物理化学 课后答案-热力学第二定律演示教学
《物理化学》第三章 热力学第二定律PPT课件
例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。
第五版物理化学课后习题答案
第五版物理化学课后习题答案第五版物理化学课后习题答案物理化学是一门综合性的学科,涉及到物理学和化学的交叉领域,对于学习者来说,掌握习题的解答方法是非常重要的。
本文将为大家提供第五版物理化学课后习题的答案,帮助大家更好地理解和掌握物理化学知识。
第一章:热力学1. 根据热力学第一定律,ΔU = q + w,其中ΔU表示系统内能的变化,q表示系统吸收的热量,w表示系统对外界做的功。
2. 热容量C = q/ΔT,其中C表示热容量,q表示系统吸收的热量,ΔT表示温度变化。
3. 热力学第二定律表明,热量不会自发地从低温物体传递到高温物体,热量的传递总是从高温物体向低温物体传递。
4. 熵的变化ΔS = q/T,其中ΔS表示熵的变化,q表示吸收的热量,T表示温度。
5. 熵是一个系统无序程度的度量,熵的增加意味着系统的无序程度增加。
第二章:量子力学1. 波粒二象性是指粒子既可以表现出波动性质,也可以表现出粒子性质。
2. 波函数描述了量子力学系统的状态,波函数的平方表示在某个位置上找到粒子的概率。
3. 薛定谔方程描述了量子力学系统的演化。
4. 波函数的归一化要求波函数的平方在整个空间上的积分等于1。
5. 量子力学中的不确定性原理表明,无法同时精确测量粒子的位置和动量,精确测量其中一个属性,另一个属性的测量结果就会变得模糊。
第三章:电化学1. 电化学反应可以分为两类:氧化还原反应和非氧化还原反应。
2. 氧化还原反应中,氧化剂接受电子,被还原,而还原剂失去电子,被氧化。
3. 电解质溶液中的电解质会在电解过程中分解成离子。
4. 电解过程中,阳极是发生氧化反应的电极,阴极是发生还原反应的电极。
5. 电解质溶液中的电导率与电解质浓度成正比,与温度成反比。
第四章:动力学1. 反应速率可以通过反应物浓度的变化率来表示。
2. 反应速率与反应物浓度的关系可以由速率方程来描述。
3. 反应级数表示反应速率与反应物浓度的关系,可以是零级、一级或二级反应。
物理化学-课后答案-热力学第二定律
物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
物理化学课后答案 第三章 热力学第二定律
第三章热力学第二定律3.1卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。
今有120 kJ的热直接从高温热源传给低温热源,龟此过程的。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7已知水的比定压热容。
今有1 kg,10 ︒C的水经下列三种不同过程加热成100 ︒C的水,求过程的。
(1)系统与100 ︒C的热源接触。
(2)系统先与55 ︒C的热源接触至热平衡,再与100 ︒C的热源接触。
(3)系统先与40 ︒C,70 ︒C的热源接触至热平衡,再与100 ︒C的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8已知氮(N, g)的摩尔定压热容与温度的函数关系为2(g)置于1000 K的热源中,将始态为300 K,100 kPa下1 mol的N2求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。
解:在恒压的情况下, g)看作理想气在恒容情况下,将氮(N2体将代替上面各式中的,即可求得所需各量3.9始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀, U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。
第五版物理化学第三章习题答案
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第五版物理化学第三章习题答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功等于不可逆热机作出的功-W。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证:(反证法)设不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
物理化学-课后答案-热力学第二定律
物理化学-课后答案-热力学第二定律(总25页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
物理化学核心教程(第二版)沈文霞编科学出版社_课后习题详解第三章
第三章热力学第二定律三.思考题参考答案1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。
这说法对吗? 答:前半句是对的,但后半句是错的。
因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程。
2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢?答:不矛盾。
Claususe 说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”。
而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热。
而热变为功是个不可逆过程,所以环境发生了变化。
3.能否说系统达平衡时熵值最大,Gibbs 自由能最小?答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。
等温、等压、不做非膨胀功,系统达平衡时,Gibbs 自由能最小。
也就是说,使用判据时一定要符合判据所要求的适用条件。
4.某系统从始态出发,经一个绝热不可逆过程到达终态。
为了计算熵值,能否设计一个绝热可逆过程来计算?答:不可能。
若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。
反之,若有相同的终态,两个过程绝不会有相同的始态。
所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态。
5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗?答:对。
因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理。
处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大。
6.相变过程的熵变,可以用公式H S T∆∆=来计算,这说法对吗? 答:不对,至少不完整。
一定要强调是等温、等压可逆相变,H ∆是可逆相变时焓的变化值(,R p H Q ∆=),T 是可逆相变的温度。
7.是否,m p C 恒大于,m V C ?答:对气体和绝大部分物质是如此。
但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。
热力学第二定律参考答案
热力学第二定律参考答案热力学第二定律参考答案热力学第二定律是热力学中的一条基本定律,它描述了热量的自然流动方向和热量转化的不可逆性。
热力学第二定律的提出和发展,对于我们理解自然界中的热现象和能量转化过程具有重要的意义。
本文将从热力学第二定律的历史背景、基本原理和应用等方面进行探讨。
热力学第二定律的历史背景可以追溯到19世纪初,当时物理学家们开始对热现象进行深入研究。
在这个时期,人们普遍认为热量是一种物质,即所谓的“热质”。
然而,随着科学的发展,人们逐渐认识到热量并不是一种物质,而是一种能量形式。
这一认识的转变为热力学第二定律的提出奠定了基础。
热力学第二定律的基本原理可以用不同的表述方式来描述,其中最常见的是克劳修斯表述和开尔文表述。
克劳修斯表述指出,热量不会自发地从低温物体传递到高温物体,而是自发地从高温物体传递到低温物体。
这个表述可以用来解释为什么我们感觉到的热量总是从热的物体流向冷的物体。
开尔文表述则指出,不可能通过循环过程将热量完全转化为功而不产生其他影响。
这个表述可以用来解释为什么我们无法制造一个永动机,即从热源中获取无限的能量。
热力学第二定律的应用涵盖了广泛的领域,其中最重要的应用之一是热机的效率。
热机是将热能转化为功的装置,如汽车发动机和蒸汽机等。
根据热力学第二定律,热机的效率不可能达到100%,总是存在一定的能量损失。
这个能量损失被称为热机的热损耗,它限制了热机的效率提高的上限。
因此,热力学第二定律对于热机的设计和改进具有指导作用。
除了热机,热力学第二定律还可以应用于其他领域,如能源转化和环境保护等。
能源转化是指将一种形式的能量转化为另一种形式的能量,如化学能转化为电能。
根据热力学第二定律,能源转化过程总是伴随着能量的损失,因此我们需要在能源转化过程中尽量减少能量损失,提高能源利用效率。
环境保护方面,热力学第二定律的应用可以帮助我们理解能源消耗和环境污染的关系,从而制定相应的环境保护政策和措施。
大学物理化学 第二章 热力学第二定律学习指导及习题解答
3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
大学物理化学2-热力学第二定律课后习题及答案
热力学第二定律课后习题答案习题1在300 K ,100 kPa 压力下,2 mol A 和2 mol B 的理想气体定温、定压混合后,再定容加热到600 K 。
求整个过程的∆S 为若干?已知C V ,m ,A = 1.5 R ,C V ,m ,B = 2.5 R[题解]⎪⎩⎪⎨⎧B(g)2mol A(g)2mol ,,纯态 3001001K kPa,()−→−−−−混合态,,2mol A 2mol B100kPa 300K 1+==⎧⎨⎪⎪⎩⎪⎪p T 定容()−→−−2混合态,,2mol A 2mol B 600K 2+=⎧⎨⎪⎩⎪T ∆S = ∆S 1 + ∆S 2,n = 2 mol∆S 1 = 2nR ln ( 2V / V ) = 2nR ln2 ∆S 2 = ( 1.5nR + 2.5nR ) ln (T 2 / T 1)= 4nR ln2 所以∆S = 6nR ln2= ( 6 ⨯ 2 mol ⨯ 8.314 J ·K -1·mol -1 ) ln2 = 69.15 J ·K -1 [导引]本题第一步为理想气体定温定压下的混合熵,相当于发生混合的气体分别在定温条件下的降压过程,第二步可视为两种理想气体分别进行定容降温过程,计算本题的关键是掌握理想气体各种变化过程熵变的计算公式。
习题22 mol 某理想气体,其定容摩尔热容C v ,m =1.5R ,由500 K ,405.2 kPa 的始态,依次经历下列过程:(1)恒外压202.6 kPa 下,绝热膨胀至平衡态; (2)再可逆绝热膨胀至101.3 kPa ; (3)最后定容加热至500 K 的终态。
试求整个过程的Q ,W ,∆U ,∆H 及∆S 。
[题解] (1)Q 1 = 0,∆U 1 = W 1, nC V ,m (T 2-T 1))(1122su p nRT p nRT p --=, K400546.2022.405)(5.11221211212====-=-T T kPa p kPa p T p T p T T ,得,代入,(2)Q 2 = 0,T T p p 3223111535325=-=-=--()γγγγ,, T T 320.42303==-()K(3)∆V = 0,W 3 = 0,Q U nC T T V 3343232831450030314491==-=⨯⨯⨯-=∆,()[.(.)].m J kJp p T T 434350030310131671==⨯=(.).kPa kPa 整个过程:Q = Q 1 + Q 2+ Q 3 =4.91kJ ,∆U = 0,∆H = 0,Q + W = ∆U ,故W =-Q =-4.91 kJ∆S nR p p ==⨯=--ln (.ln ..).141128314405616711475J K J K ··[导引]本题的变化过程为单纯pVT 变化,其中U 、H 和S 是状态函数,而理想气体的U 和H 都只是温度的函数,始终态温度未变,故∆U = 0,∆H = 0。
物理化学答案——第二章-热力学第二定律
第二章 热力学第二定律 一、基本公式和基本概念 基本公式1. 热力学第二定律的数学表达式----克劳修斯不等式 ()0A B A B QS Tδ→→∆-≥∑2. 熵函数的定义 ()R QdS Tδ=, ln S k =Ω3. 熵变的计算理想气体单纯,,p V T 变化22,1122,1122,,11ln ln ln ln lnln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ∆=+∆=-∆=+理想气体定温定压混合过程ln i i iS R n x ∆=-∑封闭系统的定压过程21,d T p m T C S n T T∆=⎰封闭系统定容过程 21,d T V m T C S n T T∆=⎰可逆相变 m n H S T∆∆=标准状态下的化学反应 ,()r m Bm B BS S T θθν∆=∑定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 21,21()()d T p m r m r m T C S T S T T T∆∆=∆+⎰4. 亥姆霍兹函数 A U TS ≡-5. 吉布斯函数 G H TS ≡-6. G ∆和A ∆的计算(A ∆的计算原则与G ∆相同,做相应的变换即可)定温过程G H T S ∆=∆-∆组成不变的均相封闭系统的定温过程 21d p p G V p ∆=⎰理想气体定温过程 21ln p G nRT p ∆= 7. 热力学判据熵判据:,()0U V dS ≥亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤8. 热力学函数之间的关系组成不变,不做非体积功的封闭系统的基本方程d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+麦克斯韦关系S VpS T Vp TT p V S T V p S S p V T S V p T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭9. 吉布斯-亥姆霍兹方程2()pG HT T T ∆⎡⎤∂⎢⎥∆=-⎢⎥∂⎢⎥⎣⎦ 基本概念1. 热力学第二定律在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。
高中物理热力学第二定律课后习题答案及解析
高中物理热力学第二定律课后习题答案及解析练习与应用1.汽车行驶时,要消耗汽油。
尽量详尽地说明:汽油燃烧时释放的化学能通过哪些途径最终转化成了周围环境的内能。
解析:化学能变成了汽缸内气体的内能,一部分内能转化为汽车的动能,另一部分散失到周围环境中成为环境的内能,汽车的动能通过摩擦转化为环境的内能;汽缸内气体的内能还有一部分通过汽车发电机转化为蓄电池内的化学能,使用蓄电池时,这部分化学能转化为电能,又通过车灯转化为光能,光照到地面空气,转化为环境的内能。
2.以下哪些现象能够发生、哪些不能发生?能够发生的现象是否违背热力学第二定律?(1)一杯热茶自然放置,茶会自动变得更热。
(2)蒸汽机把蒸汽的内能全部转化成机械能。
(3)桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离。
(4)电冰箱通电后把箱内低温物体的热量传到箱外高温物体。
解析:(1)不会发生;热传递具有方向性,热量能自发的从高温物体传到低温物体,故一杯热茶自然放置,茶会自动变得凉,不会自动变得更热,因为违背热力学第二定律。
(2)不会发生;蒸汽机的能量损失不可避免,不可能把蒸汽的内能全部转化为机械能,违背了热力学第二定律,不能发生。
(3)可以发生;桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离,其中系统的势能减少了,不违背热力学第二定律。
(4)可以发生;电冰箱通电后把箱内低温物体的热量传到箱外高温物体,此过程中消耗了电能,所以不违背热力学第二定律,能发生。
3.一间密闭的房间里放置了一台电冰箱,为了使房间降温,有人出了一个主意,建议把冰箱接通电源,打开冰箱门,让冰箱的“冷气”进入房间中,房间就变冷了。
这种方法可行吗?请说明道理。
解析:因为电冰箱的制冷机工作后,冰箱冷冻室内的蒸发器温度降低,吸收空气的热量,与此同时,冰箱内部的冷凝器温度升高,将热量传给空气,室内空气的热量只是被冰箱吸收后又被放出,所以室温不会降低,反而,电动机工作时,会将一部分电能转化为内能,故室内温度会有少许升高。
物理化学上册第五版天津大学出版社第三章热力学第二定律习题答案
物理化学上册第五版天津大学出版社第三章热力学第二定律习题答案3-1 卡诺热机在 T 1=600K 的高温热源和T 2=300K 的低温热源间工作,求:(1) 热机的效率;(2)当环境作功 –W=100kJ 时,系统从高温热源Q 1及向低温热源放出的 –Q 2。
解:(1)5.0600/)300600(/)(/1211=-=-=-=T T T Q W η (2)5.0/100/11==-Q kJ Q W ,得kJ Q 2001=kJ W Q Q 10021=-=+;kJ Q W Q 100)(21=-=--3-2卡诺热机在T 1=795K 的高温热源和T 2=300K 的低温热源间工作,求:(1)热机的效率;(2)当从高温热源吸热Q 1=250 kJ 时,系统对环境作的功 -W 及向低温热源放出的 –Q 2。
解:(1)6.0750/)300750(/)(/1211=-=-=-=T T T Q W η (2)kJ kJ Q W 1502506.01=⨯==-ηkJ W Q Q 15021=-=+;kJ Q W Q 100)(21=-=--3-3 卡诺热机在T 1=900K 的高温热源和T 2=300K 的低温热源间工作,求:(1)热机的效率;(2)当向低温热源放出的 –Q 2=100kJ 时,从高温热源吸热Q 1及对环境作的功 -W 。
解:(1)6667.0900/)300900(/)(/1211=-=-=-=T T T Q W η (2)6667.0/1=-Q W (a )W kJ Q -=-1001(b )联立求解得:Q 1=300 kJ ;-W=200kJ3-4 试证明:在高温热源和低温热源间工作的不可逆热机与卡诺热机联合操作时,若令卡诺热机得到的功W r 等于不可逆热机作出的功 – W ,假设不可逆热机的热机效率η大于卡诺热机的热机效率ηr ,其结果必然有热量从低温热源流向高温热源,而违反热力学第二定律的克劳修斯说法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学课后答案-热力学第二定律第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
【答】(1)不正确,因为不可逆过程不一定是自发的例如 可逆压缩就不是自发过程,但自发过程一定是不可逆的;(2)不正确,因为熵增加过程不一定是自发过程,但自发过程都是熵增加的过程;所以必须在隔离体系中凡熵增加过程都是自发过程。
(3)不正确,因为不可逆过程不一定是自发的,而自发过程的熵永不减少;所以必须在隔离体系中。
不可逆过程的熵永不减少(4)不正确。
绝热体系或隔离体系达平衡时熵最大,等温等压不作非体积功的条件下,体系达平衡时Gibbs 自由能最小。
(5)不正确,因为只有当系统的U 和V 恒定非体积功为0时,S ∆<0和S ∆=0的过程不可能发生;(6)不正确,根据熵增加原理,绝热不可逆过程的S ∆>0,而绝热可逆过程的S ∆=0,从同一始态出发经历一个绝热不可逆过程的熵值和经历一个绝热可逆过程的熵值永不相等,不可能达到同一终态。
(7)正确,在绝热系统中,发生了一个不可逆过程,从状态1变到了状态2,S ∆>0,S 2>S 1,仍然在绝热系统中,从状态2出发,无论经历什么过程,体系的熵值有增无减,所以永远回不到原来状态了。
(8)不正确,Kelvin 的说法是不可能从单一的热源取出热使之变为功而不留下其它变化。
关键是不留下其它变化,理想气体的等温膨胀时热全部变成了功,,体积增大了,环境的体积缩小的,留下了变化,故原来的说法不违反Kelvin 的说法。
(9)不正确,Clausius 的说法是不可能把热从低温热源传到高温热源而不引起其它变化。
冷冻机可以从低温热源吸热放给高温热源时环境失去了功,得到了热引起了变化,故原来的说法不违反Clausius 的说法。
(10)不正确,211p V P T T VV V C C V T V P αακκ∂∂⎛⎫⎛⎫-===- ⎪ ⎪∂∂⎝⎭⎝⎭,,因为PV T ∂⎛⎫⎪∂⎝⎭>0,TV P ∂⎛⎫⎪∂⎝⎭<0,即α>0,κ>0,则p V C C ->0,p C 恒大于V C 。
但有例外,如对277.15K 的水,PV T ∂⎛⎫⎪∂⎝⎭=0,此时p V C C =。
【3】指出下列各过程中,,,,,,Q W U H S A ∆∆∆∆和G ∆等热力学函数的变量哪些为零,哪些绝对值相等? (1)理想气体真空膨胀; (2)理想气体等温可逆膨胀; (3)理想气体绝热节流膨胀; (4)实际气体绝热可逆膨胀; (5)实际气体绝热节流膨胀;(6)2()H g 和2()O g 在绝热钢瓶中发生反应生成水; (7)2()H g 和2()Cl g 在绝热钢瓶中发生反应生成()HCl g ; (8)22(,373,101)(,373,101)H O l k kPa H O g k kPa ƒ;(9)在等温、等压、不作非膨胀功的条件下,下列反应达到平衡2233()()2()H g N g NH g +ƒ(10)绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应。
【解】(1)0Q W U H ==∆=∆=(2)0R U H Q W G A ∆=∆==∆=∆,,,0S ∆= (3)0U H Q W ∆=∆=== (4)0Q S U Q W W =∆=∆=+=,(5)0V Q U H =∆=∆=(6)0W A G Q =∆=∆== U H ∆=∆ (7)0W A G Q =∆=∆== U H ∆=∆ (8)00R G A W U ∆=∆=-∆=∆H =,,; (9)0G ∆= ;(10)p 0H Q ∆== U W ∆=【4】将不可逆过程设计为可逆过程。
(1)理想气体从压力为p 1向真空膨胀为p 2;(2)将两块温度分别为T 1,T 2的铁块(T 1>T 2)相接触,最后终态温度为T (3)水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为p , 22(,303,100)(,303,100)H O l K kPa H O g K kPa →(4)理想气体从111,,p V T 经不可逆过程到达222,,p V T ,可设计几条可逆路线,画出示意图。
【答】(1)设计等温可逆膨胀(2)在T 1和T 2之间设置无数个温差为dT 的热源,使铁块T 1和T 1-dT ,T 1-2dT ,…的无数热源接触,无限缓慢地达到终态温度T ,使铁块T 2和T 2-dT ,T 2-2dT ,…的热源接触,无限缓慢地达到终态温度T 。
(3)可以设计两条可逆途径:一是等压可逆,另一条是等温可逆。
H 2O (l,303K,P S ) H 2S)H 2O (l,,)H 2H 2O ()H 2逆降温(4)可设计下列四条途径,从111,,p V T 变化到222,,p V T 。
(a )等容可逆升压到状态A 后再等温可逆膨胀终态Ⅱ; (b )等压可逆膨胀到状态B 后再等温可逆膨胀到终态Ⅱ; (c) 等温可逆膨胀到状态C 后再等压可逆膨胀到终态Ⅱ;(d) 等温可逆膨胀到状态D 后再等容可逆升压到终态Ⅱ。
【5】判断下列恒温、恒压过程中,熵值的变化,是大于零,小于零还是等于零,为什么?(1)将食盐放入水中;(2)HCl(g)溶于水中生成盐酸溶液; (3)43()()()NH Cl s NH g HCl g →+; (4)2221()()()2H g O g H O l +→; (5)333221(,)1(,)2(,)dm N g dm Ar g dm N Ar g +→+; (6)333221(,)1(,)1(,)dm N g dm Ar g dm N Ar g +→+; (7)3332221(,)1(,)2(,)dm N g dm N g dm N g +→; (8)3332221(,)1(,)1(,)dm N g dm N g dm N g +→。
【解】(1)S ∆<0,因为将食盐放入水中为放热过程,Q <0,QS Tδ∆=,所以S ∆<0;(2)S ∆<0,同理,HCl(g)溶于水中Q <0,S ∆<0;(3)S ∆>0,因为该过程为吸热反应,Q >0,S ∆>0;或因为混乱度增加; (4)S ∆<0,因为该过程为放热反应,Q <0,S ∆<0;或因为混乱度减小; (5)S ∆>0,根据min ln 2ln 2BB BS Rnx R ∆=-=∑>0,或因为混乱度增加;(6)S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;(7)S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;(8)S ∆<0,根据min ln 2ln 2BB BS Rnx R ∆=-=-∑<0【6】(1)在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应不能自发进行。
但在实验室内常用电解水的方法制备氢气,这两者有无矛盾? (2)请将Carnot 循环分别表达在以如下坐标表示的图上:,,,,T p T S S V U S T H -----【解】 (1)r m G ∆>0的判据是在等温等压非体积功为0的条件下,所以在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应在等温等压非体积功为0的条件下不能自发进行。
而在实验室内常用电解水的方法制备氢气,是在电功对体系作功,所以并不矛盾。
(2)1234【习题】【01】有5mol 某双原子理想气体,已知其R C m V 5.2,=,从始态400K,200kPa,经绝热可逆压缩至400kPa 后,再真空膨胀至200kPa,求整个过程的Q,W,△U,△H 和△S. 【解】第一步绝热可逆压缩 Q 1=0 △S 1=04.15.25.2,,,,=+=+==RRR C R C C C r mV m V mV m P根据绝热过程方程C T Prr=-1得K kPa kPa K P P T T rr 6.4874002004004.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--111,21()5 2.58.314(487.6400)9.1V m U W nC T T mol J K mol K K kJ --∆==-=⨯⨯⋅⋅-=111,21()5 3.58.314(487.6400)12.75P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=第二步等温向真空膨胀 W 2=0 △U 2=△H 2=0 Q 2=0111221400ln58.314ln 28.8200p kPa S nR mol J K mol J K p kPa---∆==⨯⋅⋅=⋅ 所以整个过程的Q=0,W=9.1kJ,△U=9.1kJ,△H=12.75kJ,△S=28.8J•K -1【2】有5molHe(g)可看作理想气体, 已知其R C m V 5.1,=,从始态273K,100kPa,变到终态298K,1000kPa,计算该过程的熵变.【解】根据理想气体从状态p 1,V 1,T 1到终态p 2,V 2,T 2的熵变公式:1221ln lnT TC p p nR S p +=∆ 得:111110029858.314ln5 2.58.314ln1000273kPa KS mol J K mol mol J K mol kPa K----∆=⨯⋅⋅+⨯⨯⋅⋅ 186.615J K -=-⋅【03】在绝热容器中,将0.10kg 、283K 的水与0.20kg 、313K 的水混合,求混合过程的熵变。