC技术原理
MODULATED DSC TM THEORYModulated DSC (MDSC) can be easily understood by comparing it to its well-established precursor, differential scanning calorimetry (DSC). Conventional DSC is an analytical technique in which the difference in heat flow between a sample and an inert reference is measured as a function of time and temperature as both the sample and reference are subjected to a controlled environment of time, temperature, atmosphere and pressure. The schematic of a typical heat flux DSC cell is shown in Figure 1. In this design, a metallic disk (made of constantan alloy) is the primary means of heat transfer to and from the sample and reference. The sample, contained in a metal pan, and the reference (an empty pan) sit on raised platforms formed in the constantan disk. As heat is transferred through the disk, the differential heat flow to the sample and reference is measured by area thermocouples formed by the junction of the constantan disk and chromel wafers which cover the underside of the platforms. Chromel and alumel wires attached to the chromel wafers form thermocouples which directly measure sample temperature. Purge gas is admitted to the sample chamber through an orifice in the heating block wall midway between the raised platforms. The gas is preheated by circulation through the block before entering the sample chamber. The result is a uniform, stable thermal environment which assures excellent baseline flatness and exceptional sensitivity (signal-to-noise). In conventional DSC, the temperature regime seen by the sample and reference is linear heating or cooling at rates from as fast as 200°C/minute to rates as slow as 0°C/minute (isothermal).Figure 1: HEAT FLUX DSC SCHEMATICTA-211B(Constantan)Modulated DSC is a technique which also measures the difference in heat flow between a sample and an inert reference as a function of time and temperature. In addition, the same heat flux cell design is used. However, in MDSC a different heating profile (temperature regime) is applied to the sample and reference. Specifically, a sinusoidal modulation (oscillation) is overlaid on the conventional linear heating ramp to yield a heating profile (solid line in Figure 2) in which the average sample temperature still continuously increases with time but not in a linear fashion.The net effect of imposing this more complex heating profile on the sample is the same as if two experiments were run simultaneously on the material - one experiment at the traditional linear (average) heating rate [dashed line in Figure 2]and one at a sinusoidal (instantaneous) heating rate [dashed-dot line in Figure 2]. The actual rates for these two simultaneous experiments is dependent on three operator-selectable variables:·Underlying heating rate (range 0-10°C/minute; see next page for recommended conditions)·Period of modulation (range 10-100 seconds; see next page for recommended conditions)·Temperature amplitude of modulation (range ±0.01-10°C; see next page for recommended conditions)Figure 2: MDSC HEATING PROFILE108.0108.5109.0109.5110.0106107108109110111112-15-10-5051015Temperature (°C)M o d u l a t e d T e m p e r a t u r e (°C )[ ] D e r i v . M o d . T e m p . (°C /m i n )13.44o C/min109.8o C110.3oC107.6o C108.1o C108.6o CIn the example shown in Figure 2, the underlying heating rate is 1°C/minute, the modulation period is 30 seconds, and the modulation amplitude is ±1°C. This set of conditions results in a sinusoidal heating profile where the instantaneous heating rate varies between +13.44°C/minute and -11.54°C/minute (i.e., cooling occurs during a portion of themodulation). Although the actual sample temperature changes in a sinusoidal fashion during this process (Figure 3),the analyzed signals are ultimately plotted versus the linear average temperature which is calculated from the average value as measured by the sample thermocouple (essentially the dashed line in Figure 2). [Note: As in conventional DSC, MDSC can also be run in a cooling rather than heating mode.]Experimental ParametersThe key to obtaining accurate and reproducible results is the same in both conventional and modulated DSC - the material being studied must be able to follow the temperature profile imposed on it. Obviously, in modulated DSC,since the material is being subjected to a more complex temperature profile, the operator must be careful in choosing experimental parameters. The following summary provides good guidelines for general modulated DSC studies [Note:The optimum conditions for a specific determination (e.g., qualitative evaluation of weak glass transitions) may be slightly different than those summarized here.]Figure 3: THE EFFECT OF AMPLITUDE ON DISTORTION OF THE HEAT FLOW SINE WA VE135140145150155160Temperature (°C)M o d u l a t e d H e a t F l o w (m W )+3.5o C Amplitude 5o C/min RampNo DistortionDistortion40 Seconds PeriodSample Size : 10-20 mg Contact between sample material and DSC pan should be optimized by crimping. Flat,thin samples are best.Underlying Heating Rate : 1-5°C/minute Slower heating rates than conventional DSC are preferred to allow sufficient modulations during a thermal event. At least 4-5 modulations are required.Temperature Amplitude of Modulation : ±0.5 to 2°C The larger the amplitude, the larger the heat flow re-sponse since the instantaneous heating rate is directly related to amplitude.dT dt= β + A T ω cos (ωt)where:dT/dt = instantaneous heating rate (o C/minute)β = underlying heating rate (o C/minute)A T = modulation amplitude (o C)ω = angular frequency = 2π/modulation period (min -1)t = time (minutes)Therefore, larger amplitudes increase sensitivity for transitions such as the glass transition. However, too large an amplitude may result in a situation where the material cannot follow the modulation. The easiest way to check if the amplitude is acceptable is examination of the raw modulated heat flow signal. Distortion from the expected sine wave (Figure 3) indicates the amplitude is too large.The range of instantaneous heating rates seen by the sample during modulation can be controlled by adjusting amplitude so that· only heating occurs,· both heating and cooling occur (as seen previously in Figure 2), or · the heating rate goes to 0 (isothermal) at one extreme of modulation.This latter situation is particularly useful when evaluating crystalline perfection/melting processes and the table in Figure 4 provides a guide for selecting an amplitude which yields this situation.+5.5o C Amplitude-200-10001002003004005000.100.301.003.0010.00Temperature (°C)A m p l i t u d e (+/-°C )0.050.070.200.500.702.005.007.00Figure 4: MAXIMUM 'HEAT ONLY' AMPLITUDE (o C)Heating Rate (°C/min)0.10.20.512510100.0030.0050.0130.0270.0530.1330.265200.0050.0110.0270.0530.1060.2650.531300.0080.0160.0400.0800.1590.3980.796400.0110.0210.0530.1060.2120.531 1.062500.0130.0270.0660.1330.2650.663 1.327600.0160.0320.0800.1590.3180.796 1.592700.0190.0370.0930.1860.3720.929 1.858800.0210.0420.1060.2120.425 1.062 2.123900.0240.0480.1190.2390.478 1.194 2.3891000.0270.0530.1330.2650.531 1.327 2.654T amp = H r *(P 2π * 60)where:T amp = maximum temperature amplitude for "heat only" (o C)Hr = Average heating rate (o C/min)P = period (seconds)60 = converts seconds to minutesP e r i o d (s e c )100 sec90 sec 80 sec 70 sec 60 sec 50 sec 40 sec 30 sec20 sec10 sec periodFigure 5: THE EFFECT OF PERIOD ON THE MAXIMUM TEMPERATURE AMPLITUDE(with LNCA as cooling source)Period of Modulation : 40-100 seconds The period and amplitude of modulation are interrelated terms.Figure 5 shows the range of acceptable amplitudes for a given period (with an LNCA as the cooling source).Obviously as the period of modulation increases, the material has longer to respond and the range of accept-able amplitudes increases. Note, however, that smaller amplitudes are still preferred even with longer periods for covering a reasonable temperaure range.The most sensitive measure of acceptable period is determination of heat capacity. Figure 6 (for example)illustrates the heat capacity for polyethylene as a function of period. It s easily seen that periods below 40seconds in this case can result in significant errors. Remember, this range of acceptable period is affected by sample mass and heat transfer characteristics and hence may vary somewhat from material to material.Purge Gas : Helium Purge gas conductivity influences heat transfer in DSC. Although nitrogen is acceptable for most MDSC evaluations, helium is preferred.Heat Flow ComponentsA simplified equation which describes the resultant heat flow at any point in a DSC or MDSC experiment is:dQ dt= Cp β + f(T,t)[1]where:dQdt= total heat flow Cp = heat capacity β = heating ratef(T,t)= heat flow from kinetic (absolute temperature and time dependent) processesAs can be seen from the equation, the total heat flow (dQ/dt) which is the only heat flow measured by conventional DSC, is composed of two parts. One part is a function of the sample s heat capacity and rate of temperature change,and the other is a function of absolute temperature and time.Figure 6: SPECIFIC HEAT CAPACITY OF POLYETHYLENE AS A FUNCTION OF PERIODModulated DSC determines the total, as well as these two individual heat flow components, to provide increased understanding of complex transitions in materials. MDSC is able to do this because it effectively uses two heating rates - the average heating rate which provides total heat flow information and a sinusoidal heating rate which provides heat capacity information from the heat flow that responds to the rate of temperature change.The individual heat flow components are often referred to by different names as listed below. In the remainder of this paper they will be called heat capacity component (Cpβ) and kinetic component (f(T,t)).Heat Capacity Component Kinetic ComponentReversing heat flow Nonreversing heat flowIn-phase component Out-of-phase componentHeating rate-related component Time dependent componentMDSC Heat Flow SignalsAll MDSC heat flow signals are calculated from three measured signals - time, modulated heat flow, and modulated heating rate (the derivative of modulated temperature). Figure 7 shows these signals for amorphous polyethyleneterephthalate (PET). Since these raw signals are visually complex, they need to be deconvoluted to obtain the more standard DSC heat flow curves. (Note: Although deconvolution is required to obtain the final quantitative results provided by MDSC, the raw signals, particularly the modulated heat flow, can still be used to obtain valuable insights regarding what is occurring in the material.) Hence, it is generally recommended that the raw modulated heat flow and modulated heating rate signals be stored as part of the MDSC data file.Figure 7:MDSC RAW SIGNALSCRYSTALLIZATION DURING MELTINGMODULATED HEAT FLOWGLASS TRANSITION COLD CRYSTALLIZATIONNOTE: ALL TRANSITIONS OFINTEREST ARE CONTAINED INMDSC RAW DATA SIGNALS MELTINGMODULATED HEATING RATEThe heat capacity(Cp) of the sample is continuously determined by dividing the modulated heat flow amplitude by the modulated heating rate amplitude. The validity of this approach can be proven by considering the well-accepted procedures for determining Cp in conventional DSC. In conventional DSC, Cp is generally calculated (equation [2]) from the difference in heat flow between a blank (empty pan) run and a sample run under identical conditions including heating rate. Curves 1 and 2 in Figure 8 show typical curves for sapphire.Cp = KCp x Heat Flow (Sample) - Heat Flow (Blank)Heating Rate[2]where KCp = calibration constantCp can also be calculated, however, by comparing the difference in heat flow between two runs on an identical sample at two different heating rates. Curve 3 in Figure 8 represents the same sapphire sample as curve 2 run at a higher heating rate. In this case:Cp = KCp x Heat Flow at Heat Rate 2 - Heat Flow at Heat Rate 1Heating Rate 2 - Heating Rate 1[3]Figure 8: DSC Cp MEASUREMENT12In MDSC, the heating rate changes during the modulation cycle. In Figure 9 the MDSC conditions are chosen so that the modulated heating rate varies between two heating rates which are essentially the same as those chosen for curves 2 and 3 in Figure 8. If the resultant modulated heat flow curve from Figure 9 is then overlaid on curves 2 and 3 in Figure 8, it is easily seen (Figure 10) that taking the difference in modulated heat flow and dividing it by the difference in modulated heating rate is equivalent to the conventional DSC approach using two different heating rates and equation [3].The heat capacity (reversing) component of total heat flow is calculated by converting the measured heat capacity into heat flow using equation [1] where β is the average (underlying) heating rate used in the experiment. Reversing Heat Flow = (- Cp) x Average Heating Rate [Note: -Cp is used in the actual calculation so that endotherms and exotherms occur in the proper downward and upward directions respectively. See Figure 11.]3Figure 9: MDSC Cp MEASUREMENTFigure 10: DSC & MDSC Cp MEASUREMENTS0.00.5-1.0-1.5Standard DSC Cp MeasurementModulated Heat Flow used for Cp MeasurementM o d u l a t e d H e a t F l o w * (m W )3o C/minute6o C/minuteFigure 11: REVERSING HEAT FLOW FROM MDSC RAW SIGNALSFigure 12: TOTAL HEAT FLOW FROM MDSC RAW SIGNALSHEAT CAPACITYREVERSING HEAT FLOWTOTAL HEAT FLOW IS CALCULATED AS THE A VERAGE VALUE OF THE MODULATED HEAT FLOW SIGNALThe total heat flow in MDSC is calculated as the average value of the raw modulated heat flow signal (Figure 12) using a Fourier Transformation analysis. This approach is used to continuously calculate the average value rather than using only the two points per cycle (maximum and minimum). Use of the Fourier Transformation provides much higher resolution because up to 5 points per second can be calculated for both the average and amplitude values. Note: As Figure 12 shows, the raw modulated heat flow is not corrected for temperature by the current software and hence transitions appear to occur lower in temperature in this raw signal than in the calculated signals. This difference is a result of the time delay associated with real-time deconvolution (about 1.5 cycles).The kinetic (nonreversing) component of the total heat flow is determined as the arithmetic difference between the total heat flow and the heat capacity component. Figure 13 shows the three heat flows for quenched PET.Figure 13: QUENCH COOLED PET - MODULATED DSCNONREVERSINGTOTALREVERSINGPhase Lag ConsiderationsThere is one additional comment germane to the calculation of the modulated signals, namely the presence and importance of correction for phase lag. The general heat flow equation [1] used to describe modulated DSC assumes that in regions where the sample material has no time dependent (kinetic) phenomena, dQ/dt = Cpβ and that the sinusoidal modulated heat flow signal and the sinusoidal modulated heating rate are perfectly in-phase. That is, the sample responds instantaneously and directly tracks the sinusoidal heating profile. In reality, this assumption is not valid. As shown in Figure 14, there is actually a phase shift (lag) between the two measured raw signals due to non-instantaneous heat transfer between the DSC cell and the sample. In regions where no thermal events are occurring in the sample, this lag is due entirely to instrumental effects. In regions where the sample exhibits thermal events, this lag is a combination of instrumental and sample effects. As a result, the heat capacity measured in modulated DSC is actually the complex heat capacity (Cp*) which can be split into an in-phase, real component Cp' (usually considered the thermodynamic heat capacity) and an out-of-phase, imaginary component Cp". To obtain a quantitative measure of Cp", and hence Cp', it is first necessary to compensate (calibrate) for the instrumental lag. This is easily accom-plished by selecting baseline areas outside the transition region and adjusting the phase angle to the theoretically expected π/2. [This is equivalent to adjusting the phase lag to 0° since the maximum in endothermic modulated heat flow should occur at the minimum in modulated heating rate (See Figure 9). Thus, when these two signals are perfectly in-phase, the sine waves differ by 90° (π/2).] Any remaining lag is then attributable to the sample and can be used to calculate Cp' and Cp". Figure 15 shows that the relative magnitude of Cp" at the glass transition for amor-phous PET is <1%. Figure 16 shows , furthermore, that Cp" becomes significant for this material only in the melt. Correction for Cp" is hence currently only of interest academically. However, future work with suitable models may enable additional information about the material s structure and behavior to be obtained from quantifying Cp" particu-larly in the melt.43444546-11357911-3.5-3.0-2.5-2.0-1.5-1.0-0.5Time (min)D e r i v . M o d u l a t e d T e m p (°C /m i n )M o d u l a t e d H e a t F l o w (m W )Figure 14: PHASE LAGFigure 15: HEAT FLOW PHASE CONTRIBUTIONQuenched PET, ±1.0°C/80 sec, 3°C/min, He purgeC'= in-phase Cp C"= out-of-phase Cp C*= Complex CpC'/C"= tan 1.475 = 9.89C*= C'[1 + (C"/C')2]0.5= C'[1 + 0.010]0.5= C'[1.005][ ]Phase Lag44.57minDeriv. Modulated T emp44.66minModulated Heat FlowFigure 16: PHASE-CORRECTED HEAT FLOW SIGNALSQUENCHED PETT A-211BTA Instruments S.A.R.L.Paris, FranceTelephone: 33-01-30489460Fax: 33-01-30489451TA Instruments, Inc.109 Lukens Drive New Castle, DE 19720Telephone: (302) 427-4000Fax: (302) 427-4001For more information or to place an order, contact:TA Instruments, Ltd.Leatherhead, EnglandTelephone: 44-1-372-360363Fax: 44-1-372-360135TA Instruments N.V./S.A.Gent, BelgiumTelephone: 32-9-220-79-89Fax: 32-9-220-83-21TA Instruments GmbH Alzenau, GermanyTelephone: 49-6023-30044Fax: 49-6023-30823TA Instruments Japan K.K.Tokyo, JapanTelephone: 813-3450-0981Fax: 813-3450-1322Internet: Thermal Analysis & RheologyA S UBSIDIARY OF W ATERS C ORPORATION。
髓源性抑制细胞与移植免疫耐受研究进展
第11卷 第4期2020年7月Vol. 11 No.4Jul. 2020器官移植Organ Transplantation器官移植是目前治疗终末期器官功能衰竭的最有效手段,但急性排斥反应仍然是器官移植术后的主要并发症,也是导致慢性排斥反应和移植器官功能丧失的最重要的危险因素。
免疫抑制剂的使用可降低器官移植急性排斥反应的发生率,但存在较多的不良反应,如感染,肿瘤以及肝、肾毒性损害。
因此,人们致力于寻找一种在不使用免疫抑制剂的情况下保证移植物长期有功能存活的有效方法。
髓源性抑制细胞(myeloid-derived suppressor cell ,MDSC )是骨髓来源的一类异质性细胞群,最早在肿瘤中被发现,能够抑制T 细胞的功能,具有免疫抑制作用[1]。
MDSC 作为一种负向免疫调节细胞,能够诱导器官移植特异性免疫耐受[2]。
随着对其功能及作用机制的不断认识,MDSC 在诱导实验动物移植免疫耐受的实验中已取得一定效果,这为解决移植排斥反应打开了另一扇新的大门。
·移植前沿·髓源性抑制细胞与移植免疫耐受研究进展袁顺 王志维【摘要】 髓源性抑制细胞(MDSC )是骨髓来源的一类异质性细胞群,最早在肿瘤中被发现,能够抑制T 细胞的功能,具有免疫抑制作用。
近年来越来越多的研究表明,在器官移植领域,MDSC 对宿主的免疫功能也具有调节作用,能够诱导特异性免疫耐受,对移植器官发挥保护作用,有望成为临床上治疗移植排斥反应的新靶点。
本文就MDSC 的生物学特性和MDSC 诱导免疫耐受的机制进行综述。
【关键词】 髓源性抑制细胞;免疫耐受;器官移植;排斥反应;移植免疫;调节性T 细胞(Treg );诱导型一氧化氮合酶 ;程序性细胞死亡受体-1(PD-1)【中图分类号】R617,R329.4 【文献标志码】A 【文章编号】1674-7445(2020)04-0002-08【Abstract 】 Myeloid-derived suppressor cell (MDSC) is a type of heterogeneous cell derived from bone marrow, which was first found in tumor. MDSC can inhibit the function of T cell with immunosuppressive effect. In recent years, more and more studies have shown that in the field of organ transplantation, MDSC can also regulate the host's immune function, induce specific immune tolerance, and play a protective role in transplant organs, which is expected to become a new target in clinical treatment of transplant rejection. The biological characteristics of MDSC and the mechanism of immune tolerance induced by MDSC were reviewed in this paper.【Key words 】 Myeloid-derived suppressor cell; Immune tolerance; Organ transplantation; Rejection; Transplantation immunity; Regulatory T cell (Treg); Inducible nitric oxide synthase; Programmed cell death protein-1(PD-1)Research progress on myeloid-derived suppressor cell and transplantation immune tolerance Yuan Shun, Wang Zhiwei. Department of Cardiovascular Surgery, People's Hospital of Wuhan University, Wuhan 430060, China DOI: 10.3969/j.issn.1674-7445.2020.04.002基金项目:国家自然科学基金(81570428)作者单位:430060 武汉大学人民医院心血管外科作者简介:袁顺,男,1992年生,硕士,研究方向为心脏移植,Email :通信作者:王志维,男,1962年生,博士,主任医师,博士研究生导师,研究方向为心脏移植、主动脉夹层发生机制及外科治疗,·436·第11卷器官移植1 MDSC 的来源及表型MDSC 是由未成熟骨髓细胞组成的异质性细胞群,可分化为单核细胞、树突状细胞以及中性粒细胞。
DSC_MDSC测定物质比热容的比较_鲁红
用实验步骤(1)所 确 定 的 实 验 条 件 分 别 测 试 氯 化钾、苯甲酸和去离子水的比热容(固体 样 品 用 Tz- ero Aluminum Pans 、液体样品用 Tzero Aluminum Hermetic Pans样 品 盘 )。
3 测 量 结Biblioteka 果 与 分 析MDSC 的操作原理与 标 准 型 DSC 不 同,MDSC 同时使用两个升温 速 率 的 叠 加:一 个 是 线 性 升 温 速
率,提供与标准 DSC 相 同 的 信 息;另 一 个 是 调 制 升 温速率(周期性变 化 的 正 弦 速 率),可 进 行 试 样 热 容
的同时测 量。 概 括 而 言 就 是 由 调 制 升 温 速 率 的 变
2011年第3期 分 析 仪 器
71
式中,Cps、Cpr 分别 为 试 样 和 标 准 物 的 比 热 容; ms 和mr 分别为试样和标准物的质量;h和H 分别为 试 样 和 标 准 物 经 基 线 改 正 后 的 热 流 值 (图 1)。
在操作过程中 要 求:(1)样 品 盘 和 参 比 盘 的 质 量尽可能一致;(2)对 仪 器 所 给 的 恒 温 下 热 流 对 时 间的基线斜率进行调 整,使 等 温 基 线 Ⅰ 和 Ⅱ 处 于 同 一条直线上,即:纵 轴 几 乎 相 同 的 位 置;(3)使 曲 线 Ⅲ,Ⅳ和Ⅴ 这 三 条 曲 线 在 起 始 温 度 Ti 和 终 止 温 度 Tf处 一 致 。 2.1.2 MDSC 方法测量比热容的原理[3]
70
分 析 仪 器 2011年第3期
DSC、MDSC 测定物质比热容的比较
鲁 红1 冯 大 春2 杨 继 佑1
(1.仲恺农业工程学院 化学化工学院,广州,510225;2.仲恺农业工程学院 计算机科学与工程学院,广州,510225)
mdsc细胞的分类及功能
mdsc细胞的分类及功能以下是 6 条关于“mdsc 细胞的分类及功能”的内容:1. 嘿,mdsc 细胞原来有这么多种分类呢!就像不同口味的糖果一样,各有特点哦!比如粒细胞样 mdsc 细胞,它就像是人体内的“小卫士”,你想想啊,在炎症反应的时候,它就挺身而出,努力工作呢!它能抑制免疫反应,来保护我们的身体。
还有单核细胞样 mdsc 细胞呢,这就好比是战场上的“军师”,能调节免疫平衡,厉害吧!2. 哇塞,mdsc 细胞的功能可真是太重要啦!这就像是一场精彩比赛中的关键角色呀。
它能促进肿瘤生长,这简直太神奇了对不对?就好像它在给肿瘤“加油打气”呢!但同时啊,它居然还能调节免疫系统,这难道不是很奇妙吗?难道你不想详细了解一下它到底是怎么做到的吗?3. 听好了哦,mdsc 细胞的分类可有意思啦!其中有一种可以类比为“沉默的守护者”,它们默默地发挥着作用。
比如它们会参与组织修复呢,就像一个熟练的工匠在修补一件珍贵的物品一样。
你能想象到这种神奇的情景吗,难道不觉得很惊叹吗?4. 哎呀呀,mdsc 细胞的分类里啊,有一种简直就是“免疫平衡的调控大师”呢!它可以通过影响免疫细胞的活性来保持身体的稳定,这是不是超级牛!就像一个精准的天平一样,这边高了就调那边,神奇吧?你难道不好奇它具体是怎么做的吗?5. 嘿呀,mdsc 细胞还分好几种呢!比如说有一种类型的就像“免疫刹车”一样,能减缓免疫反应的速度。
在一些自身免疫性疾病中,它们可是起了大作用呢,就好像在一场混乱中及时出现的“镇定剂”。
想想都觉得很不可思议吧?6. 哇哦,mdsc 细胞可真是又复杂又有趣啊!它们的分类和功能就像是一个神秘的宝藏等待我们去挖掘呢!这些细胞在我们身体的“大舞台”上扮演着各种重要的角色,有时是“保护者”,有时又是“调节者”。
它们的存在对我们的健康至关重要,难道不是吗?所以我们要好好去探索和研究它们呀!。
mdsc流式分选方案
mdsc流式分选方案MDSC流式分选方案MDSC流式分选技术是一种高效、精准、快速的细胞分选技术,可以用于细胞学、免疫学、肿瘤学、干细胞研究等领域。
下面将介绍MDSC流式分选方案的具体步骤和注意事项。
一、实验前准备1.准备细胞样品:需要分选的细胞样品应该是单细胞悬液,细胞密度应该在1×106/mL以上。
2.准备抗体:选择适当的抗体,根据实验需要进行标记。
3.准备流式细胞仪:根据实验需要选择适当的流式细胞仪,保证仪器正常工作。
4.准备分选缓冲液:根据实验需要选择适当的分选缓冲液,保证细胞在分选过程中不受损伤。
二、实验步骤1.样品预处理:将细胞样品进行预处理,如去除细胞碎片、红细胞等。
2.抗体标记:将选择的抗体标记在细胞表面,根据实验需要可以选择单标或双标。
3.流式细胞仪设置:根据实验需要设置流式细胞仪参数,如激光波长、光学滤镜等。
4.样品检测:将标记好的细胞样品注入流式细胞仪,进行样品检测,根据实验需要可以选择单通道或多通道检测。
5.分选设置:根据实验需要设置分选参数,如分选速度、分选压力等。
6.分选操作:将检测好的细胞样品进行分选,根据实验需要可以选择正向分选或反向分选。
7.分选后处理:将分选好的细胞样品进行后处理,如洗涤、培养等。
三、注意事项1.细胞样品的处理应该尽量避免对细胞造成损伤,以保证分选效果。
2.抗体的选择应该根据实验需要进行,同时应该保证抗体的质量。
3.流式细胞仪的设置应该根据实验需要进行,保证仪器正常工作。
4.分选缓冲液的选择应该根据实验需要进行,保证细胞在分选过程中不受损伤。
5.分选操作时应该注意操作规范,避免对细胞造成损伤。
6.分选后处理应该根据实验需要进行,保证细胞的生长和发育。
以上是MDSC流式分选方案的具体步骤和注意事项,通过严格的实验操作和注意事项的遵守,可以获得高质量的分选结果,为细胞学、免疫学、肿瘤学、干细胞研究等领域的研究提供有力的支持。
MDSC对免疫系统的抑制机制
d i1 .9 9 ji n 10 —8 X.0 10 .2 o : 3 6 / . s .0 04 4 2 1 . 0 1 0 s 2
MDS C对 免 疫 系统 的 抑 制 机 制
陆文彬 沈成兴 ( 南大 学附属 中大 医院心 内科 , 东 南京 2 00 ) 10 9
属于骨髓 细胞 的一 个亚 类 , 属 于 已经 激 活 的髓 系 而
和补体成 分 C a 5 等都 能够显 著 的诱导 M S D C的 聚集
和激பைடு நூலகம் J 。
2 MD C发 挥 免 疫 抑 制 作 用 的 细 胞 内信 号 S
通 路
21 转 录 因子 (T T 家 族 信 号 途 径 如 上 所 述 . SA )
细胞 , 但是 在脾脏 中这些 细 胞 大 约仅 仅 占很 小 的一 部 分 2 ~4 。在 人 类 , D C通 常 被 定 义 为 % %l M S C 1 一 D 1 细胞 群 体 或 者 更精 确 的说 就 是 表 达 D 4 C 1b 髓 系标记 C 3 D 3但是 缺乏 表 达 于成 熟髓 系 细胞 或 者
M S D C的聚集 受 到 由多 种细胞 如肿瘤 细胞 、 胞等 T细
分 泌 的多种 细胞 因子 的调 节 。这 些细 胞 因子可 以触
未成熟细 胞 ( s的一 种 异质 性群 体 , s 各 种 I ) MC I 在 MC 条件 下 未 能 完 全 分 化 成 成 熟 的 细 胞 即 为 M S 。 D C MS D C缺乏表 达 于 单 核 细 胞 、 噬 细胞 、 C表 面等 巨 D 的特异性 细胞标 志 , 于一群 混 合髓 系细 胞 。在小 属
mds的名词解释
mds的名词解释MDS (Modification Discovery System),整体改进系统的名词解释近年来,信息技术的发展对整个社会带来了翻天覆地的变化,各行各业都在积极探索如何利用技术创新来提升效率、降低成本。
在这个快速发展的背景下,MDS(Modification Discovery System,整体改进系统)成为了一项备受瞩目的技术解决方案。
本文将对MDS进行全面解释,并探讨其在不同领域的应用。
1. MDS的基本概念和核心原理MDS是指通过系统化的方法和工具,对一个系统的改进进行全面管理和管控的一套解决方案。
它可以对现有的工作流程、信息系统、制度等进行全面的分析、改进和推进,从而达到提高效率和降低成本的目的。
MDS的核心原理是系统思维和持续改进。
它通过整合不同层面的资源,如人力、物力、信息等,通过全面的数据分析和问题识别,找出系统中存在的症结所在,并提供具体的改进方案以解决问题。
在实施MDS时,持续改进也是一个重要的原则。
通过周期性的系统分析和改进方案的实施,可以提升整个系统的运行效率,并保持其持续改进的能力。
2. MDS在制造行业的应用在制造行业中,MDS起到了至关重要的作用。
通过对各个生产环节进行全面的分析和改进,制造企业可以提高生产线的运行效率、降低生产成本,并加强对产品质量的控制。
例如,一家汽车制造企业使用MDS分析生产线上的各个环节,发现某个工序在整个生产过程中耗时较长。
通过进一步分析,发现该环节中存在着一些不必要的步骤和耗时操作。
通过改进工艺流程,优化设备配置,并采用更高效的生产方式,该企业成功将生产时间减少了30%,大大提高了生产效率。
3. MDS在服务行业中的应用除了制造行业,MDS在服务行业中也有着广泛的应用。
以酒店管理为例,通过使用MDS,酒店可以对客房清洁、前台服务等进行系统化的管控和改进。
通过对客房清洁工作的分析,酒店可以发现哪些环节需要改进,如何提高服务效率,避免客户投诉等问题。
mdsc磁珠分选方案
mdsc磁珠分选方案
MDSC磁珠分选是一种基于磁珠技术的细胞或细胞亚群分选方法,主要用于分离、富集或纯化特定细胞群体。
以下是一种常用的MDSC磁珠分选方案:
1. 细胞预处理:将样品中的细胞进行预处理,如红细胞溶解、细胞裂解或细胞培养等,以获得单个细胞悬浮液。
2. 磁珠标记:选择适当的磁珠,将其与目标细胞特异性抗体或其他分子标记物结合。
磁珠通常具有磁性,可以通过外部磁场实现对其的控制。
3. 细胞与磁珠结合:将磁珠与细胞悬浮液混合,使其充分接触和结合。
标记物结合的细胞将与磁珠形成复合物。
4. 磁场应用:将磁珠-细胞复合物置于磁场中,通过磁力使磁珠-细胞复合物沉降至底部或特定位置。
未结合的细胞将保持在液相中。
5. 分离和收集:从磁场中移除磁力,使磁珠-细胞复合物解离。
通过离心或其他手段,将目标细胞从磁珠分离并收集。
6. 细胞后处理:对分离的细胞进行后处理,如洗涤、培养或进一步分析等。
值得注意的是,具体的MDSC磁珠分选方案可能会因实验目的、细胞类型和磁珠选择等因素而有所不同。
因此,在进行MDSC磁珠分
选实验前,应根据具体情况设计和优化实验方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MODULATED DSC TM THEORYModulated DSC (MDSC) can be easily understood by comparing it to its well-established precursor, differential scanning calorimetry (DSC). Conventional DSC is an analytical technique in which the difference in heat flow between a sample and an inert reference is measured as a function of time and temperature as both the sample and reference are subjected to a controlled environment of time, temperature, atmosphere and pressure. The schematic of a typical heat flux DSC cell is shown in Figure 1. In this design, a metallic disk (made of constantan alloy) is the primary means of heat transfer to and from the sample and reference. The sample, contained in a metal pan, and the reference (an empty pan) sit on raised platforms formed in the constantan disk. As heat is transferred through the disk, the differential heat flow to the sample and reference is measured by area thermocouples formed by the junction of the constantan disk and chromel wafers which cover the underside of the platforms. Chromel and alumel wires attached to the chromel wafers form thermocouples which directly measure sample temperature. Purge gas is admitted to the sample chamber through an orifice in the heating block wall midway between the raised platforms. The gas is preheated by circulation through the block before entering the sample chamber. The result is a uniform, stable thermal environment which assures excellent baseline flatness and exceptional sensitivity (signal-to-noise). In conventional DSC, the temperature regime seen by the sample and reference is linear heating or cooling at rates from as fast as 200°C/minute to rates as slow as 0°C/minute (isothermal).Figure 1: HEAT FLUX DSC SCHEMATICTA-211B(Constantan)Modulated DSC is a technique which also measures the difference in heat flow between a sample and an inert reference as a function of time and temperature. In addition, the same heat flux cell design is used. However, in MDSC a different heating profile (temperature regime) is applied to the sample and reference. Specifically, a sinusoidal modulation (oscillation) is overlaid on the conventional linear heating ramp to yield a heating profile (solid line in Figure 2) in which the average sample temperature still continuously increases with time but not in a linear fashion.The net effect of imposing this more complex heating profile on the sample is the same as if two experiments were run simultaneously on the material - one experiment at the traditional linear (average) heating rate [dashed line in Figure 2]and one at a sinusoidal (instantaneous) heating rate [dashed-dot line in Figure 2]. The actual rates for these two simultaneous experiments is dependent on three operator-selectable variables:·Underlying heating rate (range 0-10°C/minute; see next page for recommended conditions)·Period of modulation (range 10-100 seconds; see next page for recommended conditions)·Temperature amplitude of modulation (range ±0.01-10°C; see next page for recommended conditions)Figure 2: MDSC HEATING PROFILE108.0108.5109.0109.5110.0106107108109110111112-15-10-5051015Temperature (°C)M o d u l a t e d T e m p e r a t u r e (°C )[ ] D e r i v . M o d . T e m p . (°C /m i n )13.44o C/min109.8o C110.3oC107.6o C108.1o C108.6o CIn the example shown in Figure 2, the underlying heating rate is 1°C/minute, the modulation period is 30 seconds, and the modulation amplitude is ±1°C. This set of conditions results in a sinusoidal heating profile where the instantaneous heating rate varies between +13.44°C/minute and -11.54°C/minute (i.e., cooling occurs during a portion of themodulation). Although the actual sample temperature changes in a sinusoidal fashion during this process (Figure 3),the analyzed signals are ultimately plotted versus the linear average temperature which is calculated from the average value as measured by the sample thermocouple (essentially the dashed line in Figure 2). [Note: As in conventional DSC, MDSC can also be run in a cooling rather than heating mode.]Experimental ParametersThe key to obtaining accurate and reproducible results is the same in both conventional and modulated DSC - the material being studied must be able to follow the temperature profile imposed on it. Obviously, in modulated DSC,since the material is being subjected to a more complex temperature profile, the operator must be careful in choosing experimental parameters. The following summary provides good guidelines for general modulated DSC studies [Note:The optimum conditions for a specific determination (e.g., qualitative evaluation of weak glass transitions) may be slightly different than those summarized here.]Figure 3: THE EFFECT OF AMPLITUDE ON DISTORTION OF THE HEAT FLOW SINE WA VE135140145150155160Temperature (°C)M o d u l a t e d H e a t F l o w (m W )+3.5o C Amplitude 5o C/min RampNo DistortionDistortion40 Seconds PeriodSample Size : 10-20 mg Contact between sample material and DSC pan should be optimized by crimping. Flat,thin samples are best.Underlying Heating Rate : 1-5°C/minute Slower heating rates than conventional DSC are preferred to allow sufficient modulations during a thermal event. At least 4-5 modulations are required.Temperature Amplitude of Modulation : ±0.5 to 2°C The larger the amplitude, the larger the heat flow re-sponse since the instantaneous heating rate is directly related to amplitude.dT dt= β + A T ω cos (ωt)where:dT/dt = instantaneous heating rate (o C/minute)β = underlying heating rate (o C/minute)A T = modulation amplitude (o C)ω = angular frequency = 2π/modulation period (min -1)t = time (minutes)Therefore, larger amplitudes increase sensitivity for transitions such as the glass transition. However, too large an amplitude may result in a situation where the material cannot follow the modulation. The easiest way to check if the amplitude is acceptable is examination of the raw modulated heat flow signal. Distortion from the expected sine wave (Figure 3) indicates the amplitude is too large.The range of instantaneous heating rates seen by the sample during modulation can be controlled by adjusting amplitude so that· only heating occurs,· both heating and cooling occur (as seen previously in Figure 2), or · the heating rate goes to 0 (isothermal) at one extreme of modulation.This latter situation is particularly useful when evaluating crystalline perfection/melting processes and the table in Figure 4 provides a guide for selecting an amplitude which yields this situation.+5.5o C Amplitude-200-10001002003004005000.100.301.003.0010.00Temperature (°C)A m p l i t u d e (+/-°C )0.050.070.200.500.702.005.007.00Figure 4: MAXIMUM 'HEAT ONLY' AMPLITUDE (o C)Heating Rate (°C/min)0.10.20.512510100.0030.0050.0130.0270.0530.1330.265200.0050.0110.0270.0530.1060.2650.531300.0080.0160.0400.0800.1590.3980.796400.0110.0210.0530.1060.2120.531 1.062500.0130.0270.0660.1330.2650.663 1.327600.0160.0320.0800.1590.3180.796 1.592700.0190.0370.0930.1860.3720.929 1.858800.0210.0420.1060.2120.425 1.062 2.123900.0240.0480.1190.2390.478 1.194 2.3891000.0270.0530.1330.2650.531 1.327 2.654T amp = H r *(P 2π * 60)where:T amp = maximum temperature amplitude for "heat only" (o C)Hr = Average heating rate (o C/min)P = period (seconds)60 = converts seconds to minutesP e r i o d (s e c )100 sec90 sec 80 sec 70 sec 60 sec 50 sec 40 sec 30 sec20 sec10 sec periodFigure 5: THE EFFECT OF PERIOD ON THE MAXIMUM TEMPERATURE AMPLITUDE(with LNCA as cooling source)Period of Modulation : 40-100 seconds The period and amplitude of modulation are interrelated terms.Figure 5 shows the range of acceptable amplitudes for a given period (with an LNCA as the cooling source).Obviously as the period of modulation increases, the material has longer to respond and the range of accept-able amplitudes increases. Note, however, that smaller amplitudes are still preferred even with longer periods for covering a reasonable temperaure range.The most sensitive measure of acceptable period is determination of heat capacity. Figure 6 (for example)illustrates the heat capacity for polyethylene as a function of period. It s easily seen that periods below 40seconds in this case can result in significant errors. Remember, this range of acceptable period is affected by sample mass and heat transfer characteristics and hence may vary somewhat from material to material.Purge Gas : Helium Purge gas conductivity influences heat transfer in DSC. Although nitrogen is acceptable for most MDSC evaluations, helium is preferred.Heat Flow ComponentsA simplified equation which describes the resultant heat flow at any point in a DSC or MDSC experiment is:dQ dt= Cp β + f(T,t)[1]where:dQdt= total heat flow Cp = heat capacity β = heating ratef(T,t)= heat flow from kinetic (absolute temperature and time dependent) processesAs can be seen from the equation, the total heat flow (dQ/dt) which is the only heat flow measured by conventional DSC, is composed of two parts. One part is a function of the sample s heat capacity and rate of temperature change,and the other is a function of absolute temperature and time.Figure 6: SPECIFIC HEAT CAPACITY OF POLYETHYLENE AS A FUNCTION OF PERIODModulated DSC determines the total, as well as these two individual heat flow components, to provide increased understanding of complex transitions in materials. MDSC is able to do this because it effectively uses two heating rates - the average heating rate which provides total heat flow information and a sinusoidal heating rate which provides heat capacity information from the heat flow that responds to the rate of temperature change.The individual heat flow components are often referred to by different names as listed below. In the remainder of this paper they will be called heat capacity component (Cpβ) and kinetic component (f(T,t)).Heat Capacity Component Kinetic ComponentReversing heat flow Nonreversing heat flowIn-phase component Out-of-phase componentHeating rate-related component Time dependent componentMDSC Heat Flow SignalsAll MDSC heat flow signals are calculated from three measured signals - time, modulated heat flow, and modulated heating rate (the derivative of modulated temperature). Figure 7 shows these signals for amorphous polyethyleneterephthalate (PET). Since these raw signals are visually complex, they need to be deconvoluted to obtain the more standard DSC heat flow curves. (Note: Although deconvolution is required to obtain the final quantitative results provided by MDSC, the raw signals, particularly the modulated heat flow, can still be used to obtain valuable insights regarding what is occurring in the material.) Hence, it is generally recommended that the raw modulated heat flow and modulated heating rate signals be stored as part of the MDSC data file.Figure 7:MDSC RAW SIGNALSCRYSTALLIZATION DURING MELTINGMODULATED HEAT FLOWGLASS TRANSITION COLD CRYSTALLIZATIONNOTE: ALL TRANSITIONS OFINTEREST ARE CONTAINED INMDSC RAW DATA SIGNALS MELTINGMODULATED HEATING RATEThe heat capacity(Cp) of the sample is continuously determined by dividing the modulated heat flow amplitude by the modulated heating rate amplitude. The validity of this approach can be proven by considering the well-accepted procedures for determining Cp in conventional DSC. In conventional DSC, Cp is generally calculated (equation [2]) from the difference in heat flow between a blank (empty pan) run and a sample run under identical conditions including heating rate. Curves 1 and 2 in Figure 8 show typical curves for sapphire.Cp = KCp x Heat Flow (Sample) - Heat Flow (Blank)Heating Rate[2]where KCp = calibration constantCp can also be calculated, however, by comparing the difference in heat flow between two runs on an identical sample at two different heating rates. Curve 3 in Figure 8 represents the same sapphire sample as curve 2 run at a higher heating rate. In this case:Cp = KCp x Heat Flow at Heat Rate 2 - Heat Flow at Heat Rate 1Heating Rate 2 - Heating Rate 1[3]Figure 8: DSC Cp MEASUREMENT12In MDSC, the heating rate changes during the modulation cycle. In Figure 9 the MDSC conditions are chosen so that the modulated heating rate varies between two heating rates which are essentially the same as those chosen for curves 2 and 3 in Figure 8. If the resultant modulated heat flow curve from Figure 9 is then overlaid on curves 2 and 3 in Figure 8, it is easily seen (Figure 10) that taking the difference in modulated heat flow and dividing it by the difference in modulated heating rate is equivalent to the conventional DSC approach using two different heating rates and equation [3].The heat capacity (reversing) component of total heat flow is calculated by converting the measured heat capacity into heat flow using equation [1] where β is the average (underlying) heating rate used in the experiment. Reversing Heat Flow = (- Cp) x Average Heating Rate [Note: -Cp is used in the actual calculation so that endotherms and exotherms occur in the proper downward and upward directions respectively. See Figure 11.]3Figure 9: MDSC Cp MEASUREMENTFigure 10: DSC & MDSC Cp MEASUREMENTS0.00.5-1.0-1.5Standard DSC Cp MeasurementModulated Heat Flow used for Cp MeasurementM o d u l a t e d H e a t F l o w * (m W )3o C/minute6o C/minuteFigure 11: REVERSING HEAT FLOW FROM MDSC RAW SIGNALSFigure 12: TOTAL HEAT FLOW FROM MDSC RAW SIGNALSHEAT CAPACITYREVERSING HEAT FLOWTOTAL HEAT FLOW IS CALCULATED AS THE A VERAGE VALUE OF THE MODULATED HEAT FLOW SIGNALThe total heat flow in MDSC is calculated as the average value of the raw modulated heat flow signal (Figure 12) using a Fourier Transformation analysis. This approach is used to continuously calculate the average value rather than using only the two points per cycle (maximum and minimum). Use of the Fourier Transformation provides much higher resolution because up to 5 points per second can be calculated for both the average and amplitude values. Note: As Figure 12 shows, the raw modulated heat flow is not corrected for temperature by the current software and hence transitions appear to occur lower in temperature in this raw signal than in the calculated signals. This difference is a result of the time delay associated with real-time deconvolution (about 1.5 cycles).The kinetic (nonreversing) component of the total heat flow is determined as the arithmetic difference between the total heat flow and the heat capacity component. Figure 13 shows the three heat flows for quenched PET.Figure 13: QUENCH COOLED PET - MODULATED DSCNONREVERSINGTOTALREVERSINGPhase Lag ConsiderationsThere is one additional comment germane to the calculation of the modulated signals, namely the presence and importance of correction for phase lag. The general heat flow equation [1] used to describe modulated DSC assumes that in regions where the sample material has no time dependent (kinetic) phenomena, dQ/dt = Cpβ and that the sinusoidal modulated heat flow signal and the sinusoidal modulated heating rate are perfectly in-phase. That is, the sample responds instantaneously and directly tracks the sinusoidal heating profile. In reality, this assumption is not valid. As shown in Figure 14, there is actually a phase shift (lag) between the two measured raw signals due to non-instantaneous heat transfer between the DSC cell and the sample. In regions where no thermal events are occurring in the sample, this lag is due entirely to instrumental effects. In regions where the sample exhibits thermal events, this lag is a combination of instrumental and sample effects. As a result, the heat capacity measured in modulated DSC is actually the complex heat capacity (Cp*) which can be split into an in-phase, real component Cp' (usually considered the thermodynamic heat capacity) and an out-of-phase, imaginary component Cp". To obtain a quantitative measure of Cp", and hence Cp', it is first necessary to compensate (calibrate) for the instrumental lag. This is easily accom-plished by selecting baseline areas outside the transition region and adjusting the phase angle to the theoretically expected π/2. [This is equivalent to adjusting the phase lag to 0° since the maximum in endothermic modulated heat flow should occur at the minimum in modulated heating rate (See Figure 9). Thus, when these two signals are perfectly in-phase, the sine waves differ by 90° (π/2).] Any remaining lag is then attributable to the sample and can be used to calculate Cp' and Cp". Figure 15 shows that the relative magnitude of Cp" at the glass transition for amor-phous PET is <1%. Figure 16 shows , furthermore, that Cp" becomes significant for this material only in the melt. Correction for Cp" is hence currently only of interest academically. However, future work with suitable models may enable additional information about the material s structure and behavior to be obtained from quantifying Cp" particu-larly in the melt.43444546-11357911-3.5-3.0-2.5-2.0-1.5-1.0-0.5Time (min)D e r i v . M o d u l a t e d T e m p (°C /m i n )M o d u l a t e d H e a t F l o w (m W )Figure 14: PHASE LAGFigure 15: HEAT FLOW PHASE CONTRIBUTIONQuenched PET, ±1.0°C/80 sec, 3°C/min, He purgeC'= in-phase Cp C"= out-of-phase Cp C*= Complex CpC'/C"= tan 1.475 = 9.89C*= C'[1 + (C"/C')2]0.5= C'[1 + 0.010]0.5= C'[1.005][ ]Phase Lag44.57minDeriv. Modulated T emp44.66minModulated Heat FlowFigure 16: PHASE-CORRECTED HEAT FLOW SIGNALSQUENCHED PETT A-211BTA Instruments S.A.R.L.Paris, FranceTelephone: 33-01-30489460Fax: 33-01-30489451TA Instruments, Inc.109 Lukens Drive New Castle, DE 19720Telephone: (302) 427-4000Fax: (302) 427-4001For more information or to place an order, contact:TA Instruments, Ltd.Leatherhead, EnglandTelephone: 44-1-372-360363Fax: 44-1-372-360135TA Instruments N.V./S.A.Gent, BelgiumTelephone: 32-9-220-79-89Fax: 32-9-220-83-21TA Instruments GmbH Alzenau, GermanyTelephone: 49-6023-30044Fax: 49-6023-30823TA Instruments Japan K.K.Tokyo, JapanTelephone: 813-3450-0981Fax: 813-3450-1322Internet: Thermal Analysis & RheologyA S UBSIDIARY OF W ATERS C ORPORATION。