新人教版七年级下数学第八章二元一次方程组综合模拟卷

合集下载

人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷含答案

人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷含答案

人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷含答案一、选择题(本大题共10小题,,共30分) 1.已知方程()()026281||2=++--+m n y n x m 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.32.用代入法解方程组⎩⎪⎨⎪⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=1 3.下列方程组,解为⎩⎨⎧-=-=21y x 是( ).A .⎩⎨⎧=+=-531y x y xB .⎩⎨⎧-=+=-531y x y x C .⎩⎨⎧=-=-133y x y x D .⎩⎨⎧=+-=-533y x y x4.已知x ,y 满足方程组45x m y m+=⎧⎨-=⎩,则x ,y 的关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=9 5.根据图中提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元 6.已知21x y =⎧⎨=⎩是方程组51ax by bx ay +=⎧⎨+=⎩的解,则a b -的值是( )A. -1B. 2C. 3D. 47.在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。

A.23 B.-13 C.-5 D.13 8.方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A.01043=--x xB.8543=+-x xC.8)25(23=--x xD.81043=+-x x 9.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定10.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x 米/秒,乙的速度为y 米/秒,可列方程组正确的是( ) A .5510442x y x y y =+⎧⎨=+⎩ B .5510424x y x y y -=⎧⎨-=⎩ C .5+105442x y x y =⎧⎨-=⎩ D .5510424x y x y-=⎧⎨-=⎩二、填空题(本大题共6小题,每小题4分,共24分) 11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.12.方程中,用含x 的式子表示y ,则y= 13.若2x 5a y b+4与-x 1-2by 2a 是同类项,则a+b=________.14.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+by -b=7的一个解,则代数式2x -4y+1•的值是_________.15.在△ABC 中,∠B -∠A =45°,∠A +∠B =135°.则∠C =____16.今年甲和乙的年龄和为24,6年后甲的年龄就是乙的年龄的2倍,则甲今年的年龄是 _________岁. 三、解答题(本大题共6小题,,共66分) 17.解方程组(每题5分,共20分) (1)⎩⎨⎧=-=-22534y x y x(2)⎩⎨⎧-=+=-6321053y x y x人教版七年级下册第八章二元一次方程组培优综合卷一、 选择题(共10题,每小题3分,共30分) 1.下列各式中是二元一次方程的是( ) A .3x 2-2y=9B .2x+y=6C .+2 =3yD .x-3=4y 22.在方程组 ⎩⎨⎧3x -y =7x =y -1中,代入消元可得( )A .3y-l-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=73.已知 = = 是方程kx+2y=-2的解,则k 的值为( )A .-3B .3C .5D .-54.将方程3x-4y=5变形为用含x 的代数式表示y 为( ) A .y =B .y=C .y=D .y=5.以方程组 = = 的解为坐标的点(x,y)在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限6.某校组织21名教师外出培训,宾馆可选2人间或3人间租住,若所租房间均需住满,则不同的租房方案共有( ) A .5种B .4种C .3种D .2种7.解下面的方程组时,要使解法较为简便,应( )= ①= ② = ③ 74=-y xA .先消去xB .先消去yC .先消去zD .先消去常数8.关于x 、y 的方程组 = = 的解是 = =■,其中y 的值被盖住了,不过仍能求出m ,则m 的值是( )A .-1B .1C .2D .-29.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( ) A . = =B .==C . = =D . = =10.某厂第二车间的人数比第一车间的人数的45少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的34.问这两个车间原来各有多少人?设第一车间原来有x 人,第二车间原来有y 人,依题意可得( )A .B .C .D .二.填空题(共6小题,每小题3分,共18分) 11.写出一个解为= =的方程组为 12.下列方程(组)中,①x+2=0 ②3x-2y=1 ③xy+1=0 ④2x-=1 ⑤ = = ⑥ = = 是一元一次方程的是 ,是二元一次方程的是 ,是二元一次方程组的是 . 13.已知方程组= = 和 = =的解相同,则2m-n= .14.结合下面图形列出关于未知数x ,y 的方程组为 .15.已知甲种物品每个重4kg,乙种物品每个重7kg,现有甲种物品x 个,乙种物品y 个,共重76kg,写出满足条件的x ,y 的全部整数解16.如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为 (平方单位).三.解答题(共7小题,共52分)17.(5分)(1)填表,使上下每对x,y的值是方程3x+y=5的解(2)写出二元一次方程3x+y=5的正整数解:.18.(9分)解下列方程:( 1 )1-3(x-1)=2x+6( 2 ) - =1(3)===19.(6分)甲、乙两人共同解方程组=①=②时,甲看错了方程①中的a,解得==,乙看错了②中的b,解得==,求a2019+()2020的值。

最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习卷(含答案解析)(1)

最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习卷(含答案解析)(1)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。

最新人教版初中数学七年级下册第八章二元一次方程组综合训练试题(含解析)

最新人教版初中数学七年级下册第八章二元一次方程组综合训练试题(含解析)

初中数学七年级下册第八章二元一次方程组综合训练(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列方程中,①x +y =6;②x (x +y )=2;③3x -y =z +1;④m +1n=7是二元一次方程的有( ) A .1个B .2个C .3个D .4个2、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩3、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为()A.330千米B.170千米C.160千米D.150千米4、己知33x ky k=⎧⎨=-⎩是关于x,y的二元一次方程227x y-=的解,则k的值是()A.3 B.3-C.2 D.2-5、若12xy=⎧⎨=⎩是关于x、y的二元一次方程ax-5y=1的解,则a的值为()A.-5 B.-1 C.9 D.116、已知2xy m=⎧⎨=⎩是二元一次方程531x y+=的一组解,则m的值是()A.3-B.3 C.311-D.3117、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是()A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1)D.y=1﹣2x8、下列方程组中,属于二元一次方程组的是()A.21x yy z+=⎧⎨-=-⎩B.2103xy x⎧-=⎨-=⎩C.2125x yy x-=⎧⎪⎨+=⎪⎩D.23xyy=⎧⎨=⎩9、下列方程组为二元一次方程组的是()A.510x yxy+=-⎧⎨=-⎩B.22xy=⎧⎨=-⎩C.516x yxy+=⎧⎪⎨-=⎪⎩D.122x yx z+=⎧⎨-=⎩10310a b-+=)A.2 B.-2 C.12D.12-二、填空题(5小题,每小题4分,共计20分)1、已知关于x,y的方程组21x y kx y+=⎧⎨-=-⎩满足3x y+=,则k =_____.2、若方程组51ax yx by+=⎧⎨+=-⎩的解为21xy=⎧⎨=⎩,则点P(a,b)在第__象限.3、若A∠与B互为补角,并且B的一半比A∠小30,则B的度数为_________.4、若实数x、y|x+y+1|=0,则2x﹣4y的平方根是____.5、小明心里想好一个两位数,将十位数字乘2,然后加3,再将所得的新数乘5,最后加原两位数的个位数字,结果是94.算算看小明心里想的两位数是 _____.三、解答题(5小题,每小题10分,共计50分)1、解方程(组)(1)10+2(x﹣12)=7(x﹣2);(2)1.721 0.30.2x x+-=-;(3)34(2)521x x yx y--=⎧⎨-=⎩.2、在解方程组4635ax yx by+⎧⎨+-⎩=①=②时,由于小明看错了方程①中的a,得到方程组的解为12xy⎧⎨⎩==,小华看错了方程②中的b,得到方程组的解为x=2,y=1.(1)求a、b的值;(2)求方程组的正确解.3、判断下列各组数是否是二元一次方程组4221x yx y+=⎧⎨+=-⎩①②的解.(1)35xy=⎧⎨=-⎩(2)21xy=-⎧⎨=⎩4、解下列方程组:(1)54 76 x yx y-=⎧⎨-=⎩(2)111 522x yx y+-⎧-=-⎪⎨⎪+=⎩5、“文明其精神,野蛮其体魄”,为进一步提升学生的健康水平,我市某校计划用760元购买14个体育用品,备选体育用品及单价如表:(1)若760元全部用来购买足球和排球,求足球和排球各购买的数量.(2)若该校先用一部分资金购买了a个排球,再用剩下的资金购买了足球和篮球,且篮球和足球的个数相同,此时正好剩余80元,求a的值.(3)由于篮球和排球都不够分配,该校再补充采购这两种球共花费了480元,其中这两种球都至少购进2个,则有几种补购方案?---------参考答案-----------一、单选题 1、A 【解析】 【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可. 【详解】解:①x +y =6是二元一次方程;②x (x +y )=2,即22x xy +=不是二元一次方程; ③3x -y =z +1是三元一次方程; ④m +1n=7不是二元一次方程; 故符合题意的有:①, 故选A 【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键. 2、A 【解析】 【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程. 【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x yy x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩,故选A . 【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式. 3、C 【解析】 【分析】设动车平均每小时行驶x 千米,快车平均每小时行驶y 千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x ,y 的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答. 【详解】解:设动车平均每小时行驶x 千米,快车平均每小时行驶y 千米,依题意得:()152********y x x y ⎧=+⎪⎨⎪++=⎩,解得:330170x y =⎧⎨=⎩ ,330170160-= ,故选:C . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 4、A【分析】将33x ky k=⎧⎨=-⎩代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将33x ky k=⎧⎨=-⎩代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.5、D【解析】【分析】把12xy=⎧⎨=⎩代入ax-5y=1解方程即可求解.【详解】解:∵12xy=⎧⎨=⎩是关于x、y的二元一次方程ax-5y=1的解,∴将12xy=⎧⎨=⎩代入ax-5y=1,得:101a-=,解得:11a=.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.6、A【解析】【分析】把2xy m=⎧⎨=⎩代入5x+3y=1即可求出m的值.【详解】把2xy m=⎧⎨=⎩代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.7、B【解析】【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得1112(1)x yx y-=+⎧⎨+=-⎩.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.8、C【解析】【分析】根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.【详解】解:A、21x yy z+=⎧⎨-=-⎩中有3个未知数,不是二元一次方程组,不符合题意;B、2103xy x⎧-=⎨-=⎩未知数x的次数是2,不是二元一次方程组,不符合题意;C、2125x yy x-=⎧⎪⎨+=⎪⎩由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;D、23xyy=⎧⎨=⎩中xy的次数是2,不是二元一次方程组,不符合题意.故选:C.【点睛】此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.9、B【解析】【分析】根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;【详解】解A.510x yxy+=-⎧⎨=-⎩中,xy的次数是2,故A不符合题意;B.22xy=⎧⎨=-⎩是二元一次方程组,故B符合题意;C.516x yxy+=⎧⎪⎨-=⎪⎩中y在分母上,故C不符合题意;D.122x yx z+=⎧⎨-=⎩中有3个未知数,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.10、D【解析】【分析】根据绝对值和算术平方根的非负性,得到关于a b,的二元一次方程组,然后求解即可.【详解】310a b -+=∴50a b +-=,310a b -+=即50310a b a b +-=⎧⎨-+=⎩,化简可得531a b a b +=⎧⎨-=-⎩①②①+②得:44a =,解得1a =将1a =代入①得,15b +=,解得4b =2=12-故选:D【点睛】此题考查了二元一次方程组的求解,涉及了绝对值和算术平方根的非负性,算术平方根的求解以及倒数的概念,解题的关键是灵活运用相关基本知识进行求解.二、填空题1、4【分析】将方程组重新组合31x y x y +=⎧⎨-=-⎩①②,求出关于x 、y 的方程组,再代入求出k 即可. 【详解】解:关于x ,y 的方程组21x y k x y +=⎧⎨-=-⎩满足3x y +=, ∴31x y x y +=⎧⎨-=-⎩①②,∴①+②得:x =1,把x =1代入①得y =2,12x y =⎧⎨=⎩, ∴2x y k +==4.故答案为:4.【点睛】本题考查了解二元一次方程组的解满足二元一次方程,重新组合能求出x 、y 的值是解此题的关键.2、四【分析】把21x y =⎧⎨=⎩代入所给方程组可得a ,b 的值,可得a ,b 的符号,进而可得所在象限. 【详解】解:将21x y =⎧⎨=⎩代入方程组得:21521a b +=⎧⎨+=-⎩,解得:23a b =⎧⎨=-⎩, 则P (2,﹣3)在第四象限.【点睛】查二元一次方程组的解及象限的相关知识.能够正确得到a ,b 的具体值是解决本题的关键. 3、100︒【分析】根据A ∠与B 互为补角,并且B 的一半比A ∠小30,然后根据题意列出关于A ∠、B 的二元一次方程组1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②,求解即可.解:根据题意得1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②, ①-②得,31502B ∠=︒,解得100B ∠=︒,把100B ∠=︒代入①得,100180A ∠+︒=︒,解得80A ∠=︒.∴80100A B ∠=︒⎧⎨∠=︒⎩, 故答案为:100°.【点睛】本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键.4、4±【分析】根据非负数的性质可列出关于x 、y 的二元一次方程,解出x 、y ,代入24x y -中,求出其平方根即可.【详解】解:根据题意可知3212010x y x y --=⎧⎨++=⎩, 解得:23x y =⎧⎨=-⎩. ∴2x -4y的平方根为4±.故答案为:4±.本题考查绝对值和算术平方根的非负性,解二元一次方程以及代数式求值和求一个数的平方根.根据非负数的性质列出关于x、y的二元一次方程是解答本题的关键.5、79【分析】设小明想的两位数的个位数字为a,十位数字为b,根据题意列出方程,然后根据1≤b≤9,0≤a≤9且a,b为整数,从而确定二元一次方程的解.【详解】解:设小明想的两位数的个位数字为a,十位数字为b,由题意可得:5(2b+3)+a=94,整理,可得:10b+a=79,∵1≤b≤9,0≤a≤9且a,b为整数,∴a=9,b=7,∴小明心里想的两位数是79.故答案为:79【点睛】本题主要考查了二元一次方程的应用,明确题意,准确得到等量关系是解题的关键.三、解答题1、(1)x=235;(2)x=﹣4;(3)31xy=⎧⎨=⎩.【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可.【详解】解:(1)10+2(x﹣12)=7(x﹣2),去括号、得10+2x﹣1=7x﹣14,移项、得2x﹣7x=1﹣10﹣14,合并同类项、得﹣5x=﹣23,系数化为1,得x=235;(2)1.720.3x+﹣10.2x=-,整理、得1720513xx+-=-,去分母、得17+20x﹣15x=﹣3,移项、得20x﹣15x=﹣3﹣17,合并同类项、得5x=﹣20,系数化为1,得x=﹣4;(3)方程组整理,得85?21?x yx y-+=⎧⎨-=⎩①②,①+②,得6y=6,解得y=1,把y=1代入②,得x﹣2=1,解得x=3,故方程组的解为31xy=⎧⎨=⎩.【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.2、(1)1a =,4b =-;(2)14x = ,2316y =【分析】(1)根据方程组的解的定义,12x y ⎧⎨⎩==应满足方程②,x =2,y =1应满足方程①,将它们分别代入方程②①,就可得到关于a ,b 的二元一次方程组,解得a ,b 的值;(2)将a ,b 代入原方程组,求解即可.【详解】解:(1)将12x y =,=代入②得325b +=-,解得:4b =- 将x =2,y =1代入①得246a +=,解得:1a = ,∴1a =,4b =-;(2)方程组为:46345x y x y +⎧⎨-⎩=①=﹣②, ①+②得:365x x +=- ,41x = , 解得:14x = , 将14x =代入①得:1464y += ,2344y = , 解得:2316y =,∴方程组的解为142316x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a 、b 的值是解(2)的关键.3、(1)35x y =⎧⎨=-⎩不是方程组的解 ;(2)21x y =-⎧⎨=⎩不是方程组的解 【分析】根据二元一次方程的解,将二元一次方程的解代入方程计算即可.【详解】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解. 把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解.所以35x y =⎧⎨=-⎩不是方程组的解. (2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解, 再把21x y =-⎧⎨=⎩代入方程②中,左边=x +y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【点睛】本题考查了二元一次方程组的解,检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.4、(1)11x y =⎧⎨=⎩;(2)13x y =-⎧⎨=⎩ 【分析】(1)用加减消元法解二元一次方程组即可;(2)先化简方程组,再用加减消元解方程组即可.【详解】解:(1)5476x y x y -=⎧⎨-=⎩①②, ②-①得:22x =,解得1x =,把1x =代入①得:54y -=,解得:1y =,∴方程组的解为11x y =⎧⎨=⎩; (2)111522x y x y +-⎧-=-⎪⎨⎪+=⎩①②, 由②可得y =2-x ,把y =2-x 代入①,可得x =-1,把x =-1代入y =2-x ,可得y =3,∴方程组的解为13x y =-⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.5、(1)足球购买5个、排球购买9个;(2)a的值为10;(3)则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【分析】(1)设购买足球x个和排球y个,根据两种球共14个,足球支出总钱数+排球支出总钱数=760元,列方程组804076014x yx y+=⎧⎨+=⎩,解方程组即可;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据三种球共14个,排球支付的总钱数+足球支出总钱数+篮球球支出总钱数=760-80元,列方程组40806076080214a b ba b++=-⎧⎨+=⎩,解方程组即可;(3)设篮球购买m个和排球n个,根据篮球支出总钱数+排球支出总钱数=480元,列二元一次方程60m+40n=480求方程的整数解即可.【详解】解:(1)设购买足球x个和排球y个,根据题意得:804076014x yx y+=⎧⎨+=⎩,解得59xy=⎧⎨=⎩,答足球购买5个、排球购买9个;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据题意得40806076080214a b ba b++=-⎧⎨+=⎩,解得102ab=⎧⎨=⎩,答a 的值为10;(3)设篮球购买m 个和排球n 个,根据题意得60m +40n =480,整理得3m +2n =24,∵m ≥2,n ≥2, ∴3122m n =-, 当29m n ==,;46m n ==,,63m n ==,,则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【点睛】本题考查列二元一次方程组解应用题,掌握列方程组解应用题的步骤与方法,列二元一次方程,求整数解确定方案是解题关键.。

新人教版七年级下数学第八章《二元一次方程组》测试卷

新人教版七年级下数学第八章《二元一次方程组》测试卷

12(第6题)七年级数学第八章《二元一次方程组》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共24分)1、下列各组数是二元一次方程⎩⎨⎧=-=+173x y y x 的解是( ) A 、⎩⎨⎧==21y x B 、⎩⎨⎧==10y x C 、⎩⎨⎧==07y x D 、⎩⎨⎧-==21y x 2、方程⎩⎨⎧=+=+10by x y ax 的解是 ⎩⎨⎧-==11y x ,则a ,b 为( ) A 、⎩⎨⎧==10b a B 、⎩⎨⎧==01b a C 、⎩⎨⎧==11b a D 、⎩⎨⎧==00b a 3、|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( )A 、14B 、2C 、-2D 、-44、解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是( )A 、代入法B 、加减法C 、试值法D 、无法确定5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A 、⎩⎨⎧=+-=18050y x y xB 、⎩⎨⎧=++=18050y x y x C 、⎩⎨⎧=+-=9050y x y x D 、⎩⎨⎧=++=9050y x y x 7、李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A 、6,10B 、7,9C 、8,8D 、9,78、两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确地解出⎩⎨⎧-==23y x ,乙同学因把C 写错了解得 ⎩⎨⎧=-=22y x ,那么a 、b 、c 的正确的值应为( )A 、a =4,b =5,c =-1B 、a =4,b =5,c =-2C 、a =-4,b =-5,c =0D 、a =-4,b =-5,c =2二、填空(每小题3分,共18分)9、如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________。

人教版数学七年级下册第八章二元一次方程组测试卷(后附答案)

人教版数学七年级下册第八章二元一次方程组测试卷(后附答案)

人教版数学七年级下册第八章二元一次方程组测试卷(后附答案)一、单选题(共10题;共20分)1.解方程组 {2x −3y =2,⋯⋯①2x +y =10.⋯⋯②时,由②-①得( ) A. 2y =8 B. 4y =8 C. −2y =8 D. −4y =82.方程 3x −4y =10 的一组解是( )A. {x =4y =1B. {x =6y =2C. {x =0y =3D. {x =2y =13.解方程组 {3x +2y =7①4x −y =13②比较简单的解法是( ) A. ①×2-②,消去x B. ①-②×2,消去y C. ①×2+②,消去x D. ①+②×2,消去y4.若关于 x,y 的二元一次方程组 {x −y =4k x +y =2k的解也是二元一次方程 2x −y =−7 的解,则k 的值是( )A. −1B. 0C. 1D. 25.已知 {x =−1y =2 是二元一次方程组 {3x +2y =m nx −y =1的解,那么 √m −n =( ) A. ﹣3 B. 1 C. 2 D. 46.已知 {x =−3y =−2 是方程组 {ax +c(y −1)=2cx −by =5的解,则 a , b 间的关系是 ( ) A. 3a +2b =−3 B. 3a +2b =3 C. 3a −2b =7 D. −3a +2b =−77.若 {x =3y =5是方程 2x −my =3 的一个解,那么m 的值为 ( ) A. 5 B. 95 C. 53D. 35 8.小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A. 他身上的钱会不足95元B. 他身上的钱会剩下95元C. 他身上的钱会不足105元D. 他身上的钱会剩下105元9.已知方程组 {2x +y =1+3m x +2y =1−m的解满足x+y <0,则m 的取值范围是( ) A. m >﹣1 B. m >1 C. m <﹣1 D. m <110.若 x +2y +3z =10 , 4x +3y +2z =15 ,则 x +y +z 的值为( )A. 5B. 4C. 3D. 2 二、填空题(共9题;共27分)11.将方程2x ﹣3y =5变形为用x 的代数式表示y 的形式是________.12.已知 2x n−3-13y 2m+1=0 是关于x,y 的二元一次方程,则 n m = ________.13.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为________.14.小慧带着妈妈给的现金去蛋糕店买蛋糕。

最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(解析版)

最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(解析版)

人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.方程组的解为( ) A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A . B . C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a ×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(30分)1.下列方程组中,是二元一次方程组的是( )A .123xy x y =⎧⎨+=⎩B .231x y x =⎧⎨-=⎩C .1111x y x y ⎧+=⎪⎨⎪+=⎩D .23x z x y +=⎧⎨+=⎩ 2.方程组38413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩ 3.下列四组数值中,是方程32x y -=的解的是( )A .12x y =⎧⎨=⎩B .11x y =-⎧⎨=-⎩C .2 4x y =-⎧⎨=-⎩D .2 4x y =⎧⎨=⎩ 4.如果2150x y x y -+++-=,则x 、y 的值分别是( )A .10x y =-⎧⎨=⎩B .14x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .23x y =⎧⎨=⎩ 5.若关于x 、y 的二元一次方程组34823xy k x y k 的解与方程6x y +=的解相同,则k 的值是( ) A .5 B .6 C .7D .8 6.用代入法解方程组27343x y x y -=⎧⎨-=⎩①②使得代入后,化简比较容易的变形是( ) A .由①得72y x +=B .由①得27y x =-C .由②得343y x +=D .由②得334x y -= 7.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A 、B 、C 三种奖品,A 种每个10元,B 种每个20元,C 种每个30元,在C 种奖品不超过两个且钱全部用完的情况下,购买方案有( )A .12种B .14种C .15种D .16种8.某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物的利润率是11%,两种货物共获利315元,如果设该公司购进这两和货物所用的费用分别为x 元,y 元,则列出的方程组是( ) A .3315(110%)(111%)315x y x y +=⎧⎨+++=⎩ B .331510%11%315x y x y +=⎧⎨+=⎩ C .3000(110%)(111%)315x y x y +=⎧⎨+++=⎩ D .300010%11%315x y x y +=⎧⎨+=⎩9.春节将至,某超市准备用价格分别是36元/kg 和20元/kg 的两种糖果混合成100kg 的什锦糖出售,混合后什锦糖的价格是28元/kg .若设需要36元/kg 的糖果kg x ,20元/kg 的糖果kg y ,则下列方程组中能刻画这一问题中数量关系的是( )A .100362028x y x y +=⎧⎨+=⎩B .100362028100x y x y +=⎧⎨+=⨯⎩ C .()10028281003620x y x y +=⎧⎨+=⨯+⎩ D .100203628100x y x y +=⎧⎨+=⨯⎩10.某宾馆有单人间,双人间,三人间三种客房供游客选择居住,现某旅游团有20名旅客同时安排游客居住在该宾馆,若每个房间都住满,共租了9间客房,则居住方案( )A .1种B .2种C .3种D .4种二、填空题(15分) 11.若方程组423521m n a m n a+=+⎧⎨+=-⎩的解满足3m n +=,则a =________. 12.如果31x y =⎧⎨=-⎩是方程3x ﹣ay =10的一个解,那么a =_____. 13.若()2234x y +-与37x y +-互为相反数,则x y -=_______.14.解关于x 、y 的方程组()()()1328511m x n y n x my ⎧+-+=⎪⎨-+=⎪⎩①②时,可以有①×2+②,消去未知数x ;也可以用①+②×5,消去未知数y ,则m n +=_______.15.小明和小文解一个二元一次方程组322cx y ax by -=-⎧⎨+=⎩,小明正确解得11x y =⎧⎨=-⎩,小文抄错了c ,解得26x y =⎧⎨=-⎩,已知小文抄错了c 外没有发生其他错误,则a b c --=______.三、解答题(75分)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩ 17.解方程组:4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩18.已知关于x 、y 的方程组2332x y a x y a-=--⎧⎨+=+⎩的解也是二元一次方程2318x y +=的解,求a 的值.19.若关于x ,y 的方程组24,1mx ny x y +=⎧⎨+=⎩与()3,13x y nx m y -=⎧⎨+-=⎩有相同的解. (1)求这个相同的解;(2)求m 、n 的值.20.小颖家到学校的距离为1200m ,其中有一段为上坡路,另一段为下坡路,她去学校共用去16min ,假设小颖在上坡路的平均速度为3km /h ,下坡路的平均速度为5km /h ,小颖家到学校的上坡路和下坡路各有多少米?21.我校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用2000元钱购进笔记本作为奖品.若A 种笔记本买40本,B 本笔记本买60本,则钱还多80元;若A 种笔记本买60本,B 种笔记本买40本,则钱还缺80元,求A ,B 两种笔记本的单价?22.材料一:如果四位数n 满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“等和数”,例如:3425,因为3425+=+,所以3425是一个“等和数”.材料二:对于一个四位数n ,将这个四位数n 千位上的数字与十位上的数字对调、百位上的数字与个位上的数字对调后可以得到一个新的四位数m ,记()99n m F n -=.例如1425n =,对调千位上数字与十位上数字及百位上数字个位上数字得到2514,所以()142525141199F n -==-. (1)判断6372n =是否是“等和数”,并求出()F n 的值;(2)若s ,t 都是“等和数”,其中5(3)(3)5s x x =++,53t a b =,(02x ≤≤,19a ≤≤,09b ≤≤,x 、a 、b 都是整数),若()()227F s F t -=,求t 的值.23.阅读理解:对于任意一个三位数正整数m (各个数位上的数字互不相同且都不为零),将m 三个数位上的数字交换顺序,可以得到5个不同的数,把这6个数的和与111的商记为m 的星河数T (m ).例如m =234,可以得到243、324、342、423、432这5个不同的数,这6个数的和为234+243+324+342+423+432=1998,因为1998÷111=18,所以234的星河数T (234)=18.(1)计算T (169)的值;(2)若p 和q 都是各个数位上的数字互不相同且都不为零的三位正整数,p 的十位和个位上的数字分别是6和3,3和7分别是q 的百位和个位上的数字,且p 的百位上的数字比q 的十位上的数字大3.若15T (p )+17T (q )=828,求p 和q 的值【参考答案】1.B 2.B 3.D 4.C 5.C 6.B 7.B 8.D 9.B 10.C11.15 212.1.13.19 3 -14.-62 15.716.(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩17.121 xyz=⎧⎪=⎨⎪=-⎩18.2a=19.(1)21xy=⎧⎨=-⎩;(2)m=6,n=420.小颖家到学校的上坡路有200米,下坡路有1000米.21.A,B两种笔记本的单价分别为24元,16元22.(1)是,-9;(2)4536或253423.(1)32;(2)p=563,q=327。

最新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷及答案

最新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷及答案

人教版七年级下册数学第八章二元一次方程组复习题(含答案)一、选择题1.以下方程组中是二元一次方程组的是()A. B. C.D.2.假如一个两位数的十位数字与个位数字之和为6,那么这样的两位数的个数是()A.3B.6C.5D.43.知足方程组的,的值的和等于,则的值为().A. B. C. D.4.用如图①中的长方形和正方形纸板作侧面和底面,做成如图② 的竖式和横式的两种无盖纸盒。

此刻库房里有m 张正方形纸板和n 张长方形纸板,假如做两种纸盒若干个,恰巧使库存的纸板用完,则的值可能是()A. 2013B. 2014C. 2015D. 20165.小明去商场买东西花20 元,他身上只带了面值为给他,那么小明付款方式有().A. 2 种B.种32 元和 5 元的纸币,营业员没有零钱找C. 种4D. 种56.二元一次方程组的解是()A. B. C. D.7.已知a,b知足方程组,则a+b 的值为()A. ﹣4B. 4C. ﹣2D. 28.若对于x, y 的方程组(此中a, b 是常数)的解为,则方程组的解为()A. B. C. D.9.某企业昨年的收益(总产值-总支出)为200 万元.今年总产值比昨年增添了20%,总支出比昨年减少了10%,今年的收益为780 万元.假如昨年的总产值x 万元、总支出y 万元,则以下方程组正确的选项是()A. B.C. D.10.解方程组时,由② ﹣① 得()A. 2y=8B. 4y=8﹣C2y=8.D﹣. 4y=811.甲种物件每个1kg,乙种物件每个 2.5kg,现购置甲种物件x 个,乙种物件 y 个,共 30kg.若两种物件都买,则全部可供购置方案的个数为()A.4B.5C.6D.712.二元一次方程()A. 有且只有一解B. 有无数解C. 无解D. 有且只有两解二、填空题13.在方程 3x+y=2 中,用 y 表示 x,则 x=________14.方程组的解是________.15.已知方程组的解合适x+y=2,则 m 的值为 ________16.若方程组的解知足方程x+y+a=0,则 a 的值为 ________17.已知对于 x, y 的二元一次方程 3x﹣ 4y+mx+2m+8=0,若不论 m 取任何实数,该二元一次方程都有一个固定的解,则这个固定的解为________.18.已知方程组的解 x、 y 之和为 2,则 k= ________.19.已知,,则代数式的值为 ________.20.请写出一个二元一次方程组________,使它的解是.21.已知方程组,则 8x+8y= ________.22.已知 |2x+y+1|+( x+2y﹣7)2=0,则( x+y)2=________.三、解答题23.解以下方程组:(1);(2).24.已知,代数式的值比多1,求m.25.解方程组.(1)(2)26.求方程 5x-3y=-7 的正整数解.27.阅读以下资料并填空:(1)对于二元一次方程组我们能够将,的系数和相应的常数项排成一个数表,求得一次方程组的解,用数可表示为.用数表能够简化表达解一次方程组的过程以下,请补全此中的空白:.进而获得该方程组的解为.(2)模仿()中数表的书写格式写出解方程组的过程.28.植树节到临之际,学校准备购进一批树苗,已知 2 棵甲种树苗和 5 棵乙种树苗共需113元; 3 棵甲种树苗和 2 棵乙种树苗共需87 元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元?(2)学校准备购进这两种树苗共100 棵,而且乙种树苗的数目不多于甲种树苗数目的 2 倍,请设计出最省钱的购置方案,并求出此时的总花费.参照答案一、选择题1.A2.B3.C4.C5.B6.B7.B8.B9.A10.B11.B 12.B二、填空题13.14.15.616.517.18.220.答案不独一,如:21.3222.4三、解答题23.(1)解:,① ﹣②×2得,5t=15,解得t=3;把 t=3 代入②得, 2s﹣ 3=﹣ 5,解得 s=﹣ 1,故此方程组的解为(2)解:原方程组可化为,①2+②得, 15y=11,解得 y=;把 y=代入② 得,+2x=3,解得 x=,故此方程组的解为24.解:依据题意可得:a- 3=0, b+1=0则a=3,b=-1代入两个代数式列出方程可得:解得: m=025.( 1)解:由①×2得: 6x-2y=10③由③ -②得: x=6将 x=6 代入①得:18-y=5解之: y=13∴(2)解:由①+③得:3x+5y=11④由③× 2+②得: 3x+3y=9⑤由④ -⑤得: 2y=2解之: y=1将 y=1 代入⑤得: 3x+3=9解之: x=2将 x=2, y=1 代入①得:4+3+z=6解之: z=-1∴26.解:原方程可化为,即y=4 时, x=1.即为原方程的一组整数解.所以,原方程的全部整数解为,(k 为随意整数 ).再令 x>0, y>0,即有不等式组解得.所以原方程的正整数解为,(k 为非负整数 ).27.(1)(2)解:进而获得方程构成的解为28.(1)解:设一棵甲种树苗的售价为x 元,一棵乙种树苗的售价为y 元,依题意得,解得,∴一棵甲种树苗的售价为19 元,一棵乙种树苗的售价为15 元(2)解:设购置甲种树苗 a 棵,则购置乙种树苗(100-a)棵,总花费为w 元,依题意得w=19a+15( 100-a) =4a+1500,∵4> 0,∴w 跟着 a 的增大而增大,∴当 a 取最小值时, w 有最大值,∵100- a≤2a,∴a≥,a为整数,∴当 a=34 时, w 最小 =4×34+1500=1636(元),此时, 100-34=66,∴最省钱的购置方案为购置甲种树苗34 棵,购置乙种树苗66 棵,总花费为1636 元人教版七年级数学下册第八章二元一次方程组单元综合测试卷一、选择题 (本大题共10 小题,,共 30 分 )1.以下方程组中,是二元一次方程组的是()x4a2b8m216n0D.16x3y6A.5B.4c6C.2n32 y4y3b mx2.二元一次方程2x+ 3y=18()A. 有且只有一解B. 有无数解C. 无解D. 有且只有两解3.方程组x y12x y 5的解是()A x1Bx2Cx1Dx2 y2y1y2y14.假如方程 x+ 2y=- 4, 2x-y= 7, y- kx + 9=0有公共解,则k 的解是 () A.- 3B. 3C. 6D.- 65.已知方程组3x 2 y m 2中未知数x、y 的和等于2,求 m 的值是()2x 3 y3mA .2B . 3C . 4D . 56.由方程组2x +m =1)y - 3= m ,可写出 x 与 y 的关系是 (A . 2x + y = 4B . 2x - y = 4C . 2x + y =- 4D . 2x - y =- 47.方程组2x yx 2,则被掩盖的两个数分别为()的解为x y 3yA.1, 2B.1,3 C.5,1 D.2,4x 3 y,yx ()8.设4z0. 0 则yzA.12B.1 C.12D. 1 .12129.对于对于 x 、y 的方程组2x 3y 11 4m20 的3x 2y21的解也是二元一次方程 x 3 y 7m5m解,则 m 的值是( )A.0B.1C.21D.210.小龙和小刚两人玩 “打弹珠 ”游戏,小龙对小刚说: “把你珠子的一半给我,我就有 10 颗珠子 ”.小刚却说: “只需把你的 1给我,我就有10 颗 ”.假如设小刚的弹珠数为x 颗,小龙3的弹珠数为 y 颗,那么列出的方程组是()x + 2y = 20B.x + 2y = 10x + 2y = 20D.x + 2y = 10 A.3x + y = 10C.3x + y = 303x + y = 303x + y = 10二、填空题 (本大题共 6 小题,每题 4 分,共 24 分)11.已知方程 5x 3y 4 0 ,用含 x 的代数式表示 y 的形式,则 y=__________________ 。

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)

新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)

人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______. 三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x 的式子表示); (2)若小敏按方案二购买,需付款多少元(用含x 的式子表示); (3)当x =10时,通过计算说明此时按哪种方案购买较为合算;(4)当x =10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x =10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x +120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x +135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元, 故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.人教版七年级下册 第八章二元一次方程组单元试题一、选择题(共10小题,每小题3分,共30分)1.二元一次方程组⎩⎨⎧ x +y =7,3x -y =5的解是( ) A.⎩⎨⎧ x =4,y =3B .⎩⎨⎧ x =5,y =2 C .⎩⎨⎧ x =3,y =4 D .⎩⎨⎧ x =-2,y =92.已知方程组⎩⎨⎧ 2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .33.下列各方程中,是二元一次方程的是( )A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =14.已知x 2m -1+3y 4-2n =-7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A.⎩⎨⎧ m =2,n =1B .⎩⎨⎧ m =1,n =-32 C .⎩⎨⎧ m =1,n =52D .⎩⎨⎧ m =1,n =325.方程kx +3y =5有一组解是⎩⎨⎧ x =2,y =1,则k 的值是( )A .1B .-1C .0D .2 6.二元一次方程x +2y =10的所有正整数解有( )A .1个B .2个C .3个D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )A.⎩⎨⎧ x +y =60,x -7y =4B .⎩⎨⎧ x +y =60,y -7x =4C .⎩⎨⎧ x =60-y ,x =7y -4D .⎩⎨⎧ y =60-x ,y =7x -48.关于x ,y 的方程组⎩⎨⎧ x +py =0,x +y =3的解是⎩⎨⎧ x =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A .-12B .12C .-14D .149.若|x +y -5|与(x -y -1)2互为相反数,则x 2-y 2的值为( )A .-5B .5C .13D .1510.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A.⎩⎨⎧ 8x -3=y ,7x +4=yB .⎩⎨⎧ 8x +3=y ,7x -4=yC .⎩⎨⎧ y -8x =3,y -7x =4D .⎩⎨⎧ 8x -y =3,7x -y =4二、填空题(共5小题,每小题4分,共20分)11.方程组⎩⎨⎧ x +y =1,3x -y =3的解是 .12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.13.已知关于x ,y 的二元一次方程组⎩⎨⎧ 2x +y =k ,x +2y =-1的解互为相反。

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。

)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

【3套精选】人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(含答案)(1)

【3套精选】人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(含答案)(1)

人教版七年级数学下册第八章 二元一次方程组单元检测试题(有答案)一、选择题1 . 下列各方程组中,属于二元一次方程组的是( )A .B .C .D .2 .将方程 2 x + y =3 写成用含 x 的式子表示 y 的形式,正确的是 ( ) A . y = 2 x - 3 B . y = 3 - 2 x C . x = 2y-3D . x =3-2y3 .若方程组 的解为 ,则被 “☆” 、 “ K ” 遮住的两个数分别是 ( )A . 10 , 3B . 3 , 10C . 4 , 10D . 10 , 44 .已知 x , y 满足方程组 则 x + y 的值为 ( )A . 9B . 7C . 5D . 35 .已知甲、乙两数的和是 7 ,甲数是乙数的 2 倍,设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 ( )A. B. C. D.6 .按如图所示的运算程序,能使输出结果为 5 的 x , y 的值是 ( )A . x = 5 , y =- 5B . x =- 1 , y = 1C . x = 2 , y = 1D . x = 3 , y = 27.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .28.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解x与y相等,则a的值等于()A.4 B.10 C.11 D.129. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是()A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨10.某校七年级(2)班40表格中捐款2元和32元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题1.方程组的解是________ .2.已知关于x ,y 的二元一次方程2 x +■ y =7 中,y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________ .3.某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游,已知这两个旅游团共有55 人,甲旅游团的人数比乙旅游团的人数的2 倍少5 人,问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团分别有x 人、y 人,根据题意可列方程组为__________ .4.已知+( x +2 y -5) 2 =0 ,则x +y =________ .5.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、计算题1.解方程组:(1) (2)2.已知与都是方程kx -b =y 的解,求k 和b 的值.3.已知方程组小马由于看错了方程① 中的m ,得到方程组的解为小虎由于看错了方程② 中的n ,得到方程组的解为请你根据上述条件求原方程组的解.4.请你根据王老师所给的内容,完成下列各小题.(1) 若x =-5 ,2 ◎ 4 =-18 ,求y 的值;(2) 若1 ◎ 1 =8 ,4 ◎ 2 =20 ,求x ,y 的值.5. “ 六一” 儿童节有一投球入盆的游戏,深受同学们的喜爱,游戏规则如下:如图,在一大盆里放一小茶盅( 叫幸运区) 和小茶盅外大盆内( 环形区) 分别得不同的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图.(1) 每投中“ 幸运区” 和“ 环形区” 一次,分别得多少分?(2) 根据这种得分规则,小红能否得到一张奖券?请说明理由.6.数学方法:解方程组若设x +y =A ,x -y =B ,则原方程组可变形为解方程组得所以解方程组得我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法.(1) 请用这种方法解方程组(2) 已知关于x ,y 的二元一次方程组的解为那么关于m ,n 的二元一次方程组的解为________ ;(3) 已知关于x ,y 的二元一次方程组的解为则关于x ,y 的方程组的解为________ .答案与解析一、选择题。

七年级初一数学下学期第八章 二元一次方程组单元 易错题难题综合模拟测评检测试卷

七年级初一数学下学期第八章 二元一次方程组单元 易错题难题综合模拟测评检测试卷

七年级初一数学下学期第八章 二元一次方程组单元 易错题难题综合模拟测评检测试卷一、选择题1.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( )A .=202a b -⎧⎨=⎩B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩ 2.方程组5213310x y x y +=⎧⎨-=⎩的解是( ) A .31x y =⎧⎨=-⎩ B .13x y =-⎧⎨=⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩3.把方程23x y -=改写成用含x 的式子表示y 的形式( )A .23y x =-B .23y x =+C .1322x y =+D .132x y =+ 4.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了( ) A .16题 B .17题 C .18题 D .19题5.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x 平方千米,林地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A .1800250x y y x +=⎧⎪⎨-=⎪⎩B .1800250x y x y +=⎧⎪⎨-=⎪⎩C .1800250x y x y +=⎧⎪⎨=⋅⎪⎩ D .1800250x y y x +=⎧⎪⎨=⋅⎪⎩6.12312342345345145125x x x a x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>7.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ). A .2 B .3 C .4 D .58.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -=C .93t =D .91t = 9.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .201910.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A .1种B .2种C .3种D .4种二、填空题11.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.12.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.13.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.14.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________15.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.16.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.17.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 18.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.19.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A 款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).24.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数。

人教版七年级下册数学第八章《二元一次方程组》综合测试题(含答案)

人教版七年级下册数学第八章《二元一次方程组》综合测试题(含答案)

人教版七年级下册数学第八章《二元一次方程组》综合测试题一、单选题(共30分)1.下列方程组中,是二元一次方程组的是()A.26235x yy z+=⎧⎨-=⎩B.1221xyx y⎧+=⎪⎨⎪-=⎩C.425x yx y+=⎧⎨-=⎩D.43x yxy+=⎧⎨=⎩2.下列四对数中,是方程组214334104yx yyx-⎧=+⎪⎪⎨+⎪=-⎪⎩的解是()A.25xy=-⎧⎨=⎩B.25xy=-⎧⎨=-⎩C.25xy=⎧⎨=-⎩D.25xy=⎧⎨=⎩3.小亮解方程组2212x yx y+=⎧⎨-=⎩●的解为5xy=⎧⎨=∆⎩,由于不小心滴上了两滴墨水,刚好遮住了两个数●和△,则两个数●与△的值为()A.82=⎧⎨∆=⎩●B.82=-⎧⎨∆=-⎩●C.82=-⎧⎨∆=⎩●D.82=⎧⎨∆=-⎩●4.若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A.3B.-3C3D.3-5.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩6.把正确答案的序号填在题后括号内,21xy=⎧⎨=⎩是方程组324753x yy x-=⎧⎨=-⎩的().A.一对解B.两个解C.一个解D.以上说法都不对7.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩8.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k 的值为( ) A .﹣34B .34C .43D .﹣439.二元一次方程34x y +=有一组解互为相反数,则y 的值为( ) A .2B .1C .0D .-110.已知关于x ,y 的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:△51x y =⎧⎨=-⎩是方程组的解;△当a=−2时,x ,y 的值互为相反数;△当a=1时,方程组的解也是方程x+y=4−a 的解; 其中正确的个数是( ) A .0个B .1个C .2个D .3个二、填空题(共30分)11.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为_____.12.在二元一次方程1322x y -+=中,当x =4时,y =_______;当y =-1时,x =______.13.已知21x y =⎧⎨=⎩是关于x ,y 的二元一次方程组71ax by ax by +=⎧⎨-=⎩的一组解,则a +b=_____.14.已知式子2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当2x =时,其值为25;则当3x =时,其值为__________.15.某运输队只有大、小两种货车,已知1辆大车能运3吨货物,3辆小车能运1吨货物,100吨货物恰好由100辆车一次运完.设有x 辆大车,y 辆小车,根据题意可列方程组为________.16.把方程3x ﹣2y +4=0改写成用含x 的式子表示y 的形式:___.17.幻方,又称为九宫格,最早起源于中国,是一种中国传统游戏.如图1,它是在33⨯的9个格子中填入9个数,使得每行、每列及对角线上的3个数之和都相等.在如图2所示幻方中,只填了5个用字母表示的数,根据每行、每列及对角线上的3个数之和都相等,则右上角“x ”所表示的数应等于_______.18.定义运算“*”,规定2x y ax by*=+,其中,a b为常数,且125,216*=*=,则23*=___.19.古代《张丘建算经》中有一个问题,意思是:甲、乙两人各有钱若干,如果甲得到乙的10个钱,那么甲所有的钱就比乙所剩的多4倍;如果乙得到甲的10个钱,那么两人所有的钱相等,甲原有钱_______个,乙原有钱_________个.20.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.三、解答题(共60分)21.解方程组(1)233511x yx y+=⎧⎨-=⎩(2)1322(23)1x yy x+⎧=⎪⎨⎪--=-⎩22.已知关于x、y的方程组11225mx nymx ny⎧-=⎪⎨⎪+=⎩的解为23xy=⎧⎨=⎩,求m、n的值.23.已知方程组228x yax by+=-⎧⎨-=-⎩和方程组4312bx ayx y+=-⎧⎨-=⎩的解相同,求(2a+b)2021的值.24.阅读材料:善思考的小军在解方程组2534115x yx y①②+=⎧⎨+=⎩时,采用了一种“整体代入”的解法:解:将方程△变形:4x+10y+y=5,即2(2x+5y)+y=5△;把方程△代入△,得:2×3+y=5,所以y=-1;把y=-1代入△得,x=4,所以方程组的解为41 xy=⎧⎨=-⎩.请你模仿小军的“整体代入”法解方程组325 9419 x yx y-=⎧⎨-=⎩①②25.时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?26.小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数是多少?27.为了做好学校疫情防控工作,某中学开学前需备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包)若干.根据标价,已知购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.(1)求一只N95口罩和一包医用外科口罩的标价各是多少元?(2)市场上现有甲、乙两所医疗机构对该中学的采购给出如下的优惠方案:甲医疗机构:购买的口罩按标价结算,但每购买一只N95口罩赠送一包医用外科口罩;乙医疗机构:购买的口罩全部按标价打九折结算.若该中学准备购买1000只N95口罩和6000包医用外科口罩,考虑配送成本等其他因素,只能一次性从其中一家采购,问选择哪所医疗机构更省钱?28.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/千米0.3元/分0.8元/千米注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千米收0.8元.(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间.参考答案:1.C2.D3.D4.C5.C6.C7.D8.B9.A10.D11.1012.43-1013.5 14.5215.100131003x yx y+=⎧⎪⎨+=⎪⎩16.y=342x+ 17.318.10 19.4020 20.521.(1)21 xy=⎧⎨=-⎩(2)86 xy=⎧⎨=⎩22.m=1,n=1.23.1-24.32 xy=⎧⎨=⎩25.红土”百香果每千克25元,“黄金”百香果每千克30元26.21,32;27.(1)一只N95口罩20元,一包医用外科口罩4元;(2)选择乙医疗机构更省钱28.(1)这两辆滴滴快车的实际行车时间相差19分钟.(2)小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.。

人教版七年级数学下册 第8章《二元一次方程组》 单元综合测试卷(含答案)

人教版七年级数学下册   第8章《二元一次方程组》 单元综合测试卷(含答案)

人教版七年级数学下册第8章 二元一次方程组单元综合测试卷(时间90分钟,满分120分)一、选择题(共8小题,4*8=32)1.下列方程组不是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x =2y =3B .⎩⎪⎨⎪⎧x +y =1x -y =2 C .⎩⎪⎨⎪⎧x +y =5xy =1 D .⎩⎪⎨⎪⎧x =y x -2y =1 2.如果3x 2n -1y m 与-5x m y 3是同类项,那么m 和n 的取值分别是( )A .3和-2B .-3和2C .3和2D .-3和-23.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =2,y =1,,则|m -n|为( ) A .1 B .3 C .5 D .24.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y)在平面直角坐标系中的位置是(A ) A .第一象限 B .第二象限C .第三象限D .第四象限5.关于x ,y 的方程组⎩⎪⎨⎪⎧3x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =1,y =1,则|m -n|的值是( ) A .5 B .3 C .2 D .16. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .⎩⎪⎨⎪⎧4x +6y =38,3x +5y =48B .⎩⎪⎨⎪⎧4y +6x =48,3y +5x =38 C .⎩⎪⎨⎪⎧4x +6y =48,5x +3y =38 D .⎩⎪⎨⎪⎧4x +6y =48,3x +5y =387.如果方程组⎩⎪⎨⎪⎧3x +4y =2,2x -y =5的解也是方程3x -my =8的一个解,则m 的值是( ) A .-2 B .-1 C .1 D .28.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19元B .18元C .16元D .15元二.填空题(共8小题,4*6=24)9.若a -3b =2,3a -b =6,则b -a 的值为__ __.10. 关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =1,y =3,则|m +n |的值是________. 11.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y≥-32,则满足条件的m 的所有正整数值为___________.12.某营业员昨天卖出7件衬衫和4条裤子共670元,今天又卖出了9件衬衫和6条裤子共930元,则每件衬衫售价为__ __元,每条裤子售价为__ __元.13.为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球(各至少买1个),其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有________种.14.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x +3y =4,3x +2y =2m -3的解满足x +y =35,则m =__ __. 三.解答题(共7小题, 64分)15.(8分) 解方程组:(1)⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2;(2)⎩⎪⎨⎪⎧x +3y =5,y -2z =5,x +z =5.16.(8分)已知方程组⎩⎪⎨⎪⎧2x -y =7,ax +y =b 和⎩⎪⎨⎪⎧x +by =a ,3x +y =8有相同的解,求3a -2b 的值.17.(8分) 某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?18.(10分) 已知方程组⎩⎪⎨⎪⎧3x +2y =k ①,2x +3y =k +2②的解x ,y 的和是6,求k 的值.19.(10分) 解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =9,3x -cy =-2时,甲正确地解出⎩⎪⎨⎪⎧x =2,y =4;乙因为把c 抄错了,误解为⎩⎪⎨⎪⎧x =4,y =-1.求a ,b ,c 的值.20.(10分) 若关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =0,2x +ay =16有正整数解,求正整数a 的值.21.(10分) 某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.参考答案1.C2. C3.A4.D5.D6.D7. D8.B9. -2 10.3 11. 1,2,3. 12. 50,80 13. 3 14. 115. 解:(1)设x +y =a ,x -y =b ,则原方程组变为⎩⎪⎨⎪⎧a 2+b 3=6,①4a -5b =2.②由①,得3a +2b =36.③解由②③组成的方程组,得⎩⎪⎨⎪⎧a =8,b =6. 所以⎩⎪⎨⎪⎧x +y =8,x -y =6.解得⎩⎪⎨⎪⎧x =7,y =1.所以原方程组的解是⎩⎪⎨⎪⎧x =7,y =1. (2)⎩⎪⎨⎪⎧x +3y =5,①y -2z =5,②x +z =5.③①-③,得3y -z =0,即z =3y .④将④代入②,得y -6y =5,解得y =-1.将y =-1代入①,得x =8.将x =8代入③,得z =-3.所以这个方程组的解为⎩⎪⎨⎪⎧x =8,y =-1,z =-3.16. 解:由题意,知解得⎩⎪⎨⎪⎧x =3,y =-1, 则有⎩⎪⎨⎪⎧3-b =a ,3a -1=b , 解得⎩⎪⎨⎪⎧a =1,b =2, ∴3a -2b =3×1-2×2=-117. 解:设黑色文化衫x 件,白色文化衫y 件,依题意得⎩⎪⎨⎪⎧x +y =140,(25-10)x +(20-8)y =1860, 解得⎩⎪⎨⎪⎧x =60,y =80, 答:黑色文化衫60件,白色文化衫80件18. 解:①+②,得5x +5y =2k +2,即x +y =2k +25. 又因为x +y =6,所以2k +25=6, 解得k =1419.解:把⎩⎪⎨⎪⎧x =2,y =4代入方程组, 得⎩⎪⎨⎪⎧2a +4b =9,①6-4c =-2.② 由②,得c =2.把⎩⎪⎨⎪⎧x =4,y =-1代入ax +by =9, 得4a -b =9.③联立①③,得⎩⎪⎨⎪⎧2a +4b =9,4a -b =9, 解得⎩⎪⎨⎪⎧a =2.5,b =1. 即a =2.5,b =1,c =2.20. 解:⎩⎪⎨⎪⎧x -2y =0①,2x +ay =16②, ②-①×2得ay +4y =16,∴y =16a +4, ∵关于x ,y 的方程组有正整数解,∴y =16a +4是正整数, ∴a +4=1,2,4,8,16.解得a =-3,-2,0,4,12,∴正整数a 的值为4,1221. 解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意得⎩⎪⎨⎪⎧(x +2y )×2=560,(x +y )×4=800,解得⎩⎪⎨⎪⎧x =120,y =80. ∴一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生.(2)由题意得共有学生45×10×4=1 800(名).1 800名学生通过的时间为:1 800÷[(120+80)×0.8×2]=458(min ). ∵5<458,∴该教学楼建造的这4个门不符合安全规定.。

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组综合练习(含答案)一、单选题(共有8道小题) 1.若方程6mx ny += 的两个解是12,11x x y y ==⎧⎧⎨⎨==-⎩⎩,则m,n 的值为( )A.4,2B.2,4C.-4,-2D.-2,-42.方程529x y +=-与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )A.21x y +=B.328x y +=-C.543x y +=-D.348x y -=-3.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A.3412x y x y +=⎧⎨+=⎩B.3421x y x y +=⎧⎨=+⎩C.3421x y x y +=⎧⎨=+⎩D.23421x y x y +=⎧⎨=+⎩4.若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-45.已知()230x y -+=,则x y +的值为()A .0B .-1C .1D .5 6.若0125=+-+++b a b a ,则()2015b a -= ( )A .1-B .1C .20155D .20155-7.如果将满足方程的一对x ,y 值叫做方程的一组解,那么34x y +=的解的组数是( ).A .1组B .2组C .无数组D .没有解8.为推进课改,王老师把班级里40名学生分成若干小组,没小组只能是5人或6人,则有( )种分组方案A.4B.3C.2D.19.已知x ,y 满足方程组2523x y x y -=⎧⎨+=-⎩,则224x y -的值为 .10.方程组02x y x y +=⎧⎨-=⎩的解为_____.11.二元一次方程组7413563x y x y -=⎧⎨-=⎩的解________x y =⎧⎨=⎩.12.今年“五一”节,A 、B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组 . 13.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则3m n +的立方根为 。

新人教版初中数学七年级下册第8章《二元一次方程组》单元检测试题(含答案)(1)

新人教版初中数学七年级下册第8章《二元一次方程组》单元检测试题(含答案)(1)

人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷含答案一、选择题(本大题共10小题,,共30分) 1.已知方程()()026281||2=++--+m n y n x m 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.32.用代入法解方程组⎩⎪⎨⎪⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=13.下列方程组,解为⎩⎨⎧-=-=21y x 是( ).A .⎩⎨⎧=+=-531y x y xB .⎩⎨⎧-=+=-531y x y x C .⎩⎨⎧=-=-133y x y x D .⎩⎨⎧=+-=-533y x y x4.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则x ,y 的关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=9 5.根据图中提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元 6.已知21x y =⎧⎨=⎩是方程组51ax by bx ay +=⎧⎨+=⎩的解,则a b -的值是( ) A. -1 B. 2 C. 3 D. 47.在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。

A.23 B.-13 C.-5 D.13 8.方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A.01043=--x xB.8543=+-x xC.8)25(23=--x xD.81043=+-x x9.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定10.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x 米/秒,乙的速度为y 米/秒,可列方程组正确的是( ) A .5510442x y x y y =+⎧⎨=+⎩ B .5510424x y x y y -=⎧⎨-=⎩ C .5+105442x y x y =⎧⎨-=⎩ D .5510424x y x y-=⎧⎨-=⎩二、填空题(本大题共6小题,每小题4分,共24分) 11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.12.方程中,用含x 的式子表示y,则y=13.若2x 5a y b+4与-x 1-2by 2a 是同类项,则a+b=________.14.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+by -b=7的一个解,则代数式2x -4y+1•的值是_________.15.在△ABC 中,∠B -∠A =45°,∠A +∠B =135°.则∠C =____16.今年甲和乙的年龄和为24,6年后甲的年龄就是乙的年龄的2倍,则甲今年的年龄是 _________岁.三、解答题(本大题共6小题,,共66分) 17.解方程组(每题5分,共20分) (1)⎩⎨⎧=-=-22534y x y x(2)⎩⎨⎧-=+=-6321053y x y x人教版数学七下第八章 二元一次方程组 培优提升卷一.选择题(共10小题)1.下列各式中是二元一次方程的是( ) A .3x 2-2y=9B .2x+y=6C .1x +2=3yD .x-3=4y 22.下列各组数中,是方程2x+y=7的解的是( )A . ⎩⎨⎧x =-2y =3B .= =C . = =D . = =3.在方程组 = = 中,代入消元可得( )A .3y-1-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=74.已知 = =是方程kx+2y=-2的解,则k 的值为( )74=-y xA .-3B .3C .5D .-55.已知 = = ,如果x 与y 互为相反数,那么( )A .k=0B .k =- 34C .k =- 32D .k =346.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需( ) A .105元B .95元C .85 元D .88元7.小亮解方程组 =● = 的解为 = = ,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ) A .4和6B .6和4C .2和8D .8和-28.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔15元/支,在钱全部用完的条件下,购买的方案共有( ) A .4种B .5种C .6种D .7种9.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为( ) A . = =B .= =C . = =D .==10.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则列方程组为( )A .B .C .D .二.填空题(共5小题)11.已知方程(a-3)x |a-2|+3y=1是关于x 、y 的二元一次方程,则a= 12.关于x ,y 的二元一次方程x+2y=6的解是正整数,则x+y 的值为 . 13.已知方程组= = 和 = =的解相同,则2m-n= .14.数学学霸甲、乙两人在一次解方程组比赛中,甲求关于x 、y 的方程组 = = 的正确解与乙求关于x 、y 的方程组 = = 的正确的解相同,则a 2018+⎝⎛⎭⎫- 110b 2018的值为 .15.某商家今年3月份两次同时购进了甲、乙两种不同单价的糖果,第一次购买甲种糖果的数量比乙种糖果的数量多50%,第二次购买甲种糖果的数量比第一次购买甲种糖果的数量少60%,结果第二次购买糖果的总数量虽然比第一次购买糖果的总数量多20%,但第二次购买甲乙糖果的总费用却比第一次购买甲乙糖果的总费用费少10%.(甲,乙两种糖果的单价不变),则乙种糖果的单价是甲种糖果单价的 %.三.解答题(共8小题) 16.(1) = =(2)==(3)==(4)===17.已知==是二元一次方程2x+y=a的一个解.(1)a= ;(2)完成下表18.一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,求这个三位数.19.某文具店一种练习本和一种水性笔的单价合计为3元,小红在该店买了20本练习本和10支水性笔,共花了36元,求练习本和水性笔的单价各为多少元?20.李宁准备完成题目;解二元一次方程组==,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组==;(2)张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?21.古籍《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房都住9人,那么就空出一间房.则该店有客房几间,房客几人?请解答上述问题.22.随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?23.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?答案:1.B2.C3.D4.B5.C6.C7.D8.C9.B10.A11.112.4或513.514.215.5016.解:(1)=①=②,②-①,得5y=5,解得,y=1,把y=1代入①,得x-2=1,解得,x=3,∴==;(2)=①=②,把①代入②,得4x+3(2x+5)=5,解得,x=-1,把x=-1代入①,得y=-2+5=3, ∴ = =;(3)= ①= ②,化简①,得4x-3y=2③, ②×2,得4x+2y=52④, ④-③,得5y=50, 解得,y=10,把y=10代入②,得2x+10=26, 解得,x=8, ∴ = =;(4) = ①= ② = ③,③×3+②,得6a+7b=16④, ①×7+④,得,20a=100, 解得,a=5,把a=5代入①,得10-b=12, 解得,b=-2,把a=5,b=-2代入③,得5-4-3c=0, 解得,c=13, ∴ == = .17.解:(1)将 = =代入2x+y=a ,得:a=4, 故答案为:4;(2)完成表格如下:18.解:这个三位数个位上的数字为x ,十位上的数字为y ,百位上的数字为z . ⎩⎪⎨⎪⎧x +z =y ①7z =x +y +2x +y +z =14③② 把①代入③得y=7,把y=7代入①得x+z=7④,代入②得7z=x+9⑤④+⑤得z=2,∴x=5,∴这个三位数为2×100+7×10+5=275.答:这个三位数是275.19.解:设练习本单价为x 元人教版七年级下册数学第八章二元一次方程组复习测试题一、选择题1.下列方程中,是二元一次方程的是( )A. 43xy -=1 B. x +y =6 C. 3x +1=2xy D.2.方程■x -2y =x +5是二元一次方程,■是被弄污的x 的系数,请你推断■的值属于下列情况中的( )A. 不可能是-1B. 不可能是-2C. 不可能是1D. 不可能是23.若5x3m-2n-2y n-m+11=0是二元一次方程,则()A. m=1,n=2B. m=2,n=1C. m=-1,n=2D. m=3,n=44.关于x,y的方程组的解互为相反数,则k的值是()A. 8B. 9C. 10D. 115.若方程组的解x与y的和为3,则a的值为()A. 7B. 4C. 0D. -46.已知方程组的解是()A. B. C. D.7.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A. 1B. 2C. 3D. 48.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A. 9天B. 11天C. 13天D. 22天9.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐99个,扁担66根,求抬土、挑土的学生各有多少人?如果设抬土的同学x人,挑土的同学y人,则可得方程组()A. B.C. D.10.下列运用等式性质正确的是()A. 如果a=b,那么a+c=b-cB. 如果a=b,那么a b c c=C. 如果a bc c=,那么a=b D. 如果a=3,那么a2=3a211.已知方程组中x,y的互为相反数,则m的值为()A. 2B. -2C. 0D. 4二、填空题1.有下列等式:①由a=b,得5-2a=5-2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是______.3.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.从小华家到学校的下坡路长______ 米.4.二元一次方程4x+y=11的所有自然数解是______ .5.若方程组的解是正数,且x不大于y,则a的取值范围是______ .6.已知,则x与y的关系式为______ .三、计算题1..2.解方程组:.3.已知关于x,y的二元一次方程组的解适合方程x+y=6,求n的值.4.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.5.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.6.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W 元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?一、选择题。

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)

新初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案)

人教版七年级下册 第八章二元一次方程组单元试题一、选择题一、选择题((共10小题,每小题3分,共30分) 1.二元一次方程组îíì x +y =7,3x -y =5的解是的解是( ( ( )A.îíìx =4,y =3B .îíì x =5,y =2C .îíìx =3,y =4D .îíìx =-=-22,y =92.已知方程组îíì2x +y =4,x +2y =5,则x +y 的值为的值为( ( ( )A .-.-1 1 1B B .0C .2 2D D .3 3.下列各方程中,是二元一次方程的是.下列各方程中,是二元一次方程的是( ( ( ) A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 1D .x +y =14.已知x 2m m-1+3y 4-2n n=-=-77是关于x ,y 的二元一次方程,则m ,n 的值是的值是( ( ( )A.îíìm =2,n =1B .îíì m =1,n =-32 C .îíì m =1,n =52D .îíìm =1,n =325.方程kx +3y =5有一组解是îíìx =2,y =1,则k 的值是的值是( ( ( )A .1B .-.-1C 1 C .0 0D D.2 6.二元一次方程x +2y =10的所有正整数解有的所有正整数解有( ( ( ) A .1个 B .2个 C .3个 D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,道题,答错了答错了y 道题道题((不答视为答错不答视为答错)),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是道,那么下面列出的方程组中正确的是( ( ( )A.îíìx +y =6060,,x -7y =4 B .îíì x +y =6060,,y -7x =4C .îíìx =6060--y ,x =7y -4D .îíìy =6060--x ,y =7x -48.关于x ,y 的方程组îíìx +py =0,x +y =3的解是îíìx =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是的值是( ( ( )A .-.-112 B.12 C .-.-114 D .149.若.若||x +y -5|5|与与(x -y -1)2互为相反数,则x 2-y 2的值为的值为( ( ( ) A .-.-5 5 5 B B .5 C .13 13D .15 1010..《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为钱,可列方程组为( ( ( )A.îíì 8x -3=y ,7x +4=yB .îíì 8x +3=y ,7x -4=yC .îíìy -8x =3,y -7x =4D .îíì8x -y =3,7x -y =4二、填空题二、填空题((共5小题,每小题4分,共20分) 1111.方程组.方程组îíìx +y =1,3x -y =3的解是的解是. 1212..“六一”前夕,“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,市关工委准备为希望小学购进图书和文具若干套,已知已知1套文具和3套图书需104元,元,33套文具和2套图书需116元,则1套文具和1套图书需套图书需 元.元.13.已知关于x ,y 的二元一次方程组îíì2x +y =k ,x +2y =-1的解互为相反的解互为相反 人教版七年级下第八章 二元一次方程组 单元测试题(含答案)一、选择题(每题4分,共32分)分)1. 下列方程中,是二元一次方程的是(下列方程中,是二元一次方程的是() A . x xy 212=+ B . 222=-y x C . 31=+yxD . y y x =+23 2. 以îíì-==11y x 为解的二元一次方程组是(为解的二元一次方程组是( ) A .îíì=-=+10y x y x B .îíì-=-=+10y x y x C .îíì=-=+20y x y x D .îíì-=-=+20y x y x 3.程1523=+y x 在自然数范围内的解共有(在自然数范围内的解共有() A .1对 B .2对 C .3对 D .无数对.无数对4.已知单项式b a n m +3与单项式n m b a -32是同类项,那么m 、n 的值分别是(的值分别是( ) A .îíì-==12n m B .îíì-=-=12n m C .îíì==12n m D .îíì=-=12n m5.5.关于关于x 、y 的二元一次方程îíì=-=+ky x k y x 95的解也是二元一次方程632=+y x 的解,则k 的值是(的值是() A .43- B .43 C .34 D .34- 6.6.若二元一次方程若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值范围为( )A .3B .—.—3C 3 C .—.—4D 4 D .4 7.若îíì==21y x 与îíì==32y x 都是3=-ay bx 的解,则下列各组数值中也是3=-ay bx 的解的是(的是() A .îíì-==43y x B .îíì==34y x C .îíì-=-=43y x D .îíì==43y x8.为了研究吸烟是否对肺癌有影响,为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是(,根据题意,下面列出的方程组正确的是() A .îíì=´+´=-10000%5.0%5.222y x y xB .îïíì=+=-10000%5.0%5.222y x y x C .îíì=´-´=+22%5.0%5.210000y x y xD .ïîïíì=-=+22%5.0%5.210000yx y x 二、填空题(每题4分,共32分)分)9. 在方程5413=-y x 中,用含x 的代数式表示为:y = ,当3=x 时,y = .10.10.已知方程组已知方程组îíì=+=-②①.123,432y x y x 用加减法消去x 的方法是的方法是,用加减法消去y 的方法是法是. 11.11.以方程组以方程组îíì=-=+2233y x y x 的解为坐标的点(x ,y )在平面直角坐标系中的第)在平面直角坐标系中的第象限.12.已知îíì==12y x 是二元一次方程组îíì=-=+18my nx ny mx 的解,则n m -2的算术平方根是的算术平方根是 . 13. 若方程组îíì=-+=-3)1(334y k kx y x 的解x 和y 的值相等,则k = . 14.已知方程组îíì=+=-241121254y x y x ,则2)(y x +的值为的值为. 15.15.“今有共买犬,人出五,不足九十;人出五十,适足.问人数、犬价各几何?”题目大意是:现在大家共一条狗,若每人出五元,还差九十元;若每人出五十元,刚好够.可知一共有知一共有 人,狗价为人,狗价为 元.元. 16.甲、乙两人去商店买东西,他们所带的钱数之比为7:6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3:2,则甲余下的钱数为,则甲余下的钱数为 元,乙余下的钱数为元,乙余下的钱数为元. 三、解答题(共56分)分) 17.17.(每题(每题5分,共10分)解下列方程组:分)解下列方程组:(1)îíì=+=+64302y x y x ;(2)îíì=+=-3241123b a b a .18.18.((8分)在b y ax =+2中,已知x 当1-=x 时,2=y ;当2=x 时,21=y .求代数式))((22b ab a b a +-+的值的值. .19(9分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm .设演员的高度为x cm ,高跷的长度为y cm ,求x ,y 的值.的值.xcmcm28ycmcm224第19题图题图20.(9分)已知方程组îíì-=--=+4652by ax y x 与方程组îíì-=+=-81653ay bx y x 的解相同,求2015)2(b a +的值的值. .21.21.((10分)已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)小题)1.下列方程是二元一次方程的是(.下列方程是二元一次方程的是( ) A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=5 2.以方程组.以方程组 îíìx +y =102x +y =6的解为坐标的点(x,y)在(在() A .第一象限.第一象限 B .第二象限.第二象限 C .第三象限.第三象限 D .第四象限.第四象限3.在方程组.在方程组== 中,代入消元可得(中,代入消元可得( ) A .3y-1-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=7 4.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为(的值为( ) A .-1B .1C .1或-1D .0 5.若关于x ,y 的二元一次方程组的二元一次方程组= = 的解为的解为= = ,则a+4b 的值为(的值为( ) A .17B .197C .1D .3 6.如果方程x-y=3与下面的方程组成的方程组的解为与下面的方程组成的方程组的解为== ,那么这一个方程可以是( )A .2(x-y)=6yB .3x-4y=16C .14x+2y =5D .12x+3y =87.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,应分配多少人生产螺栓,多少人生产螺母,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为(人生产螺母,则所列方程组为( )A .= =B .= =C .= = D .==8.关于x ,y 的方程组的方程组= = 的解是的解是== ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是(的值是( ) A .- 12B .12C .- 14D .14 9.A 、B 两地相距900km,一列快车以200km/h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路返回A 地,一列慢车以75km/h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km 的次数是(的次数是( ) A .5B .4C .3D .2 10.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数(动动脑子想一想,图中的?表示什么数( ) A .25B .15C .12D .14二.填空题(共5小题)小题)11.把方程5x+y=3改写为用含x 的式子表示y 的形式是的形式是. 12.已知已知= 是方程ax+by=3的一组解(a ≠0,b ≠0),任写出一组符合题意的a 、b 值,则a= ,b= .13.已知方程组.已知方程组= = 和== 的解相同,则2m-n= . 14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了个文件袋共花了 元.元.15.甲乙二人分别从相距20km 的A ,B 两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是 .三.解答题(共10小题)小题) 16.解下列方程(组).解下列方程(组) (1) = =(2)==(3) == =17.已知.已知== , = = 都是关于x ,y 的二元一次方程y=x+b 的解,且m-n=b 2+2b-4,求b 的值.的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为的整数解,甲求出一组解为== ,而乙把ax-by=7中的7错看成1,求得一组解为,求得一组解为== ,试求a 、b 的值.的值.19.阅读下列解方程组的部分过程,回答下列问题.阅读下列解方程组的部分过程,回答下列问题解方程组解方程组 =,① = ,②现有两位同学的解法如下:现有两位同学的解法如下: 解法一;由①,得x=2y+5,③ 把③代入②,得3(2y+5)-2y=3.…….…… 解法二:①-②,得-2x=2.…….……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.以上两种方法的共同点是. (2)请你任选一种解法,把完整的解题过程写出来)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h .如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,(每个足球的价格相同,(每个足球的价格相同,每个篮每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组【方法体验】已知方程组= ①= ②求4037x+y 的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:这种快捷思路,写出具体解题过程: 【方法迁移】根据上面的体验,填空:【方法迁移】根据上面的体验,填空: 已知方程组已知方程组==则3x+y-z=. 【探究升级】已知方程组【探究升级】已知方程组 = =求-2x+y+4z 的值.小明凑出的值.小明凑出 "-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m ﹒(x+2y+3z)+n ﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组对照方程两边各项的系数可列出方程组===,它的解就是你凑的数!根据丁老师的提示,填空:根据丁老师的提示,填空: 2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k 为时,8a+3b-2c 为定值,此定值是.(直接写出结果)接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”文,问甲,乙二人原来各有多少钱?”24.【阅读材料】.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,普通成人持储值卡乘坐地铁出行,每个自然每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.元.【解决问题】【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?坐地铁的消费金额各是多少元?答案:答案:1.B2.B3.D4.A5.D6.A7.B 8.A9.B10.B11. y=-5x+312.1,113.514.50 15. 16.解:(1)= ① = ② ,①+②×5,得:13x=26,x=2, 将x=2代入②,得:4-y=3,y=1, 所以方程组的解为所以方程组的解为 == ;(2)将方程组整理成一般式为)将方程组整理成一般式为= ① = ② , ①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12, 所以方程组的解为(3)= ① = ②= ③, ①+②,得:3x+4y=24 ④,④, ③+②,得:6x-3y=。

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厦门市滨水学校2014-2015学年七年级下数学综合模拟卷(二元一次方程组)
班级 座号 姓名
一、选择题(本题30分,每题5分)
1.下列各式,属于二元一次方程的个数有( )
①xy+2x -y=7; ②4x+1=x -y ; ③
1x +y=5; ④x+y+z=1 A 、1 B 、2 C 、3 D 、4
2.二元一次方程组31x y x y +=⎧⎨-=⎩
的解是( ) A .x 0y 2=⎧⎨=⎩ B .x 1y 1=⎧⎨=⎩ C .x 1y 1=-⎧⎨=-⎩ D .x 2y 1=⎧⎨=⎩
3. 已知:21x y -=,用含x 的代数式表示y 为( )
A .12y x =-
B .21y x =-
C .2(1)x y =-
D .1(1)2
x y =+ 4.已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )
A. ⎩⎨⎧+==+2310x y y x
B. ⎩⎨⎧-==+2310x y y x
C. ⎩⎨⎧+==+2310y x y x
D. ⎩⎨⎧-==+2310y x y x
5.以方程组⎩⎨⎧-=--=1
2x y x y 的解为坐标的点(x ,y )在平面直角坐标系中的位置是( )
A. 第一象限;
B. 第二象限;
C. 第三象限;
D. 第四象限;
6.已知关于x 、y 的方程组⎩⎨
⎧-=+-=k y x k y x 2363 ,其中0≠k ,则x :y 的值是( ) A .31 B .31- C .32 D .2
3 二、填空题(本题20分,每题5分)
7.写出一个以12
x y =⎧⎨=⎩为解的二元一次方程 . 8.若25
x y =⎧⎨=⎩是方程22kx y -=的一个解,则k 等于 .
9.如果4(1)6x y x m y +=⎧⎨--=⎩
中的解x 、y 相同,则m 的值是 . 10.一只船在A 、B 两码头间航行,从A 到B 顺流航行需2小时,从B 到A 逆流航行需3小时,那么一只救生圈从A 顺流漂到B 需要 小时.
三、计算题(本题16分,每题8分)
11.⎩⎨⎧-=+-=1232y x y x 12.()()⎪⎩⎪⎨⎧=-++=--+16
2443y x y x y x y x
四、简答题(本题75分,13.14.每题11分,第15题12分)
13.若方程6=+ny mx 的两个解是⎩⎨
⎧==11y x ,⎩⎨⎧-==12y x ,求n m -的值.
14.已知q px x y ++=2,当1=x 时,y 的值为2;当2-=x 时,y 的值为2.求当3-=x 时,y 的值.
15.暑假期间,小明到父亲经营的小超市参加社会实践活动. 一天小明随父亲从银行换回来58张人民币,共计200元的零钞用于顾客付款时找零. 小明清理了一下,说:“其中面值为1元的有20张,面值为10元的有8张,剩下的均为2元和5元的钞票”.小明的说法是否有误?若有误,请说明理由.。

相关文档
最新文档