1.2任意角测试题

合集下载

《1.2 任意角的三角函数(3)》测试题

《1.2 任意角的三角函数(3)》测试题

《1.2 任意角的三角函数(3)》测试题
一、选择题
1.已知,则的值是( ).
A. B. C. D.或
考查目的:考查同角的三角函数的平方关系和商数关系.
答案:B.
解析:∵,∴,∴.
2.若,则的值为( ).
A. B. C. D. 1
考查目的:考查同角的三角函数基本关系式.
答案:C.
解析:∵,∴,∴.
3.若,则( ).
A. B. C. D.
考查目的:考查同角的三角函数的基本关系.
答案:C.
解析:∵,∴,又∵,,∴,解
得,由得,.
二、填空题
4.已知,则 .
考查目的:考查同角的三角函数的基本关系.
答案:.
解析:∵,∴,∴.
5.已知,则 .
考查目的:考查同角的三角函数基本关系式的灵活应用.
答案:.
解析:∵,∴,∴,∴.
6.若满足,则的值为 .
考查目的:考查同角的三角函数基本关系式的灵活应用.
答案:.
解析:由得,∴,而,∴,∴.
三、解答题
7.已知,计算的值.
考查目的:考查同角的三角函数关系式的灵活应用.
答案:.
解析:对分子、分母同时除以得,
.
8.已知,.
⑴求的值;
⑵求的值.
考查目的:考查同角的三角函数关系的综合应用能力.
答案:⑴;⑵.
解析:⑴∵,∴,∴.⑵.。

任意角的概念练习题

任意角的概念练习题

任意角的概念练习题任意角的概念练习题在几何学中,角是一个基本的概念。

我们可以通过角的度数来描述它的大小。

而任意角则是指度数可以是任意值的角。

在这篇文章中,我们将通过一些练习题来巩固和加深对任意角概念的理解。

1. 问题一:给定一个角的度数为60°,请问这个角是锐角、直角还是钝角?解答一:根据角的定义,锐角是指度数小于90°的角,直角是指度数等于90°的角,钝角是指度数大于90°的角。

因此,这个角是一个锐角。

2. 问题二:给定一个角的度数为180°,请问这个角是锐角、直角还是钝角?解答二:根据角的定义,锐角是指度数小于90°的角,直角是指度数等于90°的角,钝角是指度数大于90°的角。

因此,这个角是一个钝角。

3. 问题三:给定一个角的度数为90°,请问这个角是锐角、直角还是钝角?解答三:根据角的定义,锐角是指度数小于90°的角,直角是指度数等于90°的角,钝角是指度数大于90°的角。

因此,这个角是一个直角。

通过以上几个问题,我们可以看出,任意角可以是锐角、直角或钝角,取决于其度数的大小。

这也是任意角的特点之一。

在几何学中,我们还可以通过角的顶点和两条边的位置关系来描述角的类型。

例如,我们可以将角分为内角和外角。

内角是指两条边在角的内部相交的角,而外角是指一条边在角的外部与另一条边相交的角。

4. 问题四:给定一个内角的度数为120°,请问这个角是锐角、直角还是钝角?解答四:根据角的定义,锐角是指度数小于90°的角,直角是指度数等于90°的角,钝角是指度数大于90°的角。

因此,这个角是一个钝角。

5. 问题五:给定一个外角的度数为45°,请问这个角是锐角、直角还是钝角?解答五:根据角的定义,锐角是指度数小于90°的角,直角是指度数等于90°的角,钝角是指度数大于90°的角。

1.2角的概念推广基础练习题

1.2角的概念推广基础练习题

1.2角的概念推广基础练习题一、单选题1.1000︒是以下哪个象限的角( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列各角中,与27︒角终边相同的是( ) A .63︒B .153︒C .207︒D .387︒3.若角α为第二象限角,则角2α为( )象限角A .第一B .第一或第二C .第二D .第一或第三 4.下列说法正确的是( ) A .第一象限角一定小于90︒ B .终边在x 轴正半轴的角是零角C .若360k αβ+=⋅︒(k Z ∈),则α与β终边相同D .钝角一定是第二象限角5.若角α与角β的终边关于y 轴对称,则必有( ) A .90αβ︒+=B .36090()k k Z αβ︒︒+=⋅+∈C .360()k k Z αβ︒+=⋅∈D .(21)180()k k Z αβ︒+=+⋅∈6.下列各角中,与角330°的终边相同的是( ) A .150°B .-390°C .510°D .-150°7.已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角}D .以上都不对8.与角2021︒终边相同的角是( ) A .221°B .2021-︒C .221-︒D .139︒9.若α是第四象限角,则180°+α一定是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角二、填空题 10.若角2θ的终边与4π的终边重合,且3θ∈[0,2)π,则4θ=_______________.11.2020是第______象限角.12.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.13.终边在x 轴上的角α的集合是______.14.已知:①1240︒,②300-︒,③420︒,④1420-︒,其中是第一象限角的为_________(填序号).15.在0°到360°范围内与角380°终边相同的角α为________.三、解答题16.若角α是第二象限角,试确定2,2αα的终边所在位置.17.写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.18.如图,分别写出适合下列条件的角的集合.(1)终边落在射线OB 上; (2)终边落在直线OA 上;(3)终边落在阴影区域内(含边界).参考答案1.D 【分析】首先写出终边相同的角的集合,再判断 【详解】10002360280=⨯+,280角的终边在第四象限,所以1000角的终边也是第四象限.故选:D 2.D 【分析】写出与27︒终边相同角的集合,取k 值得答案. 【详解】与27︒角终边相同的角的集合为{}27360,k k Z αα=︒+⋅︒∈, 取1k =,可得387α=︒. ∴与27︒角终边相同的是387︒. 故选:D 【点睛】本小题主要考查终边相同的角,属于基础题. 3.D 【分析】根据α的范围,求出2α的范围即可. 【详解】因为角α为第二象限角, 所以()22,2k x k k Z ππππ+<<+∈, 所以(),422x k k k Z ππππ+<<+∈,当2k n =()n Z ∈时,()22,422x n n n Z ππππ+<<+∈,此时2α是第一象限角;当21k n =+()n Z ∈时,()5322,422x n n n Z ππππ+<<+∈,此时2α是第三象限角; 所以2α是第一或第三象限角,【点睛】本题主要考查了象限角的范围,属于基础题. 4.D 【分析】分别由钝角、终边相同的角及象限角的概念逐一判断四个命题得答案. 【详解】A.第一象限角范围是2k πx 2k π,2k z π<<+,所以不一定小于90°.所以A 错误.B. 终边在x 轴正半轴的角α2k π,k z =.不一定是零角 . .所以B 错误C.若360,k αβ+=⋅︒则360,?k k z αβ=⋅︒-. 则α应与β-终边相同. .所以C 错误D.因为钝角的取值范围为,2ππ⎛⎫⎪⎝⎭,所以钝角一定是第二象限角. .所以D 正确. 故答案为D. 【点睛】本题考查了任意角的概念,象限角,是基础的概念题. 5.D 【分析】根据角α与角β的终边关于y 轴对称,有12129036090360,,k k k k Z αβ,即可得解.【详解】角α与角β的终边关于y 轴对称, 所以12129036090360,,k k k k Z αβ,21129036090360360180k k k k αβ,12,k k Z ∈即360180(21)180,kkkZ αβ,故选:D 【点睛】此题考查根据两个角的终边的对称关系求解角的关系,关键在于准确将对称关系转化成代数6.B 【解析】分析:由终边相同的角的公式,表示出与角330的终边相同的角,再进行验证即可. 详解:与角330的终边相同的角为()360330k k Z α=⋅+∈, 令2k =-,可得390α=-,故选B.点睛:本题主要考查终边相同的角,考查了终边相同的角的表示方法,意在考查对基础知识掌握的熟练程度,属于简单题. 7.D 【分析】先根据题意得出A ∩B ,再比较A ∩B 与小于90°的角、锐角和第一象限角的关系,这种问题可以通过列举出特殊角来得到结论. 【详解】解:∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D . 【点睛】此题考查了象限角、任意角的概念,交集及其运算,熟练掌握基本概念是解本题的关键. 8.A 【分析】根据终边相同的角相差360的整数倍,逐个判断即可. 【详解】2021360=5︒÷余221,故A 正确,B 、 C 、 D 中的角均不与角2021︒终边相同.故选:A . 【点睛】本题考查了终边相同角的概念,考查了简单的计算,属于概念题,本题属于基础题. 9.B 【分析】通过α是第四象限角,写出其对应角的集合,然后求出180°+α对应角的集合即可得到答案. 【详解】∵α是第四象限角,∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°. ∴180°+α在第二象限, 故选B. 【点睛】本题考查了象限角和轴线角,基本知识的考查,深刻理解基本概念是解题的关键. 10.24π或38π 【分析】由终边相同角的关系得出4,363k k Z θππ=+∈,再由3θ的范围确定θ,进而得出4θ.【详解】 由题意可知,2,24k k Z θππ=+∈,则4,363k k Z θππ=+∈ 3θ∈[0,2)π,6πθ=或32πθ=则348θπ=或424θπ= 故答案为:24π或38π【点睛】本题主要考查了终边相同的角性质的应用,属于基础题. 11.三 【分析】把2020︒写成360k α+︒,)0,360,k Z α⎡∈∈⎣,然后判断α所在的象限,则答案可求. 【详解】20205360220︒=⨯︒+︒,2020∴︒与220︒角的终边相同,为第三象限角.故答案为三. 【点睛】本题考查了象限角,考查了终边相同的角,是基础题. 12.{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z . 【分析】 首先确定0360范围内角α的范围,根据终边相同角的定义可求得满足题意的角α的范围. 【详解】 在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅{}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅ {}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈ 【点睛】本题考查根据终边位置确定角所处的范围,重点考查了终边相同的角的定义,属于基础题. 13.{}|,k k Z ααπ=∈ 【分析】直接利用终边相同角的概念得到答案. 【详解】解:终边在x 轴上的角α的集合是{}|,k k Z ααπ=∈,故答案为:{}|,k k Z ααπ=∈ 【点睛】本题考查了角的终边,属于简单题. 14.②③④ 【分析】利用终边相同的角转化到0360︒︒判断.【详解】因为12401080160︒=︒+︒,30036060-︒=-︒+︒,42036060︒=︒+︒,1420436020-=-⨯+︒︒︒.所以②300-︒,③420︒,④1420-︒是第一象限角, 故答案为:②③④ 【点睛】本题主要考查象限角以及终边相同的角的应用,属于基础题 15.20° 【详解】与角380°终边相同的角α为380360,()k k Z α=+⋅∈, 又α在0°到360°,所以1,20.k α=-= 【点睛】1.若要确定一个绝对值较大的角所在的象限,一般是先将角化为)22()(0k k Z πααπ+≤<∈的形式,然后再根据α所在的象限予以判断.2.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 16.角2α的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限. 【分析】写出第二象限角的集合,然后利用不等式的基本性质得到2α,2α.【详解】 ∵角是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角2α的终边在第三象限或第四象限或y 轴的负半轴上. (2),422k k k Z παπππ+<<+∈,当2,k n n Z =∈时, ∴ 22,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限. 当21,k n n Z =+∈时, ∴5322,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限. 综上所述,2α的终边在第一象限或第三象限.【点睛】本题考查了象限角和轴线角,关键是写出第二象限角的集合,是基础题 17.{β|β=k ·360°-1 910°,k ∈Z };元素β见解析 【分析】把α=-1 910°加上360k ⋅︒可得与α=-1 910°终边相同的角的集合,分别取k =4,5,6,求得适合不等式-720°≤β<360°的元素β. 【详解】与α=-1 910°终边相同的角的集合为{β|β=k ·360°-1910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴1111363636k ≤< (k ∈Z ),故取k =4,5,6.k =4时,β=4×360°-1910°=-470°; k =5时,β=5×360°-1910°=-110°; k =6时,β=6×360°-1910°=250°. 【点睛】该题考查的是有关角的概念的问题,涉及到的知识点有终边相同的角的集合,终边确定,落在某个范围内的角的大小的确定,属于简单题目.18.(1){}160360,S k k Z αα==+⋅∈;(2){}230180,S k k Z αα==+⋅∈;(3){}33018060180,S k k k Z αα=+⋅≤≤+⋅∈【分析】(1)可得出终边落在射线OB 上的一个角为60,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(2)可得出终边落在射线OB 上的一个角为30,利用终边相同的角的集合可得出终边落在射线OB 上的角的集合;(3)分别写出第一象限和第三象限中阴影部分区域所表示的角的集合,然后将两个集合取并集可得出结果. 【详解】(1)终边落在射线OB 上的角的集合为{}160360,S k k Z αα==+⋅∈; (2)终边落在直线OA 上的角的集合为{}230180,S k k Z αα==+⋅∈; (3)终边落在第一象限中的阴影部分区域的角的集合为{}3036060360,k k k Z αα+⋅≤≤+⋅∈,终边落在第三象限中的阴影部分区域的角的集合为{}210360240360,k k k Z αα+⋅≤≤+⋅∈{}3018036060180360,k k k Z αα=++⋅≤≤++⋅∈()(){}30211806021180,k k k Z αα=++⋅≤≤++⋅∈,因此,终边落在阴影区域内的角的集合为{}33036060360,S k k k Z αα=+⋅≤≤+⋅∈⋃()(){}30211806021180,k k k Z αα++⋅≤≤++⋅∈ {}3018060180,k k k Z αα=+⋅≤≤+⋅∈.【点睛】本题考查角的集合的表示,解题的关键就是要找出阴影部分区域边界线对应的角的集合,考查分析问题和解决问题的能力,属于基础题.答案第9页,总9页。

高中数学第一章三角函数1.2.1任意角的三角函数(1)课时提升作业1新人教A版必修4

高中数学第一章三角函数1.2.1任意角的三角函数(1)课时提升作业1新人教A版必修4

任意角的三角函数(一)(15分钟30分)一、选择题(每小题4分,共12分)1。

求值sin750°=( )A。

- B. — C.D。

【解析】选C.sin 750°= sin(2×360°+ 30°)=sin 30°=。

2.(2015·晋江高一检测)如果角θ的终边经过点(,-1),那么cosθ的值是( )A.—B。

- C. D.【解析】选C。

点(,-1)到原点的距离r==2,所以cosθ=.【延伸探究】将本题中点的坐标改为(—1,),求sinθ-cosθ。

【解析】点(-1,)到原点的距离r==2,所以sinθ=,cosθ=-,所以sinθ-cosθ=—=。

3.(2015·北京高一检测)已知α∈(0,2π),且sinα<0,cosα〉0,则角α的取值范围是( )A。

B.C. D.【解析】选D。

因为sinα〈0,cosα〉0,所以角α是第四象限角,又α∈(0,2π),所以α∈.二、填空题(每小题4分,共8分)4。

求值:cosπ+tan=______【解析】cosπ=cos=cos=,tan=tan=tan=,所以cosπ+tan=+.答案:+5.(2015·南通高一检测)若角135°的终边上有一点(—4,a),则a的值是________.【解析】因为角135°的终边与单位圆交点的坐标为,所以tan 135°==-1,又因为点(—4,a)在角135°的终边上,所以tan 135°=,所以=-1,所以a=4.答案:4【补偿训练】如果角α的终边过点P(2sin 30°,—2cos 30°),则cosα的值等于________。

【解析】2sin 30°=1,—2cos 30°=—,所以r=2,所以cosα=.答案:三、解答题6.(10分)判断下列各式的符号.(1)sinα·cosα(其中α是第二象限角)。

高中数学第一章三角函数1.2任意角作业含解析北师大版第二册

高中数学第一章三角函数1.2任意角作业含解析北师大版第二册

二任意角(15分钟30分)1。

-361°角的终边落在()A。

第一象限B。

第二象限C。

第三象限 D.第四象限【解析】选D。

因为-361°角的终边和-1°角的终边相同,所以它的终边落在第四象限.2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有()A.B∩C=AB.B=A∩CC.D=A∩CD.C∩D=B【解析】选D。

锐角、小于90°而不小于0°的角、小于90°的角及第一象限角的范围,如表所示.角集合表示锐角B={α|0°〈α〈90°}小于90°而D={α|0°≤α<90°}不小于0°的角小于90°的角A={α|α<90°}第一象限角C={α|k·360°〈α〈k·360°+90°,k∈Z}3.若α是第四象限角,则180°—α是()A.第一象限角B。

第二象限角C。

第三象限角 D.第四象限角【解析】选C。

可以给α赋一特殊值-60°,则180°—α=240°,故180°—α是第三象限角.4。

已知角α=-3 000°,则与角α终边相同的最小正角是________. 【解析】因为—3 000°=-9×360°+240°,所以与—3 000°角终边相同的最小正角为240°.答案:240°5。

在-180°~360°范围内与2 000°角终边相同的角是________. 【解析】因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个。

1.2.1任意角的三角函数题型全归纳

1.2.1任意角的三角函数题型全归纳

1.2.1任意角的三角函数题型全归纳题型一、三角函数的定义及应用【例1】 (1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________, tan α=________.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.(3)已知角α的终边过点(,2)m m ,0m ≠,求角α的的正弦值、余弦值.【类题通法】利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b 2,余弦值cos α=a a 2+b2,正切值tan α=ba . (2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论. 变式1:已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.变式2:已知点1)2P -在角θ的终边上,且[0,2)θπ∈,则θ的值为 ( ) A .56π B.23π C.116π D .53π题型二、三角函数值符号的运用【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)点P (tanα,cosα)在第三象限,则角α的终边在第 象限. (3)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3. 【类题通法】三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立. 变式3:若sin 2α>0,且cos α<0,试确定α终边所在的象限.变式4:在△ABC 中,若sin A ·cos B ·tan C <0,则△ABC 的形状是 ( )A .锐角三角形B .钝角三角形C .直角三角形D .不能确定变式5:函数sin cos tan |sin ||cos ||tan |x x xy x x x =++的值域题型三、诱导公式一的应用【例3】 计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.【类题通法】诱导公式一的应用策略应用诱导公式一时,先将角转化到0~2π范围内的角,再求值.对于特殊角的三角函数值一定要熟记. 变式6:求下列各式的值: (1)sin25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°. (3)sin ⎝⎛⎭⎫-196π=________. 变式7:化简下列各式: (1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.题型四 角的对称问题例4.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32 C .-12 D.12变式8:.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.题型五、三角函数线的作法【例5】 作出3π4的正弦线、余弦线和正切线.【类题通法】三角函数线的画法(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.(2)作正切线时,应从A (1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T ,即可得到正切线AT .变式9:作出-9π4的正弦线、余弦线和正切线.题型六、利用三角函数线比较大小【例6】 分别比较sin 2π3与sin 4π5;cos 2π3与cos 4π5;tan 2π3与tan 4π5的大小.【类题通法】利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.变式10:设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?题型七、利用三角函数线解不等式【例7】 利用三角函数线,求满足下列条件的α的范围. (1)sin α<-12;(2)cos α>32.【类题通法】利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点,一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图像可得. 变式11:利用三角函数线求满足tan α≥33的角α的范围.变式12:求函数f (x )=lg(3-4sin 2x )+1+2cos x 的定义域.题型八 利用三角函数线进行证明例8.用单位圆证明角α的正弦绝对值与余弦绝对值之和不小于1,即已知0≤α<2π, 求证:|sin α|+|cos α|≥1.变式13:求证:当α∈⎝⎛⎭⎫0,π2时,sin α<α<tan α.1.2.1任意角的三角函数题型全归纳参考答案【例1】 (1)[答案] -1213 513 -125(2)[解] 直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r = -1 2+ 3 2=2,所以sin α=32,cos α=-12,tan α=-3; 在第四象限取直线上的点(1,-3),则r =12+ -3 2=2,所以sin α=-32,cos α=12,tan α=- 3.(3)当0m <时,,sin r αα===当0m >时,,sin r αα===变式1:1713. 变式2:【答案】C 【例2】(1)[答案] C (2) 【答案】二(3)①sin 105°·cos 230°<0. ②cos 3·tan ⎝⎛⎭⎫-2π3<0. 变式3:解:因为sin 2α>0,所以2k π<2α<2k π+π(k ∈Z ),所以k π<α<k π+π2(k ∈Z ).当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角.所以α为第一或第三象限角. 又因为cos α<0,所以α为第三象限角.变式4:【答案】 B 变式5:{3,-1} 【例3】(1)=1+64. (2) 12.变式6:(1)32+1; (2) 1;(3)12变式7:(1)-a +b ;(2)(p -q )2;(3)a 2+b 2.例4.【答案】 D 【解析】因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.变式8:【答案】(-1,3)【例5】 [解] 角3π4的终边(如图)与单位圆的交点为P .作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT ,与3π4的终边的反向延长线交于点T ,则3π4的正弦线为MP ,余弦线为OM ,正切线为AT .变式9:解:如图所示,-9π4的正弦线为MP ,余弦线为OM ,正切线为AT . 【例6】 [解] 在直角坐标系中作单位圆如图所示.以x 轴非负半轴为始边作2π3的终边与单位圆交于P 点,作PM ⊥Ox ,垂足为M .由单位圆与Ox 正方向的交点A 作Ox 的垂线与OP 的反向延长线交于T 点,则sin 2π3=MP ,cos 2π3=OM ,tan 2π3=AT .同理,可作出4π5的正弦线、余弦线和正切线,sin 4π5=M ′P ′,cos 4π5=OM ′,tan 4π5=AT ′.由图形可知,MP >M ′P ′,符号相同,则sin 2π3>sin 4π5;OM >OM ′,符号相同,则cos 2π3>cos 4π5;AT <AT ′,符号相同,则tan 2π3<tan 4π5.变式10:解:如图所示,当π4<α<π2时,角α的正弦线为MP ,余弦线为OM ,正切线为AT ,显然在长度上,AT >MP >OM ;当π2<α<3π4时,角α的正弦线为M ′P ′,余弦线为OM ′,正切线为AT ′,显然在长度上,AT ′>M ′P ′>OM ′.【例7】(1)如图①,过点⎝⎛⎭⎫0,-12作x 轴的平行线交单位圆于P ,P ′两点,则sin ∠xOP =sin ∠xOP ′=-12,∠xOP =11π6,∠xOP ′=7π6, 故α的范围是⎩⎨⎧α⎪⎪⎭⎬⎫7π6+2k π<α<11π6+2k π,k ∈Z .(2)如图②,过点⎝⎛⎭⎫32,0作x 轴的垂线与单位圆交于P ,P ′两点,则cos ∠xOP =cos ∠xOP ′=32,∠xOP =π6,∠xOP ′=-π6,故α的范围是⎩⎨⎧α⎪⎪⎭⎬⎫-π6+2k π<α<π6+2k π,k ∈Z . 变式11:解:如图,过点A (1,0)作单位圆O 的切线,在切线上沿y 轴正方向取一点T ,使AT =33,过点O ,T 作直线,则当角α的终边落在阴影区域内(包含所作直线,不包含y 轴)时,tan α≥33.由三角函数线可知,在[0°,360°)内,tan α≥33,有30°≤α<90°或210°≤α<270°,故满足tan α≥33,有k ·180°+30°≤α<k ·180°+90°,k ∈Z .变式12:【解析】要使函数有意义,应有⎩⎪⎨⎪⎧3-4sin 2x >0,1+2cos x ≥0,由3-4sin 2x >0得,sin 2x <34,∴-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图(1)阴影部分所示),∴x ∈(k π-π3,k π+π3)(k ∈Z ).由1+2cos x ≥0得,cos x ≥-12,利用三角函数线画出x 满足条件的终边范围如图(2).∴x ∈[2k π-2π3,2k π+2π3],k ∈Z . 综上知,x ∈(2k π-π3,2k π+π3),k ∈Z .例8.证明:作平面直角坐标系xOy 和单位圆.(1)当角α的终边落在坐标轴上时,不妨设为Ox 轴,设它交单位圆于A 点,如图1,显然sin α=0,cos α=OA =1,所以|sin α|+|cos α|=1.图1图2变式13:证明:如图所示,设角α的终边与单位圆相交于点P ,单位圆与x 轴正半轴的交点为A ,过点A 作圆的切线交OP 的延长线于T ,过P 作PM ⊥OA 于M ,连接AP ,则在Rt △POM 中,sin α=MP ,在Rt △AOT 中,tan α=AT ,又根据弧度制的定义,有AP ︵=α·OP =α,易知S △P O A <S 扇形P O A <S △A O T ,即12OA ·MP <12AP ︵·OA <12OA ·AT ,即sin α<α<tan α.。

1.2任意角的三角函数

1.2任意角的三角函数

1.2 任意角的三角函数例题1.有下列命题:(1)终边相同的角的同名三角函数的值相等;(2)终边不同的角的同名三角函数的值不等;(3)若sin α>0,则α是第一、二象限的角;(4)若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=22y x x+-。

其中正确的命题个数是( )A 、1B 、2C 、3D 、4例题2.已知角α的终边上一点P (15-,7),求角α的正弦、余弦和正切值例题3.已知角α的终边过点P (-3a ,4a )(a ≠0),则2sin α+cos α的值为________例题4.求下列函数的定义域:(1)y=sinx+tanx (2)x xx y tan cos sin +=例题5.判断下列各式的符号:(1)tan1910-cos1910 (2)sin2cos3tan4例题6.若角α的余弦线是单位长度的有向线段,那么角α的终边在( )A 、y 轴上B 、x 轴上C 、直线y=x 上D 、直线y=-x 上例题7.利用三角函数线比较下列各组数的大小(1)32sin π与54sin π(2)32tan π与54tan π(3)32cos π与54cos π例题8.在单位圆中画出满足sin α=0.5的角α的终边。

例题9.(1)计算ππ512cos )611sin(+-·π4tan (2)确定tan (-6720)的符号例题10.如果sin α=54,且α是第二象限角,那么tan α的值等于( )A 、34- B 、43C 、43±D 、34±例题11.化简:(1)⎪⎪⎭⎫⎝⎛+---+∙⎪⎪⎭⎫ ⎝⎛+--+ααααααααcos 1cos 1cos 1cos 1sin 1sin 1sin 1-sin 1(2)ααααααcos sin 2cot cos tan sin 22++例题12.已知角α的终边上一点P (m ,3),且cos α=410,求sin α,tan α的值例题13.求sin (-12000)·cos12900+cos (-10200)·sin (-10500)+tan9450的值例题14.化简下列各式:(1)a 2sin (-13500)+b 2tan4050-2abcos (-10800);(2)πππ4tan 512cos 611sin ∙+⎪⎭⎫ ⎝⎛-例题15.化简下列各式:(1)02400sin 1-;(2)0200010sin 110sin 10cos 10sin 21---例题16.化简:ααααααcos sin 1cos sin 2cos sin 1+++++例题17.求证:x xx x cos sin 1sin 1cos +=-例题18.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1例题19.已知11tan tan -=-αα,求下列各式的值。

人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】

人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】

任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法||。

3.牢固掌握同角三角函数的两个关系式||,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中||,设α是一个任意角||,α终边上任意一点P (除了原点)的坐标为(,)x y ||,它与原点的距离为(0)r r ==>||,那么(1)比值y r 叫做α的正弦||,记作sin α||,即sin y r α=; (2)比值x r 叫做α的余弦||,记作cos α||,即cos xr α=;(3)比值y x 叫做α的正切||,记作tan α||,即tan yxα=;(4)比值x y 叫做α的余切||,记作cot α||,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合||,α的终边没有表明α一定是正角或负角||,以及α的大小||,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识||,对于确定的角α||,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时||,α的终边在y 轴上||,终边上任意一点的横坐标x 都等于0||,所以tan yxα=无意义;同理当()k k Z απ=∈时||,y x =αcot 无意义;(4)除以上两种情况外||,对于确定的值α||,比值y r 、x r 、y x、xy 分别是一个确定的实数||。

任意角好题训练含详解

任意角好题训练含详解

任意角好题训练含详解一、单选题1.下列命题:①钝角是第二象限的角;①小于90︒的角是锐角;①第一象限的角一定不是负角;①第二象限的角一定大于第一象限的角;①手表时针走过2小时,时针转过的角度为60︒;①若5α=,则α是第四象限角.其中正确的题的个数是( ) A .1个 B .2个 C .3个 D .4个 2.与1303°终边相同的角是( )A .763°B .493°C .-137°D .-47°3.下列角中终边与340︒相同的角是( )A .20︒B .20-︒C .620︒D .40-︒ 4.与800°角终边相同的角可以表示为( ),k ∈Z .A .36040k ⋅︒+︒B .36060k ⋅︒+︒C .36080k ⋅︒+︒D .360100k ⋅︒+︒5.若18045k α=⋅+,k Z ∈,则α所在的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限6.若α是第四象限角,则90º-α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 二、多选题7.在360360-︒︒范围内,与410-︒角终边相同的角是( ) A .50-︒ B .40-︒C .310︒D .320︒ 8.(多选)若α是第三象限的角,则1802α-可能是( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角 9.[多选题]下列说法正确的有( )A .终边相同的角一定相等B .钝角一定是第二象限角C .第一象限角可能是负角D .小于90°的角都是锐角三、填空题10.若角α与角β的终边相同,则αβ-=_______.11.角α的终边落在第一、三象限角平分线上,则角α的集合是_______.12.已知角,αβ的终边关于原点对称,则,αβ间的关系为_________.四、双空题13.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.14.若角α和β的终边满足下列位置关系,试写出α和β的关系式:(1)重合:________________;(2)关于x 轴对称:________________.15.(1)若角θ的终边与角α的终边关于x 轴对称,则θα+=________;(2)若角γ的终边与角α的终边关于y 轴对称,则γα+=________.16.与2 019°角的终边相同的最小正角是________,绝对值最小的角是________.五、解答题17.在0°到360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角: (1)-265°; (2)3900°; (3)-840°10′; (4)560°24′.18.写出与下列各角终边相同的角的集合S ,并把S 中在-360°到720°间的角写出来: (1) -120°; (2) 640°.19.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OB 上; (2)终边落在直线OA 上;20.在与530°角终边相同的角中,找出满足下列条件的角β.(1)最大的负角; (2)最小的正角; (3)720360β-︒≤<-︒.21.1.设α是第四象限的角.(1)试讨论2α是哪个象限的角; (2)写出3α的范围; (3)写出2α的范围. 22.(1)写出与1840-︒角终边相同的角的集合M ;(2)把1840-︒角写成()3600360k αα⋅︒+︒≤<︒的形式,并指出其是第几象限角; (3)若角M α∈且3600α-︒<<︒,求角α.23.如图,写出终边落在阴影部分的角的集合(包括边界).24.已知α与β都是锐角,αβ+的终边与280-︒的终边相同;αβ-的终边与670-︒的终边相同,求α与β的大小.25.已知α是三角形的内角,且7α和α的终边相同,求α的大小.26.已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M=18045,,N=18045,24k k x x k x x k ⎧⎫⎧⎫=⨯+∈=⨯+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z ,判断两集合的关系. 27.如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,以逆时针方向等速沿单位圆周旋转,已知P 点在1 s 内转过的角度为θ (0°<θ<180°),经过2 s 达到第三象限,经过14 s 后又回到了出发点A 处,求θ.参考答案:1.B【解析】【分析】结合象限角和任意角的概念逐个判断即可.【详解】对于①:钝角是大于90小于180的角,显然钝角是第二象限角. 故①正确;对于①:锐角是大于0小于90的角,小于90的角也可能是负角. 故①错误;对于①:359-显然是第一象限角. 故①错误;对于①:135是第二象限角,361是第一象限角,但是135361<. 故①错误; 对于①:时针转过的角是负角. 故①错误;对于①:因为157.3rad ≈,所以5557.3=286.5rad ≈⨯,是第四象限角. 故①正确. 综上,①①正确.故选:B.2.C【解析】【分析】终边相同的角,相差360°的整数倍,据此即可解答.【详解】因为ABCD 选项的角,仅有C 选项的角和1303°相差360°的整数倍,1303°=4×360°-137°,所以与1303°终边相同的角是-137°.故选:C.3.B【解析】【分析】根据终边相同的角的集合表示即可得出答案.【详解】与340︒角终边相同的角的集合为{}340360,x x k k Z =︒+⋅︒∈,当1k =-时,可得20x =-︒.4.C【解析】【分析】根据终边相同的角的定义可求出.【详解】与800°角终边相同的角可以表示为()11800360802360k k ︒+⋅︒=︒++⋅︒(1k ∈Z ),即36080k ⋅︒+︒(k ∈Z ).故选:C.5.B【解析】【分析】分k 为奇数、偶数讨论即可求解.【详解】由题意知18045k α=⋅+,k Z ∈,当21k n =+,n Z ∈,218018045360225n n α=⋅++=⋅+,在第三象限,当2k n =,n Z ∈,21804536045n n α=⋅+=⋅+,在第一象限,①α是第一或第三象限的角,故选:B6.B【解析】【分析】根据角所在的象限判断所求角所在象限即可.【详解】由题知,(90360,360)k k α∈-+⋅⋅,k Z ∈,则90(90360,180360)k k α-∈-⋅-⋅,在第二象限,故选:B7.AC【解析】利用终边相同的角的定义求解.【详解】因为50410360︒︒-=-+︒,3104102360=-+⨯︒︒︒,所以与410-︒角终边相同的角是50-︒和310︒,故选:AC .8.AC【解析】【分析】根据角限角的定义得出角的范围,再运用不等式的性质可得选项.【详解】解:由于α是第三象限的角,故180360270360,k k k Z α, 所以90180135180,2k k k Z α+⋅<<+⋅∈,所以4518018090180,2k k k Z α-⋅<-<-⋅∈. 当k 为偶数时,1802α-为第一象限角; 当k 为奇数时,1802α-为第三象限角. 所以1802α-可能是第一象限角,也可能是第三象限角.故选:AC.9.BC【解析】【分析】对于A :取特殊角30°和390°.即可否定结论;对于B :由第二象限角的范围直接判断;对于C :取特殊角-330°即可判断;对于D :取特殊角-45°角进行否定结论.【详解】对于A :终边相同的角不一定相等,比如30°和390°.故A 不正确;对于B :因为钝角的大小在()90,180︒︒,所以钝角一定是第二象限角,故B 正确;对于C :如-330°角是第一象限角,所以C 正确;对于D :4590-︒<︒,-45°角它不是锐角,所以D 不正确.故选:BC .10.360()k k ⋅︒∈Z ## ()2πk k ∈Z【解析】【分析】根据终边相同的角的定义直接写出即可.【详解】因与角β终边相同连同角β在内的角的集合为{|360()}k k θθβ=+⋅︒∈Z ,而角α与角β的终边相同,则360()k k αβ=+⋅︒∈Z ,即360()k k αβ⋅︒=∈-Z , 所以360()k k αβ⋅︒=∈-Z .故答案为:360()k k ⋅︒∈Z11.{}45180,k k αα=︒+⋅︒∈Z【解析】【分析】分别写出终边落在第一、三象限角平分线上的角α的集合,再求这两个集合的并集即可.【详解】终边落在第一象限角平分线上的角α的集合为{}{}45360,452180,k k k k αααα=︒+⋅︒∈==︒+⋅︒∈Z Z ,终边落在第三象限角平分线上的角α的集合为{}{}225360,45(21)180,k k k k αααα=︒+⋅︒∈==︒++⋅︒∈Z Z , 于是有{}{}{}45360,225360,45180,k k k k k k αααααα=︒+⋅︒∈⋃=︒+⋅︒∈==︒+⋅︒∈Z Z Z , 所以角α的集合是{}45180,k k αα=︒+⋅︒∈Z . 故答案为:{}45180,k k αα=︒+⋅︒∈Z12.(21)180()k k Z αβ-⋅︒∈-=【解析】【分析】由题设αβ-是180︒的奇数倍,写出αβ-的集合即可.【详解】由题意,αβ-为180︒的奇数倍,①(21)180()k k Z αβ-⋅︒∈-=.故答案为:(21)180()k k Z αβ-⋅︒∈-=13. -5 -60【解析】【详解】由题意结合任意角的定义可知,钟表拨快10分钟, 则时针所转成的角度是1036056012-⨯=-, 分针所转成的角度是103606060-⨯=-. 点睛:角的概念中要注意角的正负,特别是表的指针所成的角要分清楚究竟是顺时针问题还是逆时针问题.14.α=k ·360°+β(k ①Z) α=k ·360°-β(k ①Z)【解析】【详解】据终边相同角的概念,数形结合可得:(1)α=k ·360°+β(k ①Z),(2)α=k ·360°-β(k ①Z).15. 360k ⋅︒,k ∈Z ()21180k +⋅︒,k ∈Z【解析】(1) 设角β与角α的终边相同,用角β表示α,β-表示角θ,根据终边相同的角即可求出(2)设角β与角α的终边相同,则180β︒-与β关于y 轴对称,根据终边相同的角写出γα,即可求解.【详解】(1)设角β与角α的终边相同,则β-与β关于x 轴对称,根据终边相同角的表示,可得1360k αβ=+⋅︒,1k Z ∈,2360k θβ=-+⋅︒,2k Z ∈,故()()()2112360360360360k k k k k θαββ+=-+⋅︒++⋅︒=+⋅︒=⋅︒,k Z ∈.故答案为:360k ⋅︒,k Z ∈.(2)设角β与角α的终边相同,则180β︒-与β关于y 轴对称.根据终边相同角的表示,可得3360k αβ=+⋅︒,3k Z ∈,4180360k γβ=︒-+⋅︒,4k Z ∈. 故()()()()43341803603602118021180k k k k k γαββ⎡⎤+=︒-+⋅︒++⋅︒=++⋅︒=+⋅︒⎣⎦,k Z ∈. 故答案为:()21180k +⋅︒,k Z ∈【点睛】本题主要考查了终边相同的角及角的终边的对称性,属于中档题.16. 219° -141°【解析】【分析】利用终边相同的角求解.【详解】与2 019°角的终边相同的角为2 019°+k ·360°(k ①Z ).当k =-5时,219°为最小正角;当k =-6时,-141°为绝对值最小的角.故答案为:219°,-141°17.(1)95︒,第二象限角;(2)300︒,第四象限角;(3)23950︒',第三象限角;(4)20024︒',第三象限角.【解析】【分析】将角化为360k α︒+⋅, ()0360α︒︒≤<,Z k ∈的形式,即可找出与其终边相同的角,再根据α所在象限即可得解.【详解】(1)265136095︒︒︒-=-⨯+,故在0360︒︒-范围内与其终边相同的角为95︒,为第二象限角;(2)390010360300︒︒︒=⨯+,故在0360︒︒-范围内与其终边相同的角为300︒,为第四象限角;(3)''84010336023950︒︒︒-=-⨯+,故在0360︒︒-范围内与其终边相同的角为23950︒',为第三象限角;(4)56024136020024︒︒︒'=⨯+',故在0360︒︒-范围内与其终边相同的角为20024︒',为第三象限角.18.(1)答案见解析 ;(2)答案见解析.【解析】【分析】由终边相同的角的公式求解即可.【详解】(1)S ={β|β=k ·360°-120°,k ①Z },分别令k =0,1,2得S 中在-360°到720°间的角为-120°,240°,600°.(2)S ={β|β=k ·360°+640°,k ①Z },分别令k =-2,-1,0得S 中在-360°到720°间的角为-80°,280°,640°.19.(1){|60360}k k Z αα=+⋅∈,(2){|30180}k k Z αα=+⋅∈,【解析】【分析】(1)由图可知,与60终边相同的角的集合满足题意;(2)由图可知与30,210︒终边相同的角的集合满足题意.(1)终边落在射线OB 上的角的集合为1{|60360}S k k Z αα==+⋅∈,;(2)终边落在直线OA 上的角为30360k =+⋅α或210360k =+⋅α,k Z ∈,即302180k =+⋅α或30(1)180k =++⋅α,k Z ∈,所以终边落在直线OA 上的角的集合为2{|30180}S k k Z αα==+⋅∈,;20.(1)190β=-︒(2)170β=︒(3)550β=-︒【解析】【分析】(1)写出与530°角终边相同的角为360530k ⋅︒+︒,k ∈Z ,再根据3603605300k -︒<⋅︒+︒<︒,即可的解;(2)根据0360530360k ︒<⋅︒+︒<︒,即可的解;(3)根据720360530360k -︒≤⋅︒+︒<-︒,即可的解.(1)解:与530°角终边相同的角为360530k ⋅︒+︒,k ∈Z ,由3603605300k -︒<⋅︒+︒<︒且k ∈Z ,可得2k =-,故所求的最大负角190β=-︒;(2)解:由0360530360k ︒<⋅︒+︒<︒且k ∈Z ,可得1k =-,故所求的最小正角170β=︒;(3)解:由720360530360k -︒≤⋅︒+︒<-︒且k ∈Z ,可得3k =-,故所求的角550β=-︒. 21.(1)第二或第四象限的角 (2)()222,33233k k k Z αππππ⎛⎫∈++∈ ⎪⎝⎭(3)()()243,44k k k Z αππππ∈++∈【解析】【分析】(1)根据α是第四象限的角,先表达出α与2α,然后分k 为偶数和奇数,分别求出此时2α位于哪个象限;(2)利用α的范围,表达出3α的范围;(3)利用α的范围,表达出2α的范围(1)α是第四象限的角,即()32222k k k Z ππαππ+<<+∈. ()342k k k Z παπππ+<<+∈, 当2k n =,n Z ∈时,32242n n παπππ+<<+,n Z ∈;此时2α是第二象限角; 当21k n =+,n Z ∈时,722242n n παπππ+<<+,n Z ∈,此时2α是第四象限角所以,2α是第二或第四象限的角 (2) 因为()32222k k k Z ππαππ+<<+∈,所以()22232333k k k Z ππαππ+<<+∈,故()222,33233k k k Z αππππ⎛⎫∈++∈ ⎪⎝⎭(3) 因为()32222k k k Z ππαππ+<<+∈,所以()43244k k k Z ππαππ+<<+∈,故()()243,44k k k Z αππππ∈++∈22.(1){}|36040,M k k Z θθ==⋅︒-︒∈;(2)184********-︒=-⨯︒+︒,第四象限角;(3)40α=-︒.【解析】【分析】(1)根据1840-︒,写出终边相等的角的集合即可.(2)利用周期性,写出与1840-︒终边相同的最小正角,进而判断所在的象限.(3)由(1)所得范围,结合给定的范围写出角α.【详解】(1)由终边相同的角的概念得:(){}|3601840,M k k Z ββ==⋅︒+-︒∈={}|36040,k k Z θθ=⋅︒-︒∈.(2)①184********-︒=-⨯︒+︒,而320︒是第四象限角,①1840-︒是第四象限角.(3){}|360320,M k k Z θθ==⋅︒+︒∈,又M α∈且3600α-︒<<︒,①取1k =-得,40α=-︒.23.答案见详解【解析】【分析】(1)结合图像,先分别表示终边落在两块区域的角的集合,再取并集即可;(2)先写出在180~180-的范围内,阴影部分对应的角,再表示即可【详解】(1)这是对顶角区域的表示问题,结合图像终边落在阴影部分的角的集合可表示为:{|3604536090k k αα⋅+≤≤⋅+或360225360270,}k k k Z α⋅+≤≤⋅+∈{|1804518090,}n n n Z αα=⋅+≤≤⋅+∈(2)在180~180-的范围内,阴影部分为150~120-终边落在阴影部分的角的集合可表示为:{|360150360120,}k k k Z αα⋅-≤≤⋅+∈24.65,15αβ=︒=︒【解析】【分析】由α与β都是锐角知,(0,180)αβ+∈,找到该范围内与280-︒的终边相同的角;同理找到90)0(9,αβ-∈-对应的角,从而解得,αβ.【详解】由α与β都是锐角知,(0,180)αβ+∈,则在该范围内满足与280-︒的终边相同的角为80︒;同理90)0(9,αβ-∈-,则在该范围内满足与670-︒的终边相同的角为50︒; 即80αβ+=,50αβ-=解得65,15αβ=︒=︒25.60︒,120︒【解析】【分析】根据终边相同建立方程,结合角的范围即可求解.【详解】因为7α和α的终边相同,所以7360,k k Z αα=+⋅︒∈,即60,k k Z α=⋅︒∈,因为α是三角形的内角,所以60α=︒或120︒,26.(1)β=-675°或β=-315°.(2)M N ⊆.【解析】【分析】(1)所有与角α有相同终边的角可表示为45360k k Z ︒+⨯︒∈(), 列出不等式解出整数k ,即得所求的角.(2)先化简两个集合,分整数k 是奇数和偶数两种情况进行讨论,从而确定两个集合的关系.【详解】(1)所有与角α有相同终边的角可表示为:β=45°+k ×360°(k ①Z ),则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-≤k <-,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ①Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)×45°,k ①Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而M N ⊆.【点睛】(1)从终边相同的角的表示入手分析问题,先表示出所有与角α有相同终边的角,然后列出一个关于k 的不等式,找出相应的整数k ,代回求出所求解;(2)可对整数k 的奇、偶数情况展开讨论.27.7207︒或9007︒. 【解析】【分析】由题得90°<θ<135°,求出θ=1807n ︒⋅,解不等式90°<1807n ︒⋅<135°即得解. 【详解】①0°<θ<180°,且k ·360°+180°<2θ<k ·360°+270°,k ①Z ,则一定有k =0,于是90°<θ<135°.又①14θ=n ·360°(n ①Z ),①θ=1807n ︒⋅,从而90°<1807n ︒⋅<135°,①72<n<214,①n=4或5.当n=4时,θ=7207︒;当n=5时,θ=9007︒.所以720=7θ︒或9007︒.。

三角函数第一节任意角练习含答案

三角函数第一节任意角练习含答案

《任意角》评测练习1下列命题:(1)始边和终边都相同的角一定相等 (2)始边相同而终边不同的角一定不相等(3)始边相同、终边相同且旋转方向也相同的两个角一定相等 (4)始边想通过、终边相同而旋转方向不相同的两个角一定不相等 其中正确的命题是 2、下列命题中,正确的是(1)第一象限的角都是锐角 (2)第二象限的角都是钝角 (3)小于90的角都是锐角 (4)锐角都是第一象限角3、在0到360范围内,找出与下列各角终边相同的角,并指出它们是第几象限角 (1)26-: (2)118524': (3)900: (4)83710'-:4、写出与下列各角终边相同的角的集合,并把集合中适合不等式360360α-≤<的元素表示出来。

(1)25- (2)83436'- (3)455 (4)05、(1)若角α的终边为第二象限的角平分线,则角α的集合是 ; (2)若角α的终边为第一、三象限的角平分线,则角α的集合是 。

6、设,αβ满足180180αβ-<<<,则αβ-的范围是:7、根据下列条件写出角α与角β之间的关系式: (1)两角,αβ的终边关于原点对称;(2)两角,αβ的终边关于x 轴对称;(3)两角,αβ的终边关于y 轴对称;(4)两角,αβ的终边关于直线y x =对称;8、自上午7点整到校至中午11点40分放学,时钟的时针和分针各转了多少度上午7点整和中午11点40分两针所成的最小正角各是多少度9、将下列落在图示部分的角(阴影部分)135 135第一章 三角函数 § 任意角和弧度制1. 任意角一、选择题1.与405°角终边相同的角是( )A .k ·360°-45°,k ∈ZB .k ·180°-45°,k ∈ZC .k ·360°+45°,k ∈ZD .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限3.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角5.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P 之间的关系为( ) A .M =P B .M PC .MPD .M ∩P =∅6.已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限二、填空题7.若角α与β的终边相同,则α-β的终边落在________. 8.经过10分钟,分针转了________度.9.如图所示,终边落在阴影部分(含边界)的角的集合是______________________________.10.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题11.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.12.如图所示,写出终边落在阴影部分的角的集合.能力提升13.如图所示,写出终边落在直线y=3x上的角的集合(用0°到360°间的角表示).14.设α是第二象限角,问α3是第几象限角第一章三角函数§任意角和弧度制1.任意角答案1.C 2..A 3.D 4.C 5.B6.D7.x轴的正半轴8.-609.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}10.-110°或250°11.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.12.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|k·180°+30°≤α<k·180°+105°,k∈Z}.13.解终边落在y=3x (x≥0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在y=3x (x≤0) 上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是终边在y=3x上角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.14.解当α为第二象限角时,90°+k·360°<α<180°+k·360°,k∈Z,∴30°+k 3·360°<α3<60°+k3·360°,k ∈Z .当k =3n 时,30°+n ·360°<α3<60°+n ·360°,此时α3为第一象限角;当k =3n +1时,150°+n ·360°<α3<180°+n ·360°,此时α3为第二象限角;当k =3n +2时,270°+n ·360°<α3<300°+n ·360°,此时α3为第四象限角.综上可知α3是第一、二、四象限角.任意角和弧度制练习题一选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4、终边在第二象限的角的集合可以表示为: ( )A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 5、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180| αα6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7.在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )A.①B.①②C.①②③D.①②③④8.若α是第一象限的角,则2α是( ) A.第一象限的角B.第一或第四象限的角C.第二或第三象限的角D.第二或第四象限的角9.下列结论中正确的是( )A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等10角α的终边落在y=-x(x >0)上,则sin α的值等于( )22 B.22 C.±22D.±2111.集合A={α|α=k ·90°,k ∈N +}中各角的终边都在( )轴的正半轴上轴的正半轴上轴或y 轴上轴的正半轴或y 轴的正半轴上12.α是一个任意角,则α与-α的终边是( )A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称 13.集合X={x |x=(2n+1)·180°,n ∈Z},与集合Y={y |y=(4k ±1)·180°,k ∈Z}之间的关系是( C )C.X=Y≠Y14.设α、β满足-180°<α<β<180°,则α-β的范围是( )°<α-β<0° °<α-β<180° °<α-β<0°°<α-β<360°15.下列命题中的真命题是( )A .三角形的内角是第一象限角或第二象限角B .第一象限的角是锐角C .第二象限的角比第一象限的角大D .角α是第四象限角的充要条件是2k π-2π<α<2k π(k ∈Z )16.设k ∈Z ,下列终边相同的角是 ( )A .(2k +1)·180°与(4k ±1)·180°B .k ·90°与k ·180°+90°C .k ·180°+30°与k ·360°±30°D .k ·180°+60°与k ·60°17.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin18.一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为:( )A .70 cmB .670cm C .(3425-3π)cm D .3π35 cm 19.若90°<-α<180°,则180°-α与α的终边( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上都不对20.设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于 ( ) A .{-105ππ3,} B .{-510ππ4,7} C .{-5-105ππππ4,107,3,} D .{07,031-1ππ } 21.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .422.设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+(-1)k6π,k ∈Z }那么下列结论中正确的是( ) A .M =NB .M NC .N MD .M N 且N M二、填空题(每小题4分,共16分,请将答案填在横线上) 23.若角α是第三象限角,则2α角的终边在 2α角的终边在_____________ 24.与-1050°终边相同的最小正角是 . 25.已知α是第二象限角,且,4|2|≤+α则α的范围是 . 26.已知扇形的周长为20 cm ,当扇形的中心角为多大时,它有最大面积,最大面积是 27. 在半径为12 cm 的扇形中, 其弧长为5π cm, 中心角为θ. θ=__________ (用角度制表示).28. 已知一扇形在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度.任意角的三角函数一、选择题1.有下列命题:①终边相同的角的三角函数值相同; ②同名三角函数的值相同的角也相同;③终边不相同,它们的同名三角函数值一定不相同; ④不相等的角,同名三角函数值也不相同. 其中正确的个数是( )B.12.若角α、β的终边关于y 轴对称,则下列等式成立的是( )α=sin β α=cos βα=tan βα=cot β3.角α的终边上有一点P (a ,a ),a ∈R ,a ≠0,则sin α的值是( ) A.22 B.-22 C. 22或-224.若x x sin |sin |+|cos |cos x x +xx tan |tan |=-1,则角x 一定不是( )A.第四象限角B.第三象限角C.第二象限角D.第一象限角·cos3·tan4的值( ) A.小于0B.大于0C.等于0D.不存在6.若θ是第二象限角,则( )2θ>02θ<02θ>02θ<0 二、填空题7.若角α的终边经过P (-3,b ),且cos α=-53,则b =_________,sin α=_________. 8.在(0,2π)内满足x 2cos =-cos x 的x 的取值范围是_________. 9.已知角α的终边在直线y =-3x 上,则10sin α+3cos α=_________. 10.已知点P (tan α,cos α)在第三象限,则角α的终边在第_________象限.三、解答题11.已知角α的顶点在原点,始边为x 轴的非负半轴.若角α的终边过点P (-3,y ),且sin α=43y (y ≠0),判断角α所在的象限,并求cos α和tan α的值.1.下列说法正确的是 [ ]A .小于90°的角是锐角B .大于90°的角是钝角C .0°~90°间的角一定是锐角D .锐角一定是第一象限的角2.设A={钝角},B={小于180°的角},C={第二象限的角}, D={小于180°而大于90°的角},则 下列等式中成立的是 [ ]A .A=CB .A=BC .C=D D .A=DA .第一象限角B .第二象限角C .第一象限角或第三象限角D .第一象限角或第二象限角A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称5.若α,β的终边互为反向延长线,则有 [ ]A .α=-βB .α=2k π+β(k ∈Z)C .α=π+βD .α=(2k+1)π+β(k ∈Z)6已知集合()()⎭⎬⎫⎩⎨⎧∈⋅-+=⋃⎭⎬⎫⎩⎨⎧∈⋅-+==⎭⎬⎫⎩⎨⎧∈±==Z k k a a Z k k a a B Z k k a a A k k ,31,31,,3ππππππ则A 、B 的关系A .A=B B B A ⊃C B A ⊂D .以上都不对7.在直角坐标系中,若角α与角β的终边关于y 轴对称,则α与β的关系一定是 [ ]A .α+β=πB .α+β=2k π(k ∈Z)C .α+β=n π(n ∈Z)D .α+β=(2k+1)π(k ∈Z)8.终边在第一、三象限角的平分线上的角可表示为 [ ]A .k ·180°+45°(k ∈Z)B .k ·180°±45°(k ∈Z)C .k ·360°+45°(k ∈Z)D .以上结论都不对9.一条弦的长等于半径,则这条弦所对的四周角的弧度为 [ ] A 1 B 2 C 6π或65π D 3π或35π 10.若1弧度的圆心角,所对的弦长等于2,这圆心角所对弧长 [ ] A 21sin B 6π C 1/21sin D 221sin答案:BDDDD BCDCA CBCAD ABDBCBC第二或第四象限;第一或第二象限或终边在y 轴的非负半轴。

1.2任意角的三角函数题目精选

1.2任意角的三角函数题目精选

三角函数定义练习一.选择题1、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-55 B .- 5 C .552 D .252、α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos α C .tan α D .cot α3、已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( ) A .25 B .-25 C .0 D .与a 的取值有关4、α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5、函数x x y cos sin -+=的定义域是()A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈D .[2k π,(2k+1)π],Z k ∈ 6、若θ是第三象限角,且02cos<θ,则2θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7、已知sin α=54,且α是第二象限角,那么tan α的值为 ()A .34- B .43- C .43D .34 8、已知点P (ααcos ,tan )在第三象限,则角α在()A .第一象限B .第二象限C .第三象限D .第四象限二.填空题1、已知sin αtan α≥0,则α的取值集合为 .2、角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______. 3、已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = . 4、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 .三.解答题1、求43π角的正弦、余弦和正切值.2、若角α的终边落在直线y x 815=上,求ααtan sec log 2-.。

(完整版)任意角和弧度制练习题(含答案)

(完整版)任意角和弧度制练习题(含答案)

§1.1 任意角和弧度制班级 姓名 学号 得分一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( )(A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( )(A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z}(C){α|α=k ·180°,k ∈Z}(D){α|α=k ·90°,k ∈Z} 3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( )(A) α+β=π (B) α-β=2π (C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( ) (A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( )(A)0个 (B)2个 (C)3个 (D)4个二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 .8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.*10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 .三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?*14.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x |x =k ·3600+1800, k ∈Z }, {x |x =k ·1800+450,k ∈Z } ; 8.-345°; 9. 31; 10.第二或第四象限, 第一或第二象限或终边在y 轴的正半轴上三、11.{ α|α=k ·3600+1200或α=k ·3600+3000, k ∈Z } -60° 120°12.由7θ=θ+k ·360°,得θ=k ·60°(k ∈Z )∴θ=60°,120°,180°,240°,300°13.∵l =20-2r ,∴S =21lr =21(20-2r )·r =-r 2+10r =-(r -5)2+25∴当半径r =5 cm 时,扇形的面积最大为25 cm 2,此时,α=r l =55220⨯-=2(rad) 14.A 点2分钟转过2θ,且π<2θ<23π,14分钟后回到原位,∴14θ=2k π,θ=72πk ,且2π<θ<43π,∴ θ=74π或75π。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

任意角的概念练习题

任意角的概念练习题

任意角的概念练习题一、单选题1. 下列哪个角是任意角?A. 直角B. 钝角C. 锐角D. 零角2. 以下哪个选择是任意角的特点?A. 角度大小小于90°B. 角度大小大于90°C. 角度大小可以是0°或大于90°的任意值D. 角度大小是180°3. 以下哪个角度不是任意角的特点?A. 可以是正数或负数B. 可以是小数或分数C. 角度大小只能是整数D. 可以用度、弧度或梯度来度量二、填空题1. 在坐标系中,横轴和纵轴的交点为原点,形成的角为__________。

2. 任意角的度数范围是______________。

3. 任意角的弧度范围是______________。

4. 以下几组角中,哪组角是任意角?A. -45°,120°,270°B. 30°,60°,90°C. 180°,270°,360°D. 0°,45°,90°三、解答题1. 画出以下角的标准位置:A. -30°B. 150°C. 240°2. 将以下角度转化为弧度制:A. 60°B. 135°C. 270°3. 将以下角度转化为度数制:A. π/4 弧度B. 3π/2 弧度C. π 弧度4. 以下角中,哪个角是一个全周角?A. 90°B. 180°C. 270°D. 360°四、计算题1. 已知角A的度数为70°,角B的度数为120°,求角A与角B之和的度数。

2. 已知角X的度数为155°,角Y的度数为75°,求角X与角Y之差的度数。

3. 两个任意角的和为180°,它们之间的差是90°,请计算这两个角的度数。

4. 角P的度数是角Q的180°的一半减去角R度数的一半,已知角R的度数为36°,请计算角P的度数。

习题《任意角》

习题《任意角》

任意角练习1.下列命题中,正确的是()A.第一象限角必是锐角B.终边相同的角必相等C.相等角的终边位置必相同D.不相等的角其终边位置必不相同2.-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.下列各组角中,终边相同的是() A.390°,690°B.-330°,750°C.480°,-420°D.3000°,-840°4.与-457°角终边相同角的集合是() A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}5.将射线OM 绕端点O 按逆时针方向旋转120°所得的角为( )A .120°B .-120°C .60°D .240°6.-30°是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知A ={第一象限角},B ={锐角},C ={小于90°的角},那么A 、B 、C 的关系是( )A .B =A ∩CB .B ∪C =CC .A CD .A =B =C8.已知角α是第二象限角,α2是( )。

A .第一象限角的集合B .第一或第二象限角的集合C .第一或第三象限角的集合D .第一或第四象限角的集合9.若角α和角β的终边关于x 轴对称,则角α可以用角β表示为( )A .k ·360°+β(k ∈Z)B .k ·360°-β(k ∈Z)C .k ·180°+β(k ∈Z)D .k ·180°-β(k ∈Z)10.若φ是第二象限角,那么φ2和90°-φ都不是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案解析1.C解析:锐角是第一象限角,但第一象限角不一定是锐角,因此A错误;由终边相同角的概念知C正确.故选:C.2.B解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.故选:B.3.B解析:由于-330°=﹣3×360°+750°,故这两个角的终边相同.故选:B.4.C解析:与-457°角终边相同的角是α=k·360°-457°,k∈Z,而α=k·360°+263°=(k+2)·360°+263°-720°=(k+2)·360°-457°,k∈Z.∴与-457°角终边相同角的集合是C.故选:C.5.A解析:由角的定义可知:逆时针旋转120°,可得角的度数为120°,故选:A.解析:﹣30°=﹣360°+330°,所以﹣30°和330°是同一个终边所对的角,故是第四象限角.故选:D.7. B解析:A ={第一象限角}={θ|k ·360°<θ<90°+k ·360°,k ∈Z},B ={锐角}={θ|0<θ<90°},C ={小于90°的角}={θ|θ<90°},故选:B.8. C解析:角α是第二象限角即{α|90°+k ·360°<α<180°+k ·360°,k ∈Z},则45°+k ·180°<2<90°+k ·180°.故选:C.9.B解析:因为角α和角β的终边关于x 轴对称,所以α+β=k ·360°(k ∈Z),所以α=k ·360°-β(k ∈Z).故选:B.10. B解析:∵φ是第二象限角,∴k ·360°+90°<φ<k ·360°+180°,k ∈Z ,∴k ·180°+45°<φ2<k ·180°+90°,k ∈Z ,即φ2终边是第一或第三象限角,而-φ显然是第三象限角,∴90°-φ是第四象故选:B.。

人教A版数学高二任意角精选试卷练习(含答案)2

人教A版数学高二任意角精选试卷练习(含答案)2

人教A 版数学高二任意角精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.将分针拨慢5分钟,则分钟转过的弧度数是( ) A .π3 B .π3- C .π6 D .π6- 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】C2.把 1 125-︒化成()2π02π,k k αα+≤<∈Z 的形式是( ) A .6π4π-- B .7π46π- C .π84π--D .7π4π8-【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】D3.圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为( ) A .π3 B .2π3CD .2【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】CA .960-︒B .480-︒C .120-︒D .60-︒ 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】B5.下列转化结果错误的是( )A .6730︒'化成弧度是3π8 B .10π3-化成度是600-︒ C .150-︒化成弧度是5π6 D .π12化成度是15︒【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】C 6.已知α=75π,则角α的终边位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【来源】河北省承德一中2017-2018学年高一上学期第三次月考数学试卷 【答案】C7.2016°角的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】C8.已知A ={第一象限角},B ={锐角},C ={小于90︒的角},那么A 、B 、C 关系正确的是( )A .B AC =I B .=B C C U C .A C ⊆D .==A B C 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】B9.与460-︒角终边相同的角的集合是( )A .{}|=360457,k k αα⋅︒+︒∈ZB .{}|=360100,k k αα⋅︒+︒∈ZC .{}|=360260,k k αα⋅︒+︒∈ZD .{}|=360260,k k αα⋅︒-︒∈Z 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】C10.已知α是第三象限角,则2α是( )A .第一象限角B .第二象限角C .第一或第四象限角D .第二或第四象限角 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】D11.在[]3601440︒︒,中与2118'-︒终边相同的角有( )A .0个B .1个C .2个D .3个 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】D12.经过2小时,钟表上的时针旋转了( )A .60︒B .60-︒C .30︒D .30-︒ 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】B13.集合180=45,2k M x x k ⎧⋅︒⎫=±︒∈⎨⎬⎩⎭Z ,o o 180=904k N x x k ⎧⎫⋅⎪⎪=±∈⎨⎬⎪⎪⎩⎭Z ,,则M 、N 之间的关系为( )A .=M NB .N M ⊂≠C .M N ⊃≠D .=M N ∅I【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】B14.与−405°角终边相同的角的集合中,0°~360°间的角的大小是( ) A .90° B .90° C .305° D .315° 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】C15.与角53︒终边相同的角是 ( ) A .127︒B .233︒C .307︒-D .127︒-【来源】黑龙江省大庆实验中学2017-2018学年高一上学期期中考试数学试题 【答案】C16.顶点为坐标原点,始边在x 轴的非负半轴上,终边在y 轴上的角α的集合是( ) A .2,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭B .2,2k k Z πααπ⎧⎫=-∈⎨⎬⎩⎭C .,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D .,2k k Z παα⎧⎫=∈⎨⎬⎩⎭【来源】东北四市一模(文)试题 【答案】C17.与60-°的终边相相同的角是 ( ) A .3πB .23π C .43π D .53π 【来源】广东省阳江市2016-2017学年高一下学期期末检测数学试题 【答案】D 18.与角3π-终边相同的角是( ) A .53π B .116πC .56π-D .23π-【来源】山东省临沂市2016-2017学年高一下学期期末考试数学试题 【答案】A19.下列命题中正确的是( ) A .终边在x 轴负半轴上的角是零角 B .三角形的内角必是第一、二象限内的角 C .不相等的角的终边一定不相同D .若0•360k βα=+(k Z ∈),则α与β终边相同【来源】宁夏平罗中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】D20.下面四个命题正确的是( ) A .第一象限角必是锐角 B .锐角必是第一象限角C .若cos 0α<,则α是第二或第三象限角D .小于090的角是锐角【来源】2015-2016学年福建省上杭一中高一3月月考数学试卷(带解析) 【答案】B21.下列各个角中与2017°终边相同的是 ( ) A .﹣147° B .677° C .317° D .217°【来源】江西省景德镇市2016-2017学年高一下学期期末质量检测数学试题 【答案】D22.若α是第三象限角,则2α是( )A .第二象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角【来源】2015-2016学年吉林省实验中学高一上学期期末数学试卷(带解析) 【答案】D23.已知α是第一象限角,那么2α是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角D .第一或第三象限角【来源】河南省安阳市第三十五中学2016-2017学年高一下学期期末考试数学试题 【答案】D24.若角A 是第二象限角,则角2A是第几象限角 A .一或三B .二或四C .三或四D .一或四【来源】20102011年福建省福州八周高一下学期期中考试数学【答案】A25.下列结论中正确的是( ) A .小于90°的角是锐角 B .第二象限的角是钝角 C .相等的角终边一定相同D .终边相同的角一定相等【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】C26.与-30°终边相同的角是( ) A .-330°B .150°C .30°D .330°【来源】海南省文昌中学2016-2017学年高一下学期期中段考数学(理)试题 【答案】D27.终边在直线y x =上的角的集合是( ) A .{|,}4k k Z πααπ=+∈ B .{|2,}4k k Z πααπ=+∈C .3{|,}4k k Z πααπ=+∈D .5{|2,}4k k Z πααπ=+∈【来源】山西省太原市2016-2017学年高一下学期阶段性测评(期中考试)数学试卷 【答案】A28.若α是第四象限角,则-α一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【来源】高中数学人教A 版必修4 第一章 三角函数 1.1.1 角的概念的推广 【答案】A二、填空题29.3-的终边位于第______象限. 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】三30.给出下列说法:(1)弧度角与实数之间建立了一一对应; (2)终边相同的角必相等; (3)锐角必是第一象限角;(4)小于90︒的角是锐角;(5)第二象限的角必大于第一象限角,其中正确的是__________(把所有正确说法的序号都填上). 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】(1)(3)31.终边在直线y=﹣x 上角的集合可以表示为________.【来源】河北省承德一中2017-2018学年高一上学期第三次月考数学试卷 【答案】{α|α=﹣4π+kπ,k ∈Z} 32.在148︒,475︒,960-︒,1601-︒,185-︒这五个角中,第二象限角有______个.【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】433.在0360︒︒:范围内与650︒角终边相同的角为________. 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】290︒34.在集合{}120360,A k k αα==︒+⋅︒∈Z 中,属于360360-︒︒:之间的角的集合是________.【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】{}120,240︒-︒ 35.已知角α=4π,则与α终边相同的角β的集合是___________________. 【来源】黑龙江省伊春市第二中学2017-2018学年高一上学期期中考试数学试题 【答案】2,4k k Z πββπ⎧⎫=+∈⎨⎬⎩⎭36.使得lg(cos θ·tan θ)有意义的角θ是第______象限角.【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题(带解析) 【答案】要使原式有意义,必须cos θ·tan θ>0,即需cos θ、tan θ同号,∴θ是第一或第二象限角37.与-20020终边相同的最大负角是________【来源】2012届广东省肇庆市封开县南丰中学高三复习必修4测试A【答案】0202-38.1200︒-是第 象限角【来源】2011—2012学年江苏省苏苑高级中学高一12月月考数学试卷 【答案】三39.用弧度制表示终边落在y 轴上的角的集合:_________________________ 【来源】20102011年云南省红河州蒙自县文澜高级中学高一下学期3月月考数学试卷 【答案】|,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭40.若παπ-<<,且2α与54π-的终边互相垂直,则α=________. 【来源】第1.1节综合训练【答案】735,,,8888ππππ-- 41.若角θ的终边与角67π的终边相同,则在[)0,2π内与角3θ的终边相同的角是______.【来源】第五章易错疑难集训(一) 【答案】22034,,72121πππ三、解答题42.把下列各角用另一种度量制表示出来:11230︒';36︒;5π12-;3.5. 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】5π8;π5;75-︒;200.55︒ 43.已知在半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角()π0αα<<的大小; (2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S . 【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】(1)π3(2)π503⎛ ⎝⎭44.已知角的顶点与坐标原点重合,始边落在x 轴的非负半轴上,在0360α︒≤<︒范围内,找出与下列各角终边相同的角,并判断它们是第几象限角. (1)750︒;(2)795-︒;(3)95020'︒.【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】 (1)30︒,一 (2)285︒,四 (3)23020'︒,三45.在角的集合{}9060,k k αα=⋅︒+︒∈Z 中: (1)有几种终边不相同的角?(2)有几个角满足不等式360360α-︒<<︒? 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】(1)4种(2)8个46.一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A (1,0)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14秒时回到A 点,并且在第2秒时均位于第二象限,求α,β的值.【来源】[同步]2014年苏教版必修四 1.1任意角、弧度制练习卷(带解析) 【答案】α=()°,β=()°.47.如果角α的终边经过点M ,试写出角α的集合A ,并求集合A 中最大的负角和绝对值最小的角.【来源】陕西省榆林府谷县麻镇中学2016-2017学年高一下学期期末质量检测试题数学试题【答案】最大的负角为0300-,绝对值最小的角为06048. 已知角α的终边经过点P(3a-9,a+2),且cosα≤0,sinα>0,则a 的取值范围是_____.【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题(带解析) 【答案】-2<a ≤3 49.已知角α的终边与3π角的终边相同,求3α在[]0,2π的]内值 【来源】20102011年吉林省油田中学高一下学期起初考试数学试卷【答案】713;;999πππ50.已知角的顶点与坐标原点重合,始边落在x 轴的非负半轴上,在0360α︒≤<︒范围内,找出与下列各角终边相同的角,并判断它们是第几象限角. (1)750o ;(2)795-o ;(3)'95020o【来源】(人教A 版必修四)1.1.1任意角(第二课时)同步练习01 【答案】(1)30°,一(2)285︒,四(3)23020︒',三。

课时作业29:1.2.1 任意角的三角函数(二)

课时作业29:1.2.1 任意角的三角函数(二)

1.2.1 任意角的三角函数(二)一、选择题1.函数y =tan ⎝⎛⎭⎫x -π3的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π3,x ∈R B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π6,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π-5π6,k ∈Z 考点 单位圆与三角函数线 题点 利用三角函数线解不等式 答案 C解析 ∵x -π3≠k π+π2,k ∈Z ,∴x ≠k π+5π6,k ∈Z .2.角α=π5和角β=6π5有相同的( )A .正弦线B .余弦线C .正切线D .不能确定考点 单位圆与三角函数线 题点 三角函数线的作法 答案 C3.sin 1,sin 1.2,sin 1.5三者的大小关系是( ) A .sin 1>sin 1.2>sin 1.5 B .sin 1>sin 1.5>sin 1.2 C .sin 1.5>sin 1.2>sin 1 D .sin 1.2>sin 1>sin 1.5 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 C4.若α是第一象限角,则sin α+cos α的值与1的大小关系是( ) A .sin α+cos α>1 B .sin α+cos α=1 C .sin α+cos α<1 D .不能确定 考点 单位圆与三角函数线题点 利用三角函数线比较大小 答案 A解析 如图所示,设角α的终边与单位圆交于点P ,作PM ⊥x 轴,垂足为M ,则sin α=MP ,cos α=OM . 在△OMP 中,∵OM +MP >OP , ∴cos α+sin α>1.5.sin 1°,sin 1,sin π°的大小顺序是( ) A .sin 1°<sin 1<sin π° B .sin 1°<sin π°<sin 1 C .sin π°<sin 1°<sin 1 D .sin 1<sin 1°<sin π° 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 B 6.设a =sin 2π7,b =cos 2π7,c =tan 2π7,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 D解析 ∵π4<2π7<π2,作2π7的三角函数线如图,则sin2π7=MP ,cos 2π7=OM ,tan 2π7=AT , ∴OM <MP <AT , ∴b <a <c ,故选D.7.已知sin α>sin β,那么下列命题成立的是( )A .若α,β是第一象限角,则cos α>cos βB .若α,β是第二象限角,则tan α>tan βC .若α,β是第三象限角,则cos α>cos βD .若α,β是第四象限角,则tan α>tan β 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 D解析 如图(1),α,β的终边分别为OP ,OQ ,sin α=MP >NQ =sin β,此时OM <ON ,所以cos α<cos β,故A 错;如图(2),OP ,OQ 分别为角α,β的终边,MP >NQ ,即sin α>sin β,所以AC <AB ,即tan α<tan β,故B 错;如图(3),角α,β的终边分别为OP ,OQ ,MP >NQ ,即sin α>sin β,所以OM <ON ,即cos α<cos β,故C 错,若α,β为第四象限的角,结合单位圆,可知tan α>tan β,故选D.二、填空题 8.不等式tan α+33>0的解集为________. 考点 单位圆与三角函数线 题点 利用三角函数线解不等式答案 ⎩⎨⎧⎭⎬⎫α⎪⎪k π-π6<α<k π+π2,k ∈Z 解析 不等式的解集如图阴影部分所示(不含边界).9.不等式cos x >12在区间[-π,π]上的解集为________.考点 单位圆与三角函数线 题点 利用三角函数线解不等式答案 ⎝⎛⎭⎫-π3,π3 10. sin2π5,cos 6π5,tan 2π5从小到大的排列顺序是________________________. 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 cos6π5<sin 2π5<tan 2π5解析 由图可知,cos6π5<0,tan 2π5>0,sin 2π5>0. 因为|MP |<|AT |, 所以sin 2π5<tan 2π5. 故cos6π5<sin 2π5<tan 2π5. 11.若cos θ>sin7π3,利用三角函数线得角θ的取值范围是________________. 考点 单位圆与三角函数线 题点 利用三角函数线解不等式 答案 ⎝⎛⎭⎫2k π-π6,2k π+π6(k ∈Z ) 解析 因为cos θ>sin7π3, 所以cos θ>sin ⎝⎛⎭⎫π3+2π=sin π3=32, 易知角θ的取值范围是⎝⎛⎭⎫2k π-π6,2k π+π6(k ∈Z ). 三、解答题12.求下列函数的定义域. (1)y =lg ⎝⎛⎭⎫22-sin x ;(2)y =3tan x - 3.考点 单位圆与三角函数线 题点 利用三角函数线解不等式 解 (1)为使y =lg ⎝⎛⎭⎫22-sin x 有意义, 则22-sin x >0, 所以sin x <22, 所以角x 终边所在区域如图中阴影部分(不含边界)所示,所以2k π-5π4<x <2k π+π4,k ∈Z .所以原函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪2k π-5π4<x <2k π+π4,k ∈Z . (2)为使y =3tan x -3有意义, 则3tan x -3≥0, 所以tan x ≥33, 所以角x 终边所在区域如图中阴影部分所示(含边界,不含y 轴),所以k π+π6≤x <k π+π2,k ∈Z ,所以原函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x <k π+π2,k ∈Z . 13.已知-12≤cos θ<32,利用单位圆中的三角函数线,确定角θ的取值范围.考点 单位圆与三角函数线 题点 利用三角函数线解不等式解 图中阴影部分就是满足条件的角θ的范围,即⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-23π≤θ<2k π-π6或2k π+π6<θ≤2k π+23π,k ∈Z .14.函数y =log sin x (2cos x +1)的定义域为____________. 考点 单位圆与三角函数线 题点 利用三角函数线解不等式答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x <2k π+π2或2k π+π2<x <2k π+23π,k ∈Z 解析 由题意可知,要使函数有意义,则需⎩⎪⎨⎪⎧sin x >0且sin x ≠1,2cos x +1>0,如图所示,阴影部分(不含边界与y 轴)即为所求.所以所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x <2k π+π2或2k π+π2<x <2k π+23π,k ∈Z . 15.已知tan x =3,求x 的取值集合.解 因为π3与4π3的终边互为反向延长线,所以两角的正切线相同(如图所示),所以tan 4π3=tan π3=3,若tan x =3,则角x 的终边落在角π3的终边上或落在角4π3的终边上,所以x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪ x =2k π+4π3,k ∈Z ∪⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π+π3,k ∈Z=⎩⎨⎧⎭⎬⎫x ⎪⎪ x =(2k +1)π+π3,k ∈Z ∪⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π+π3,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π3,k ∈Z .。

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及应用在初中我们已经学了锐角三角函数,知道它们都是以锐角为自变量、边的比值为函数值的三角函数.你能用平面直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?改变终边上的点的位置,这个比值会改变吗?把角扩充为任意角,结论成立吗?一、任意角的三角函数1.单位圆:在平面直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为________.2.三角函数的定义:设角α的顶点与原点重合,始边与x 轴非负半轴重合.在平面直角坐标系中,角α终边与单位圆交于一点P (x ,y ),则r =|OP |=1.那么:(1)y 叫做________,记作sin α,即y =sin α; (2)x 叫做________,记作cos α,即x =cos α; (3)y x 叫做________,记作tan α,即y x=tan α(x ≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为________.答案:1.单位圆2.(1)α的正弦 (2)α的余弦 (3)α的正切 三角函数二、三角函数值在各个象限内的符号1.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=y r,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第________象限角时,sin α>0;当α是第________象限角时,sin α<0.cos α=x r,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第__________象限角时,cos α>0;当α是第________象限角时,cos α<0.tan α=y x,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第________象限角时,tan α>0;当α是第 ________象限角时,tan α<0.2.根据终边所在位置总结出形象的识记口诀1:“sin α=yr :上正下负横为0;cos α=x r :左负右正纵为0;tan α=y x:交叉正负.” 形象的识记口诀2:“一全正、二正弦、三正切、四余弦.” 答案:1.一、二 三、四 一、四 二、三 一、三 二、四三、诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值________,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z. 答案:相等四、三角函数线1.有向线段:有向线段是规定了方向(即起点、终点)的线段,它是________、 ________的.在平面直角坐标系中,和坐标轴同向的有向线段为正,反向的为负.2.正弦线、余弦线、正切线:三角函数线是用来形象地表示三角函数值的有向线段.有向线段的________表示三角函数值的________,有向线段的________表示三角函数值的绝对值的________.三角函数线的作法如下:设角α的终边与单位圆的交点为P ,过点P 作x 轴的垂线,垂足为M ,则有向线段MP ,OM 就分别是角α的正弦线与余弦线,即MP =y =sin α,OM =x =cos α.过点A (1,0)作单位圆的切线,设这条切线与角α的终边(或终边的反向延长线)交于点T ,则有向线段AT 就是角α的正切线,即AT =tan α.3.填写下表中三角函数的定义域、值域:函数定义域值域 y =sin α y =cos α y =tan α答案:1.有长度 有正负 2.方向 正负 长度 大小 3.函 数定 义 域值 域 y =sin α R [-1,1] y =cos α R[-1,1]y =tan α⎩⎨⎧⎭⎬⎫α⎪⎪⎪α≠π2+k π,k ∈ZR任意角的三角函数的定义1.正弦、余弦、正切可分别看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数.2.三角函数值是比值,是一个实数.这个实数的大小和点P (x ,y )在终边上的位置无关,而是由角α的终边位置所决定.对于确定的角α,其终边的位置也是唯一确定的.因此,三角函数是角的函数.(1)三角函数值只与角α的终边所在的位置有关,与点P 在终边上的位置无关. (2)三角函数值是一个比值,没有单位.三角函数值的符号三角函数值在各象限的符号取决于终边所在的位置,具体说取决于x,y的符号,记忆时结合三角函数定义式记,也可用口诀只记正的“一全正、二正弦、三正切、四余弦”.三角函数线对于三角函数线,须明确以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正负方向一致,三种有向线段的长度与三种三角函数值相同.三角函数的定义域1.由三角函数的定义式可以知道,无论角α终边落在哪里,sin α,cos α都有唯一的值与之对应,但对正切则要求α终边不能落在y轴上,否则正切将无意义.2.角和实数建立了一一对应关系,三角函数就可以看成是以实数为自变量的函数,所以就可以借助单位圆,利用终边相同的角的概念求出任意角的三角函数.基础巩固1.sin 810°+tan 765°+tan 1125°+cos 360°=________.答案:42.若α的终边过点P(2sin 30°,-2cos 30°),则sin α的值为________.答案:-3 23.若角α的终边过点P (3cos θ,-4cos θ)(θ为第二象限角),则sin α=________.答案:454.cos θ·tan θ<0,则角θ是________象限角. 答案:第三或第四5.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案:二6.角α的正弦线与余弦线长度相等,且符号相同,那么α(0<α<2π)的值为________.答案:π4或54π7.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 答案:sin 1.5>sin 1.2>sin 1能力升级8.函数y =sin x +-cos x 的定义域是________.解析:∵⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.∴2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z)9.已知角α的终边在直线y =kx 上,若sin α=-255,cos α<0,则k =________.解析:∵sin α=-255,cos α<0,∴α的终边在第三象限.令角α的终边上一点的坐标为(a ,ka ),a <0,则r =-1+k 2·a ,sin α=-ka 1+k 2a=-255,∴k =2. 答案:210.在(0,2π)内,满足tan 2α=-tan α的α的取值X 围是________. 解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,知π2<α≤π或3π2<α<2π. 答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π11.解不等式2+2cos x ≥0. 解析:2+2cos x ≥0⇔cos x ≥-22,利用单位圆,借助三角函数线(如图)可得出解集是⎣⎢⎡⎦⎥⎤2k π-34π,2k π+34π(k ∈Z).12.若π4<θ<π2,则下列不等式中成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:作出角θ的三角函数线(如图),数形结合得AT >MP >OM ,即tan θ>sin θ>cosθ.答案:D13.函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域是( C )A .{-1,0,1,3}B .{-1,0,3}C .{-1,3}D .{-1,1}14.若0<α<π2,证明:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:(1)在如图所示单位圆中, ∵0<α<π2,|OP |=1,∴sin α=MP ,cos α=OM . 又在△OPM 中,有 |MP |+|OM |>|OP |=1. ∴sin α+cos α>1.(2)如图所示,连接AP ,设△OAP 的面积为S △OAP ,扇形OAP 的面积为S 扇形OAP ,△OAT 的面积为S △OAT .∵S △OAP <S 扇形OAP <S △OAT , ∴12OA ·MP <12AP ︵·OA <12OA ·AT .∴MP <AP ︵<AT ,即sin α<α<tan α.15.已知f (n )=cosn π5(n ∈Z),求f (1)+f (2)+f (3)+…+f (2 014)的值.解析:角n5π(n =1,2,…,10)表示10个不同终边的角,这10条终边分成五组,每组互为反向延长线.∴f (1)+f (2)+…+f (10)=0,f (11)+f (12)+…+f (20)=0,…f (2 001)+f (2 002)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 014)=f (2 011)+f (2 012)+f (2 013)+f (2 014)=cos π5+cos 2π5+cos 3π5+cos 4π5.由定义知cos π5与cos 4π5,cos 2π5与cos 3π5互为相反数,故f (1)+f (2)+…+f (2 014)=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任 意 角
一、选择题:
1. 下列命题中正确的是( )
A .终边在y 轴非负半轴上的角是直角
B .第二象限角一定是钝角
C .第四象限角一定是负角
D.若β=α+k·360°(k∈Z),则α与β终边相同
2.下列角中终边与330°相同的角是( )
Α.30° B.-30° C.630° D.-630°
3.在[360°,1440°]中与-21°16′终边相同的角有( )
A .1个
B .2个
C .3个
D .4个
4.与120°角终边相同的角是( )
A .-600°+k ·360°,k∈Z
B .-120°+k ·360°,k∈Z
C .120°+(2k +1)·180°,k∈Z
D .660°+k ·360°,k∈Z
5.终边落在X 轴上的角的集合是( )
Α.{ α|α=k ·360°,K ∈Z } B.{ α|α=(2k+1)·180°,K ∈Z }
C.{ α|α=k ·180°,K ∈Z }
D.{ α|α=k ·180°+90°,K ∈Z }
6.若α是第四象限角,则180°-α一定是( )
Α.第一象限角 B. 第二象限角
C.第三象限角
D. 第四象限角
7. 今天是星期一,100天后的那一天是( )
Α. 星期二 B. 星期三 C. 星期四 D. 星期一
8.若α是第二象限角,则3
α一定不是( ) A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
9.角α=45°+k·180°,k∈Z的终边落在 ( )
A .第一或第三象限
B .第一或第二象限
C .第二或第四象限
D .第三或第四象限
10.设o {90A =小于的角},{B =锐角},{C =第一象限的角}
,00{900}D =小于而不小于的角 ,那么有( ).
A .
B
C A B .B A C C .
D (A C ) D .C D =B
二、填空题: 11.与1840°终边相同的最小正角为 ,与-1840°终边相同的最小正角是 .
12.钟表经过4小时,时针与分针各转了 (填度).
13.若角α的终边为第二象限的角平分线,则α的集合为______________________.
14.若角α、β的终边互为反向延长线,则α与β之间的关系是__________________.
15.第二象限角的集合可表示为 .
三、解答题:
16.写出与370°23′终边相同角的集合S ,并把S 中在-720°~360°间的角写出来.
参考答案
一、选择题:
1.D 2.B 3.C 4.A 5.C 6.C 7.B 8.C 9.A 10.D
二、填空题:
11.40° 320° 12.-120°-1440° 13.{α|α=k ·360°+135°,k ∈z }
14.α-β=(2k+1).180°,k ∈z,两者相关180°的奇数倍。

15.{α|90°+k ·360°<α<180°+k ·360°,k ∈Z }
三、解答题:
16.S={α|α=10°23′+k ·360°,k ∈Z }
在-720°~360°之间的角分别是10°23′ -349°37′ -709°37′
17.(1){α|45°+k ·180°<α<90°+k ·180°,k ∈Z }
(2){α|-150°+k ·360°<α<150°+k ·360°,k ∈Z }
18.(1)∵00000
660360300236060=+=⨯-
∴与0660终边相同的最小正角是0300,最大负角是060-,它是第四象限的角;
(2)∵000095008'336012952'236023008'-=-⨯+=-⨯-0 ∴与95008'-0角终边相同的最小正角是012952',最大负角是023008'-,它是第二象限角.。

相关文档
最新文档