现代精密测量技术现状及发展

合集下载

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展精密测量技术是一种广泛应用于各种工业和科学领域的技术,它主要用于实现对各种物理量的高精度测量,包括长度、角度、电流、压力、温度等。

随着科技的不断发展和进步,精密测量技术也在不断创新和突破,为各种领域的科研和生产提供了更准确、更可靠的测量手段。

本文将对精密测量技术的现状和发展进行浅谈。

一、精密测量技术的现状1. 高精度、高稳定性随着现代工业的发展,对于产品的精度和稳定性要求越来越高,而精密测量技术正是能够满足这种需求的技术之一。

现在的高精度测量设备,能够实现纳米级甚至亚纳米级的测量精度,可以满足微电子、微机械和其他高精度行业的要求。

这些设备的稳定性也得到了显著提高,可以长时间稳定地工作,满足生产线上的连续测量需求。

2. 宽泛的应用领域精密测量技术的应用领域非常广泛,涉及到机械制造、航空航天、汽车制造、电子电器、医疗器械、生物医药、环境监测等诸多领域。

与此随着科技的发展,精密测量技术也逐渐应用于新兴领域,如人工智能、无人机、智能制造等,为这些领域的发展提供了强有力的支撑。

3. 多元化的测量方法随着科技的发展,精密测量技术的方法也变得越来越多元化。

除了传统的机械测量、光学测量、精密电子测量等方法外,现在还出现了一些新的测量方法,如激光干涉测量、超声波测量、微纳米加工测量等,为不同领域的测量需求提供了更多的选择。

4. 发展的趋势1. 新材料的应用新材料的应用是精密测量技术发展的重要推动力。

随着新材料的不断涌现和应用,对于材料的精密测量需求也日益增加。

精密测量技术将会不断与新材料相结合,研发出更加适用于新材料测量的方法和设备,以更好地满足市场需求。

2. 智能化与自动化智能化与自动化是精密测量技术发展的重要趋势。

随着人工智能、互联网、大数据等新技术的不断应用,智能化和自动化将成为未来精密测量技术发展的重要方向。

智能测量系统将更加智能化、自动化,能够实现自主识别、自主判断和自主纠正,大大提高了测量效率和可靠性。

浅谈我国工程测量技术的发展及未来展望

浅谈我国工程测量技术的发展及未来展望

浅谈我国工程测量技术的发展及未来展望湖北国土资源职业学院毕业论文学生姓名:孟德财学号:31209620和不属于法定测量的应用测量都属于工程测量”。

随着传统测绘技术向数字化测绘技术转化,我国工程测量的发展可以概括为“四化”和“十六字”,所谓“四化”是:工程测量内外业作业的一体化,数据获取及其处理的自动化,测量过程控制和系统行为的智能化,测量成果和产品的数字化。

“十六字”是:连续、动态、遥测、实时、精确、可靠、快速、简便。

二、工程测量在理论方法方面的发展工程测量是测绘科学与技术在国民经济和国防建设中的直接济和国防建设中的直接应用,是综合性的应用测绘科学与技术,要求计算理论严密,测量方法严密。

1工程测量的分类及其含义工程测量的分类及其含义(1)按照工程建设的进行程序分类按照工程建设的进行程序分类按工程建设的进行程序,工程测量可分为规划设计阶段的测量,施工兴建阶段的测量和竣工后的运营管理阶段的测量。

规划设计阶段的测量主要是提供地形资料。

取得地形资料的方法是,在所建立的控制测量的基础上进行地面测图或航空摄影测量。

施工兴建阶段的测量的主要任务是,按照设计要求在实地准确地标定建筑物各部分的平面位置和高程,作为施工与安装的依据。

一般也要求先建立施工控制网,然后根据工程的要求进行各种测量工作。

(2)按照工程测量所服务的工程种类分类按工程测量所服务的工程种类,也可分为建筑工程测量、线路测量、桥梁与隧道测量、矿山测量、城市测量和水利工程测量等。

此外,还将用于大型设备的高精度定位和变形观测称为高精度工程测量;将摄影测量技术应用于工程建设称为工程摄影测量;而将以电子全站仪或地面摄影仪为传感器在电子计算机支持下的测量系统称为三维工业测量。

无论是工程进程各阶段的测量工作,还是不同工程的测量工作,都需要根据误差分析和测量平差理论选择适当的测量手段,并对测量成果进行处理和分析,也就是说,测量数据处理工程测量的重要内容。

2 工程测量中常用的几种方法(1)测量平差理论最小二乘法广泛应用于测量平差。

现代测量的特点及应用

现代测量的特点及应用

现代测量的特点及应用现代测量的特点及应用测量是人类社会中一个非常重要的活动,它可以帮助人们了解和掌握事物的性质和数量。

随着科技的发展,测量技术也在不断改进和创新,出现了许多现代测量的特点和应用。

现代测量的特点主要包括精确性、快速性、自动化、智能化和多功能性。

首先,现代测量技术的一个重要特点是精确性。

传统测量方法可能存在误差和不确定性,而现代测量技术通过引入先进的传感器技术、自动校准系统和数据分析算法等手段,能够实现更高的测量精度。

这使得现代测量在高精度领域具有广泛的应用,例如精密制造、航天航空和科学研究等。

其次,现代测量技术具有快速性的特点。

传统测量方法可能需要消耗大量的时间和人力,而现代测量技术可以实现快速测量并且可以在实时监测和控制中应用。

例如,在工业生产过程中,快速测量技术可以帮助工人及时获取产品质量数据,从而及时调整和优化生产过程。

第三,现代测量技术越来越多地实现了自动化。

随着传感器、电子设备和计算机技术的发展,测量仪器和设备可以实现自动控制和数据处理。

这不仅提高了测量效率,还减少了人为误差的可能性。

例如,在生产流水线中,自动化测量系统可以实时监测产品尺寸和质量,并自动判断产品是否合格。

第四,现代测量技术越来越智能化。

智能化测量技术可以实现自动识别、自适应和自主决策的功能。

传感器和控制系统可以根据环境和任务的需求进行调整和优化。

例如,在无人机领域,智能化测量技术可以帮助无人机实现自主导航和障碍物避让。

最后,现代测量技术越来越多地具有多功能性。

传统测量仪器往往只能用于单一的测量任务,而现代测量仪器可以集成多种测量功能。

例如,多功能测量仪能够同时进行温度、湿度、压力等多个参数的测量,从而提高了测量效率和精度。

现代测量技术的应用非常广泛,几乎涉及到各个领域。

在制造业中,现代测量技术可以用于产品的精度检测、质量控制和工艺参数的监测。

在土木工程领域,现代测量技术可以用于地形测量、建筑物变形的监测和施工过程的控制。

精密工程测量及其应用分析

精密工程测量及其应用分析

精密工程测量及其应用分析[摘要]:精密工程测量的最突出特点即对测量的可靠性要求非常的高,尤其表现为测量标志比较稳定,同时测量过程中的检测监控、测量方法以及测量设备鉴定和数据处理等都有严格的要求和规定,一定要确保测量监督的落实力度,选择科学合理的测量方案。

本文将对精密工程测量定义、特点以及现代精密测量等问题进行分析,并在此基础上就精密工程测量的未来发展谈一下自己的观点,以供参考。

[关键词]:精密工程测量特点应用发展1、精密工程测量的定义和特点所谓精密工程测量,实际上就是指以毫米级等精度为基准,对工程进行高精度测量,对于测量方案、测量实施以及测量结果的处理及应用等各个阶段,均应当采用误差理论予以分析研究。

通常情况下,精密工程测量主要应用于一些大型的重要科学试验以及复杂工程的测量,比如高能加速器装置安装、导弹发射轨道以及精密机件运行过程中的传送带布设等等,这些精密度要求很高的领域,通常都会实施精密工程测量操作。

在精密工程测量过程中,除专用的工具、设备外,还会用到计量、电子计算机、激光、电子测量以及摄影测量和相关的自动化技术。

对于精密工程测量技术而言,其主要有测量角度、精密地直线定线、测量距离以及测量高差与精密测量标志的设置等内容。

从工程测量学的要求可知,工程测量过程中主要有普通和精密工程测量两种,在未来测量实践中,精密工程测量发展趋势依然为主导。

对于精度而言,通常有绝对精度、相对精度两种,精度范围非常的广泛。

同时,相对精度也包括两种,一种是测量比值和精度,其中比值越大,则说明其精度越低;另一种则是与基准存在着密切关系的精度,其主要是相对基准点而言的,实践中一定要在同种基准点条件下进行测量。

绝对精度有包括两种形式:第一种是观测量精度,其精度应用范围非常的广泛,因此本文所阐释的精度即为该种精度。

实践中我们可以看到,在精密工程测量过程中中其准确值通常被忽略,通常情况下用“最”字代之。

然而,运用该绝对精度实施测量操作,存在着明显的不足之处,这主要是因为绝对精度和工程观测大小之间存在着非常紧密的关联性,比如长度观测量等。

精密和超精密加工技术现状和发展趋势

精密和超精密加工技术现状和发展趋势

精密和超精密加工技术现状和发展趋势1.引言国际上在超精密加工技术方面处于领先地位的国家有美国、德国和日本发达国家中,美国、日本、德国等在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。

由于加工技术水平的发展,精密和超精密加工划分的界限逐渐向前推移,但在具体数值上没有确切的定义。

被加工零件的尺寸精度在 1.0~0.1μm,表面粗糙度Ra在0.1~0.03μm之间的加工方法称为精密加工。

超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刃磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。

2.发展现状美国是开展研究最早的国家,也是迄今处于世界领先地位的国家。

早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件。

20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”,对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。

如美国劳伦斯利弗莫尔国家实验室已经研制出一台大型光学金刚石车床(Large Op tics Diam ond Turn ing Machine, LODTM ), 是一台最大加工直径为1.63m的立式车床,定位精度可达28nm,借助在线误差补偿能力,它已实现了距离超过1m而直线度误差只有±25nm 的加工。

在美国能源部支持下,LLI实验室和Y-12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM—3型)。

精密测量中的思政元素培养学生的创新精神

精密测量中的思政元素培养学生的创新精神

培养学生的职业道德和社 会责任感
思政元素在精密测量中的融入 ,可以引导学生树立正确的职 业道德观念,明确自己的社会 责任和义务,为未来的职业发 展和社会进步打下坚实的基础 。02精密测量技术源自述精密测量技术的定义与分类
定义
精密测量技术是指利用先进的测量原 理、方法、设备和系统,对物理量进 行高准确度、高稳定性的测量,以获 取被测对象精确信息的技术。
具有重要意义。
随着科技的不断发展,精密测量 技术不断更新换代,对于测量人 才的培养也提出了更高的要求。
思政元素在精密测量中的融入, 有助于培养学生的创新精神和实 践能力,提高学生的综合素质和
竞争力。
思政元素在精密测量中的重要性
培养学生的爱国情怀和责 任感
通过介绍精密测量在国家发展 中的重要地位和作用,激发学 生的爱国情感和责任感,鼓励 学生为国家的科技进步和现代 化建设贡献力量。
现代测量技术
20世纪以来,随着电子技术、计算机技术、激光技术等的 发展,现代精密测量技术取得了长足进步,出现了电子显 微镜、激光干涉仪等高精度测量设备。
03
思政元素在精密测量中的 体现
爱国情怀与责任担当
弘扬爱国主义精神
精密测量作为一项高科技事业,要求从业者具备强烈的爱国 情怀,将个人发展与国家需求紧密结合,积极投身国家建设 。
培养学生的创新精神和实 践能力
思政元素在精密测量中的融入 ,可以引导学生关注科技发展 前沿,鼓励学生勇于探索、敢 于创新,提高学生的实践能力 和解决问题的能力。
培养学生的团队协作和奉 献精神
精密测量往往需要多人协作完 成,思政元素的融入可以帮助 学生树立正确的团队协作观念 ,培养学生的奉献精神和合作 意识。
教学效果

现代精密测量技术发展现状综述

现代精密测量技术发展现状综述

现代精密测量技术发展现状综述摘要:现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。

在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。

关键词:现代精密测量,现状,发展趋势。

引言:在科学技术高度发展的今天,现代精密测量技术对一个国家的发展起着十分重要的作用。

如果没有先进的测量技术与测量手段,就很难设计和制造出综合性能和单相性能均优良的产品,更谈不发展现代高新尖端技术,因此世界各个工业发达国家都很重视和发展现代精密测量技术。

1.国内外形势:三坐标测量机:三坐标测量机即三次元,它是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三坐标量床。

三坐标测量仪可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统(如光学尺)经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能测量的仪器”。

三坐标测量仪的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。

三坐标测量机在机械、电子、仪表、塑胶等行业广泛使用。

三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟,这是其它仪器而达不到的效果。

组成结构:1、主机机械系统(X、Y、Z三轴或其它);2、测头系统;3、电气控制硬件系统;4、数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为CAD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。

德国CarlZeiss公司最近开发的CNC小型坐标测量机采用热不灵敏陶瓷技术,使坐标测量机的测量精度在17.8~25.6℃范围不受温度变化的影响。

国内外精密冲裁技术的现状及发展

国内外精密冲裁技术的现状及发展

目前,国内外精密冲裁技术的研究和应用存在一定的差异。国内精密冲裁技术 的发展相对较快,已经有多家企业具备了较强的研发和生产能力,如比亚迪等。 同时,国内高校和研究机构也在精密冲裁技术方面进行了大量研究,如北京航 空航天大学、上海交通大学等。而国外精密冲裁技术的发展历史较长,拥有众 多具有领先技术的企业和研究机构,如瑞士的Sigma Technologies、美国的 Precision Dynamics等。
国内外精密冲裁技术的现状及 发展
基本内容
精密冲裁技术是现代制造业中的重要加工方法之一,广泛应用于汽车、航空航 天、电子、家电等领域。本次演示将详细介绍精密冲裁技术的概念、发展历程、 国内外现状、发展趋势及其未来前景,并探讨制约其发展的因素和应对措施。
精密冲裁技术是指通过冲压和裁剪的操作,将金属、非金属或复合材料制成符 合设计要求的零件或组件的一种加工方法。它具有高效、高精度、低成本等优 点,因此被广泛应用于制造业中。精密冲裁技术的发展可以追溯到20世纪初, 当时主要应用于钟表、仪器等轻工业领域。随着科技的进步和工业的发展,精 密冲裁技术不断得到改进和完善,并逐渐扩展到汽车、航空航天、电子、家电 等领域。
三、结论
总的来说,国内外精密加工技术在近年来都取得了显著的进展。我国在超精密 机床和微纳制造技术方面的研发成果显著,而国外在超精密机床和微纳制造技 术方面的发展更为成熟。未来,精密加工技术的发展将更加注重高精度、高效 率、高稳定性和低成本,以满足各行业的生产需求和提高生产效率。随着科技 的不断发展,精密加工技术将更加注重智能化和自动化的发展,以适应未来的 智能制造趋势。
2、绿色精密锻造技术:随着环保意识的不断提高,研究环保型的精密锻造技 术已成为未来的重要研究方向。例如,研究低能耗、低排放的锻造工艺,使用 环保材料等。

精密测量技术案例

精密测量技术案例
精密测量技术
第一章 概论
一、精密测量的重要意义
现代精密工程三大支柱
材 料
精 密 加 工
精 密 测 量 与 控 制
二、测量技术的现状与发展趋势
1.不断应用新的物理原理及新技术 2.测量过程智能化 3.不断提高瞄准、采样、读数与定位精度 4.测量复杂零件 5.不断提高数据传输技术 6.标准化不断提高 7.由线外测量转向线上测量 8.向高精度、高速度、高效率发展 9.向二级拓延 10.柔性测量系统
定 位 系 统
瞄准系统 标准量
运算器
显示
1.被测对象和被测量
4.瞄准系统
2.标准量系统
3.定位系统
5.显示系统
6.测量条件
五、两个重要的测量原则
1.阿贝测长原则—长度测量的最基本原则 被测线应与测量线重合,或者在其延长线上。 1)串联排列方案
ቤተ መጻሕፍቲ ባይዱ
2)串联排列方案
2. 圆周封闭原则 在同一圆周上所有夹角的误差之和为零。
光环境—照度、眩光、色彩等
静电环境—微电量、电磁波、放射线等
案例分析1:长度尺寸测量 在常用尺寸中(≤500mm): 特点:孔比轴难加工,难测量。 测量:常规量仪
在大尺寸中 特点:加工难易基本相当,轴比孔难测 量。
对滚法测量大直径
缠绕法测量大尺寸轴径
激光干涉法测量大尺寸
案例分析2:几何误差测量
三、有关测量的基本概念 1.测量 (检验、检定、对比) 2.测量过程四要素 1)被测对象与被测量 2)测量单位与标准量 3)测量方法 4)测量精度 3.评价测量精度的两个指标 1)量仪的不确定度 2)测量方法(测量过程)的不确定度
四、测量方法的设计
钢制的非整形圆薄片

三维测量技术发展现状及趋势

三维测量技术发展现状及趋势

三维测量技术发展现状及趋势
一、发展背景
随着社会的不断发展,科技的飞速进步,三维测量技术(3D Measurement)成为了现代工程的重要组成部分,在机械、精密仪器、现
代制造等领域发挥着重要作用。

三维测量技术又称为三维测量系统,它是
一种对物体的表面结构、形状、尺寸等参数进行测量的技术,可以帮助我
们了解物体的实际形态,为制造、质量控制、装配等一系列工程提供可靠
的数据。

二、发展概况
目前,三维测量技术发展迅速,技术多样化,可以应用于多个行业,
具有广阔的应用前景。

在技术装备方面,目前三维测量技术的发展门槛越
来越低,设备配件也越来越完善,使用起来既方便又实用;在测量方式上,三维测量技术也有了重大加快,测量效率也有了明显提高,这一切都使其
应用范围更为广泛,也更加稳定。

另外,三维测量技术在精度控制和测量
范围方面也取得了显著的成果,使其在精密仪器、航天航空航天、宏观表
面形成、精细加工等场合都得到了广泛应用。

三、发展趋势
从上述发展概况来看,三维测量技术未来发展态势为佳,具有区域性
便利与全球技术性协同的双重发展趋势,且越来越受到国内企业的重视。

首先,三维测量技术将不断拓展应用领域。

测试测量行业发展现状及未来趋势分析

测试测量行业发展现状及未来趋势分析

测试测量行业发展现状及未来趋势分析测试测量行业是现代技术发展的重要支撑,它涵盖了多个领域,包括制造业、通信、航空航天等,其发展现状和未来趋势备受关注。

本文将对测试测量行业的发展现状进行分析,并探讨其未来的发展趋势。

一、发展现状分析1. 市场规模扩大:随着科技的不断进步,测试测量行业市场规模不断扩大。

制造业成为测试测量行业的主要应用领域,汽车、电子产品、半导体等行业对精密测试测量设备的需求持续增长,推动了行业的发展。

2. 技术创新驱动:测试测量行业在技术方面的不断创新也是其发展的重要推动力。

高精度、高效率、高可靠性的测试测量设备成为市场的需求。

例如,自动化测试系统的应用,大大提高了测试测量的效率和准确性,进一步促进了行业的发展。

3. 行业标准规范化:测试测量行业的发展离不开行业标准的制定和规范化管理。

国内外相关标准的制定和执行,有助于提高产品的质量和竞争力。

这也促使企业加大研发力度,以符合行业要求。

二、未来趋势分析1. 智能化发展:随着人工智能和物联网技术的发展,测试测量行业也将面临新的发展机遇。

智能化测试仪器的应用将大大提升测试效率和准确性。

通过无人值守的测试系统,企业可以实时监测和诊断生产过程,提高生产效率和产品质量。

2. 大数据驱动:测试测量行业将借助大数据技术进行数据分析和应用。

通过收集和分析测试数据,企业可以更好地了解产品性能,及时调整生产工艺,提高产品质量和市场竞争力。

同时,大数据技术也为测试测量行业的商业模式创新提供了新的可能性。

3. 跨行业合作:测试测量行业的发展趋势之一是与其他行业的深度合作。

例如,在智能制造领域,测试测量技术与机器人技术、自动化技术等相结合,可以实现更高效的生产流程。

这种跨行业合作将推动测试测量行业的进一步发展。

4. 服务化提升:未来的测试测量行业发展将趋向于服务化提升。

企业将更加关注客户需求,提供定制化的测试测量解决方案。

同时,测试测量设备的租赁和维修服务将得到更多的关注,以满足客户对于成本控制和便利性的需求。

精密仪器专业调查报告

精密仪器专业调查报告

精密仪器专业调查报告引言本报告主要对精密仪器进行了全面的调查和分析。

精密仪器在科学研究、工业生产等领域起着至关重要的作用。

通过对精密仪器的调查,我们旨在了解其市场需求、技术发展趋势以及未来的发展前景。

调查方法我们采用了多种调查方法,包括市场调研、咨询行业专业人士、查阅相关文献等。

在调查过程中,我们充分利用了互联网和专业数据库等资源,确保数据的准确性和可靠性。

市场需求分析行业概述精密仪器行业是一个技术密集型的行业,包括光学仪器、电子测量仪器、机械测量仪器等多个细分领域。

目前,全球范围内对精密仪器的需求日益增加,尤其是在制造业、医疗卫生等领域。

技术发展趋势随着科学技术的不断进步,精密仪器的技术水平也在不断提高。

近年来,纳米技术、光学技术等的快速发展为精密仪器的制造提供了新的思路和方法。

同时,无线通信技术、云计算等的应用也为精密仪器的智能化和远程监控提供了新的可能。

主要产品分析精密仪器的主要产品包括光学仪器、电子测量仪器和机械测量仪器。

以下对每个细分领域的主要产品进行简要介绍:光学仪器光学显微镜、光谱仪、激光仪器等是光学仪器的主要产品。

随着显微镜的分辨率不断提高,光学显微镜在生物医学研究、材料科学等领域的应用越来越广泛。

激光仪器的应用也在不断拓展,包括激光切割、激光打印等。

电子测量仪器示波器、信号发生器、频谱分析仪等是电子测量仪器的主要产品。

随着电子技术的发展,电子测量仪器的功能越来越强大,测量精度也不断提高。

新型的数字示波器和高频信号发生器得到了广泛应用。

机械测量仪器千分尺、压力计、测量座等是机械测量仪器的主要产品。

随着制造业的发展,机械测量仪器的需求增加。

同时,随着机械测量仪器技术的改进,测量精度和工作效率得到提高。

发展前景分析精密仪器作为现代科学研究和工业生产的重要工具,其前景非常广阔。

未来,随着科技的不断发展,精密仪器将在各个领域起着更加重要的作用。

同时,随着人们对科学研究和技术创新的不断追求,精密仪器的市场需求也将持续增加。

浅谈我国工程测量技术的现状及发展

浅谈我国工程测量技术的现状及发展

1 工程测量技术概述随着时代的进步,科技的发展,工程测量技术领域发生了很大的变化,传统的工程测量技术已经落后于时代,所以人们将当前较为前沿的技术与工程测量技术有机地结合在一起,如GPS 定位系统、计算机技术、摄影技术、激光技术等,科学合理地提高了工程测量技术的工作效率与工作质量。

将前沿的技术与工程测量技术进行有机结合,能够使工程测量技术持续稳定地发展。

2 我国工程测量技术现状2.1 先进的地面测量仪器在工程测量中的应用20世纪80年代以来,出现许多先进的地面测量仪器,为工程测量提供了先进的技术工具和手段,如光电测距仪、精密测距仪、电子经纬仪、全站仪、电子水准仪、数字水准仪、激光准直仪、激光扫平仪等,为工程测量向现代化、自动化、数字化方向发展创造了有利的条件,同时也改变了传统的工程控制网布网、地形测量、道路测量和施工测量等的作业方法。

三角网已被三边网、边角网、测距导线网所替代;光电测距三角高程测量代替三、四等水准测量;具有自动跟踪和连续显示功能的测距仪用于施工放样测量;无需棱镜的测距仪解决了难以攀登和无法到达的测量点的测距工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量。

2.2 GPS 定位技术在工程测量中的应用GPS 是耗费了大量时间、精力、资金,通过无数研究人员参与而得到的科研成果是拥有对计算机芯片的海陆空3种情况实施全方位的导航与定位能力的导航系统。

通过定位系统的不断改进,我们可以使用定位系统进行周角测量与直角检测,这对工程测量技术来说也是一个不小的突破,我们可以利用定位系统与计算机系统相结合,对工程进行测量,这种简单高效的方式已经逐渐替代传统的工程测量方式成为现代工程测量的主要方式。

在我国大量研究人员的投入下,全球定位技术已经取得不菲的成果,在某些方面我国的全球定位系统有着国外定位系统无法比拟的优势。

我国研发出的定位系统更趋向于民用,科学、有效地提高国内人民的生活质量,其用途主要有:共享位置、距离检测、数据波动的检测等。

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展精密测量技术是一种用于测量微小尺寸、形状和位置的高精度技术。

随着科学技术的不断发展,精密测量技术在工业制造、医学、航空航天、能源等领域都扮演着重要的角色。

本文将从精密测量技术的现状和发展趋势两个方面来进行阐述。

一、精密测量技术的现状1. 精密测量技术在国家科技发展中的地位精密测量技术是现代科技的重要组成部分,它在加工、检测、科研等领域得到了广泛的应用。

我国在精密测量技术领域的科研成果不断涌现,相关领域的专家学者也在不断探索精密测量技术的新方法、新技术。

2. 精密测量技术的发展现状随着科学技术的迅猛发展,精密测量技术在实验仪器、生产制造、医学检测等领域有了广泛的应用,其测量精度和测量范围得到了显著提高。

光纤传感器、原子力显微镜、激光干涉仪等高精度测量仪器的应用,为精密测量技术的发展提供了有力支持。

3. 精密测量技术的难点与挑战在应对微纳米级精度测量需求的过程中,精密测量技术也面临着一些难点和挑战。

环境因素对测量精度的影响、测量设备的稳定性和可靠性等问题,需要通过不断的技术创新和设备改进来解决。

二、精密测量技术的发展趋势1. 多传感器融合技术在精密测量中的应用为了提高测量的精度和可靠性,多传感器融合技术被广泛应用于精密测量领域。

多传感器融合技术通过整合不同类型的传感器信息来完成对目标的精确测量,有效提高了测量的精度和稳定性。

2. 智能化和自动化测量设备的发展随着人工智能和自动化技术的发展,智能化和自动化测量设备逐渐成为发展的趋势。

高精度、高效率的智能化测量设备将在工业生产和科学研究中得到更为广泛的应用,为提高生产效率和降低成本提供了有力支持。

3. 新型测量技术的研究与应用随着纳米技术、生物技术的发展,新型测量技术如原子力显微镜、扫描隧道显微镜等被广泛应用于生物医学、纳米材料等领域,为微小尺寸物体的高精度测量提供了新的途径。

4. 精密测量技术在工业制造中的应用随着工业制造的不断发展,对产品精度和质量的要求也在不断提高。

精密测量技术的发展与应用前景

精密测量技术的发展与应用前景

精密测量技术的发展与应用前景随着现代科学技术的不断发展,精密测量技术在各个领域中起到了越来越重要的作用。

它通过准确测量和分析各种物理量,为工程和科学研究提供了有力的支持。

本文将探讨精密测量技术的发展历程以及其在不同领域中的应用前景。

一、发展历程精密测量技术的起源可以追溯到古代。

古人在农业、建筑和天文等领域中已经开始使用简单的测量工具。

然而,随着工业革命的到来以及科学技术的飞速发展,测量技术逐渐变得更加精确和复杂。

19世纪末至20世纪初,光学测量技术的发展使得测量精度大大提高。

例如,在地理测量中,全球定位系统(GPS)的引入使得地球上任何一个角落的测量都成为可能。

同时,电子测量技术的兴起也为测量工作带来了革命性的变化。

利用现代电子器件和计算机技术,可以实现高精度、高速度和高自动化的测量。

二、应用领域1. 工业制造精密测量技术在工业制造中有着重要的应用。

在制造过程中,需要对产品的尺寸、形状、曲率等进行测量,以确保产品的质量和精度。

例如,在汽车制造中,要求发动机零件之间的配合间隙具有精确的尺寸,这就需要使用精密测量技术来进行测量和控制。

2. 医疗健康精密测量技术对医疗健康领域也具有重要意义。

医学影像设备(如CT扫描、MRI和超声波设备)利用精密测量技术来获取人体内部的结构和病变信息。

这些测量数据对医生进行疾病诊断和治疗方案制定起到了至关重要的作用。

3. 航空航天在航空航天领域,精密测量技术的应用也不可或缺。

例如,飞行器的导航和空间定位需要精确的测量数据。

此外,对航空航天器开展结构性能测试和飞行试验也需要借助于精密测量技术来获取准确的测量结果。

4. 环境监测精密测量技术在环境监测中也有广泛的应用前景。

比如,大气污染的监测需要对污染物的浓度进行精确测量。

水体和土壤的污染也需要借助于高精度的测量技术进行监测和分析。

这些测量数据对于环境保护和资源管理具有重要的意义。

三、应用前景随着科技的不断进步,精密测量技术将有更广阔的应用前景。

浅析现代测绘技术的发展趋势

浅析现代测绘技术的发展趋势

浅析现代测绘技术的发展趋势随着全球经济的发展,人们对信息的需求越来越大,对自然的探索也越来越渴望,从而测绘工程在我国经济发展、环境保护等方面应用更加广泛。

它的出现,无疑给空间信息的获取提供了相当大的便利,这无论是在学科或科学方面的重要性都是毋庸置疑的。

本文简要分析现代测绘技术的现状及发展趋势。

标签:现代;测绘技术;发展趋势引言:测绘技术是研究地球和其他实体的与空间分布有关的信息的采集、测量、分析显示、管理和利用的科学技术。

集卫星通信技术、空间定位技术、遥感技术和地理信息系统技术为一体,强调了测量、遥感、地理信息等方面。

现代测绘技术主要在“GPS”和“遥感技术”两方面进行发展,已逐渐成为人类研究地球、自然环境甚至社会可持续发展等问题时必不可少的方法。

一、测绘技术主要内容测绘是将地面已有的特征点和界限通过测量获得反映地面现状的图形和位置信息,如自然地理要素、地表人工设施的形状、大小、空间位置、属性等。

它立足于对地球整体的观测以及信息的获取,通过这门技术,可有效对空间信息进行分析、存储、管理,从而掌握其变化规律。

现代测绘技术包括测量和制图两方面,在发展过程中逐渐形成大地测量学、普通测量学、摄影测量学、工程测量学、海洋测绘等分类,在现代经济和国防建设中有广泛应用。

如在进行城乡规划时,需为后期的规划管理绘制地形图;在地质勘探、矿产开发过程中,需绘制地形图供施工使用;在军事中,可以此提供精确的重力场等数据。

二、测绘技术的优缺点随着社会经济的发展,社会与自然的矛盾日益激化,环境保护已成为了国家发展的又一项重中之重。

能源稀少、水体污染等等环境问题都有待深入研究及解决。

在这种急需新兴科技的环境下,现代测绘技术在地里信息系统建设中起到了主导作用。

伴随着科技的进步,现代测绘技术无论在理论水平、精准程度还是应用方面都取得了极大地发展,为人类的自然开发、社会规划、经济建设等多方面提供了不可或缺的支持,同时也为国家经济建设和社会发展提供了各种专题性和综合性的基础信息。

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展1. 引言1.1 精密测量技术的定义精密测量技术是一种能够对物体、信息或现象进行高精度测量的技术。

它通过各种精密的测量仪器和设备,可以对微小至纳米级别的尺寸、重量、速度、温度等参数进行准确测量。

精密测量技术的发展使得人类能够更深入地了解自然界的规律和现象,为科学研究、工业制造等领域提供了重要的支持和帮助。

在现代工业制造中,精密测量技术被广泛应用于汽车制造、航空航天、电子产品制造等领域,帮助提高产品质量和生产效率。

精密测量技术的重要性不言而喻,它不仅可以确保产品达到规定的标准,还可以帮助企业提升竞争力,赢得市场份额。

精密测量技术在现代社会中扮演着不可或缺的角色,其应用范围和影响力日益扩大,对于推动科技进步和经济发展具有重要的意义。

1.2 精密测量技术的重要性精密测量技术是保障产品质量的重要手段。

在工业制造领域,精密测量技术可以用来确保产品的精准度和稳定性,从而提高产品的可靠性和竞争力。

通过精密测量技术,生产过程中的各种参数和指标可以被准确地监测和控制,从而确保产品达到设计要求。

精密测量技术在科学研究中扮演着不可或缺的角色。

在物理、化学、生物等领域的科学研究中,精密测量技术可以帮助科学家们获取准确的实验数据,从而推动科学的进步。

精密测量技术的不断发展和应用也为科学研究提供了更多的可能性和机会。

精密测量技术还在社会生活中扮演着重要的角色。

在交通运输、医疗保健、环境监测等领域,精密测量技术可以帮助我们更好地了解和控制环境因素,保障人类的生活质量和安全。

精密测量技术的重要性不容忽视。

它不仅在工业制造和科学研究领域发挥着关键作用,也在社会生活中发挥着越来越重要的作用。

随着科技的不断进步和发展,精密测量技术的应用范围和重要性也将不断扩大和提升。

2. 正文2.1 精密测量技术的发展历史精密测量技术的发展历史可以追溯到古代,人类在实现精确测量方面已经取得了一定的成就。

公元前3世纪,古希腊科学家阿基米德发明了用于测量物体密度的著名法器——阿基米德原则。

精密工程测量

精密工程测量
2
A (XA,YA)
OB
OA
2
O
(XO,YO)

D
B
(XB ,YB)
➢ 2,将经纬仪或全站仪安置于已知点O上,后视已知点A,
测设角度β,得到方向OB,然后在此方向上测设距离D,
设立标志作为B点的设计位置。
极坐标法
➢ J、K为已知导线点,P为某设计点位。在J点用极坐标法测
设P点,J,K、P的坐标分别为J(746.202,456.588)、K
一些工程中的精度要求
名称
精度要求 实现精度 采用方法
1.大坝变形监测
坝基水平位移
0.3
0.3
倒垂,真空激光准直
坝顶水平位移
1.0
1.0
张引线、正锤、激光准直、GPS技术
坝体位移
1.0
坝体垂直位移
1.0
1.0
精密水准、静力水准
坝体裂缝
0.2
0.2
裂缝仪、应变计
坝基倾斜
1.0”
1.0”
精密水准、静力水准、电子倾斜仪
❖ 1、对工程区的环境条件、工程及水文地质、气候的特点
进行详细的分析及描述,并分析总结这些条件对测量作业
的影响。要全面完整地掌握该地区已有的测量资料,分析
和评定这些资料的精度和利用价值;
❖ 2、工程区基准的确定,在详细进行精度分析和遵循有关
“规范”条款的基础上,兼顾整个工程区建设的需要,提
出控制方案和实施方法,以及对精度进行预估等;
❖ 3、 确定出测量中的关键精度所在,并结合自己的经验以
及广泛吸收同类工程成功的实例,提出数个实施方案。实
施方案包括采用的仪器、测量的方法、关键技术的解决内
容、预期精度的估计,以及不同方案的比较;

浅谈现代计量测试仪器及其发展趋势

浅谈现代计量测试仪器及其发展趋势

浅谈现代计量测试仪器及其发展趋势现代计量测试仪器在各个领域都发挥着重要作用,它们不仅可以提高生产效率,还可以保证产品质量。

随着时代的变迁,计量测试仪器也在不断发展,逐渐朝着自动化、智能化、精准化的方向迈进。

本文将从现代计量测试仪器的发展历程、应用领域以及发展趋势等方面进行探讨。

一、现代计量测试仪器的发展历程现代计量测试仪器的发展可以追溯到工业革命时期。

在18世纪,英国的发条制造商开始使用精密的计量设备来测量零件的尺寸,确保产品的精度和质量。

随着科学技术的不断进步,各种计量测试仪器也随之而来,比如光谱仪、气体色谱仪、质谱仪等,这些仪器的出现极大地促进了科学研究和工业生产的发展。

20世纪末至21世纪初,计量测试仪器迎来了快速发展的时期。

随着微电子技术的普及和应用,计量测试仪器开始向小型化、高精度、高灵敏度、多功能化的方向发展。

传感器技术、数字信号处理技术和通信技术的不断进步,为计量测试仪器的发展提供了强大支撑。

二、现代计量测试仪器的应用领域现代计量测试仪器广泛应用于工业生产、科学研究、医疗保健、环境监测等各个领域。

在工业生产领域,计量测试仪器被用于测量和控制产品的尺寸、质量、温湿度等参数,确保产品的合格率和稳定性。

在科学研究领域,计量测试仪器被用于分析和检测物质的成分、结构、性质,为科学家们提供了重要的实验数据。

在医疗保健领域,计量测试仪器被用于医学影像、实验室检测、病理诊断等方面,为医护人员提供了准确、可靠的检测数据。

在环境监测领域,计量测试仪器被用于空气质量监测、水质监测、地质勘探等方面,确保环境的安全和可持续发展。

三、现代计量测试仪器的发展趋势随着科学技术的不断进步和市场需求的不断提升,现代计量测试仪器的发展呈现出以下几个趋势:1. 自动化自动化是现代计量测试仪器发展的重要趋势之一。

传统的计量测试仪器需要人工操作,测量数据的准确性和稳定性受到操作人员技术水平的限制。

而自动化测试仪器可以实现自动采集、处理、分析数据,大大提高了测量的效率和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代精密测量技术现状及发展作者:西北工业大学 黎永前 朱名铨现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。

在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。

三坐标测量机(CMM )是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复杂零件尺寸、形状和相互位置进行高准确度测量。

发展高速坐标测量机是现代工业生产的要求。

同时,作为下世纪的重点发展目标,各国在微/纳米测量技术领域开展了广泛的应用研究。

1 坐标测量机的最新发展三坐标测量机作为几何尺寸数字化检测设备在机械制造领域得到推广使用,而科学研究和机械制造行业的技术进步又对CMM 提出更多新的要求,作为测量机的制造者就需要不断将新技术应用于自己的产品以满足生产实际的需要。

1.1 误差自补偿技术德国Carl Zeiss 公司最近开发的CNC 小型坐标测量机采用热不灵敏陶瓷技术(Thermally insensitive ceramic technology ),使坐标测量机的测量精度在17.8~25.6℃范围不受温度变化的影响。

国内自行开发的数控测量机软件系统PMIS 包括多项系统误差补偿、系统参数识别和优化技术。

1.2 丰富的软件技术Carl Zeiss 公司开发的坐标测量机软件STRATA-UX ,其测量数据可以从CMM 直接传送到随机配备的统计软件中去,对测量系统给出的检验数据进行实时分析与管理,根据要求对其进行评估。

依据此数据库,可自动生成各种统计报表,包括X-BAR&R 及X_BAR&S 图表、频率直方图、运行图、目标图等。

美国Brown & Sharp 公司的Chameleon CMM 测量系统所配支持软件可提供包括齿轮、板材、凸轮及凸轮轴共计50多个测量模块。

日本Mitutoyo 公司研制开发了一种图形显示及绘图程序,用于辅助操作者进行实际值与要求测量值之间的比较,具有多种输出方式。

1.3 系统集成应用技术各坐标测量机制造商独立开发的不同软件系统往往互不相容,也因知识产权的问题,这些工程软件是封闭的。

系统集成技术主要解决不同软件包之间的通信协议和软件翻译接口问题。

利用系统集成技术可以把CAD 、CAM 及CAT 以在线工作方式集成在一起,形成数学实物仿形制造系统,大大缩短了模具制造及产品仿制生产周期。

1.4 非接触测量基于三角测量原理的非接触激光光学探头应用于CMM上代替接触式探头。

通过探头的扫描可以准确获得表面粗糙度信息,进行表面轮廓的三维立体测量及用于模具特征线的识别。

该方法克服了接触测量的局限性。

将激光双三角测量法应用于1700mm×1200mm×200mm测量范围内,对复杂曲面轮廓进行测量,其精度可高于1μm。

英国IMS公司生产的IMP型坐标测量机可以配用其他厂商提供的接触式或非接触式探头。

2 微/纳米级精密测量技术科学技术向微小领域发展,由毫米级、微米级继而涉足到纳米级,即微/纳米技术。

微/纳米技术研究和探测物质结构的功能尺寸与分辨能力达到微米至纳米级尺度,使人类在改造自然方面深入到原子、分子级的纳米层次。

纳米级加工技术可分为加工精度和加工尺度两方面。

加工精度由本世纪初的最高精度微米级发展到现有的几个纳米数量级。

金刚石车床加工的超精密衍射光栅精度已达1nm,实验室已经可以制作10nm以下的线、柱、槽。

微/纳米技术的发展,离不开微米级和纳米级的测量技术与设备。

具有微米及亚微米测量精度的几何量与表面形貌测量技术已经比较成熟,如HP5528双频激光干涉测量系统(精度10nm)、具有1nm精度的光学触针式轮廓扫描系统等。

因为扫描隧道显微镜(STM,Scanning Tunning Microscope)、扫描探针显微镜(SPM,Scanning Probe Microscope)和原子力显微镜(AFM,Atomic Force Microscope)用来直接观测原子尺度结构的实现,使得进行原子级的操作、装配和改形等加工处理成为近几年来的前沿技术。

2.1 扫描探针显微镜1981年美国IBM公司研制成功的扫描隧道显微镜(STM),把人们带到了微观世界。

STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm和0.01nm,即可以分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。

与此同时,基于STM相似的原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界面纳米尺度上表现出来的性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。

下面为几种具有代表性的扫描探针显微镜。

(1)原子力显微镜(AFM)为了弥补STM只限于观测导体和半导体表面结构的缺陷,Binnig等人发明了AFM,AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面的起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。

就应用而言,STM 主要用于自然科学研究,而相当数量的AFM已经用于工业技术领域。

1988年中国科学院化学所研制成功国内首台具有原子分辨率的AFM。

安装有微型光纤传导激光干涉三维测量系统,可自校准和进行绝对测量的计量型原子力显微镜可使目前纳米测量技术定量化。

利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探针与表面10~100nm距离范围,可以探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜(MFM,Magnetic Force Microscope)、静电力显微镜(EFM,Electrostatic Force Microscope)、摩擦力显微镜(LFM,Lateral Force Microscope)等,统称为扫描力显微镜(SFM,Scanning Force Microscope)。

(2)光子扫描隧道显微镜(PSTM,Photon Scanning Tunning Microscope)PSTM的原理和工作方式与STM相似,后者利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。

(3)其他显微镜如扫描隧道电位仪(STP,Scanning Tunning Potentiometry)可用来探测纳米尺度的电位变化;扫描离子电导显微镜(SICM,Scanning Ion_Conductation Microscope)适用于进行生物学和电生理学研究;扫描热显微镜(Scanning Thermal Microscope)已经获得了血红细胞的表面结构;弹道电子发射显微镜(BEEM,Ballistic Electron Emission Miroscope)则是目前唯一能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。

2.2 纳米测量的扫描X射线干涉技术以SPM为基础的观测技术只能给出纳米级分辨率,却不能给出表面结构准确的纳米尺寸,这是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量的定标手段。

美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为192015.560±0.012fm和192015.902±0.019fm。

日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18天的变化不超过0.1fm。

实验充分说明单晶硅的晶面间距具有较好的稳定性。

扫描X射线干涉测量技术是微/纳米测量中的一项新技术,它正是利用单晶硅的晶面间距作为亚纳米精度的基本测量单位,加上X射线波长比可见光波波长小两个数量级,有可能实现0.01nm的分辨率。

该方法较其他方法对环境要求低,测量稳定性好,结构简单,是一种很有潜力的方便的纳米测量技术。

自从1983年D.G.Chetwynd将其应用于微位移测量以来,英、日、意大利相继将其应用于纳米级位移传感器的校正。

国内清华大学测试技术与仪器国家重点实验室在1997年5月利用自己研制的X射线干涉器件在国内首次清楚地观察到X射线干涉条纹。

软X射线显微镜、扫描光声显微镜等用以检测微结构表面形貌及内部结构的微缺陷。

迈克尔逊型差拍干涉仪,适于超精细加工表面轮廓的测量,如抛光表面、精研表面等,测量表面轮廓高度变化最小可达0.5nm,横向(X,Y向)测量精度可达0.3~1.0μm。

渥拉斯顿型差拍双频激光干涉仪在微观表面形貌测量中,其分辨率可达0.1nm数量级。

2.3 光学干涉显微镜测量技术光学干涉显微镜测量技术,包括外差干涉测量技术、超短波长干涉测量技术、基于F-P(Febry-Perot)标准的测量技术等,随着新技术、新方法的利用亦具有纳米级测量精度。

外差干涉测量技术具有高的位相分辨率和空间分辨率,如光外差干涉轮廓仪具有0.1nm的分辨率;基于频率跟踪的F-P标准具测量技术具有极高的灵敏度和准确度,其精度可达0.001nm,但其测量范围受激光器的调频范围的限制,仅有0.1μm。

而扫描电子显微镜(SEM,Scanning Electric Microscope)可使几十个原子大小的物体成像。

美国ZYGO公司开发的位移测量干涉仪系统,位移分辨率高于0.6nm,可在1.1m/s的高速下测量,适于纳米技术在半导体生产、数据存储硬盘和精密机械中的应用。

目前,在微/纳米机械中,精密测量技术一个重要研究对象是微结构的机械性能与力学性能、谐振频率、弹性模量、残余应力及疲劳强度等。

微细结构的缺陷研究,如金属聚集物、微沉淀物、微裂纹等测试技术的纳米分析技术目前尚不成熟。

国外在此领域主要开展用于晶体缺陷的激光扫描层析(Laser Scanning Tomograph)技术,用于研究样品顶部几个微米之内缺陷情况的纳米激光雷达技术(Nanoladar),其探测尺度分辨率均可达到1nm。

3 图像识别测量技术随着近代科学技术的发展,几何尺寸与形位测量已从简单的一维、二维坐标或形体发展到复杂的三维物体测量,从宏观物体发展到微观领域。

被测物体图像中即包含有丰富的信息,为此,正确地进行图像识别测量已经成为测量技术中的重要课题。

图像识别测量过程包括:(1)图像信息的获取;(2)图像信息的加工处理,特征提取;(3)判断分类。

计算机及相关计算技术完成信息的加工处理及判断分类,这些涉及到各种不同的识别模型及数理统计知识。

图像测量系统一般由以下结构组成,如图1所示。

相关文档
最新文档