Nuclear Black Hole Formation in Clumpy Galaxies at High Redshift
生物物理学中的生物大分子结构研究
生物物理学中的生物大分子结构研究生物物理学是生物科学和物理学的交叉学科。
它研究生物体内的各种生物分子和它们的相互作用,以及这些相互作用对生物体结构和功能的影响。
生物大分子是生物物理学中的重要研究对象之一,它们的结构研究对于理解生命现象的本质以及开发药物和治疗疾病都具有重要意义。
生物大分子主要包括蛋白质、核酸和多糖。
它们是组成细胞的基本单位,也是生命活动的基础。
为了揭示生物大分子的结构,科学家们运用了许多先进的实验技术和计算方法。
在生物大分子结构研究中,X射线晶体学是最重要的技术之一。
通过将生物大分子结晶并用X射线照射,科学家可以通过测量X射线的衍射图案来确定其结构。
通过建立数学模型并进行计算,研究人员可以确定生物大分子的原子位置、键长和键角等参数。
这些结构信息对于理解生物大分子的功能和相互作用至关重要。
除了X射线晶体学,核磁共振(NMR)也是生物大分子结构研究中常用的技术。
NMR技术可以通过测量原子核在磁场中的行为来确定分子的结构。
通过分析NMR谱图,科学家可以获得生物大分子的距离、角度和氢键等信息。
与X射线晶体学不同,NMR技术可以研究在溶液中的生物大分子结构,从而更加接近生物体内分子的真实状态。
在生物大分子结构研究中,还有一些小分子可以用于标记和标识生物大分子。
例如,荧光标记物能够与特定的生物大分子结合,并发出特定的荧光信号。
通过观察荧光信号的强度和位置,科学家可以确定生物大分子的位置和结构。
这种技术在细胞和组织中的蛋白质定位研究中特别有用。
除了实验技术,计算方法在生物大分子结构研究中也起着重要作用。
蛋白质和核酸的结构预测是生物物理学中的一个重要研究方向。
通过计算方法,科学家可以预测蛋白质和核酸的三维结构,从而理解它们的功能和相互作用。
这些计算方法基于物理原理和统计学模型,结合大量的实验数据进行验证和修正,可以提供对生物大分子结构的有力预测。
生物大分子结构研究在生物物理学领域的发展已经取得了很多重要成果。
手性螺环氧化吲哚类化合物的设计、合成及抗肿瘤活性研究
手性螺环氧化吲哚类化合物的设计、合成及抗肿瘤活性研究张文会;郝知风;李凯;雷胶胶;李亚楠;雷传文;周英
【期刊名称】《化学试剂》
【年(卷),期】2024(46)2
【摘要】前期利用[2+1]环化反应合成了一系列手性螺环氧化吲哚类化合物,研究采用MTT法对这些化合物在结肠癌细胞CT26和宫颈癌细胞Hela中的抗肿瘤活性进行了评价,探析其构效关系,并在苗头化合物的基础上进行了结构优化设计合成了目标化合物,并再次评价其抗肿瘤效果。
结果显示,27个手性螺环氧化吲哚-环丙烷-茚二酮类化合物对CT26和Hela细胞均具有良好的抗增殖作用。
其中,16个化合物对CT26细胞的抑制活性优于阳性对照顺铂,14个化合物对Hela细胞的抗增殖能力与顺铂相当或更优。
进一步,结构优化得到的化合物均能有效抑制CT26和Hela细胞的增殖,部分手性螺环氧化吲哚类目标化合物可作为抗肿瘤药物候选先导化合物,具有较好的研发潜力。
【总页数】8页(P39-46)
【作者】张文会;郝知风;李凯;雷胶胶;李亚楠;雷传文;周英
【作者单位】贵州中医药大学药学院
【正文语种】中文
【中图分类】R914
【相关文献】
1.新型烷氧基嘧啶拼接3-吡咯螺环氧化吲哚类化合物的合成及其抗肿瘤活性
2.新型3-五元碳环螺环氧化吲哚类化合物的合成及其抗人白血病细胞活性
3.新型芳姜黄酮拼合吡咯螺环氧化吲哚类化合物的合成及其抗肿瘤活性
4.新型二氢色原酮拼接多环吡咯螺环氧化吲哚类化合物的\r无催化剂合成及其抗白血病活性
5.3-异硫氰酸酯氧化吲哚与色胺酮的[3+2]环加成反应合成螺环氧化吲哚类化合物
因版权原因,仅展示原文概要,查看原文内容请购买。
用于从血液吸附细胞因子的开放表面石墨材料[发明专利]
专利名称:用于从血液吸附细胞因子的开放表面石墨材料专利类型:发明专利
发明人:尤里·戈高齐斯,瓦迪姆·莫恰林,尼古拉斯·佩斯卡托雷申请号:CN201780032124.X
申请日:20170526
公开号:CN109310810A
公开日:
20190205
专利内容由知识产权出版社提供
摘要:本公开涉及一种从血液和血液制品中除去蛋白质、包括细胞因子的方法,所述方法包括将所述血液或血液制品与具有高石墨含量和狭缝形中孔和大孔的碳形式接触,所述孔隙尺寸被选择成与所述蛋白质的尺寸相当,其中所述接触导致在数分钟或数小时内从所述血液或血液制品除去高水平的所述蛋白质。
申请人:德雷塞尔大学
地址:美国宾夕法尼亚
国籍:US
代理机构:中原信达知识产权代理有限责任公司
更多信息请下载全文后查看。
高中生物竞赛细胞生物学专业词中英文对照(1-3章)
细胞生物学专业词中英文对照第一章细胞学——Cytology细胞生物——Cell biology细胞学说——Cell theory原生质——protoplasm原生质体——protoplast有丝分裂——mitosis福尔根反应——Feulgen reaction哺乳动物雷帕霉素靶蛋白——mammalian target of rapamycin (mTOR)支原体——mycoplast真核细胞——rucaryotic cell真核生物——procaryote原核细胞——prokaryotic cell原核生物——prokaryote类群、域——domain古核细胞——archaea古核生物——archaeon古细菌——archaebacteria真细菌——eubacteria鞭毛——flagellum鞭毛蛋白——flagellin类核——nucleoid质粒——plasmid管蛋白——tubulin蓝细菌——cyanobacteria类囊体——thylakoid异形胞——heterocyst直系同源基因——orthologous gene 盐细菌——halobacteria热源体——thermoplasma硫氧化菌——sulfolobus核小体——nucleosome核纤层——nuclear lamina核纤层蛋白——lamin核基质——nuclear matrix纳米生物学——nanobiology自我装配——self-assembly协助装配——aided-assembly直接装配——direct-assembly次生代谢产物——secondary metabolite天然产物——natural product衣壳——capsid核壳体——nucleocapsid囊膜——envelope第二章光学显微镜——light microscope分辨率——resolution相差显微镜——phase-contrast microscope微分干涉显微镜——differential-interference microscope录像增差显微镜——video-enhance microscope荧光显微镜——fluorescence microscope绿色荧光蛋白——green fluorescent protein, GFP激光扫描共焦显微镜——laser scanning confocal microscope, LSCM全内反射荧光显微术——total internal reflection fluorescence microscopy 光激活定位显微术——photoactivated localization microscopy, PALM随机光学重构显微术——stochastic optical reconstruction microscopy受激发射损耗显微术——stimulated emission depletion microscopy结构照明显微术——structured-illumination microscopy, SIM电子显微镜——electron microscope, EM电荷耦合器件——charge-coupled device, CCD超薄切片——ultrathin section负染色技术——negative staining冷冻蚀刻技术——frezze etching快速冷冻深度蚀刻技术——quick freeze deep etching低温电镜技术——cryo-electron microscopy单颗粒分析技术——single particle analysis电子断层成像技术——electron tomography背散射电子成像——back scattered electron imaging扫描电镜——scanning electron microscope, SEM光-电关联技术——correlative light microscopy and electron microscopy 扫描隧道显微镜——Scanning tunnel microscope, STM原子力显微镜——atomic force microscope, AFM免疫印记——western blotting放射免疫沉淀——radioimmuno-precipitation原位杂交——in situ hybridization流式细胞术——flow cytometry原代细胞——primary culture cell传代细胞——subculture cell单层细胞——single layer cell细胞系——cell line有限细胞系——finite cell line永生细胞系——infinite cell line连续细胞系——continuous cell line细胞株——cell strain成纤维样细胞——fibroblast like cell上皮样细胞——epithelial like cell外殖体——explant愈伤组织——callus细胞融合——cell fusion电融合技术——electrofusion methodB淋巴细胞杂交瘤技术——B-lymphocyte hybridoma technique 单克隆抗体——monoclonal antibody胞质体——cytoplast核质体——karyoplast细胞松弛素B——cytochalasin B显微操作——micromanipulation微量注射——microinjection荧光漂白恢复技术——fluorescence photobleaching recovery, FPR 荧光恢复——fluorescence recovery酵母双杂交系统——yeast two-hybrid systemDNA结合域——DNA binding domain转录激活域——activation domain荧光共振能量转移——fluorescence resonance energy transfer, FRET 放射自显影技术——autoradiography第三章细胞质膜——plasma membrane细胞内膜系统——internal membrane生物膜——biomembrane单位膜模型——unit membrane model流动镶嵌模型——fluid mosaic model菌紫红质——bacteria rhodopsin脂筏模型——lipid raft model辛德毕斯病毒——sindbis virus, SbV甘油磷脂——glycerophosphatide鞘脂——sphingolipid固醇——sterol磷脂酰胆碱——phosphatidylcholine, PC(卵磷脂)磷脂酰乙醇胺——phosphatidylethanolamine, PE磷脂酰丝氨酸——phosphatidyserine, PS磷脂酰肌醇——phosphaditylinositol, PI心磷脂——cardiolipin鞘磷脂——sphingomyelin, SM磷脂——phospholipid豆固醇——stigmasterol麦角固醇——ergosterol翻转酶——flippase脂质体——liposome微团——micelle膜蛋白——membrane protein周边膜蛋白——peripheral membrane protein外在膜蛋白——extrinsic membrane protein整合膜蛋白——integral membrane protein内在膜蛋白——intrinsic membrane protein脂锚定膜蛋白——lipid-anchored membrane protein 磷脂酶——phospholipase蛋白聚糖——proteoglycan磷脂酰肌醇糖脂——glycosylphosphaditylinositol跨膜蛋白——transmembrane protein单次跨膜蛋白——single-pass transmembrane protein 多次跨膜蛋白——multipass transmembrane protein 孔蛋白——porin卷曲结构——coiled-coil水孔蛋白——aquaporin去垢剂——detergent微团临界浓度——critical micelle concentration,CMC相变温度——phase transition temperature扩散常数——diffusion constant细胞外表面——extrocytoplasmic surface, ES外小叶——outer leaflet原生质表面——protoplasmic surface, PS内小叶——inner leaflet细胞外小叶断裂面——extrocytoplasmic face,EF原生质小叶断裂面——protoplasmic face,PF脂肪细胞——adipocyte鞭毛——flagellum纤毛——cilium微绒毛——microvillus膜相关的细胞骨架——membrane associated cytoskeleton 肌动蛋白——actin基于肌动蛋白的膜骨架——actin-based membrane skeleton 细胞皮层——cortex血影——ghost血影蛋白(或红膜肽)——spectrin锚蛋白——ankyrin血型糖蛋白——glycoprotein内收蛋白——adducin阀蛋白——flotillin膜脂微区——membrane lipid microdomain 阿尔兹海默症——Alzheimer disease。
反胶团相转移提取细胞色素C的研究
反胶团相转移提取细胞色素C的研究
周子彦;朱玉兰
【期刊名称】《延边大学学报:自然科学版》
【年(卷),期】1997(023)004
【摘要】报导了在AOT/正辛烷-正丁醇(4:1,V/V)反胶团体系中相转移提取细胞色素C的最佳条件,结果表明,在室温、PH值为5-6及离子强度为0.05的条件下,提取率在90%以上,且保持细胞色素C的稳定性。
【总页数】3页(P37-39)
【作者】周子彦;朱玉兰
【作者单位】延边大学师范学院化学系;延边大学师范学院化学系
【正文语种】中文
【中图分类】Q513.03
【相关文献】
1.AOT/异辛烷反胶团体系提取细胞色素C [J], 于艳春;刘德峥;陈正民;郑纯智;李咏梅
2.反胶团相转移法提取青霉素G的研究 [J], 吴子生
3.反胶团相转移法提取牛血清白蛋白 [J], 刘京萍;李金
4.SDSS—D2EHPA/异辛烷混合反胶团体系提取细胞色素C的研究 [J], 于艳春;任慧娟
5.不同类型反胶团萃取细胞色素C的研究 [J], 于艳春;李咏梅;陈建龙;陈正民;钱玲因版权原因,仅展示原文概要,查看原文内容请购买。
人皮肤低阻线区表皮的扫描电镜观察
人皮肤低阻线区表皮的扫描电镜观察
曹玉纯;李向印
【期刊名称】《河北医学院学报》
【年(卷),期】1992(013)001
【摘要】本文应用锇酸—二甲基亚砜—锇酸(ODO)法,对6侧人小腿部脾经与胃经低阻线区的表皮进行了扫描电镜观察,发现基底细胞表面平滑;棘细胞表面有密集的微褶,胞质内张力丝束交织成网,与胞核关系密切;角化细胞表面可见稀疏的平行微褶,角化层表面可见多种类型的孔状结构。
依观察所见结合文献进行了分析。
【总页数】3页(P1-3)
【作者】曹玉纯;李向印
【作者单位】不详;不详
【正文语种】中文
【中图分类】R322.991
【相关文献】
1.皮肤低阻及其循经分布特征的微机检测:Ⅱ.皮肤低阻点的循经分布 [J], 胡翔龙;郝敬尧
2.小型猪低阻线区皮内微血管分布的研究 [J], 穆祥;高立云;杨佐君
3.人循经低阻线表皮的冷冻复型电镜观察 [J], 王仲涛
4.六回线瞬变电磁法在低阻覆盖区的应用与找矿实例 [J], 赵全生;李培喜
5.心包经循行线上皮肤低阻点的皮肤电位检测 [J], 许云祥;胡翔龙
因版权原因,仅展示原文概要,查看原文内容请购买。
深层页岩干酪根纳米孔隙中甲烷微观赋存特征
第 51 卷 第 5 期石 油 钻 探 技 术Vol. 51 No.5 2023 年 9 月PETROLEUM DRILLING TECHNIQUES Sep., 2023doi:10.11911/syztjs.2023086引用格式:黄亮,冯鑫霓,杨琴,等. 深层页岩干酪根纳米孔隙中甲烷微观赋存特征[J]. 石油钻探技术,2023, 51(5):112-120.HUANG Liang, FENG Xinni, YANG Qin, et al. Microscopic occurrence characteristics of methane in kerogen nanopores of deep shale reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):112-120.深层页岩干酪根纳米孔隙中甲烷微观赋存特征黄 亮1,2, 冯鑫霓1,2, 杨 琴1,2, 吴建发3, 杨学锋3, 黄 山3(1. 油气藏地质及开发工程全国重点实验室(成都理工大学), 四川成都 610059;2. 成都理工大学能源学院,四川成都 610059;3. 中国石油西南油气田分公司页岩气研究院,四川成都 610051)摘 要: 深层页岩储层甲烷高温高压条件下的赋存特征是准确评估页岩气储量的关键。
首先,基于深层页岩龙马溪组干酪根分子结构单元,构建干酪根不同形状和孔径的纳米孔隙分子模型;然后,采用巨正则蒙特卡洛和分子动力学耦合方法,开展甲烷赋存模拟,分析压力、温度、孔径和孔隙形状对甲烷赋存量的影响规律;最后,研究甲烷微观赋存机理,分析甲烷微观分布特征、甲烷–壁面微观作用特征以及甲烷优先吸附位。
研究表明:在深层高压条件下,甲烷过剩吸附量和溶解量受温度影响较小;随温度升高,甲烷绝对吸着量和游离气体量减少;干酪根介孔孔径对甲烷吸附气和溶解气量基本无影响,孔径引起的总气体量变化主要由游离气贡献;与圆管孔相比,狭缝孔中甲烷总气体量更大,但过剩吸附量较少;甲烷分子优先吸附于干酪根结构上的噻吩位点。
核转录因子介导不对称二甲基精氨酸上调人脐静脉LOX-1的表达
核转录因子介导不对称二甲基精氨酸上调人脐静脉LOX-1的表达胡翠竹;胡健;孙佳英;徐姝;霍海洋【期刊名称】《山东医药》【年(卷),期】2008(48)32【摘要】培养人脐静脉内皮细胞株HUVEC,随机分为对照组和不对称二甲基精氨酸(ADMA)组,采用Western blot法测定核转录因子(NF-κB)的表达,逆转录聚合酶链反应分析血凝素样氧化型低密度脂蛋白受体1(LOX-1)mRNA的表达.发现ADMA明显上调NF-κB、LOX-1 mRNA的表达,且随其浓度的升高呈剂量依赖性.吡咯烷二硫氨基甲酸酯(PDTC)显著抑制ADMA诱导的NF-κB、LOX-1 mRNA的表达,而且高浓度组较低浓度组的抑制作用更明显.认为NF-κB的特异抑制剂PDTC 可抑制NF-κB介导ADMA上调人脐静脉内皮细胞LOX-1的表达.【总页数】3页(P124-126)【作者】胡翠竹;胡健;孙佳英;徐姝;霍海洋【作者单位】中国医科大学附属第一医院,辽宁,沈阳,110001;中国医科大学附属第一医院,辽宁,沈阳,110001;中国医科大学附属第一医院,辽宁,沈阳,110001;中国医科大学附属第一医院,辽宁,沈阳,110001;中国医科大学附属第一医院,辽宁,沈阳,110001【正文语种】中文【中图分类】R965【相关文献】1.阿托伐他汀对人脐静脉内皮细胞Lox-1、TNF-α及ICAM-1表达的影响 [J], 姜玉姬;姜华2.NF-κB介导ADMA上调大鼠腹腔巨噬细胞LOX-1的表达 [J], 徐雪晶;何军;张新金;文渊;马业新3.LOX-1介导oxLDL诱导的人脐静脉内皮细胞高通透性反应 [J], 李媛彬;丘继哲;何志军;黄旭;彭微;陈壮4.RNA干扰LOX-1表达对氧化型低密度脂蛋白诱导人脐静脉内皮细胞损伤的保护机制 [J], 刘洪光;陶贵周;李俊;黄建华;虞改雪5.3种中药复方血清对脂多糖诱导的人脐静脉内皮细胞炎症因子LOX-1、TNF-α、VCAM-1和ICAM-1表达的影响 [J], 姜华;姜玉姬因版权原因,仅展示原文概要,查看原文内容请购买。
钴(Ⅲ)-2-羟基-1-萘醛肟-羟胺体系的极谱催化波
钴(Ⅲ)-2-羟基-1-萘醛肟-羟胺体系的极谱催化波
宋俊峰;周茂青;王文侠;王莉贤
【期刊名称】《西北大学学报:自然科学版》
【年(卷),期】1989(19)1
【摘要】钴(Ⅱ)-2-羟基-1-萘醛肟(HNA)—羟胺体系的极谱波具有吸附和动力性质,此波可用于测定人发中的痕量钴。
于Co(Ⅱ)-HNA-NH_2OH的氨性介质中观察到钴有一灵敏的极谱催化波,其波高与钴浓度在0.1~2.5ppb范围内呈线性关系,检测限为0.05ppb。
本文考察了用该体系极谱催化波测定痕量钴的条件,应用此方法测定了人发试样中的钴,并对该体系极谱催化波的性质和机理作了初步讨论。
【总页数】5页(P39-43)
【关键词】钴;测定;极谱法;HNA;极谱催化波
【作者】宋俊峰;周茂青;王文侠;王莉贤
【作者单位】西北大学化学系
【正文语种】中文
【中图分类】O614.812
【相关文献】
1.铜-1-(2-吡啶偶氮)-2-萘酚体系的极谱吸附催化波研究及应用 [J], 李新民;姜灵彦;彭贞;蒋丽萍;陆光汉
2.钴镍与1,2-环己烷二肟络合物的极谱催化波研究 [J], 安镜如
3.钴(Ⅱ)—丁二酮肟—亚磷酸钠—氯化铵体系中的极谱催化波的研究及其在生
物样… [J], 周文;倪亚明
4.钴(Ⅱ)—6—Br—BTAMB—硫酸羟胺体系的极谱催化波研究 [J], 张光;张振义
5.钴(II)—2—羟基—1—荼醛肟—羟胺体系的极谱催化波? [J], 宋俊峰;周茂青因版权原因,仅展示原文概要,查看原文内容请购买。
the sub molecular level 亚分子水平 -回复
the sub molecular level 亚分子水平-回复【The Submolecular Level 亚分子水平】Introduction:The submolecular level refers to the atomic and molecular scale of matter, where the fundamental components of substances interact and combine to form complex structures. Understanding the submolecular level is crucial in fields such as chemistry, biology, and material science. In this article, we will delve into the intricacies of the submolecular level, discussing its significance, key concepts, and its role in shaping the world around us.1. The Building Blocks of Matter:At the submolecular level, matter consists of atoms, which are the basic building blocks of all substances. Atoms are composed of a nucleus, containing protons and neutrons, surrounded by electrons. Each element on the periodic table is characterized by the number of protons in its nucleus. The arrangement and interactions of these atoms determine the properties and behaviors of substances.2. Molecular Interactions:Substances exist in various states due to the interactions between atoms and molecules. In solids, atoms are closely packed together, resulting in a fixed shape and volume. Liquids haveweaker interactions, allowing molecules to move more freely. Gases have minimal interaction, leading to high mobility and expansion to fill their containers. The nature and strength of these interactions affect the physical properties of substances, such as their boiling points, melting points, and conductivity.3. Chemical Reactions:Chemical reactions occur when atoms combine, rearrange, or break apart to form new substances. At the submolecular level, reactions involve the breaking and formation of chemical bonds. Bonds are formed through the sharing, transfer, or exchange of electrons between atoms, resulting in the creation of more complex molecules. Understanding these reactions enables scientists to synthesize new materials, develop pharmaceuticals, and improve industrial processes.4. Organic and Inorganic Chemistry:The submolecular level is the foundation of both organic and inorganic chemistry. Organic chemistry focuses on the study of carbon-containing compounds, which includes the molecules found in living organisms. Inorganic chemistry deals with elements and compounds that do not contain carbon. The submolecular level explains the unique characteristics and reactivity of organic compounds, allowing us to comprehend the complexity ofbiological systems.5. Molecular Structure:Determining the structure of molecules is crucial for understanding their properties and interactions. Techniques such as X-ray crystallography, nuclear magnetic resonance (NMR), and electron microscopy allow scientists to visualize the arrangement of atoms within molecules. This information aids the design of drugs, the development of materials with specific properties, and the optimization of catalysts for industrial processes.6. Nanotechnology:At the submolecular level, the manipulation of matter has led to the emergence of nanotechnology. Nanoscale materials and devices exhibit unique properties due to their small size and high surface-to-volume ratio. Scientists can now engineer materials with specific functionalities, such as self-cleaning coatings,ultra-sensitive sensors, and targeted drug delivery systems. Nanotechnology has the potential to revolutionize numerous fields, including medicine, electronics, and energy storage.Conclusion:The submolecular level provides a deeper understanding of the fundamental components of matter and their interactions, shaping our world and driving scientific advancements.By studying this level, scientists can unlock new materials, develop innovative technologies, and improve our quality of life. From the smallest atom to the most intricate nanostructures, the submolecular level reveals the secrets of the universe in which we inhabit.。
【高中生物】近代物理所揭示高LET射线诱导肿瘤细胞凋亡分子机理
【高中生物】近代物理所揭示高LET射线诱导肿瘤细胞凋亡分子机理碳离子将恶性肿瘤细胞周期阻滞于g2/m期,抑制其生长,并明显诱导了肿瘤细胞凋亡。
中国科学院现代物理研究所放射医学系的研究人员利用兰州重离子研究所(HIRFL)提供的碳离子束,研究了高能线能量转移(let)射线诱导肿瘤细胞凋亡的分子机制,并获得了新发现。
细胞凋亡是电离辐射所致细胞死亡的主要形式。
p73是p53家族蛋白成员之一,在人类肿瘤细胞中很少发生缺失或突变,反而呈现出很高量的表达。
p73是抑制凋亡基因还是促进凋亡基因这个问题仍处于争论之中。
p73有两组蛋白异构体:tap73和np73。
tap73和δnp73被誉为肿瘤生死存亡的“开关”。
目前对于p73异构体在高let射线诱导的肿瘤细胞凋亡中的作用机制尚未见报道。
现代物理研究所放射医学系的研究人员发现,碳离子辐射诱导肿瘤细胞G2/M期阻滞,抑制其生长和增殖,并显著促进肿瘤细胞凋亡(如图1所示)。
其机制是电离辐射激活p73基因选择性剪接,启动p73介导的死亡受体和线粒体凋亡信号通路,进而促进肿瘤细胞凋亡的发生(如图2所示)。
此外,大蒜的天然活性产物二烯丙基二硫(DADS)不仅可以提高肿瘤细胞的放射敏感性,而且对正常细胞具有辐射防护作用。
进一步的实验证实,dads通过上调癌细胞TAp73/δNp73激活凋亡信号通路,促进癌细胞凋亡,与碳离子协同作用;对于正常细胞,TAp73下调/δNp73抑制其凋亡信号通路并促进DNA损伤的修复。
这些发现首次揭示了高LET辐射诱导肿瘤细胞凋亡的新分子机制,为提高重离子放射治疗的疗效和阐明其安全机制提供了新思路。
该研究得到国家自然科学基金委员会?中国科学院大科学装置联合基金重点项目和国家自然科学基金的资助。
研究结果发表在科学报告(,5:16020)和细胞周期(,DOI:10.1080/15384101..1104438)中。
化学所和北京大学合作在国际上成功应用C60直接制备C60纳米管
化学所和北京大学合作在国际上成功应用C60直接制备C60
纳米管
佚名
【期刊名称】《炭素技术》
【年(卷),期】2003()2
【总页数】1页(P49-49)
【关键词】化学所有机固体院重点实验室;北京大学;合作成功;应用;C60;直接制备;C60纳米管
【正文语种】中文
【中图分类】O635.1;O613.71
【相关文献】
1.C60粉末制备的C60纳米管问世 [J],
2.我国直接应用C60粉末制备C60纳米管获得成功 [J],
3.中科院化学所与北大合作直接构筑C60纳米管成功 [J],
4.直接应用C60粉末制备的C60纳米管问世 [J], 无
5.C60氢胺化反应及其在制备含C60功能材料中的应用 [J], 刘绪峰;程珍贤
因版权原因,仅展示原文概要,查看原文内容请购买。
豚鼠内耳毛细胞的电镜样品制备方法
豚鼠内耳毛细胞的电镜样品制备方法
刘玉玲
【期刊名称】《辽宁医学院学报》
【年(卷),期】2004(025)001
【摘要】内耳毛细胞的电镜样品制备较为广泛,方法各不相同。
我们介绍的是较为简单的方法,多年实践经验证明这种方法容易掌握,很适合研究生进行科研课题的研究,并能达到预期目的。
【总页数】1页(P62-62)
【作者】刘玉玲
【作者单位】锦州医学院电镜室,辽宁,锦州,121001
【正文语种】中文
【中图分类】R329-3
【相关文献】
1.豚鼠冲击波负压暴露后耳蜗毛细胞扫描电镜和透射电镜观察 [J], 李朝军;刘兆华;朱佩芳;王正国;杨成;陈海斌;周继红;宁心
2.豚鼠内耳壶腹嵴微血管透射电镜和扫描电镜的联合观察 [J], 崔江;汪吉宝
3.分阶段添加细胞诱导因子诱导豚鼠脂肪间充质干细胞定向分化内耳毛细胞 [J], 王晓燕;李兵兵;张恩峰;毕晓娟;刘立中
4.分阶段添加细胞诱导因子诱导豚鼠脂肪间充质干细胞定向分化内耳毛细胞 [J], 王晓燕;李兵兵;张恩峰;毕晓娟;刘立中;
5.豚鼠卡那霉素中毒内耳毛细胞中溶酶体的电镜细胞化学观察 [J], 罗德峰;丁大连
因版权原因,仅展示原文概要,查看原文内容请购买。
物理学专业毕业答辩PPT
奇特核电形状因子的研究 毕业论文答辩
结 果 Result
1 11Li的中子晕对其核电荷密度 分布基本没有影响;
2 6Li核电荷密度分布相对于9Li 和11Li;有一个长的尾巴
奇特核电形状因子的研究 毕业论文答辩
结 果 Result
尽管有相同的质子数;但从图 中可以清楚的看到的电荷密度分布 存在很大的差异;由于28S最外面的 两个质子束缚很弱导致的电荷密度 分布有一个长长的尾巴;这清楚的 表 明 在 丰 质 子 核 28S 的 基 态 中 存 有 质子晕
论分波展开法
理论框架
计算结果与讨论:1 核电荷密度分布 2 核电荷形状因子
奇特核电形状因子的研究 毕业论文答辩
程 序 Program
1 利用RCHB方法计算核电荷分布密度 2 在平面波Born近似下计算核电荷形状因子
理论准备充分 扎实; 程序编写仔细 规范; 注意程序中出现的量的单位统一
11 Li
奇特核电形状因子的研究 毕业论文答辩
结 果 Result
核电荷形状因子的差异反映了 电荷密度分布的不同 对于28S;这个 明显的揭示了最外面两个质子形成 的质子晕的影响
奇特核电形状因子的研究 毕业论文答辩
结 论 Conclusion
用文中给出的方 法研究奇特核电 形状因子是可行 的;
中子晕没有对核 电荷形状因子产 生大的影响;
奇特核电形状因子的研究 毕业论文答辩
结 果 Result
1 6Li理论值与实验值基本符合; 证明方法可行;
2 11Li中子晕并没有对其电形状 因子产生大的影响;
3 图中6Li与9Li和11Li的曲线相比; 出现很大的不同;可能与电荷密度 分布出现的长尾巴有关
4 三种同位素比较;有原子量越 大;电形状因子变化越快的趋势
基于酪氨酸酶催化的细胞膜和细胞壁荧光标记方法及应用[发明专利]
专利名称:基于酪氨酸酶催化的细胞膜和细胞壁荧光标记方法及应用
专利类型:发明专利
发明人:吴富根,贾浩然,祝雅璇
申请号:CN202010615132.0
申请日:20200630
公开号:CN111678900A
公开日:
20200918
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于酪氨酸酶催化的细胞膜和细胞壁的荧光标记方法及其应用。
该标记方法包括两种方案:(1)酪氨酸酶及带苯酚基团的荧光分子,(2)酪氨酸酶、生物素基酪酰胺和荧光染料接枝的亲和素。
这两种方案都能通过共价反应将荧光分子连接至哺乳动物细胞膜上,从而实现细胞膜的荧光标记。
此外,该荧光标记策略还能够实现对真菌细胞壁以及斑马鱼胚胎表皮细胞膜的荧光成像。
相比已有的细胞膜或细胞壁的荧光标记策略,本发明公开的方法具有染色效果好、修饰效率高、操作简单和生物安全性好等优点。
申请人:东南大学
地址:211102 江苏省南京市江宁区东南大学路2号
国籍:CN
代理机构:南京苏高专利商标事务所(普通合伙)
代理人:杨晓莉
更多信息请下载全文后查看。
27-羟基胆固醇与胆固醇对裸鼠食管鳞癌和人食管癌细胞增殖的影响
第58卷第11期Vol.58No.11山东大学学报(医学版)JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES )2020年11月Nov.2020收稿日期:2020-03-17;网络出版时间:2020-10-2108:53:41网络出版地址:http ://kns.cnki.net /kcms /detail /37.1390.r.20201019.1320.006.html基金项目:国家自然科学基金(81201778);山东省重点研发计划(2016GSF201002);济南临床医学科技创新计划(201602166)通信作者:史永军。
E-mail :shyjxfj@sina.com 林彦良。
E-mail :sphyanlianglin@163.com 文章编号:1671-7554(2020)11-0045-08DOI :10.6040/j.issn.1671-7554.0.2020.0378·基础医学·27-羟基胆固醇与胆固醇对裸鼠食管鳞癌和人食管癌细胞增殖的影响李昌达,史永军,林彦良(山东大学附属省立医院消化内科,山东济南250021)摘要:目的旨在探讨胆固醇和27-羟基胆固醇对食管鳞癌增殖、侵袭和迁移能力的生物学行为及对细胞因子MCP-1分泌的影响。
方法动物体内实验:通过建立裸鼠食管鳞癌动物模型,给予高胆固醇饮食(高胆固醇饮食组,n =4)和正常饮食(对照组,n =4),观察胆固醇在体内对食管鳞癌肿瘤生长的影响,第5周实验终止时,对两组瘤体体积进行测量并计算抑瘤率。
细胞实验:观察胆固醇(浓度分别为0、0.123、0.148、0.185、0.269、0.370mg /mL )和27-羟基胆固醇(浓度分别为0、1、5、10、20μmol /mL )对正常食管鳞癌细胞(ECA109)和基因cyp27a1、cyp7b1敲除后的ECA109细胞增殖能力的影响,采用细胞计数试剂盒(CCK-8)检测不同药物浓度干预下细胞的增殖活性。
化学母核结构 英文
化学母核结构英文The structure of the atomic nucleus is a fundamental concept in the field of chemistry. It refers to the arrangement and organization of protons and neutrons within the nucleus of an atom. Understanding the structure of the atomic nucleus is crucial for comprehending the behaviorand properties of different elements. This article will explore the various aspects of the atomic nucleus structure from multiple perspectives.From a historical perspective, the understanding of the atomic nucleus structure has evolved over time. In theearly 20th century, Ernest Rutherford conducted the famous gold foil experiment, which led to the discovery of the atomic nucleus. Rutherford proposed that the nucleus is a small, dense, and positively charged region located at the center of an atom. This revolutionary idea challenged the previous model of the atom, known as the plum pudding model, which suggested that the positive charge was uniformly distributed throughout the atom.Moving on to a more technical perspective, the atomic nucleus is composed of two types of particles: protons and neutrons. Protons carry a positive charge, while neutrons are electrically neutral. These particles are collectively called nucleons. The number of protons in the nucleus determines the element's identity and is known as the atomic number. For example, an atom with six protons is carbon, while an atom with eight protons is oxygen. The total number of protons and neutrons in the nucleus is known as the mass number.The arrangement of nucleons within the atomic nucleus is not random. They are organized in energy levels or shells, similar to the electron shells surrounding the nucleus. The nucleons occupy specific energy levels based on their quantum mechanical properties. The arrangement of nucleons in the nucleus follows certain rules, such as the Pauli exclusion principle, which states that no two nucleons can occupy the same quantum state simultaneously.Another crucial aspect of the atomic nucleus structureis its stability. Some nuclei are stable, meaning they do not undergo spontaneous decay or radioactive decay. Stable nuclei have a balanced ratio of protons to neutrons, which contributes to their longevity. However, many nuclei are unstable and undergo radioactive decay, releasing energyand transforming into different elements over time. The stability of a nucleus is influenced by the forces between nucleons, such as the strong nuclear force and the electromagnetic force.The atomic nucleus structure also plays a vital role in nuclear reactions and nuclear energy. Nuclear reactions involve changes in the structure of the atomic nucleus,such as nuclear fission or fusion. Nuclear fission occurs when a heavy nucleus splits into two or more smaller nuclei, releasing a significant amount of energy. This process is utilized in nuclear power plants and atomic bombs. On the other hand, nuclear fusion involves the combination of two lighter nuclei to form a heavier nucleus, releasing even more energy. Fusion is the process that powers the sun and other stars.In conclusion, the structure of the atomic nucleus is a complex and fascinating topic in the field of chemistry. It encompasses the arrangement of protons and neutrons within the nucleus, their organization in energy levels, the stability of nuclei, and their role in nuclear reactions. Understanding the atomic nucleus structure is essential for unraveling the behavior and properties of different elements, as well as for the development of nuclear energy technologies.。
食管癌分子细胞遗传学研究进展
食管癌分子细胞遗传学研究进展
淳采璞;李锋
【期刊名称】《世界肿瘤杂志》
【年(卷),期】2007(6)4
【摘要】食管癌的发生和演进涉及多种染色体异常的积累,是一复杂的过程,但迄今为止还未发现特征性的染色体改变.应用荧光原位杂交(M-FISH),比较基因组杂交(CGH)等分子细胞遗传学技术对食管癌染色体畸变研究已取得了很多成果,鉴于以上几种细胞遗传学方法在探讨肿瘤发病机制中的广泛应用,且其在方法学上具有一定的互补性,现就其在探讨食管癌的分子细胞遗传学改变做一综述.
【总页数】5页(P282-286)
【作者】淳采璞;李锋
【作者单位】新疆石河子大学医学院,病理教研室,新疆,石河子,832002;新疆石河子大学医学院,病理教研室,新疆,石河子,832002
【正文语种】中文
【中图分类】R735.1
【相关文献】
1.分子细胞遗传学技术在染色体病诊断中的研究进展 [J], 李侃;丁克清
2.荧光原位杂交技术应用于多发性骨髓瘤分子细胞遗传学异常检测的研究进展 [J], 王凤云;夏瑞祥
3.菊属植物细胞学与分子细胞遗传学研究进展综述 [J], 顾依然;赵昀
4.甘蔗割手密高贵化育种中分子细胞遗传学研究进展 [J], 柴进; 余凡; 谢树伟; 黄飞;
邓祖湖; 杨永庆
5.菊属植物细胞学与分子细胞遗传学研究进展 [J], 陈发棣;赵宏波;李畅;陈素梅;房伟民
因版权原因,仅展示原文概要,查看原文内容请购买。
2000年以来天然放射增敏剂概览(英文)
2000年以来天然放射增敏剂概览(英文)
卢佳;邵宏
【期刊名称】《中国药学:英文版》
【年(卷),期】2003(12)3
【总页数】4页(P160-163)
【关键词】放射增敏剂;天然产物;肿瘤;放射疗法
【作者】卢佳;邵宏
【作者单位】北京大学基础医学院放射医学基础教研室;北京大学药学院药事管理与临床药学系
【正文语种】中文
【中图分类】R979.19;R730.55
【相关文献】
1.肿瘤放射增敏剂及增敏机制研究进展 [J], 周厚清;邢成;李伯南
2.放射增敏剂的增敏机制 [J], 高春玲;高春丽;宋维芳;谢立青
3.2000年以来放射增敏剂 (化学合成剂和基因治疗剂 )概览(英文) [J], 邵宏;卢佳因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0805.2266v 1 [a s t r o -p h ] 15 M a y 2008Nuclear Black Hole Formation in Clumpy Galaxies at HighRedshiftBruce G.ElmegreenIBM Research Division,T.J.Watson Research Center,P.O.Box 218,Yorktown Heights,NY 10598,USA bge@ Fr´e d´e ric Bournaud Laboratoire AIM,CEA-Saclay DSM/IRFU/SAP -CNRS -Universit´e Paris Diderot,F-91191Gif-sur-Yvette Cedex,France frederic.bournaud@cea.fr Debra Meloy Elmegreen Vassar College,Dept.of Physics &Astronomy,Box 745,Poughkeepsie,NY 12604elmegreen@ ABSTRACT Massive stellar clumps in high redshift galaxies interact and migrate to the center to form a bulge and exponential disk in 1Gyr.Here we consider the fate of intermediate mass black holes (BHs)that might form by massive-star coalescence in the dense young clusters of these disk clumps.We find that the BHs move inward with the clumps and reach the inner few hundred parsecs inonly a few orbit times.There they could merge into a supermassive BH by dynamical friction.The ratio of BH mass to stellar mass in the disk clumps is approximately preserved in the final ratio of BH to bulge mass.Because this ratio for individual clusters has been estimated to be ∼10−3,the observed BH-to-bulge mass ratio results.We also obtain a relation between BH mass and bulge velocity dispersion that is compatible with observations of present-day galaxies.Subject headings:instabilities —stellar dynamics —galaxies:bulges —galaxies:clusters —black holes1.IntroductionNumerical simulations have reproduced the massive clumpy structures of star formation in high-redshift galaxies and followed the migration of these clumps into the galaxy centers where they merge to form bulges(Noguchi1999;Immeli2004ab;for a review of clumpy structures,see Elmegreen2007).The clumps result from gravitational instabilities in a gas-rich,highly-turbulent disk,and the central migration results from clump interactions and angular momentum losses to the disk,halo,and clump debris.In a series of papers, we have shown that the resulting disk has the characteristic double-exponential profile of modern spiral galaxies(Bournaud,Elmegreen&Elmegreen2007,hereafter BEE07),and the bulge has a classical form,with high Sersic index,three-dimensional random motions, little rotation,and a rapid formation(Elmegreen,Bournaud,&Elmegreen2008;hereafter EBE08).We have also reproduced in detail the peculiar morphology and kinematics of a galaxy in the Hubble Space Telescope Ultra Deep Field,UDF6462,with this model (Bournaud et al.2008).Other spectroscopic observations also indicate,less directly but over a larger sample,that high-redshift disk and bulge evolution is characterized by giant clump interactions and high turbulence(e.g.,F¨o rster Schreiber2006),which is consistent with our models.This paper considers another aspect of clumpy disk evolution,the formation of nuclear black holes(BHs).Models of bulge formation should be able to explain how BHs form at the same time,why the BH-to-bulge mass ratio is≃0.002(McLure&Dunlop2002;Marconi &Hunt2003),and why the BH mass and bulge central velocity dispersion are related by log(M BH/M⊙)=8.13+4.02log(σbulge/200km s−1)(Ferrarese&Merritt2000;Tremaine et al.2002).Here we model all of these observations by considering that each clump forms an intermediate mass black hole(IMBH)by stellar coalescence.We follow the evolution of these IMBHs as their clumps move in the disk.Wefind that the IMBHs migrate inward along with the clumps and that thefinal central BH-to-bulge mass ratio is approximately the same as the initial BH-to-clump ratio.This is about the observed value for bulges.The velocity dispersion relation for BHs in bulges also results to a reasonable approximation.In the following,Section2outlines our model for nuclear BH formation,section3 describes the numerical simulations,section4gives the results,and section5contains a brief discussion.2.Black Hole Formation ModelNuclear BHs are an important aspect of galaxy and bulge formation.Malbon et al. (2007)summarized BH models by suggesting that gas accretion during starbursts forms relatively low mass BHs at high redshift,while BH coalescence during galaxy mergers forms supermassive BHs at low redshift(see also works by Di Matteo et al.2005,2007;Johansson, Naab,&Burkert2008).Disk density waves are less efficient in fueling nuclear black holes (Younger et al.2008).In a very different type of model,Ebisuzaki et al.(2001)suggested that IMBHs grow by stellar coalescence in dense young clusters that form in the central regions of galaxies.Dynamical friction then forces these IMBHs to the center where they merge into a nuclear BH.Here we determine whether a model like this can also apply to IMBHs that form in dense disk clusters,far from the nucleus.We know from clumpy disk models that the disk clusters migrate to the center to form a bulge,so the primary question here is whether IMBHs that form in these clusters follow them inward to the nucleus.The BH-to-cluster mass ratio was found in the simulations by Ebisuzaki et al.(2001)to be ∼10−3,which is the same as the BH-to-bulge mass ratio.Thus,what we primarily need to determine is whether this mass fraction is preserved during the clump/BH migration.There are two important differences from the Ebisuzaki et al.model:(1)the clusters here are much more massive than they considered,so the IMBHs are more massive also(∼105M⊙each in our models),and(2)our clusters start in the main galaxy disk rather than the central regions,so they come in as a result of gravitational interactions between clumps,not dynamical friction.We also assume that the giant clumps observed in high redshift disks are composed of denser,unresolved clusters,where the stars actually form,just as star complexes in local galaxies form most of their stars in dense clusters.The IMBHs presumably form inside these dense clusters.Cluster simulations have generally supported this model for IMBH formation.Portegies-Zwart&McMillan(2002)confirmed that runaway stellar collisions can make cluster BHs with10−3of the cluster mass during core collapse if the relaxation time is less than25Myr. G¨u rkan,Freitag&Rasio(2004)did a cluster simulation with107stars and found mass segregation and core collapse in less than an O-star lifetime,at which point an IMBH with 10−3of the cluster mass formed.Portegies-Zwart et al.(2004)applied the model to the suspected IMBH in M82(Matsumoto et al.2001).G¨u rkan,Fregeau,&Rasio(2006)showed that stellar collisions in clusters with binaries could make two IMBHs which form their own binary.Freitag,G¨u rkan&Rasio(2006)included stellar collisions in a cluster simulation and found that an IMBH forms when core collapse happens faster than the main sequence lifetime of a massive star;this requires densities of106−107pc−3(Freitag2007).For the Milky Way nucleus,Portegies-Zwart et al.(2006)showed that10%of dense clusters form IMBHs during their inward migration and they coalesce fast enough to explain the massiveBH now.Matsubayashi,Makino,&Ebisuzaki(2007)found that dynamical friction on IMBHs becomes ineffective close to the central BH,but the IMBH spirals in anyway because of gravitational radiation.These theoretical studies suggest that at least some nuclear BHs could have formed by the merger of IMBHs from dense massive clusters.Subsequent gas accretion would presumably have caused the BHs to grow to their present masses.Feedback effects(e.g.,McLaughlin et al.2006)might be important at this later gas accretion stage.3.Numerical SimulationsThe evolution of gas-rich galaxy disks is modeled with a particle-mesh sticky-particle code(Bournaud&Combes2002,2003)with a grid resolution and gravitational softening length of110pc.Stars,gas,and dark matter halo are each modeled with one million particles.The sticky-particle parameters areβr=βt=0.7for all but run4,which has βr=βt=0.8.We assume a local Schmidt law for star formation in which the probability per timestep that each gas particle is transformed into a stellar particle is proportional to the 1.4power of the local gas density(Kennicutt1998).The proportionality factor gives a star formation rate of3.5M⊙yr−1in the initial disk.Star formation feedback is not expected to be important for the formation and lifetime of the clumps because of their enormous masses and deep local potential wells(BEE07).The initial model parameters were summarized in Table1of BEE07;runs1-7are the same here except for the addition of BHs.We review the assumptions briefly here.The initial disk is composed of gas and stars with a uniform surface density.This follows from the observation that extremely clumpy disks at z≥1do not have exponential profiles (Elmegreen et al.2005).The initial disk radius is6kpc(typical for clump cluster,chain, and spiral galaxies at z≥1–Elmegreen et al.2007a)and the initial thickness is h=700pc with a sech2(z/h)vertical distribution(typical for edge-on spiral and chain galaxies at z≥1–Elmegreen&Elmegreen2006).The disk mass is7×1010M⊙.Stars have a Toomre parameter in the stable regime,Q s=1.5.The initial velocity dispersion of the gas,σgas,is 9km s−1for all runs but1,2,and3,where it is5,15,and20km s−1,respectively.The gas mass fraction in the disk,f G,is0.5except for runs4and5,where it is0.25and0.75. The halo-to-disk mass ratio,H/D,inside the initial disk radius,is0.5except for runs6and 7,where it is0.25and0.80.The small number of massive clumps observed in high-redshift disks implies a relatively high ratio of turbulent speed to rotation speed,∼10%or more.To get such a turbulent disk gravitationally unstable so that it forms clumps,we need a fairly high gas column density,which means a high gas-to-star ratio in the disk at that time(see BEE07,EBE08).We have performed simulations for our series of studies that have three types of initial halo and bulge properties:runs0to7have no initial bulge and a dark halo that is a Plummer sphere with a scale-length of15kpc.Runs0N,1N,and2N have aΛCDM cuspy halo(Navarro,Frenk&White1997)with a cusp scale-length r S=6kpc(concentration parameter16.7for a virial radius of100kpc).Runs0B,1B,and2B have a small initial bulge that is a Plummer sphere with10%of the disk mass and a radial scale-length of600pc. The other parameters for these six runs,including the gas fractions and halo-to-disk mass ratios,are unchanged from runs0,1,and2,respectively.Massive clumps form quickly in all simulations,in about the local dynamical time at the midplane gas density.Their masses and sizes are comparable to the local Jeans mass and size.The clumps were identified objectively every25Myr as regions where the surface density is locally larger than the radial average by a factor of3.Only clumps with masses larger than2×108M⊙and sizes smaller than3kpc were considered to be clumps(this avoids misidentifying spiral arms as clumps).When the mass fraction in the clumps reached its maximum value(usually at a time of about200Myr in the simulation),single particles representing BHs were positioned in the centers of all the identified clumps,one for each clump.The particle masses were equal to10−3times the clump masses at that time.They were initially placed at the positions of peak density.To ensure mass conservation,we removed the corresponding number of gas and star particles,randomly chosen within the gravitational softening length.Thereafter,the BH particles were treated like massive star particles that could be moved only by gravity.The10−3BH fraction in the clumps wasfixed for the reasons detailed above.We do not aim at resolving the processes driving it,like the mass accretion onto the BHs and the potentially associated AGN feedback.The BH particles have such low masses that they do not affect the clump dynamics,as confirmed by detailed comparisons with runs having no BH particles.Neither do the BH particles interact with each other much in the disk environment.If we consider an interaction to be an approach within200pc,then the number of such interactions at radii greater than 2kpc in the disk is a total of6for all8runs and58BHs produced in these runs.That is a 10%effect.An additional4total BHs interacted between1and2kpc radius.By far most of the BHs interact with each other only when they get to the nucleus.4.ResultsThe time evolution of the gas+star mass column density is shown for run0in Figure1. White dots represent the initial IMBH particles.They form inside the clumps at moderate to large radii in the primordial disk,and then migrate to the center with the clump cores.The entire process takes about1Gyr.Run0models without BHs were shown in BEE07 and run0models with cuspy dark matter halos(0N,1N,2N)and small initial bulges(0B, 1B,2B)were shown without BHs in EBE08.The clump evolution is indistinguishable when BHs are included,so we do not repeat the0N and0Bfigures here in the BH cases.Table1lists the numbers of BHs that formed and the numbers that get within the central250,500,and1000pc by the end of each run.It also gives the ratios of the BH masses that reach the inner500pc or1000pc to the bulge masses.Some low-mass BHs from low-mass clumps do not reach the central regions,but most BHs reach the central500 pc and even the central250pc.Thefinal bulge and BH masses are also tabulated,as are the bulge-to-total mass ratios,the BH-to-bulge mass ratios,and the bulge velocity dispersions. These dispersions,σbulge,are the average line-of-sight values for502-D projections of the stars,uniformly distributed over the sine of the inclination angle.Each dispersion comes from all the stars inside a projected aperture diameter of110pc(the grid resolution).We do not subtract the disk component from edge-on projections,nor do we make a direct3-D measurement,because these would not be done in observations.Figure2plots thefinal versus the initial BH galactocentric radii to show how common it is for the clump BHs to reach the galaxy centers.Black holes that start in clumps that are far out in the disk do not typically reach the center;they move inward only about a factor of2in radius and then the clump disperses without adding to the bulge.Thefigure also includes simulations that have cuspy halos(circles)and those that have a small initial bulge.In all cases,clumps form in the disk by gravitational instabilities,and BHs that are placed in these clumps migrate inward along with the clumps.Those that start within∼4 kpc get all the way to the center in1Gyr or less.The BHs that get in the furthest are the most massive ones that formed in the most massive clumps(Table1).Bulges and centralized BH clusters always form together in our models.The total mass of the centralized BHs(those reaching the central500pc)is usually within a factor of2 of the initial BH mass formed in the clumps.The IMBHs that do not reach the central regions(those from the smallest clumps)represent a small fraction of the total BH mass. The BH/bulge mass fraction can therefore be written,M BHM clump M clump Mbulge(1)where M BH/M clump=10−3according to cluster simulations.In this equation,M clump is the total clump mass,M bulge,clump is the mass in the bulge that comes from the clumps,and M bulge is the total bulge mass.Typically M clump/M bulge,clumps∼2and M bulge,clumps/M bulge∼0.5 (see BEE07).Note that half of the bulge stars come from intense star formation in the bulge region during the clump merging process.This makes up for the half of the clump stars thatare left behind in the disk.Gas accretion onto the BHs should increase their mass after they get to the nucleus,and other processes could add to the bulge and disk later too.Figure3shows thefinal nuclear BH mass,taken from the mass of IMBHs that migrated within radii<500pc,versus thefinal bulge line-of-sight velocity dispersion.There is a clear correlation.The dashed line has a slope of4,which is the observed value,and the solid line has a slope of2,which is a reasonable approximation to the lower envelope.The absolute scale depends on uncertain assumptions about the initial value of M BH/M clump,and on whether we assume nuclear BHs come from IMBHs within250pc or1000kpc(see Table 1).For a dispersion of130km s−1,which is in the middle of the plot,the Tremaine et al. (2002)BH mass would be2.4×107M⊙,whereas we get half this value,1.3×107M⊙.We consider the existence of a correlation to suggest that the proposed model is plausible.The model details are too crude and the bulge mass range considered is too small to be more conclusive at this time.For example,the BH/clump mass fraction,assumed to be a constant 10−3,could be higher in higher mass clumps or in more massive galaxies;this could change the correlation slightly.Other processes are likely to contribute to the bulge dispersions and the BH masses too,and they could alter the slope.For example,AGN feedback(neglected in our simulations)could bring the slope of the BH mass-velocity dispersion relation closer to the presently observed value(McLaughlin et al.2006)if BH formation occurs quickly, as in our present model.Observations at high redshift suggest that the correlation evolves (Peng et al.2006ab;Treu et al.2007;Woo et al.2008).5.DiscussionNumerical simulations suggest that primitive gas-rich disks should fragment into clumpy star-forming complexes with masses of∼108M⊙or more,and that these complexes should interact gravitationally and move to the galaxy center where they combine to form a bulge. The surrounding disk becomes exponential in the process.If the complexes contain massive dense clusters,and if these clusters form IMBHs,then the IMBHs will migrate to the center too.Our model assumes that the centralized BHs eventually merge into a single,nuclear BH.This assumption makes our model significantly different than BH formation models that rely on massive gas accretion to feed a seed nuclear BH.Relativistic effects during BH mergers cannot be treated by our model.Even their capture into BH binaries as afirst step toward merging cannot be simulated,because the gravity softening length is comparable to theirfinal separation.Still,BH binaries should form because of strong dynamical friction in a gas-rich environment(Escala et al.2005).This process has been resolved in models by Mayer et al.(2007).Gravitational radiation shouldthen drive their eventual merger.However,coalescing BHs can experience velocity kicks from the anisotropy of gravity waves,and these velocity kicks can be as large as hundreds or even thousands of km s−1(e.g.,Baker et al.2007).Such fast-moving BHs could be ejected from the galaxy(Merritt et al.2004).This would challenge many models of nuclear BH formation,including the common idea that they grow from mergers during the hierarchical galaxy build-up(e.g.,Di Matteo et al.2007).A solution to this problem was proposed by Bogdanovic et al.(2007)in the hierarchical merging context.According to Baker et al.(2007),the kick is greatly reduced if the merging BHs have spins aligned with each other.Bogdanovic et al.(2007)showed that such align-ments can result from torques in gas-rich merging galaxies.In the present scenario where disk clumps merge together,gas torques may contribute in the same way,but it is also likely that the BHs will have their spins already aligned with their orbit angular momenta.This is because the clumps in which they form are all fragments of the same initial galaxy disk;they have the same spin orientation and the same orbital angular momentum when they coalesce (BEE07;Bournaud et al.2008).The BHs should preserve these alignments and coalesce without experiencing major kicks.Even clumps that merge outside the central kpc should have their spins aligned,again reducing the chance for velocity kicks in BHs that merge.We also note that recoiling BHs would settle back rapidly to the galaxy center,as long as the velocity kick does not exceed the escape velocity(Blecha&Loeb2008).Both classical and pseudo-bulges have nuclear BHs with masses proportional to the bulge mass(Kormendy&Richstone1995;Magorrian et al.1998)and a power of the velocity dispersion(Ferrarese&Merritt2000;Gebhardt et al.2000;Novak et al.2006).Active galaxies follow the same relation as non-active galaxies(Nelson2000).These correlations may change slightly over time.At intermediate redshifts,z∼0.36−1,the bulge mass may be∼2×smaller than the modern bulge mass compared to the BH mass(Treu et al.2007), and at higher redshifts,z>1.7,the bulge may be∼4×smaller(Peng et al.2006ab).Thus bulges seem to grow for a slightly longer time than BHs.Salviander et al.(2007)and Lauer et al.(2007)caution that some of this appearance of late bulge growth may result from observational bias in favor of more active nuclei.In our model the time evolution may be explained by continued bulge growth during minor mergers and secular evolution,after the first bulge and its BH formed via clump/IMBH coalescence.If it takes a highly gas-rich disk to make clusters dense enough to form IMBHs,then only thefirst generation of clumps will add to the nuclear BH and the rest may add only to the bulge.Small-bulge galaxies(M<1010M⊙)have compact nuclear star clusters instead of BHs (e.g.,Carollo et al.1998;Matthews et al.1999;B¨o ker et al.2002;2004).Massive galaxies can have dense nuclear clusters too(Seth et al.2008).These clusters have about the samecorrelations with bulge mass and velocity dispersion as the BHs(Wehner&Harris2006; Rossa et al.2006;Graham&Driver2007;Ferrarese et al.2006;Cˆo t´e et al.2006;Li et al. 2007a),but somehow the dense gas,whether in disk clumps or in the nuclei themselves,made stars instead of BHs,or they made stars that could not coalesce into BHs.In our model, this difference is mostly the result of a difference in disk-clump density,with high density clumps more likely to form IMBHs inside their dense cores and low density clumps forming only dense stellar clusters.Dense clusters should migrate to the galaxy centers in the same way as BHs if the clusters do not evaporatefirst.This is consistent with the observation that nuclear clusters typically contain a range of ages and are on average younger than their disks(Rossa et al.2006;Cˆo t´e et al.2006).We suggest that galaxies with the highest disk gas fractions and the highest disk turbulent speeds make the densest and most massive disk clumps,and that these are the formation sites for IMBHs.Less extreme disks,or later stages of the same disks,make only dense star clusters in their disk clumps.The observed correlation between galaxy mass and the presence or lack of nuclear BHs then follows from the correlation between galaxy mass and density:higher mass galaxies are generally denser and should form denser clumps and IMBHs in those clumps,while lower mass galaxies have lower density disks and should form lower-density clumps that do not make IMBHs.Both types of clumps will be relatively massive compared to their disks (because both types of galaxies presumably have high ratios of turbulent to rotational speeds at early times)and therefore both types of clumps will interact and migrate to the center as we simulate here.However,only the dense clumps in massive galaxies will bring IMBHs to the nucleus.It is also possible that nuclear BHs form earlier in the life of a massive galaxy than nuclear star clusters form in the life of a low-mass galaxies,because of the shorter dynamical time for the massive galaxy.In that case,nuclear clusters could take much longer to form than nuclear BHs,when measured in absolute time.Galaxy interactions should also increase the turbulent speed and disk gas density,promoting the formation of IMBHs.In that case,tidal torques as well as clump interactions would bring clump stars and IMBHs into the center.Dense nuclear clusters would not be expected to form IMBHs in the same way as dense young clusters if the nuclear clusters assembled from in-spiraling evolved clusters,which have no massive stars anymore.Low mass stars are small and have much smaller gravitational cross sections than high mass stars,and mass segregation in a young cluster puts the high mass stars close together where they can interact quickly.Thus it is reasonable that young clusters in dense disk clumps make IMBHs,which spiral in to the center to make nuclear BHs,while neither young clusters in low-density disks nor evolved cluster debris in galactic nuclei can make BHs by the same mechanism,which is direct stellar collisions.Our model applies primarily to BH formation at high redshift,which occurs in galaxies that should be gas-rich and highly turbulent–the two primary ingredients for the evolution found here.Our model also forms BHs rapidly and in a gas-rich environment,which triggers an intense starburst.These aspects of BH formation are in agreement with observations(e.g., Alexander et al.2005;Escala2006;Haiman,Jimenez,&Bernardi2007).Supermassive BHsin z∼6quasars(Fan2006)could also be formed by disk clump coalescence,because it takes only a few disk rotations to bring the massive clumps to the center.Galaxy interactions would have made clump migration and BH formation even faster.However,our process would not apply to a starless central region,such as that found by Walter et al.(2004)in a z=6.42 QSO;gas-related accretion during mergers would be preferred there(e.g.,Li et al.2007b). Our mechanism also cannot form nuclear BHs without bulges,as observed in some galaxies (e.g.,Filippenko&Ho2003).Such BHs might have formed in nuclear clusters by stellar coalescence.Our model predicts IMBH activity in high-redshift disk clumps.Such activity may include X-ray,jet,and radio emission if the self-absorption is not too large.We also predict that lower density and more quiescent disks should make smaller disk clumps and possibly no IMBHs,which would be replaced by clusters with too little density for stellar coalescence. Clumpy galaxies at z>1outnumber starburst spirals and ellipticals by a factor2in the UDF(Elmegreen et al.2007a).Given the short timescale of the clumpy phase in our model (∼1Gyr),all present-day early-type disk galaxies would seem to have gone through a clump-cluster or chain-galaxy phase,forming their bulges this way or adding to a smaller bulge formed earlier by primordial galaxy mergers.Black hole growth by gas accretion should follow their formation by IMBH coalescence.AGN feedback effects might be important during the gas-accretion stage.Numerical simulations were carried out on the NEC-SX8R vector computer at CEA/CCRT.D.M.E.thanks Vassar College for publication support.Helpful comments by the referee are appreciated.REFERENCESAlexander,D.M.,Smail,I.,Bauer,F.E.,Chapman,S.C.,Blain,A.W.,Brandt,W.N.,& Ivison,R.J.2005,Nature,434,738Baker,J.G.,Boggs,W.D.,Centrella,J.,Kelly,B.J.,McWilliams,S.T.,Miller,M.C.,& van Meter,J.R.2007,ApJ,668,1140Blecha,L.,&Loeb,A.2008,astro-ph/0805.1420Bogdanovi´c,T.,Reynolds,C.S.,&Miller,M.C.2007,ApJ,661,L147B¨o ker,T.,Laine,S.,van der Marel,R.P.,Sarzi,M.,Rix,H.-W.,Ho,L.,&Shields,J.C.2002,AJ,123,1389B¨o ker,T.,Sarzi,M.,McLaughlin,D.E.,van der Marel,R.P.,Rix,H.-W.,Ho,L.C.,& Shields,J.C.2004,AJ,127,105Bournaud,F.,&Combes,F.2002,A&A,392,83Bournaud,F.,&Combes,F.2003,A&A,401,817Bournaud,F.,Elmegreen,B.G.,&Elmegreen,D.M.2007,ApJ,670,237Bournaud,F.,Daddi,E.,Elmegreen,B.G.,Elmegreen,D.M.&Elbaz,D.2008,A&A in press,astroph/0803.3831Carollo,C.M.,Stiavelli,M.,&Mack,J.1998,AJ,116,68Cˆo t´e,P.,et al.2006,ApJS,165,57Di Matteo,T.,Springel,V.,&Hernquist,L.2005,Nature,433,604Di Matteo,T.,Colberg,J.,Springel,V.,Hernquist,L.,&Sijacki,D.2008,ApJ,676,33 Ebisuzaki,T.et al.2001,ApJ,562,L19Elmegreen,D.M.2007,in IAU Symosium235,bes&J.Palous,Cambridge: Cambridge Univ.Press,in press.Elmegreen,B.G.,Elmegreen,D.M.,Vollbach,D.R.,Foster,E.R.,&Ferguson,T.E.,2005, ApJ,634,101Elmegreen,B.G.,&Elmegreen,D.M.,2006,ApJ,650,644Elmegreen,D.M.,Elmegreen,B.G.,Ravindranath,S.,&Coe,D.A.,2007a,ApJ,658,763 Elmegreen,B.G.,Bournaud,F.,&Elmegreen,D.M.2008,ApJ,submittedEscala,A.2006,ApJ,648,L13Escala,A.,Larson,R.B.,Coppi,P.S.,&Mardones,D.2005,ApJ,630,152Fan,X.2006,MmSAI,77,635。