A Semantic Matching Approach for Mediating Heterogeneous Sources

合集下载

Research Statement

Research Statement

Research StatementResearch PhilosophyMy research focuses on the application of the tools and techniques of computer science to molecu-lar biology.Research in molecular biology has been revolutionized by the advent of high-throughput experimental protocols that conduct hundreds or thousands of simple experiments in parallel.By itself,each simple experiment means little,but the combined results of all of the experiments,when carefully analyzed,can give insight into biological processes that would not otherwise be observ-able by traditional experimental techniques.Careful,scientific analyses of these experiments must use core computer science tools and techniques,such as modeling and algorithm design;optimal-ity and approximation guarantees,suboptimal solutions,and probabilistic analyses;and empirical algorithmics,memory hierarchy trade-offs,on-line vs off-line algorithms,and effective indexing strategies.Thoughtful application of all of these tools and techniques is necessary in order to glean as much scientific value as possible from these high-throughput experimental protocols. Current ResearchMy primary area of research is the analysis of mass spectrometry experiments for proteomics. Proteomics,the qualitative and quantitative analysis of the expressed proteins of a cell,makes it possible to detect and compare the protein abundance profiles of different samples.Proteins observed to be under or over expressed in disease samples can lead to diagnostic markers or drug targets.The observation of mutated or alternatively spliced protein isoforms may provide domain experts with clues to the mechanisms by which a disease operates.The detection of proteins by mass spectrometry can even signal the presence of airborne microorganisms,such as anthrax,in the detect-to-protect time-frame.Peptide identification by tandem mass spectrometry is the backbone of most mass spectrom-etry workflows.My research into the identification of novel protein isoforms using this technique, funded by the National Cancer Institute,eliminates a computational bias of existing peptide identifi-cation algorithms,in which only well-known peptide sequences are identifiing a combination of de Bruijn graphs,Eulerian path sets,and minimum cost networkflow instances,I have shown that it is possible to represent an aggressive enumeration of the set of putative human peptides by a set of sequences roughly35-fold smaller than a naive representation.Further,search times improve90-fold.This work has made it possible tofind previously unobserved mutations and al-ternative splicing isoforms in publicly available proteomics datasets(Edwards and Lippert,2004; Edwards,2005;Edwards et al.,2006;Edwards,2007).A considerable computational infrastruc-ture supports this work,including the use of the UMIACS condor grid of over300Linux CPUs to compute the de Bruijn graph representation of the amino-acid30-mers of the8Gb human EST database;configuration of the X!Tandem and Mascot search engines for the UMIACS condor grid;a relational database(MySQL)of over2million tandem mass spectra and their identification re-sults;and a web-based interface,using the T urboGears application framework,for browsing the results effectively.Together with University of Maryland Computer Science graduate student Xue Wu and her adviser Dr.Chau-Wen Tseng,I am also investigating the use of hidden Markov mod-els for peptide identification by spectral matching(Wu et al.,2007,2006),an endeavor which is substantially aided by the relational database of publicly available spectra.1In the area of pathogen detection and microorganism identification by mass spectrometry, I conduct collaborative research with University of Maryland Biochemistry Professor Catherine Fenselau(Patton et al.,2005;Swatkoski et al.,2007,2006;Fenselau et al.,2007).In work funded by DARPA’s Special Projects Office,we have established techniques for the detection of geneti-cally engineered microorganisms,which can appear benign to existing pathogen detection tech-niques(Fenselau et al.,2006;Russell et al.,2007).With Dr.Fernando Pineda at the Johns Hopkins School of Public Health,I maintain the“Rapid Microorganism Identification Database ()”.The RMIDb is a web-based database and search engine implemented using MySQL,Perl and Python that analyzes mass spectra for statistical evidence of masses from a par-ticular species or strain.In its current build,it contains more than5million protein sequences,from about28,000organisms,representing about15,000species.This search engine implements a novel statistical significance estimation procedure,using importance sampling to achieve feasible running times,that eliminates the need for many of the problematic assumptions inherent in other similar search engines(Edwards and Pineda,2006).The RMIDb has been used extensively by the Fenselau Lab and Google Analytics statistics show usage throughout the US and internation-ally.A new project,with Dr.Bret Cooper at the USDA,will use tandem mass spectra and spectral matching to identify fungal plant pathogens,building on my research on microorganism identifica-tion and spectral matching using hidden Markov putationally,these applications are challenging because they require the determination of highly specific statistical and determinis-tic(species)signatures from relatively non-specific detection techniques with respect to a largely uncharacterized background.Outside of proteomics,I am investigating the use of de Bruijn graphs and Eulerian path sets to construct uniqueness oracles for DNA and peptide signatures.The determination of whether or not a DNA20-mer,for example,will hybridize to a specific position in the human genome requires that its sequence occur exactly once.However,the potential for mis-hybridization to similar20-mer sequences requires a stronger constraint—that no other20-mer sequences are close enough,in edit distance,to result in a false positive.We construct de Bruijn graphs with edge labels representing the number of occurrences(exact or inexact)of each20-mer in the genome, and restrict to a subgraph representing the unique,or non-unique,ing this de Bruijn subgraph,we enumerate a(provably)minimum length set of sequences that is complete,in that none of the selected20-mers are missing,and correct,in that no additional20-mers are introduced (Edwards and Lippert,2004;Edwards,2007).This new set of sequences,then,can be searched quickly,using exact string matching,to determine the uniqueness properties of a particular20-mer. Construction of the de Bruijn graph representation with inexact occurrence counts requires solving the inexact set matching problem,for near exact matches,for a very large number of queries.We use lossless gapped seed-sets to achieve linear expected search times for up to3edits,designing appropriate lossless seed-sets using integer programming,statistical designs,and coding theory. Funding for aspects of this work was approved by the Maryland Industrial Partnerships(MIPs) program in partnership with local startup Celedon Laboratories,who ultimately declined to provide the required matching funds.Future Research DirectionsFunded by the National Cancer Institute,the computational techniques for the identification of al-ternative splicing and mutant protein isoforms will be applied to breast cancer cell-lines and clinical2brain tumor samples,in collaboration with Dr.Catherine Fenselau and local biotechnology com-pany Calibrant Biosystems.This work will seek to establish a new proteomics workflow better suited to isoform identification than the shotgun proteomics workflow used in the available public datasets.We believe that this research will not only reveal biologically relevant cancer biomark-ers,but also create a repository of functional alternative splicing and polymorphic protein variants. Such a repository would address a major gap in our current understanding of protein biosynthesis, since current high-throughput experimental techniques for observing these variants interrogate ge-nomic DNA or mRNA transcripts,rather than proteins.Indeed,some researchers have proposed that much of the alternative splicing observed in human ESTs is actually used to silence genes,in-stead of expressing protein isoforms.The proposed repository of observed protein variants would fill this gap,and has the potential to grow into a significant bioinformatics resource.There are a number of natural directions that my current research in pathogen detection and inexact uniqueness oracles may evolve.One relevant open problem is the careful evaluation of the potential for non-specific peptide identification with tandem mass spectra.Unlike short oligonu-cleotides,near exact string matching is a poor model for determining potentially incorrect peptide identifications from tandem mass spectrometry.This problem touches on many unresolved issues in peptide identification,from the information content of tandem mass spectra;to the problem of statistically significant,yet incorrect,peptide identifications;and the false positive rate of tandem mass spectrometry based biodefense applications.—Nathan J.Edwards,Ph.D. ReferencesEdwards,N.(2005).Faster,more sensitive peptide identification from tandem mass spectra by sequence database compression.Poster:1st Annual Symposium,US Human Proteome Orga-nization(USHUPO).Edwards,N.(2007).Novel peptide identification from tandem mass spectra using ESTs and sequence database compression.Molecular Systems Biology,3:102.Edwards,N.and Lippert,R.(2004).Sequence database compression for peptide identification from tandem mass spectra.In Proceedings of the Fourth International Workshop on Algorithms in Bioinformatics(WABI).Edwards,N.and Pineda,F.(2006).Rapid microorganism identification database ().Poster:54th American Society of Mass Spectrometry Conference(ASMS).Edwards,N.,Wu,X.,and Tseng.,C.-W.(2006).Novel peptide identification using ESTs and genomic sequence.Poster:2nd Annual Symposium,US Human Proteome Organization (USHUPO).Fenselau,C.,Edwards,N.,and Russell,S.(2006).Strategy for rapid recognition of bioengineered Patent Application US60/862,105.Fenselau,C.,Russell,S.,Swatkoski,S.,and Edwards,N.(2007).Proteomic strategies for rapid analysis of microorganisms.European Journal of Mass Spectrometry,13(1):35–39.3Patton,E.,Edwards,N.,Oktem,B.,and Fenselau,C.(2005).A microwave and detergent pro-cedure to detect high molecular mass proteins from vegetative bacteria by MALDI-TOF MS. Poster:American Chemical Society National Meeting.Russell,S.,Edwards,N.,and Fenselau,C.(2007).Detection of plasmid insertion in Escherichia coli by MALDI-TOF mass spectrometry.Analytical Chemistry,79:5399–5409.Swatkoski,S.,Russell,S.,Edwards,N.,and Fenselau,C.(2006).Rapid chemical digestion of small acid-soluble spore proteins for analysis of bacillus spores.Analytical Chemistry, 78(1):181–8.Swatkoski,S.,Russell,S.,Edwards,N.,and Fenselau,C.(2007).Analysis of a model virus us-ing residue-specific chemical cleavage and maldi-tof mass spectrometry.Analytical Chemistry, 79(2):654-658.Wu,X.,Edwards,N.,and Tseng,C.-W.(2006).Peptide identification by spectral matching of tandem mass spectra using hidden Markov models.Poster:RECOMB Satallite Workshop on Computational Proteomics.Wu,X.,Tseng,C.-W.,and Edwards,N.(2007).HMMatch:Peptide identification by spectral matching of tandem mass spectra using hidden markov models.Journal of Computational Biology.In press.4。

赵汉理教授简介个人基本情况

赵汉理教授简介个人基本情况

赵汉理教授简介一、个人基本情况姓名:赵汉理学历/学位:博士研究生/博士职称职务:院长助理/瓯江特聘教授二、主要研究方向及研究团队专业领域:计算机图形图像处理主要研究兴趣:深度学习、医学图像分析与处理、图像识别、图像编辑、GPU并行计算、移动图形技术三、学习与工作经历2011年10月—现在温州大学硕士生导师2011年09月—现在温州大学副教授2009年12月—2011年09月温州大学讲师2008年11月—2009年05月香港中文大学研究助理2007年12月—2008年03月香港中文大学研究助理2004年09月—2009年12月浙江大学硕博连读2000年09月—2004年07月四川大学大学本科四、主要工作经历及业绩中国计算机学会(CCF)计算机辅助设计与图形学专业委员会委员。

曾两度在香港中文大学担任研究助理工作,曾赴土耳其、荷兰、加拿大等国家参加国际学术交流。

先后主持国家自然科学基金1项、浙江省自然科学基金2项、教育部产学合作协同育人项目1项、浙江大学CAD&CG国家重点实验室开放课题3项、市厅级项目4项、横向课题1项,曾获得国家发明专利授权15项、软件著作权登记12项,出版教材1部,在TVCG、Neurocomputing、CGA、C&G、TVC、计算机学报、计算机辅助设计与图形学学报、中国图象图形学报、浙江大学学报等高水平国际国内期刊以及CGI、CASA、CVM、CAD/Graphics、Chinagraph、ChinaCAD&CG等国内外主流学术会议上发表SCI论文23篇、国内一级期刊论文7篇。

担任CIDE-DEA2014、NICOGRAPH2016、ChinaVR2016、ChinaVR2017、ChinaVR2018、ChinaCAD&CG2018、ChinaCAD&CG2019等会议程序委员会委员,以及Neurocomputing、TVC、Information Sciences等SCI国际期刊论文评审专家。

基于双对抗自编码器的跨模态检索

基于双对抗自编码器的跨模态检索

第33卷第12期2020年12月模式识别与人工智能Pattern Recognition and Artificial Intelligence Vol. 33 No. 12Dec. 2020基于双对抗自编码器的跨模态检索吴 飞1罗晓开1韩 璐2郑鑫浩1肖 梁1帅子珍1荆晓远31. College of Automation , Nanjing University of Posts and Tele ­communications, Nanjing 2100032. School of Modern Posts, Nanjing University of Posts and Tele ­communications, Nanjing 2100033 . School of Computer Science, Wuhan University, Wuhan 430072摘 要 在自编码的学习过程中如何更好地保留原始特征及消除多模态数据分布的差异是一个重要的研究课题.因此,文中提出基于双对抗自编码器(DAA)的跨模态检索方法.使用全局对抗网络改进自编码器模态内重构过程,极小极大博弈的策略使模态内的原始特征和重构特征难以判别,更好地保留原始特征.隐含层对抗网络在生成模 态不变表示的同时使模态间数据难以区分,有效减小多模态数据的分布差异.在Wikipedia.NUS-WIDE-10k 数据集 上的实验证明DAA 的有效性.关键词 跨模态检索,对抗网络,自编码器,模态差异引用格式 吴飞,罗晓开,韩璐,郑鑫浩,肖梁,帅子珍,荆晓远.基于双对抗自编码器的跨模态检索.模式识别与人工智能,2020, 33(12) : 1115-1121.DOI 10.16451/ki. issn1003-6059. 202012006中图法分类号 TP 391Cross-Modal Retrieval via Dual Adversarial AutoencodersWU Fei 1 , LUO Xiaokai 1 , HAN Lu 2, ZHENG Xinhao 1 , XIAO Liang 1 , SHUAI Zizhen 1 , JING Xiaoyuan 3ABSTRACT How to preserve the original features and reduce the distribution differences of multi ­modal data more efficiently during the autoencoder learning process is an important research topic . Across-modal retrieval approach via dual adversarial autoencoders ( DAA ) is proposed. The globaladversarial network is employed to improve the data reconstruction process of the autoencoders. The min- max is implemented to make it difficult to distinguish the original features and reconstructed features .Consequently , the original features are preserved better. The hidden layer adversarial network generatesmodality-invariant representations and makes the inter-modal data indistinguishable from each other to reduce the distribution differences of multi-modal data effectively. Experimental results on Wikipedia and NUS-WIDE-10k datasets show the effectiveness of DAA.Key Words Cross-Modal Retrieval , Adversarial Network , Autoencoder , Modality DifferenceCitation WU F, LUO X K, HAN L, ZHENG X H, XIAO L, SHUAI Z Z, JING X Y. Cross-ModalRetrieval via Dual Adversarial Autoencoders.2020, 33(12) : 1115-1121.收稿日期:2020-04-09 ;录用日期:2020-08-11Manuscript received April 9, 2020 ;accepted August 11, 2020国家自然科学基金项目(No. 61702280)、江苏省自然科学基金项目(No. BK20170900)资助Supported by National Natural Science Foundation of China( No. 61702280) , Natural Science Foundation of Jiangsu Province(No. BK20170900)本文责任编委陈恩红Recommended by Associate Editor CHEN Enhong 1. 南京邮电大学自动化学院 南京2100032. 南京邮电大学现代邮政学院 南京2100033. 武汉大学计算机学院 武汉430072Pattern Recognition and Artificial Intelligence ,近些年来,海量的多模态数据不断涌现.以互联网上的新闻为例,通常包括文字介绍,有时还会在页面上排版一些记者拍下的照片,甚至会有一些独家 的视频和音频的报道.像文本、图像、视频、音频等多模态数据是人们从多个角度高效获取同个信息的重要手段.用户不仅需要单一模态数据之间的检索,更1116模式识别与人工智能(PR&AI)第33卷需一种灵活的检索方式:从一个模态数据精准检索另一个模态的相关数据.近年来,跨模态检索已成为学术界广泛讨论的热点.但是,多模态数据因为具有不同的分布,表示通常具有较强的异质性,难以直接计算并缩小它们之间的差异.因此,跨模态检索任务存在一定的挑战性.传统的跨模态检索方法主要学习多模态数据的线性投影,探讨不同模态数据的相关性.典型相关性分析(Canonical Correlation Analysis,CCA)[l]利用线性投影的方式将成对的多模态数据投影至公共空间,生成公共表示,寻求异质数据的最大相关性.跨模态因子分析(Cross-Modal Factor Analysis, CFA)[2]通过线性投影,最小化成对数据的公共表示之间的距离.联合特征选择和子空间学习(Joint Feature Selection and Subspace Learning,JFSSL)联合图正则化和标签信息,使模态内和模态间的特征靠近相关的类别标签,远离无关的类别标签.随着深度神经网络(Deep Neural Network, DNN)⑷的发展,深度学习技术在图像分类、目标检测、语音识别等领域得到广泛应用.近年来,DNN因为具有强大的非线性拟合能力和自学习能力,促进跨模态检索的发展.深度语义匹配(Deep Semantic Matching,Deep-SM)[5]验证卷积神经网络(Convolu­tional Neural Network,CNN)视觉功能在跨模态检索中的优越性.这些跨模态检索方法在检索性能上还有待提升.近年来,研究人员提出基于深度自编码器的跨模态检索方法.自编码器(Autoencoder,AE)[6]由两部分组成:编码器(Encoder)和解码器(Decoder),训练结束后的输出数据是自编码器的隐含特征(编码特征).编码操作是将数据从输入层投影至隐含层的过程,相应的解码操作是从隐含层得到的编码特征作为输入投影至输出层的重构过程.自编码器的主要特点是将高维数据进行编码降维,再通过解码重构输入数据.基于深度自编码器的跨模态检索方法主要是对两个单模态自编码器的隐含特征进行关联性学习.在数据嵌入过程中,保留特征信息和语义信息,成为跨模态检索的新趋势.关联自编码器(Correspondence Autoencoder, Corr-AE)[7]关联两个单模态自动编码器的隐含表示,构建最优目标,最小化自编码器的两个模态隐含表示之间的相关性学习误差.多模态语义自编码器(Multi-modal Semantic Autoencoder,MMSAE)为两阶段学习方法,学习多模态映射,投影多模态数据得到低维嵌入,使用自编码器实现跨模态重建.现阶段基于生成对抗网络(Generative Adver­sarial Networks,GAN)⑼的跨模态检索方法成为新的研究热点.GAN由两部分组成:生成器(G)和判别器(D).G的目的是学习接近真实样本的分布以迷惑D,而D的作用是判别数据来自于真实样本还是G生成的样本.G和D执行极小极大的博弈.在理想的状态下,G可以生成足以“以假乱真”的G(z),而对于D来说,它难以判定G的输出究竟是不是真实的.对抗跨模态检索(Adversarial Cross-Modal Retrieval,ACMR)[l0]使用极小极大的策略训练网络,要求特征投影器生成低维的特征表示,并采用模态分类器区分特征表示的模态.同样采用对抗网络的思想,DAML(Deep Adversarial MetricLearning)[ll]将不同模态的数据经过非线性投影至潜在特征空间,目的是学习模态内可以判别模态间不变的表示.跨模态生成对抗网络(Cross-Modal GAN,CM-GANs)[l2]使用两个判别模型分别进行模态内和模态间的判别,相互促进以学习到更具有鉴别性的公共表示特征.但是,不断训练判别器使其逼近最优判别器的代价是:判别器的损失函数很快收敛,无法提供可靠的路径使生成器的梯度继续更新,造成生成器梯度消失.WGAN(Wasserstein GAN)[l3]的损失函数使用Wasserstein距离替换GAN损失的Jensen-Shannon 散度[9],可减少训练难度,有效解决梯度消失和训练不稳定的问题.现有的基于自编码器的跨模态检索方法主要采用基于均方误差的重构策略,相比原始输入,解码输出存在一定的信息损失,不能较好地保留原始特征.此外,现有大部分基于GAN的跨模态检索方法主要采用原始的GAN损失函数和训练策略,导致网络训练不稳定,在一定程度上影响模态差异的消除.如何有效减小模态差异仍是需要研究的问题.针对此不足,本文提出基于双对抗自编码器(Dual Adversarial Autoencoders,DAA)的跨模态检索方法.在自编码器的基础上设计两个对抗过程.全局对抗网络改进自编码器的模态内重构过程.生成模型通过自编码网络的学习生成编码表示并拟合输入特征的分布.判别模型试图区分输入特征和生成特征,使用对抗学习的思想使模态内的输入特征和重构特征难以判别.隐含层对抗网络的生成模型在生成模态不变表示的同时去除混淆判别模型一模态判别器.模态判别器作用是区分特征来自图像模态还是文本模态.为了缩小模态差异,本文定义多模第12期吴飞等:基于双对抗自编码器的跨模态检索1117态语义分类器,使同一语义不同模态的数据趋于聚集.通过极小极大的训练策略,最终图像模态数据和文本模态数据难以被区分.此外,在网络训练阶段,为了防止GAN在训练过程中造成的梯度消失等问题,在全局对抗网络和隐含层对抗网络的损失函数中引入最优传输散度和Wasserstein距离,并结合设计的对抗自编码器提出针对多模态数据的优化过程.本文方法联合双对抗网络模型,可有效消除模态间的分布差异,提升检索精度.1基于双对抗自编码器的跨模态检索1.1双对抗自编码器的网络结构不失一般性,本文采用图像和文本两个模态数据.给定一个跨模态检索的样本集O={o’}二1,0,= (v s,t s,l s)表示第s个样本的图像、文本、语义标签的组合.其中,儿沂R"" ,t s沂R,d,v d为图像特征维度,如为文本特征维度.值得注意的是,1,为独热(One-Hot)编码,是语义标签的二进制向量表示.赘={棕s}二|是样本集O的隐含表示,棕s=(v忆,t s,l s)表示第s个样本的图像、文本的隐含特征及语义标签的组合.图1为DAA总体框架.图1DAA总体框架Fig.1Overall framework of DAA如图1所示,对图像和文本两个模态分别提取CNN特征和词袋(Bag of Words,BoW)特征.中间虚线框标注隐含层对抗网络,对于图像特征V s和文本特征t s,分别经过自编码器/E”、/E”的学习,得到编码特征V和t s.经过多模态语义分类器的训练,不同模态同一语义的特征v S、t;趋于聚集.隐含层的判别器区分特征来自于图像模态或文本模态.v S和t s经过解码器几和f De的映射得到f De(V)和f De(ts).针对该解码输出,设计全局对抗网络,判别器尝试区分原始特征V s、t s和解码后的特征/De(V S)、/De(t's).通过双对抗学习机制,结合自编码器常采用的基于均方误差的重构损失,有效减小模态差异,更好地保留原始特征.1.2全局对抗网络f E”(V s;&E”)、/;”(t s;兹;”)表示图像和文本的两个模态数据的编码器的映射函数,/De(V's;&De), f D e(t';兹De)表示图像和文本的两个模态数据的解码器的映射函数,兹E”=:兹E”,兹E”],兹D e=:兹D e,兹D e]分别表示编码及解码阶段在图像和文本两个模态上神经网络的参数.以图像模态为例,原始特征V s经过九”(・)编码器的学习,得到编码特征V,该编码特征再经过解码器f De(-)的映射,重构原始特征V s.本文对自编码器这一过程的输入特征和重构特征构建z2损失函数及全局对抗损失函数:兹E”,兹D e)=1移II V s-f De(V')椰2,其中表示Z2范数.受到WGAN的启发,本文采用对抗损失函数:""""L Ag(兹E”,兹D e,兹A g)=[f Ag(x)]-E x~p[f Ag(x)],1data61G6其中,P da,a为自编码器图像模态的输入特征{V s丨二1, P g表示重构的图像模态特征{f De(V s)丨二1,f A g表示图像模态的全局判别器,本文使用参数为兹Ag的两层神经网络.与图像模态的损失函数定义类似,在文本模态上有损失函数:L A e(兹E”,兹D e)=^移椰t s-f De(t's)椰2,L Ag(兹E”,兹D e,兹A g)=E x~p[f Ag(x)]-E x~p[f Ag(x)].data G综合图像和文本两个模态的损失函数,全局对抗网络的生成器的损失函数为L Cg(兹E”,兹De)=-E一p G[f Ag(丘)]-E一p G】f Ag(丘)],(1)其中琢为损失函数的平衡因子.全局对抗网络的判别器的损失函数为L”g(兹Ag)=E x~p[f Ag(x)]-E x~p f g(x)]+data GE x~p[f Ag(x)]-E x~p[f Ag(x)].data(2)1118模式识别与人工智能(PR&AI)第33卷1.3隐含层对抗网络本文定义由三层神经网络构成模态判别器和f As.模态判别器的目标是在给定未知隐含特征投影的情况下,尽可能可靠地判别是图像模态还是文本模态.受到WGAN的启发,在处理多模态场景时,将图像模态的隐含特征作为真实样本,文本模态的隐含特征作为生成样本,有对抗损失函数:必兹E”,兹E”,氐)=E x~p[几(x)]x)],data G其中皿为图像模态的隐含特征{”忆}二,,P G为文本模态的隐含特征{t's}二,,几为隐含层的模态判别器,兹为模态判别器的网络参数.将文本模态隐含特征作为真实样本,图像模态的隐含特征作为生成样本,有损失函数:£(兹E”,兹E”必)=E x~p[几(X)]-E x~p[/As(x)].data G此外,为了充分利用标签信息,本文还采用多模态语义分类器,预测隐含层投影项的语义标签.它是一个以softmax为激活函数的单层神经网络.该分类器将图像模态和文本模态的隐含特征作为训练数据,并生成每项的语义类别的概率分布.使用概率分布表示多模态语义分类器的损失函数:L c(兹c)=_N移(Z s(ln(P(讥)+ln(p(t;))))),其中P(•)为每项的语义类别的概率分布.综合考虑两个模态,本文将隐含层对抗网络的生成器的损失函数定义如下:L g(兹E”,兹C)=BL c-E~~p[几(X)]-G(3)E~~p[几(X)],G其中茁为损失函数的平衡因子.隐含层对抗网络的判别器的损失函数定义如下:L”s(忍)=E x~p[几(x)]-E-p[几(X)]+dataE x~p[几(x)]-E—p[几(x)].data(4) 1.4算法步骤DAA由全局对抗网络和隐含层对抗网络组成.联合两个网络的生成模型和判别模型的损失函数(式(1)~式(4)),考虑生成模型和判别模型的优化目标相反,采用极小极大博弈策略进行优化.该博弈策略可使用随机梯度下降的优化算法实现,本文算法采用均方根传播(Root Mean Square Propagation,RMSprop)[l3]优化器,具体步骤如算法1所示,其中clip(兹,-c,c)将参数的绝对值截断到不超过c,c为一个固定常数.算法1DAA参数优化输入图像样本{v}二1,文本样本{t}二1,标签仏}二1输出图像模态的隐含特征{V;}二1,文本模态的隐含特征{t;}二1初始化全局生成对抗网络和隐含层生成对抗网络Dg、Gg、Ds、Gs・平衡因子琢=2,茁=5.初始化迭代次数S=100.批处理大小m=256,将数据集划分训练批次.生成器每迭代一次判别器的迭代次数n_critic=10.截断参数c=0.01.学习率r=0.001. for i=1,2,…,Sfor t=1,2,…,n_critic兹期饮兹Ag+r•RMSProp(e A g,v%(L D g))兹Ag饮cli p(兹Ag,-c,c)兹As饮^As+r•RMSProp(兹As,%s(L Ds))兹A s饮cli p(兹A s,-c,c)end forO En饮RMSPrOp(叽”,J”(Leg))0De饮O De-r•RMSProp(°D e,J De(L Gg)) O En饮漏"RMSProp(0En,▽%”(L Gs))O c饮O c-r^RMSProp(O c L Gs))end for2实验及结果分析2.1实验数据集本文采用2个广泛使用的数据集:Wikipedia数据集[10]和NUS-WIDE-10k数据集[7].这2个数据集都是由有标签的图像文本对构成.Wikipedia数据集是从维基百科特色文章中收集的,共有2866个图像文本对.每对图像和文本都是从同篇文章中提取.所有图像文本对都来自10个语义类,每对只有一个类标签.遵循文献[7]和文献[10]中的数据集划分规则:2173对样本用于训练, 462对样本用于测试.对于每幅图像,通过视觉几何组网络(Visual Geometry Group Network,VGGnet)的fc7层提取4096维特征.对于每个文本,提取3000维BoW向量.NUS-WIDE-10k数据集由10000幅网页图像组成,包括从flicker网站下载的10个语义概念.遵循文献[7]和文献[10]中的数据集划分规则:8000对第l2期吴飞等:基于双对抗自编码器的跨模态检索lll9样本用于训练,l000对样本用于测试.对于每幅图像,通过VGGnet的fc7层提取4096维特征.对于每个文本,提取l000维BoW向量.2.2对比方法和评估指标为了评估DAA的性能,选取如下方法进行对比:基于线性投影学习的跨模态检索方法(CCA[l]和CFA[2]),基于生成对抗网络和基于自编码器的跨模态检索方法(ACMR[l0]、Corr-AE[7]和MMSAE⑻).为了公平起见,这些方法统一采取和本文实验相同的实验设置.本文使用原作者提供的代码或实现原论文的运行方法,获得与公布结果匹配的检索结果.本文将2个跨模态检索任务用于测试:图像检索文本(V2T)和文本检索图像(T2V).利用平均精度均值(Mean Average Precision,mAP)评价检索性能,共同考虑总体排名信息和精度.平均精度(Average Precision,AP)定义为AP-丄移f M•旭1M移k k,k\丿其中,R为测试集样本的个数,M为检索结果中相关数据的个数,M k为检索的前k项里相关项的个数, rel k为相关性,检索结果相关,rel k=l,否则,rel k=0.平均所有查询的AP获得mAP.2.3网络设置细节本文设计自编码器网络,编码部分采用tanh激活函数的神经网络,将原始图像(V)和文本(T)特征非线性投影得到编码特征,三层网络的神经元个数分别为3000,l000,l00.解码部分同样采用tanh 激活函数的三层神经网络,试图将编码特征重构原始特征,三层网络的神经元个数分别为l00,l000, 3000.对于全局对抗网络,判别器采用LeakyReLU激活函数的两层网络,神经元个数分别为20,l.对于隐含层对抗网络,判别器采用LeakyReLU激活函数的三层网络,神经元个数分别为50,25,l.在训练过程中,超参数琢和茁这两个平衡因子通过网格搜索获取最佳值琢=2和茁=5.批处理大小最佳值为256.2.4实验结果及可视化分析Wikipedia、NUS-WIDE-l0k数据集上的mAP结果如表l和表2所示.由表可见,在图像检索文本任务(V2T)和文本检索图像任务(T2V)上,基于深度神经网络的方法(ACMR、Corr-AE、MMSAE、DAA)优于传统线性投影的方法(CCA、CFA).值得注意的是,DAA的mAP值最优.具体地,在Wikipedia数据集上图像到文本的检索及文本到图像的检索任务中,DAA分别至少提升0.098,0.076.在NUS-WIDE-l0k数据集上,DAA分别至少提升0.0l5,0.009.结果表明,DAA可有效提高跨模态检索的精度.表1各方法在Wikipedia数据集上的mAP值Table l mAP values of different methods on Wikipediadataset方法V2T T2V均值CCA0.2580.2500.254CFA0.3340.2970.3l6ACMR0.5l80.4l20.465Corr-AE0.4020.3950.399MMSAE0.52l0.4l90.470DAA0.6l90.4950.557表2各方法在NUS・WIDE・10k数据集上的mAP值Table2mAP values of different methods on NUS-WIDE-lOk dataset方法V2T T2V均值CCA0.2020.2200.2llCFA0.4000.2990.350ACMR0.5440.5380.54lCorr-AE0.3660.4l70.392MMSAE0.54l0.53l0.536DAA0.5590.5470.553为了直观研究DAA在缩小模态差异上的有效性,本文采用t分布随机邻域嵌入方法(t-Distributed Stochastic Neighbor Embedding,t-SNE)[l0]将图像和文本样本的表示嵌入二维可视化平面中.由于数据集样本很多,为了更清晰地展现样本的分布情况,本文随机选取Wikipedia数据集上图像模态的类别l、图像模态的类别2、文本模态的类别l、文本模态的类别2各50个样本,总计200个样本.将原始特征和经过DAA处理后的特征嵌入二维可视化平面中.多模态的可视化表示如图2所示,实心形状表示图像模态,空心形状表示文本模态,正方形表示类别l,星型表示类别2.图2(a),(d)分别是原始图像和文本提取的VGGnet和BoW特征的分布情况.可以看到, Wikipedia数据集上的图像模态和文本模态的分布呈现离散状,样本很难在原始输入空间中进行分类和检索.图2(b)、(e)为图像和文本表示在经过DAA处理后,输出的隐含特征的分布情况.从结果中可清楚ll20模式识别与人工智能(PR&AI)第33卷看到两个语义判别簇,模态内的同一语义标签的数据能够较好地聚合.图2(c)为原始图像和文本提取的VGGnet特征和BoW特征的分布情况.(f)为原始图像和文本经过DAA处理后,输出的隐含特征的分布情况.(c)中原始数据的语义和模态差异都很大,数据分布相对较离散.(f)中不同模态同一语义标签的数据能够较好地聚合,达到模态之间难以判别和缩小模态差异的目的.这表明:DAA可有效消除模态之间的差异,是处理多模态数据的一种有效方法.201010203040506070-20-100102030405060(a)原始图片特征投影(a)Feature projection of original image(b)DAA输出的图片特征投影(b)Feature projection of image outputby DAA(c)原始图片和文本特征投影( c)Feature projection of original imageand text0204050 -40-202010102030405060-100102030405060201010203040506070-20-100102030405060(d)原始文本特征投影(d)Feature projection of original text(e)DAA输出的文本特征投影(e)Feature projection of text outputby DAA(f)DAA输出的图片和文本特征投影(f)Feature projection of image and textoutput by DAA图2多模态数据的可视化表示Fig.2Visualization of multimodal data3结束语本文提出基于双对抗自编码器(DAA)的跨模态检索,改进自编码器的结构,减小多模态数据分布的差异,提升检索精度.使用全局对抗网络改进自编码器模态内的重构过程,使用隐含层对抗网络生成模态不变的表示并缩小模态之间的差异.实验表明, DAA可获得较好的检索性能.今后考虑采用哈希方法设计深度网络,提升跨模态检索的速率和精确率.参考文献[l]RASIWASIA N,PEREIRA J C,COVIELLO E,et al.A New Approach to Cross-Modal Multimedia Retrieval//Proc of the l8thACM International Conference on Multimedia.New York,LSA: ACM,20l0:25l-260.[2]LI D G,DIMITROVA N,LI M K,et al.Multimedia Content Pro­cessing through Cross-Modal Association//Proc of the11th ACM International Conference on Multimedia.New York,USA:ACM, 2003:604-611.[3]WANG K Y,HE R,WANG L,et al.Joint Feature Selection andSubspace Learning for Cross-Modal Retrieval.IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(10):2010-2023.[4]吴帅,徐勇,赵东宁.基于深度卷积网络的目标检测综述.模式识别与人工智能,2018,31(4):335-346.(Wl S,XU Y,ZHAO D N.Survey of Object Detection Based on Deep Convolutional Network.Pattern Recognition and Artificial In­telligence,2018,31(4):335-346.)[5]WEI Y C,ZHAO Y,LU C Y,et al.Cross-Modal Retrievalwith第12期吴飞等:基于双对抗自编码器的跨模态检索1121CNN Visual Features:A New Baseline.IEEE Transactions on Cy­bernetics,2017,47(2):449-460.[6]王杰,张曦煌.基于图卷积网络和自编码器的半监督网络表示学习模型.模式识别与人工智能,2019,32(4):317-325.(WANG J,ZHANG X H.Semi-supervised Network RepresentationLearning Model Based on Graph Convolutional Networks and AutoEncoder.Pattern Recognition and Artificial Intelligence,2019,32(4):317-325.)[7]FENG F X,WANG X J,LI R F.Cross-Modal Retrieval with Corre­spondence Autoencoder//Proc of the22nd ACM International Con­ference on Multimedia.New York,USA:ACM,2014:7-16.[8]WU Y L,WANG S H,HUANG Q M.Multi-modal Semantic Au­toencoder for Cross-Modal Retrieval.Neurocomputing,2019,331(28):165-175.[9]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Ge­nerative Adversarial Nets//Proc of the27th International Confer­ence on Neural Information Processing Systems.Cambridge,USA:The MIT Press,2014,II:2672-2680.[10]WANG B K,YANG Y,XU X,et al.Adversarial Cross-Modal Re­trieval//Proc of the25th ACM International Conference on Multi­media.New York,USA:ACM,2017:154-162.[11]XU X,HE L,LU H M,et al.Deep Adversarial Metric Learningfor Cross-Modal Retrieval.World Wide Web,2019,22(2):657­672.[12]PENG Y X,QI J W,YUAN Y X.CM-GANs:Cross-Modal Gene­rative Adversarial Networks for Common Representation Learning.ACM Transactions on Multimedia Computing,Communications,and Applications,2019,15(1).DOI:10.1145/3284750.[13]ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein Genera­tive Adversarial Networks//Proc of the34th International Confe­rence on Machine Learning.New York,USA:ACM,2017:214­223.II作者简介吴飞(通讯作者),博士,讲师,主要研究方向为模式识别、机器学习、软件工程.E-mail:wufei_8888@.(WU Fei(Corresponding author),Ph.D.,lecturer.His research interests include pa­ttern recognition,machine learning and soft­ware engineering.)罗晓开,硕士研究生,主要研究方向为模式识别、深度学习.E-mail:1018051336@njupt. .(LUO Xiaokai,master student.His re­search interests include pattern recognition and deep learning.)韩璐,博士,讲师,主要研究方向为模式识别、机器学习.E-mail:hanl@. (HAN Lu,Ph.D.,lecturer.Her research interests include pattern recognition and ma­chine learning.)郑鑫浩,硕士研究生,主要研究方向为模式识别、深度学习.E-mail:1358421285@qq. com.(ZHENG Xinhao,master student.His re­search interests include pattern recognition and deep learning.)肖梁,本科生.E-mail:569087693@qq. com.(XIAO Liang,undergraduate student.)帅子珍,硕士研究生,主要研究方向为模式识别、深度学习.E-mail:1716252424@qq. com.(SHUAI Zizhen,master student.Her re­search interests include pattern recognition and deep learning.)荆晓远,博士,教授,主要研究方向为模式识别、图像处理、机器学习.E-mail:jingxy_ 2000@.(JING Xiaoyuan,Ph. D.,professor.His research interests include pattern recognition, image processing and machine learning.)。

关于寻找的文案短句英语

关于寻找的文案短句英语

关于寻找的文案短句英语Title: Unveiling the Essence of Search: A Journey of DiscoveryIntroduction:In the digital age, the significance of search has amplified tremendously. It has become an integral part of our daily lives, enabling us to find information, explore new knowledge, and connect with the world. Yet, beneath its seemingly simple interface lies a fascinating network, propelled by complex algorithms and intricate processes. This article delves into the intricacies of search, exploring its essence, significance, and the role it plays in our lives.1. Overview:1.1 The Power of SearchFrom satisfying our curiosities to finding products, services, and more, search engines have revolutionized the way we navigate the vast sea of information available online. A seemingly endless array of search queries can be met with an immediate response, presenting us with relevant content that matches our specific needs. The ease and convenience ofsearch technology have become indispensable in our quest for knowledge and efficiency.1.2 The Evolution of SearchWith the advancement of technology, search engines have evolved to provide increasingly accurate and personalized results. These algorithms analyze vast amounts of data, considering factors such as location, user preferences, and previous search history to deliver tailored results. Frombasic keyword matching to semantic analysis and machine learning, search has grown in sophistication, striving to understand our intentions and provide us with more relevant answers.1.3 Search as a Reflection of SocietySearch engines, in essence, serve as mirrors that reflect the interests, concerns, and desires of society. By analyzing search trends and patterns, researchers gain valuableinsights into the collective consciousness and ever-changing dynamics of our global community. Search data not only helps businesses make informed decisions but also aids policymakers in understanding societal needs and addressing pressing issues.1.4 The Challenges of SearchBehind the scenes, search engines face numerous challenges. Ensuring the quality and reliability of search results, combating misinformation, and balancing user privacy are ongoing pursuits. Striking a harmonious balance between relevant commercial content and organic search results is another challenge search engines navigate. Continuous advancements are made to improve the accuracy, speed, and inclusivity of search, enhancing user experiences in the vast virtual realm.Conclusion:Search has transcended its initial purpose of helping us find answers. It has become an essential tool for exploration, discovery, and connection in our digitally connected world. As we rely on search engines to navigate the vast expanse of information, it is imperative to understand its complexities, appreciate its significance, and continually adapt to its ever-evolving landscape. With each search, we embark on aremarkable journey of knowledge and understanding, unlocking new possibilities with every click. So, embrace the power of search and embark on your own quest for discovery.。

Electronics and Computer Science, University of Southampton,

Electronics and Computer Science, University of Southampton,

eCHASE:Exploiting Cultural Heritage using the Semantic WebP.Sinclair,P.Lewis and K.Martinez Electronics and Computer Science, University of Southampton,SO171BJ,United Kingdompass,phl,km@ M.Addis,A.Pillinger and D.Prideaux IT Innovation Centre,Southampton,SO167NP,United Kingdommja,agp,djp@AbstractThe eCHASE project is using semantic web tech-nologies to demonstrate sustainable business mod-els based on access and exploitation of digital cul-tural heritage content at a European level.In thispaper we describe the eCHASE project and outlinethe system architecture.1IntroductionThe European Commission supported eCHASE(electronic Cultural Heritage made Accessible for Sustainable Exploita-tion)project is developing sustainable models for accessing and using public sector cultural heritage content.We use Semantic Web technology to add value through aggregation and contextualisation of cultural heritage content from mul-tiple sources.Aggregation in eCHASE means creating one or more narrative threads that link multiple items of content from multiple sources together into an overall context.For example,this might be a richly connected set of images,video and text that covers the life-story of a particular artist includ-ing the works of art they created,where they worked,who they worked with,and the influence of the society in which they lived.This richly connected multimedia collection then forms the basis for adding further value through the creation of appealing editorial content products in education and pub-lishing.Currently,our content providers include two photo libraries (Fratelli Alinari and Getty Images),a publisher(De Agos-tini)and a television broadcaster(ORF).We are also engag-ing with other cultural heritage institutions including muse-ums and libraries to involve them in the project.All these institutions are providing content according to various inter-pretations of a theme entitled’wandering borders in Eastern Europe’.This provides an interesting and challenging set of multimedia and multilingual content with which we are ex-ploring how semantic web and knowledge technologies can provide new ways for subject experts and creative profession-als to explore,navigate,link and annotate the content into editorial products.2DemonstratorWe are developing a centralised portal where editorial prod-uct authors can search and browse our content partners collec-tions for media they require to produce a content product.By providing facilities to collect and annotate groups of relevant objects,media and metadata about these objects can then be exported into various content authoring packages where the high quality,editorial product can be developed.From our experiences in the Sculpteur project[Sinclair et al.,2005],the ability to explore and navigate relationships is an important feature of the semantic web for the cultural heritage domain.Collections from different institutions of-ten overlap,with media relating to the same people,places, themes,periods and events.Due to the heterogeneous na-ture of different collections and metadata systems,exploiting this overlap raises serious technical issues:metadata schemas must be mapped and legacy data must be cleaned and trans-formed.Moreover,not only are advanced visualisation tech-niques let down by badly structured metadata,they often highlight and reinforce the problems.The Sculpteur architecture included a Search and Retrieval Web Service(SRW)[z39.50SRW,2005]that exposed mu-seum metadata schemas through the CIDOC Conceptual Ref-erence Model(CRM)[Doerr,2003],a reference model for the interchange of information in the cultural heritage do-main,by dynamically applying mappings to the legacy data. In eCHASE,we are providing a framework for cleaning and transforming the different legacy metadata systems into a well structured,unified knowledge base.Processing and in-dexing the legacy metadata into a consistent format will im-prove the effectiveness of innovative visualisation techniques accessing the repository through the SRW.Various sources of authority data,such as gazetteer and domain thesauri,are used to support the indexing and map-ping processes.These involve semantic web technologies, including SKOS[SKOS,2005]for structuring and serving thesauri information,and we have converted gazetteer infor-mation into CRM-modelled RDF.We are also considering existing automatic and semi-automatic thesauri and classifi-cation mapping and matching approaches for consolidating the different classifications used by our content partners. Facilities for collecting and annotating objects and groups of objects are key to the eCHASE architecture.We are ex-tending the Sculpteur light box component so that users can add their own descriptions and content,and manage groups of objects.We are investigating strategies for semantically integrating user created annotations back into the metadatarepository.2.1Semantic HarmonisationThe initial work on eCHASE has focused on maximising the quality of aggregation of media and metadata content from our partners collections.Our content providers currently de-liver media and metadata electronically by uploading(e.g. FTP)or mailing a CD or DVD;we are also considering har-vesting techniques,such as OAI.The metadata is provided in various formats,ranging from database dumps and XML to Microsoft Excel spreadsheets and CSVfiles.We have developed a metadata importer that performs cleanup and integration tasks on the legacy metadata collec-tions so that it can be collected in a unified metadata repos-itory.Performing the mapping from different metadata sys-tems,with a variety of approaches to structuring information, to a consistent unified structured is a complex task involv-ing format and encoding issues,data cleanup,schema trans-formations and identity consolidation across different collec-tions.We are employing workflow enactor system to break down these problems into a series of reusable modular ser-vices that can be configured into a workflow for transforming each collection.In our experiences with the Sculpteur project,much of the rich information in the cultural heritage metadata systems is handled as unstructured textual information,such as free text descriptionfields.We are considering the use of knowledge mining and extraction tools for extracting this information, but for thefirst prototype we are only providing basic textual search facilities.For efficiency and scalability reasons,espe-cially in handling free text searching,we are using a relational database to manage the the unified knowledge base.We also consider that the bulk of metadata cleaning and transforma-tion processes are well suited to relational database systems. The Sculpteur SRW can dynamically map records to CIDOC CRM structured XML,that can be converted to RDF through the use of XSLT.The unified metadata repository consists of three areas: legacy,indexes and mapped data.Legacy data is stored in its original structure,which is useful for providing searching and display facilities.We are using several indexing strate-gies for improving queries on free text descriptionfields;the indexes are stored in the repository to improve the efficiency of searches.A subset of each collection’s metadata is mapped into a highly structured unified database schema,the design of which has been strongly influenced by the CIDOC CRM. The type of information mapped involves information on peo-ple,places,dates and categorisation information such as do-main thesauri and controlled lists.This information is essen-tial to support innovative browsing facilities,and can also be used to improve search results.2.2Media EngineThe eCHASE architecture includes a media engine for serv-ing media and providing content-based querying facilities us-ing algorithms from Sculpteur,including searches based on colour or texture.The media engine is self contained,and provides tools and a user interface to support import and maintenance of the media collections,for example the gener-ation of media descriptors for the content-based algorithms. We are also investigating the integration of ongoing work at Southampton on classification and automatic semantic anno-tation of media.2.3eCHASE PortalThe eCHASE portal provides searching and browsing of con-tent and a facility to collect and annotate groups of objects that users are interested in.The purpose of the web applica-tion search engine is to assist authors and experts to develop, manage,visualise,navigate,search and exploit valuable dig-ital resources in the eCHASE repository.The system also provides search and retrieval of large multimedia collections by remote third-party applications.The portal supports several different methods of searching: text and content based queries and a browsing interface.Tex-tual queries can be run on the data in the unified metadata repository,and the portal exposes the content-based search-ing facilities provided by the media engine system.Browsing is provided by an mSpace interface[m.c.schraefel et al., 2003],an interaction model designed to allow the navigation of multi-dimensional spaces.The portal supports a search and retrieval protocol based on the SRW specification developed by the z39.50commu-nity,providing a search operation to handle common query language(CQL)queries and an explain operation to tell exter-nal systems what schema are supported.The SRW supports queries based on each collection’s legacy metadata schema, the unified database schema and is also able to dynamically map from the unified database schema into a CRM-based structure.3ConclusionIn this paper we have introduced eCHASE and given an overview of the software framework being developed for the project.References[Doerr,2003]Martin Doerr.The CIDOC Conceptual Refer-ence Model:An ontological approach to semantic interop-erability of metadata.AI Magazine,24(3):75–92,Septem-ber2003.[m.c.schraefel et al.,2003]m.c.schraefel,M.Karam,and S.Zhao.mSpace:Interaction design for user-determined, adaptable domain exploration in hypermedia.In P.De Bra, editor,AH2003:Workshop on Adaptive Hypermedia and Adaptive Web Based Systems,pages217–235,2003. [Sinclair et al.,2005]P.A.S.Sinclair,S.Goodall,P.H.Lewis,K.Martinez,and M.J.Addis.Concept brows-ing for multimedia retrieval in the SCULPTEUR project.In Proceedings of the Multimedia and the Semantic Web Workshop,European Semantic Web Conference,2005. [SKOS,2005]SKOS.Simple knowledge organisation sys-tem(SKOS)/2004/02/skos/,2005.[z39.50SRW,2005]z39.50SRW./z3950/agency/zing/srw/,2005.。

自然语言处理及计算语言学相关术语中英对译表三_计算机英语词汇

自然语言处理及计算语言学相关术语中英对译表三_计算机英语词汇

multilingual processing system 多语讯息处理系统multilingual translation 多语翻译multimedia 多媒体multi-media communication 多媒体通讯multiple inheritance 多重继承multistate logic 多态逻辑mutation 语音转换mutual exclusion 互斥mutual information 相互讯息nativist position 语法天生假说natural language 自然语言natural language processing (nlp) 自然语言处理natural language understanding 自然语言理解negation 否定negative sentence 否定句neologism 新词语nested structure 崁套结构network 网络neural network 类神经网络neurolinguistics 神经语言学neutralization 中立化n-gram n-连词n-gram modeling n-连词模型nlp (natural language processing) 自然语言处理node 节点nominalization 名物化nonce 暂用的non-finite 非限定non-finite clause 非限定式子句non-monotonic reasoning 非单调推理normal distribution 常态分布noun 名词noun phrase 名词组np (noun phrase) completeness 名词组完全性object 宾语{语言学}/对象{信息科学}object oriented programming 对象导向程序设计[面向对向的程序设计]official language 官方语言one-place predicate 一元述语on-line dictionary 线上查询词典 [联机词点]onomatopoeia 拟声词onset 节首音ontogeny 个体发生ontology 本体论open set 开放集operand 操作数 [操作对象]optimization 最佳化 [最优化]overgeneralization 过度概化overgeneration 过度衍生paradigmatic relation 聚合关系paralanguage 附语言parallel construction 并列结构parallel corpus 平行语料库parallel distributed processing (pdp) 平行分布处理paraphrase 转述 [释意;意译;同意互训]parole 言语parser 剖析器 [句法剖析程序]parsing 剖析part of speech (pos) 词类particle 语助词part-of relation part-of 关系part-of-speech tagging 词类标注pattern recognition 型样识别p-c (predicate-complement) insertion 述补中插pdp (parallel distributed processing) 平行分布处理perception 知觉perceptron 感觉器 [感知器]perceptual strategy 感知策略performative 行为句periphrasis 用独立词表达perlocutionary 语效性的permutation 移位petri net grammar petri 网语法philology 语文学phone 语音phoneme 音素phonemic analysis 因素分析phonemic stratum 音素层phonetics 语音学phonogram 音标phonology 声韵学 [音位学;广义语音学] phonotactics 音位排列理论phrasal verb 词组动词 [短语动词]phrase 词组 [短语]phrase marker 词组标记 [短语标记]pitch 音调pitch contour 调形变化pivot grammar 枢轴语法pivotal construction 承轴结构plausibility function 可能性函数pm (phrase marker) 词组标记 [短语标记] polysemy 多义性pos-tagging 词类标记postposition 方位词pp (preposition phrase) attachment 介词依附pragmatics 语用学precedence grammar 优先级语法precision 精确度predicate 述词predicate calculus 述词计算predicate logic 述词逻辑 [谓词逻辑]predicate-argument structure 述词论元结构prefix 前缀premodification 前置修饰preposition 介词prescriptive linguistics 规定语言学 [规范语言学] presentative sentence 引介句presupposition 前提principle of compositionality 语意合成性原理privative 二元对立的probabilistic parser 概率句法剖析程序problem solving 解决问题program 程序programming language 程序设计语言 [程序设计语言] proofreading system 校对系统proper name 专有名词prosody 节律prototype 原型pseudo-cleft sentence 准分裂句psycholinguistics 心理语言学punctuation 标点符号pushdown automata 下推自动机pushdown transducer 下推转换器qualification 后置修饰quantification 量化quantifier 范域词quantitative linguistics 计量语言学question answering system 问答系统queue 队列radical 字根 [词干;词根;部首;偏旁]radix of tuple 元组数基random access 随机存取rationalism 理性论rationalist (position) 理性论立场 [唯理论观点]reading laboratory 阅读实验室real time 实时real time control 实时控制 [实时控制]recursive transition network 递归转移网络reduplication 重叠词 [重复]reference 指涉referent 指称对象referential indices 指针referring expression 指涉词 [指示短语]register 缓存器[寄存器]{信息科学}/调高{语音学}/语言的场合层级{社会语言学}regular language 正规语言 [正则语言]relational database 关系型数据库 [关系数据库]relative clause 关系子句relaxation method 松弛法relevance 相关性restricted logic grammar 受限逻辑语法resumptive pronouns 复指代词retroactive inhibition 逆抑制rewriting rule 重写规则rheme 述位rhetorical structure 修辞结构rhetorics 修辞学robust 强健性robust processing 强健性处理robustness 强健性schema 基朴school grammar 教学语法scope 范域 [作用域;范围]script 脚本search mechanism 检索机制search space 检索空间searching route 检索路径 [搜索路径]second order predicate 二阶述词segmentation 分词segmentation marker 分段标志selectional restriction 选择限制semantic field 语意场semantic frame 语意架构semantic network 语意网络semantic representation 语意表征 [语义表示] semantic representation language 语意表征语言semantic restriction 语意限制semantic structure 语意结构semantics 语意学sememe 意素semiotics 符号学sender 发送者sensorimotor stage 感觉运动期sensory information 感官讯息 [感觉信息]sentence 句子sentence generator 句子产生器 [句子生成程序]sentence pattern 句型separation of homonyms 同音词区分sequence 序列serial order learning 顺序学习serial verb construction 连动结构set oriented semantic network 集合导向型语意网络 [面向集合型语意网络]sgml (standard generalized markup language) 结构化通用标记语言shift-reduce parsing 替换简化式剖析short term memory 短程记忆sign 信号signal processing technology 信号处理技术simple word 单纯词situation 情境situation semantics 情境语意学situational type 情境类型social context 社会环境sociolinguistics 社会语言学software engineering 软件工程 [软件工程]sort 排序speaker-independent speech recognition 非特定语者语音识别spectrum 频谱speech 口语speech act assignment 言语行为指定speech continuum 言语连续体speech disorder 语言失序 [言语缺失]speech recognition 语音辨识speech retrieval 语音检索speech situation 言谈情境 [言语情境]speech synthesis 语音合成speech translation system 语音翻译系统speech understanding system 语音理解系统spreading activation model 扩散激发模型standard deviation 标准差standard generalized markup language 标准通用标示语言start-bound complement 接头词state of affairs algebra 事态代数state transition diagram 状态转移图statement kernel 句核static attribute list 静态属性表statistical analysis 统计分析statistical linguistics 统计语言学statistical significance 统计意义stem 词干stimulus-response theory 刺激反应理论stochastic approach to parsing 概率式句法剖析 [句法剖析的随机方法]stop 爆破音stratificational grammar 阶层语法 [层级语法]string 字符串[串;字符串]string manipulation language 字符串操作语言string matching 字符串匹配 [字符串]structural ambiguity 结构歧义structural linguistics 结构语言学structural relation 结构关系structural transfer 结构转换structuralism 结构主义structure 结构structure sharing representation 结构共享表征subcategorization 次类划分 [下位范畴化] subjunctive 假设的sublanguage 子语言subordinate 从属关系subordinate clause 从属子句 [从句;子句] subordination 从属substitution rule 代换规则 [置换规则] substrate 底层语言suffix 后缀superordinate 上位的superstratum 上层语言suppletion 异型[不规则词型变化] suprasegmental 超音段的syllabification 音节划分syllable 音节syllable structure constraint 音节结构限制symbolization and verbalization 符号化与字句化synchronic 同步的synonym 同义词syntactic category 句法类别syntactic constituent 句法成分syntactic rule 语法规律 [句法规则]syntactic semantics 句法语意学syntagm 句段syntagmatic 组合关系 [结构段的;组合的] syntax 句法systemic grammar 系统语法tag 标记target language 目标语言 [目标语言]task sharing 课题分享 [任务共享] tautology 套套逻辑 [恒真式;重言式;同义反复] taxonomical hierarchy 分类阶层 [分类层次] telescopic compound 套装合并template 模板temporal inference 循序推理 [时序推理] temporal logic 时间逻辑 [时序逻辑] temporal marker 时貌标记tense 时态terminology 术语text 文本text analyzing 文本分析text coherence 文本一致性text generation 文本生成 [篇章生成]text linguistics 文本语言学text planning 文本规划text proofreading 文本校对text retrieval 文本检索text structure 文本结构 [篇章结构]text summarization 文本自动摘要 [篇章摘要] text understanding 文本理解text-to-speech 文本转语音thematic role 题旨角色thematic structure 题旨结构theorem 定理thesaurus 同义词辞典theta role 题旨角色theta-grid 题旨网格token 实类 [标记项]tone 音调tone language 音调语言tone sandhi 连调变换top-down 由上而下 [自顶向下]topic 主题topicalization 主题化 [话题化]trace 痕迹trace theory 痕迹理论training 训练transaction 异动 [处理单位]transcription 转写 [抄写;速记翻译]transducer 转换器transfer 转移transfer approach 转换方法transfer framework 转换框架transformation 变形 [转换]transformational grammar 变形语法 [转换语法] transitional state term set 转移状态项集合transitivity 及物性translation 翻译translation equivalence 翻译等值性translation memory 翻译记忆transparency 透明性tree 树状结构 [树]tree adjoining grammar 树形加接语法 [树连接语法] treebank 树图数据库[语法关系树库]trigram 三连词t-score t-数turing machine 杜林机 [图灵机]turing test 杜林测试 [图灵试验]type 类型type/token node 标记类型/实类节点type-feature structure 类型特征结构typology 类型学ultimate constituent 终端成分unbounded dependency 无界限依存underlying form 基底型式underlying structure 基底结构unification 连并 [合一]unification-based grammar 连并为本的语法 [基于合一的语法] universal grammar 普遍性语法universal instantiation 普遍例式universal quantifier 全称范域词unknown word 未知词 [未定义词]unrestricted grammar 非限制型语法usage flag 使用旗标user interface 使用者界面 [用户界面]valence grammar 结合价语法valence theory 结合价理论valency 结合价variance 变异数 [方差]verb 动词verb phrase 动词组 [动词短语]verb resultative compound 动补复合词verbal association 词语联想verbal phrase 动词组verbal production 言语生成vernacular 本地话v-o construction (verb-object) 动宾结构vocabulary 字汇vocabulary entry 词条vocal track 声道vocative 呼格voice recognition 声音辨识 [语音识别]vowel 元音vowel harmony 元音和谐 [元音和谐]waveform 波形weak verb 弱化动词whorfian hypothesis whorfian 假说word 词word frequency 词频word frequency distribution 词频分布word order 词序word segmentation 分词word segmentation standard for chinese 中文分词规范word segmentation unit 分词单位 [切词单位]word set 词集working memory 工作记忆 [工作存储区]world knowledge 世界知识writing system 书写系统x-bar theory x标杠理论 ["x"阶理论]zipf's law 利夫规律 [齐普夫定律]。

电影《达芬奇密码》的多模态话语分析的开题报告

电影《达芬奇密码》的多模态话语分析的开题报告

电影《达芬奇密码》的多模态话语分析的开题报告题目:电影《达芬奇密码》的多模态话语分析研究背景和意义:多模态话语分析是文本分析领域中的一种新方法,它不仅考察语言,还关注了其他辅助传达信息的模态,比如图像、音乐等。

而电影作为一种多模态的艺术形式,是研究多模态话语分析的理想对象之一。

电影《达芬奇密码》是一部2006年的犯罪惊悚片,讲述了自然学家派特森和女孩索菲亚在追寻达芬奇藏匿了什么秘密的过程中陷入了企图毁掉基督教的神秘组织的危机。

影片通过对话、动作、画面和音乐等多种模态表达信息,呈现出了丰富的话语内容。

因此,通过对电影《达芬奇密码》中的多模态话语进行分析,既有助于深入了解影片传达的信息,也对多模态话语分析方法的研究有一定的贡献。

研究内容:本研究计划分别从对话、动作、画面和音乐四个方面对《达芬奇密码》中的多模态话语进行分析。

1. 对话分析对话是电影传递信息的重要方式之一。

通过对对话语言、语调、节奏等维度进行分析,可以深入了解人物的性格、情感、思考方式等信息。

此外,对话还可以揭示出影片的主题和观点。

本研究将对影片中的对话进行文本分析,并从语言层面探讨电影所要表达的信息。

2. 动作分析电影中的动作是完成角色情感表达,塑造人物形象等方面具有重要作用的多模态话语形式。

通过对动作的视觉分析,可以深入了解人物特质、情感状态等信息。

同时,动作还可以放大或缩小人物的身体语言,辅助对话的传递,更为直接地表达角色内心感受。

因此,本研究将从动作分析的角度研究影片中的多模态话语。

3. 画面分析影片中的画面可以通过色彩、构图、视角等手段表达信息,是影片另一个重要的多模态话语形式。

画面的排列、镜头切换等手法可以尤为精准地表达人物的情感、事件的发展等信息。

同时,作为电影中的视觉元素,画面可以增强观众的视觉体验,更形象地传达影片所要表达的信息。

因此,本研究将从画面分析的角度对电影中的多模态话语进行研究。

4. 音乐分析音乐是一种重要的多模态话语形式,可以增加影片的情感渲染力,为影片增加引人入胜的氛围。

深度学习文本匹配简述

深度学习文本匹配简述

深度学习⽂本匹配简述深度⽂本匹配⽅法近期在看有关于相似⽂本检索的论⽂,但是发现这个⽅向模型和论⽂太多,为了⽅便⾃⼰看,简单做了个整理。

匹配⽅法可以分为三类:基于单语义⽂档表达的深度学习模型(基于表⽰)基于单语义⽂档表达的深度学习模型主要思路是,⾸先将单个⽂本先表达成⼀个稠密向量(分布式表达),然后直接计算两个向量间的相似度作为⽂本间的匹配度。

基于多语义⽂档表达的深度学习模型(基于交互)基于多语义的⽂档表达的深度学习模型认为单⼀粒度的向量来表⽰⼀段⽂本不够精细,需要多语义的建⽴表达,更早地让两段⽂本进⾏交互,然后挖掘⽂本交互后的模式特征,综合得到⽂本间的匹配度。

BERT及其后辈⽂本匹配虽然⽂本匹配在BERT出现以前⼀直是以两类模型主导,但其实⽂本匹配是⼀个⼴泛的概念,在⽂本匹配下⾯还有许多的任务,正如下表所⽰:1.复述识别(paraphrase identification)⼜称释义识别,也就是判断两段⽂本是不是表达了同样的语义,即是否构成复述(paraphrase)关系。

有的数据集是给出相似度等级,等级越⾼越相似,有的是直接给出0/1匹配标签。

这⼀类场景⼀般建模成分类问题。

2.⽂本蕴含识别(Textual Entailment)⽂本蕴含属于NLI(⾃然语⾔推理)的⼀个任务,它的任务形式是:给定⼀个前提⽂本(text),根据这个前提去推断假说⽂本(hypothesis)与⽂本的关系,⼀般分为蕴含关系(entailment)和⽭盾关系(contradiction),蕴含关系(entailment)表⽰从text中可以推断出hypothesis;⽭盾关系(contradiction)即hypothesis与text⽭盾。

⽂本蕴含的结果就是这⼏个概率值。

3.问答(QA)问答属于⽂本匹配中较为常见的任务了,这个任务也⽐较容易理解,根据Question在段落或⽂档中查找Answer,但是在现在这个问题常被称为阅读理解,还有⼀类是根据Question查找包含Answer的⽂档,QA任务常常会被建模成分类问题,但是实际场景往往是从若⼲候选中找出正确答案,⽽且相关的数据集也往往通过⼀个匹配正例+若⼲负例的⽅式构建,因此往往建模成ranking问题。

互联网时代中式英语的成因及特点

互联网时代中式英语的成因及特点

2262019年07期总第447期ENGLISH ON CAMPUS互联网时代中式英语的成因及特点文/张晓霞被网友轻易喜爱。

通过网络的运用,网络化的中式英语逐渐得到广泛的传播。

3.模因的复制功能而产生。

模因论主要是将达尔文的进化论作为基础,对文化规律进行解释的一种理论。

其主要是指文化领域当中人与人之间互相模仿、散播而形成的一种思想或者注意,且在后代逐渐相传而留下来。

模因(meme)使用了和基因(gene)相似的发音,意思为由于相同基因而造成相似,因此,模因也被称作为文化基因。

模因通常被作为文化进行传递的单位,例如,观念、行为方式、语言等的传递,通常与生物进化当中的遗传复制相似,其不相同的是,基因主要是通过遗传进行繁殖,而模因主要是通过模仿进行传播。

例如,ungelivable该词的逐渐流传,网友还按照该词创造出更新、更类似的网络化的中式英语,如Vegeteal,niubility等。

例如,在2009年的时候,中国网民所发现的新型的流行词“躲猫猫”,其后来被收录在上海译文出版社新编的《汉英大词典》当中,并被翻译为“hide-and-seek”,后来,网民们又将“suicide”(自杀)和“hide”相结合形成新词“suihide”,且该词在网络上逐渐得到广泛传播。

2013年,微博上出现的“不作死不会死”,其在网络上被翻译为“no zuo no die”,且该词在2014的时候,被收录在“Urban Dictionary”的美国俗语和俚语网站中,因此,这也是中式英语产生以及实现广为流传的一项原因。

二、网络中式英语的特点1.评价性。

网络中式英语通常具有一定的评价意义,其将说话者对事物的的态度、描述和看法真实的反映出来。

网络当中所流行的中式英语通常有很多都与Niubility具有相似的构成方式,也就是派生发,派生法通常包括两种,一种为前缀,一种后缀,一般来说,前缀只能对词的意义进行改变,不会导致词类的变化;而后缀通常会改变词类,不会导致词义的变化,只是种态度。

基于改进ManTra-Net_网络的图像篡改检测

基于改进ManTra-Net_网络的图像篡改检测

71基于改进ManTra-Net 网络的图像篡改检测陈赵乐,张洪志(三峡大学计算机与信息学院,湖北宜昌443002)摘要:篡改后的图像经常被用于恶意的谣言,威胁社会的稳定性,因此对篡改图像进行检测有利于维持社会信息的准确性。

当前,篡改检测技术已经取得了重大进展,但精确识别和定位被篡改的图像区域依旧是一项极具挑战的工作。

传统的篡改检测方法只针对某一特定的篡改类型,难以同时针对多种类型的篡改,普遍精度不高,并且检测定位不准确。

因而本文提出了一种基于ManTraNet 网络的图像篡改检测方法,首先利用ManTra-Net 局部异常模块来获取图像篡改信息,使得对图像检测时有聚焦点,其次利用注意力机制来提高对篡改信息的关注,忽略无关的语义信息,增强模型的学习能力,并且基于Unet 提出一种新的提取特征网络,提取更加有效且空间信息完整的特征。

与RGB-N 、SPAN 、NOI1、RCR-CNN 、ManTra-Net 五个模型进行比较,实验结果显示本文提出的算法具有相对较高的检测和定位精度。

关键词:ManTraNet ;特征提取;注意力机制中图分类号:TP18文献标识码:A文章编号:2096-9759(2023)07-0071-03Image Tampering Detection Based on Improved ManTra-Net NetworkCHEN ZhaoLe,ZHANG Hongzhi(College of Computer and Information Technology,China Three Gorges University,Hubei Yichang 443002,China )Abstract:Tampered images are often used in malicious rumors that threaten the stability of society,so detection of tampered images is beneficial to maintain the accuracy of social information.Tampering detection algorithms exist,and accurately detec-ting and locating image tampered regions is still a challenging task at present.Traditional tampering detection methods only tar-get a specific type of tampering,making it difficult to detect multiple types of tampering at the same time,generally with low accuracy,and inaccurate detection and localization.Thus,this paper proposes a ManTraNet network-based image tampering de-tection method,firstly,using the ManTra-Net local anomaly module to obtain image tampering information,which makes a fo-cus on image detection,secondly,using the attention mechanism to improve the focus on tampering information,ignoring irrel-evant semantic information,enhancing the learning ability of the model,and proposing a new Unet-based network for extracting features,which extracts more effective and spatially informative paring with five models,RGB-N,SPAN ,NOI1,RCR-CNN,and ManTra-Net,the experimental results show that the algorithm proposed in this paper has relatively high detec-tion and localization accuracy.Keywords:ManTraNet;feature extraction;Attention mechanism0引言信息时代的发展,各种信息传播平台层出不穷,信息的获取以及修改美化变得随处可见,PS 的技术也越来越便捷,修图软件日益丰富多彩。

基于多头自注意力模型的本体匹配方法

基于多头自注意力模型的本体匹配方法

doi:10.3969/j.issn.1003-3114.2023.06.013引用格式:吴楠,唐雪明.基于多头自注意力模型的本体匹配方法[J].无线电通信技术,2023,49(6):1081-1087.[WU Nan,TANG Xueming.Ontology Matching Method Based on Multi-Head Self-Attention Model [J ].Radio Communications Technology,2023,49(6):1081-1087.]基于多头自注意力模型的本体匹配方法吴㊀楠1,唐雪明2(1.南宁师范大学计算机与信息工程学院,广西南宁530199;2.南宁师范大学物理与电子学院,广西南宁530199)摘㊀要:随着语义网的发展,本体数量不断增加,本体间的语义关系变得越来越复杂㊂因此,引入OWL2Vec ∗方法获取本体的语义嵌入表示㊂通常,匹配的类或属性具有相似的结构,因此利用了字符级和结构级的相似性度量㊂为高效融合多种相似度值,提出基于多头自注意力模型的本体匹配方法(Ontology Matching Method Based on Multi-Head Self-Attention,OM-MHSA)自主学习各相似度方法对匹配结果的贡献值㊂在国际本体对齐评测组织(Ontology Alignment E-valuation Initiative,OAEI)提供的Conference 数据集上进行实验,结果表明,相对LSMatch 和KGMatcher +方法,提出的模型准确率(Precision)提升了6%,召回率(Recall)和F1值(F1-measure)超过了ALIOn㊁TOMATO 和Matcha 等方法㊂可见,提出的模型能够提升匹配结果的效率㊂关键词:语义关系;OWL2Vec ∗;本体匹配;多头自注意力模型中图分类号:TP391.1㊀㊀㊀文献标志码:A㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:1003-3114(2023)06-1081-07Ontology Matching Method Based on Multi-Head Self-Attention ModelWU Nan 1,TANG Xueming 2(1.School of Computer and Information Engineering,Nanning Normal University,Nanning 530199,China;2.School of Physics and Electronics,Nanning Normal University,Nanning 530199,China)Abstract :With the development of the Semantic Web,the number of ontologies continues to increase,which leads to the semanticrelationships between ontologies becoming increasingly complicated.Consequently,an OWL2Vec ∗approach is introduced to obtain se-mantic embedding representations of ontologies.Typically,matching classes or properties have similar structures,thus utilizing character-level and structural-level similarity metrics.In addition,to integrate multiple similarity values efficiently,the Ontology Matching Method Based on the Multi-Head Self-Attention (OM-MHSA)Model is proposed to independently learn the contribution value of each similarityapproach to the matching results.Experiments on the Conference dataset delivered by the Ontology Alignment Evaluation Initiative indi-cate that the proposed method enhances the Precision by 6%compared with LSMatch and KGMatcher +methods,and the Recall and F1-measure exceeds methods such as ALIOn,TOMATO,and Matcha.It can be noted that the proposed model can enhance the efficiency ofmatching results.Keywords :semantic relationships;OWL2Vec ∗;ontology matching;MHSA model收稿日期:2023-07-25基金项目:广西研究生教育创新计划项目(YCSW2023437)Foundation Item :Innovation Project of Guangxi Graduate Education(YCSW2023437)0 引言本体(Ontology)通常由该领域内的专家㊁学者定义,由于构建准则的多样性及研究者们对于知识理解的程度不同,导致本体异构(Ontology Heteroge-neity)现象[1]㊂为建立具有语义相关概念之间的对应关系,解决不同本体间的知识共享问题,提出了本体匹配(Ontology Matching,OM)方法,本体匹配也称为本体对齐(Ontology Alignment,OA)[2]㊂研究表明,两个概念间单一的相似度方法无法准确判断两个概念是否匹配,综合衡量多种相似性策略可以有效提升匹配效率[3]㊂近年来,研究者们围绕如何更高效地整合多种相似度计算结果,提出基于机器学习的本体匹配方法[4]㊂该方法的基本思想是将匹配问题转化为分类问题,采用分类模型判断两个概念是否匹配㊂例如,Bulygin等人[5]提出一种将基于字符㊁语言和结构的相似性结果与机器学习技术相结合的方法㊂该方法未考虑不同相似性结果之间的相关性,导致匹配结果不理想㊂因此,吴子仪等人[6]提出一种基于自注意力模型融合多维相似度的方法㊂实验结果表明,与传统的机器学习方法相比,该方法能够自主学习不同相似度方法之间的权重,从而高效地融合匹配结果,得到了更佳的匹配效果㊂此外,Rudwan等人[7]提出一种将模糊字符匹配算法和双向编码器模型与三个回归分类器相结合的方法㊂首先,考虑了本体的词汇和语义特征,以解决模糊字符匹配算法的局限性㊂然后,使用机器学习方法改善匹配的结果㊂该方法忽略了概念间的结构特征,导致匹配结果的准确率不高㊂综上所述,本文提出一种基于多头自注意力模型的本体匹配方法(Ontology Matching Method Based on the Multi-Head Self-Attention Model,OM-MHSA)㊂主要有三个贡献:①同时考虑类和属性的多种相似度㊂②采用OWL2Vec∗方法[8]获取本体的语义嵌入表示,高效提取本体中包含的图结构㊁词汇信息以及逻辑构造函数等语义信息,以挖掘本体间隐藏的语义关系㊂③使用Multi-Head Self-Attention Model 融合三种不同相似性度量结果并判断实体是否匹配㊂1㊀相关工作1.1㊀相关定义因本体的结构较为复杂,通常采用Web本体语言(Web Ontology Language,OWL)进行描述㊂当前,对本体没有标准的定义,将采用最常见的形式化定义㊂定义1㊀本体[9]按照分类法由5个基本元素构成㊂通常也将本体写为如下三元组形式:O=<C,P,H>,(1)式中:C代表类集合,P代表属性集合,H代表类的层次关系㊂类和属性统称为概念,而概念的实例也称为实体[10]㊂因此,本文将同时考虑本体中类和属性的相似度㊂定义2㊀本体匹配[11]方法的思想是找到具有相似或相同含义的概念之间的语义关联,其中每一对关联概念被称为一个匹配对(或映射对)㊂为方便理解,本文的匹配任务仅考虑两个概念等价的情况㊂对于两个待匹配的本体O1和O2,可写成如下形式:R=<e1,e2,f(e1,e2)>,(2)式中:R代表两个本体的匹配结果,e1ɪO1代表本体O1中的实体,e2ɪO2代表本体O2中的实体, f(e1,e2)代表实体e1与e2关系的置信度,且f的取值区间为[0,1]㊂f值越大,说明实体e1与e2表示相同事物的概率越高㊂1.2㊀相似度度量方法本体匹配方法一般是研究不同本体间实体的相似性,从而实现本体间的互操性㊂为全面㊁精确地衡量本体中类和属性的相似性,可以从字符级㊁语义级和结构级等不同角度出发㊂1.2.1基于字符的相似性计算方法该方法的基本思想是:对于待匹配的两个实体,将字符的共现和重复程度作为匹配对的相似值[12]㊂常规的计算方法有N-gram㊁编辑距离(Edit Dis-tance)㊁最长公共子串(Longest Common Sub-string)等㊂基于N-gram计算实体的相似度公式如下: sim(e1,e2)=mˑNmax(length(e1),length(e2)),(3)式中:N代表滑动窗口的大小,通常取值为1㊁2㊁3㊁4;m代表实体e1与e2同时出现N个相同排序的字符个数;max(length(e1),length(e2))代表取实体e1与e2长度的最大值㊂利用式(3)以N=3为例,计算e1= significant 和e2= signature 的相似度值如下:e1与e2具有两个相同排序的字符 sig ign ,故相似度为sim (e1,e2)=2ˑ(3/11)=0.545㊂ significant 译为显著的, signature 译为签名,二者在语义上并无关联㊂因此,不能只考虑该方法,需结合其他相似度计算方法㊂1.2.2基于语义的相似性计算方法顾名思义,该方法可挖掘实体间语义层面的相似性[13]㊂常用的方法有同义词典WordNet[14]㊁词嵌入Word2vec[15]㊂与典型的知识图相比,OWL不仅包含图结构㊁词汇信息,还包括逻辑构造函数(Logi-cal Constructors)㊂而OWL2Vec∗方法可以较好地对这些信息进行语义编码,所以本文将选择OWL2Vec ∗方法获取匹配本体的语义表示,再使用式(4)计算相似度:sim (v 1,v 2)=v 1ˑv 2v 1 ˑ v 2=ðni =1(v 1i ˑv 2i )㊀ðn i =1v 21i ˑ㊀ðni =1v 22i,(4)式中:v 1代表实体e 1的语义嵌入表示,v 2代表实体e 2的语义嵌入表示,sim (v 1,v 2)的取值范围为[-1,1],-1表示实体e 1与e 2完全不相似,1表示完全相似㊂1.2.3基于结构的相似性计算方法本体除文本信息外,还可利用subclassof㊁is-a 和part-of 等语义关系获取本体的结构信息㊂匹配的类或属性往往具有相似的结构[16]㊂因此,本文将考虑实体的父类及类路径之间的相似度㊂例如,使用Protégé软件查看ekaw 本体概念层次的部分结果如图1所示,可以看出,对于类 Conference_Trip ,其父类为 Social _Event ,类的完整路径为 Thing /Event /Social_Event /Conference_Trip ㊂图1㊀父类及其路径信息Fig.1㊀Parent class and its pathinformation2㊀基于多头自注意力的本体匹配模型图2为本文提出的匹配模型,处理过程主要分为4步㊂首先处理输入的OWL,接着计算相似度值,然后利用Multi-Head Self-Attention 模型学习特征的权重,最后输出匹配的结果㊂图2㊀本体匹配模型图Fig.2㊀Ontology matching model diagram2.1㊀数据预处理(1)提取文本信息本体包含丰富的信息,但有些信息利用描述逻辑(Description Logic,DL)隐式表示㊂因此,需利用特定工具解析待匹配本体㊂本文选择OWLReady2包中可操作OWL 的函数,抽取待匹配本体的类㊁属性㊁类的父类及类的完整路径等信息㊂(2)获取语义嵌入表示首先,从本体的图结构㊁逻辑构造函数和词汇中提取信息,构建相应的结构和词法语料库㊂然后,从结构语料库和实体注释中进一步提取出组合文档,以保留词汇信息中实体和单词间的相关性㊂最后,将结构㊁语法和组合语料库融合为一个语料库,利用Skip-gram 模型训练词嵌入,以获得本体的语义嵌入表示㊂2.2㊀计算相似度值①从本体O 1和O 2中取出两个待匹配的类和属性,记为实体e 1与e 2,将实体的父类记为parent 1和parent 2,将类的完整路径记为Path 1和Path 2㊂②利用式(3)~(4)依次计算实体e 1与e 2的字符㊁语义和结构相似度,分别记为sim string (e 1,e 2),sim semantic (e 1,e 2),sim structure (e 1,e 2);同理,计算实体父类及类路径的字符㊁语义以及结构相似度㊂2.3㊀相似度特征矩阵假设本体O 1和O 2共有N 个实体对待匹配,其中每个实体对记为i ㊂对于待匹配的实体对i 分别使用字符级㊁语义级和结构级的相似度方法计算其相似度值㊂其相似度特征向量可写为如下形式:X i =[sim string i,sim semantic i,sim structure i],(5)式中:i 代表实体对,取值范围为[1,N ];X i 表示实体对的相似度特征向量;sim string i ㊁sim semantic i 和sim structure i 分别表示实体对的字符㊁语义和结构相似度特征向量㊂经过上述步骤,可得本体O 1和O 2间的相似度特征矩阵㊂2.4㊀Multi-Head Self-Attention 模型为高效融合实体对的字符㊁语义和结构相似度特征,引入Multi-Head Self-Attention 模型[17]自主学习每种相似度方法的权重,以Head =3为例,其模型如图3所示㊂图3㊀Multi-Head Self-Attention 模型图Fig.3㊀Multi-Head Self-Attention model diagram㊀㊀①对每组输入特征X =[x 1,x 2, ,x n ]都与三个权重矩阵相乘,取得查询向量(Query)㊁键向量(Key)和值向量(Value)㊂计算如式(6)~(8)所示:Q i =W Q i X ,(6)K i =W K i X ,(7)V i =W V i X ,(8)式中:i 的取值为1㊁2㊁3,W Q㊁W K㊁W V分别代表三个权重矩阵,X 代表相似度特征矩阵㊂②使用缩放点积注意力(Scaled Dot-ProductAttention)计算注意力得分,并利用softmax 函数将注意力分数映射到[0,1]㊂计算如下:Attention(Q ,K ,V )=softmaxK T Q ㊀D k(),(9)式中:Attention(Q ,K ,V )表示多头注意力层的输出向量,K T Q 表示注意力权重的计算过程,D k 表示查询和键的长度㊂③利用式(10)~(11)合并三个头的结果:Head i =Attention(Q i ,K i ,V i ),i =1,2,3,(10)MultiHead(Q ,K ,V )=Concat(Head 1,Head 2,Head 3)㊂(11)④最后连接一个全连接层判断本体是否匹配㊂3㊀实验结果及分析3.1㊀实验环境及数据集实验运行环境为Intel (R )Core (TM )i7-6700CPU @3.4GHz,内存为8GB 的计算机,采用Python 语言编写㊂本次实验采用本体对齐评测组织(Ontology Alignment Evaluation Initiative,OAEI)竞赛在2023年提供的Conference 数据集,该数据集是描述组织会议领域的本体集合,由16个本体组成,提供7个具有基本事实的对齐,从而产生21个本体对㊂各本体包含的类和属性数(数据属性和对象属性)及标准等价匹配数如表1和表2所示㊂表1㊀各本体的具体信息Tab.1㊀Specific information for each ontology本体名称类数数据属性数对象属性数ekaw74033sigkdd 491117iasted 140338micro 32917confious57552pcs 231424续表本体名称类数数据属性数对象属性数openconf622124confOf382313cmt361049crs14215cocus55035paperdyne472161edas1042030myreview391749linklings371631sofsem601846表2㊀匹配本体及对应的匹配数Tab.2㊀Matching ontology and correspondingnumber of matches3.2㊀评价指标OAEI为本体匹配结果提供了参考标准,其评价指标使用准确率(Precision),召回率(Recall),F1值(F1-measure),其计算公式如(12)~(14)所示:Precision=|MɘR||M|,(12)Recall=|MɘR||R|,(13)F1=2ˑPˑRP+R,(14)式中:M代表使用本文匹配方法得到的匹配结果, R代表由OAEI提供的可参考的匹配结果㊂3.3㊀实验设计与对比3.3.1基于机器学习方法的分类结果及分析为研究类和属性相似度及利用OWL2Vec∗方法获取本体语义嵌入表示的有效性,本文利用逻辑回归(Logistic Regression,LR)[18]㊁随机森林(Random Forest,RF)[19]和极致梯度提升(EXtreme Gradient Boosting,XGBoost)[18]这三种机器学习方法对匹配结果进行分类㊂实验参数的设置:①LR:正则化参数(Penalty)采用 l2 ,损失函数优化器(Solver)选择 lbfgs ,分类方式(multi_class)选择 auto ,最大迭代次数(max_iter)为100㊂②RF:设置子树数量(n_estima-tors)为100,树的最大生长深度(max_depth)为2,叶子的最小样本数量(min_samples_leaf)为1㊂③XG-Boost:叶节点分支时所需损失减少的最小值(gam-ma)为0.8,树的最大深度(max_depth)为5,孩子节点最小的样本权重和(min_child_weight)为1㊂本文选择conference㊁edas㊁cmt㊁sigkdd㊁confOf㊁ekaw㊁iasted七个本体作为测试集,其余14个本体作为训练集㊂分类结果的最佳F1值如表3所示㊂表3㊀各分类模型的F1值Tab.3㊀F1-measure for eachclassification model 匹配本体LR[18]RF[19]XGBoost[18]conference-edas0.570.570.57cmt-sigkdd0.890.890.89confOf-ekaw0.400.400.44cmt-edas0.860.860.86confOf-iasted0.570.570.57 iasted-sigkdd0.890.750.91edas-sigkdd0.500.500.50Average0.670.650.68㊀㊀与未使用OWL2Vec∗方法获取语义表示时,使用LR㊁RF和XGBoost方法分类的F1值对比结果如图4所示㊂图4㊀F1值前后对比图Fig.4㊀F1-measure original and present comparison由图4可知,同时探求类和属性的相似度,并利用OWL2Vec∗方法获取本体语义表示,在LR和XGBoost的分类效果上F1值都提升了2%㊂主要有两方面的原因:第一,OWL2Vec∗方法可以充分利用本体OWL中所包含的图结构㊁词汇信息以及逻辑构造函数等信息,高效地进行语义编码,以便挖掘出匹配对之间隐含的语义关系,从而提升匹配结果的效率㊂第二,Conference数据集中本体的类和属性的数据量相对来说较小㊂因此,在使用LR和XG-Boost方法分类时,计算量不大且速度较快㊂而在使用RF方法分类时,由于特征较少,容易出现分类不平衡问题,导致其F1值不高㊂3.3.2基于Multi-Head Self-Attention模型的匹配结果及分析为充分融合字符级,语义级和结构级的相似度值,本文引入Multi-Head Self-Attention模型自主学习三种相似性方法之间的权重㊂在匹配结果的对比实验中,选择与近几年的14种匹配方法[20]展开比较㊂结果如表4所示㊂表4㊀各方法的匹配结果Tab.4㊀Matching results of each method匹配方法准确率召回率F1值LogMap0.760.560.64LogMapLt0.680.470.56LSMatch0.830.410.55Matcha0.370.070.12SEBMatcher0.790.480.60StringEquiv0.760.410.53TOMATO0.090.600.16KGMatcher+0.830.380.52 GraphMatcher0.750.550.63edna0.740.450.56ATMatcher0.690.510.59AMD0.820.410.55ALIOn0.660.190.3ALIN0.820.440.57 OM-MHSA(ours)0.890.370.52㊀㊀由表4可得,OM-MHSA方法在准确率上达到89%,相对于LSMatch和KGMatcher+方法提升了6%,即取得最优的结果㊂在召回率方面,OM-MHSA 方法也高于Matcha和ALIOn方法㊂在F1值方面, OM-MHSA方法超过了ALIOn㊁TOMATO和Matcha 等方法㊂主要有以下原因:①LSMatch方法只考虑了字符相似度和同义词匹配,没有考虑本体间的结构关系;②KGMatcher+方法主要考虑了基于字符和实例的匹配,没有考虑本体间的语义关系;③LSMatch㊁KGMatcher+以及ALIOn等方法都未匹配概念间的属性㊂另外,导致TOMATO方法准确率不高的原因是该方法会为同一实体对输出多个匹配结果,并将置信度值指定为1.0㊂综上,本文利用OWL2Vec∗方法可以获取匹配对之间更深层次对应的语义关系,然后充分考虑类和属性的字符㊁语义和结构等多种相似性度量方法,并引入Multi-Head Self-Attention模型自主学习每种相似度方法对匹配结果的贡献值,从而提升了匹配的效果㊂4 结束语本文同时考虑类和属性的多种相似度,并使用OWL2Vec∗方法获取本体的语义表示,并引入Multi-Head Self-Attention模型融合两个概念间的多种相似度㊂实验结果表明,相对于LSMatch和KGMatcher+方法,OM-MHSA方法准确率提升了6%,证明该方法可以有效地提升匹配结果的效率㊂该方法也有不足之处,未来的相关研究,将从以下方向探索:①加入外部资源是提升匹配质量的一种方式㊂因此,可以考虑加入外部知识㊂②本文选择的字符相似度方法相对单一,可探究多种不同的字符相似度计算方法㊂③在计算结构相似度时,主要研究概念的父类及其路径之间的相似度,可探讨概念子类间的相似度㊂参考文献[1]㊀XUE X,LIU W.Integrating Heterogeneous Ontologies inAsian Languages Through Compact Genetic Algorithmwith Annealing Re-sample Inheritance Mechanism[J].ACM Transactions on Asian and Low-Resource LanguageInformation Processing,2023,22(3):1-21.[2]㊀HE Y,CHEN J,ANTONYRAJAH D,et al.BERTMap:A BERT-based Ontology Alignment System[C]ʊPro-ceedings of the AAAI Conference on Artificial Intelli-gence.Washington D.C.:AAAI,2022:5684-5691. [3]㊀TROJAHN C,VIEIRA R,SCHMIDT D,et al.FoundationalOntologies Meet Ontology Matching:A Survey[J].SemanticWeb,2022,13(4):685-704.[4]㊀LIU X,TONG Q,LIU X,et al.Ontology Matching:State ofthe Art,Future Challenges,and Thinking Based on UtilizedInformation[J].IEEE Access,2021,9:91235-91243.[5]㊀BULYGIN L,STUPNIKOV S A.Applying of MachineLearning Techniques to Combine String-based,Language-based and Structure-based Similarity Measures for OntologyMatching[C]ʊConference on Data Analytics and Man-agement in Data Intensive Domains(DAMDID/RCDL),Moscow:DAMDID,2019:129-147.[6]㊀吴子仪,李邵梅,姜梦函,等.基于自注意力模型的本体对齐方法[J].计算机科学,2022,49(9):215-220.[7]㊀RUDWAN M S M,FONOU-DOMBEU J V.HybridizingFuzzy String Matching and Machine Learning for ImprovedOntology Alignment[J].Future Internet,2023,15(7):1-31.[8]㊀CHEN J,HU P,JIMENEZ-RUIZ E,et al.OWL2Vec∗:Embedding of OWL Ontologies[J].Machine Learning,2021,110(7):1813-1845.[9]㊀张希然.基于词嵌入和结构相似度的本体匹配研究[D].哈尔滨:哈尔滨工业大学,2021.[10]ZHANG R,TRISEDYA B D,LI M,et al.A Benchmarkand Comprehensive Survey on Knowledge Graph EntityAlignment via representation Learning[J].The VLDBJournal,2022,31(5):1143-1168.[11]LYU Z,PENG R.A Novel Periodic Learning OntologyMatching Model Based on Interactive Grasshopper Optimi-zation Algorithm[J].Knowledge-based Systems,2021,228:107239.[12]PRAKOSO D W,ABDI A,AMRIT C.Short Text SimilarityMeasurement Methods:A Review[J].Soft Computing,2021,25:4699-4723.[13]RACHARAK T.On Approximation of Concept SimilarityMeasure in Description Logic ELH with Pre-trained WordEmbedding[J].IEEE Access,2021,9:61429-61443.[14]HUSSAIN M J,BAI H,WASTI S H,et al.EvaluatingSemantic Similarity and Relatedness Between Concepts byCombining Taxonomic and Non-taxonomic SemanticFeatures of WordNet and Wikipedia[J].InformationSciences,2023,625:673-699.[15]SHARMA A,KUMAR S.Ontology-based SemanticRetrieval of Documents Using Word2vec Model[J].Data&Knowledge Engineering,2023,144:1-18. [16]MA Z,YUAN Z,YAN L.Two-level Clustering of UMLClass Diagrams Based on Semantics and Structure[J].Information and Software Technology,2021,130:1-14.[17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]ʊProceedings of the31st InternationalConference on Neural Information Processing Systems.Long Beach:NIPS,2017:5998-6008.[18]TAO H,AWADH S M,SALIH S Q,et al.Integration ofExtreme Gradient Boosting Feature Selection Approachwith Machine Learning Models:Application of WeatherRelative Humidity Prediction[J].Neural Computing andApplications,2022,34(1):515-533.[19]ABDULKAREEM N M,ABDULAZEEZ A M.MachineLearning Classification Based on Radom Forest Algo-rithm:A Review[J].International Journal of Science andBusiness,2021,5(2):128-142.[20]POUR M A N,ALGERGAWY A,BUCHE P,et al.Resultsof the Ontology Alignment Evaluation Initiative2022[C]ʊProceedings of the17th International Workshop onOntology Matching.Hangzhou:OAEI,2022:84-128.作者简介:吴㊀楠㊀女,(1998 ),硕士研究生㊂主要研究方向:语义Web㊁机器学习㊂唐雪明㊀女,(1999 ),硕士研究生㊂主要研究方向:深度学习㊁时间序列预测㊂。

面向序贯决策中异常情景下交互问题处理方法

面向序贯决策中异常情景下交互问题处理方法

第26卷第12期2020年12月计算机集成制造系统Computer Integrated Manufacturing SystemsVol.26No.12Dec.2020DOI:10.13196/j.cims.2020.12.010面向序贯决策中异常情景下交互问题处理方法安敬民",李冠宇2+,张冬青1,蒋伟2(1.大连东软信息学院计算机与软件学院,辽宁大连116023;2.大连海事大学网络信息中心,辽宁大连116026)摘要:针对目前在环境智能方面的序贯决策研究成果主要集中于不确定环境下的多智能体(Agent)交互决策问题,而未涉及到Agent在异常情景下对于该问题的解决思路,提出一种异常情景中Agent交互决策机制。

首先基于改进的情景本体对情景中Agent所观察的实体进行“时一空”状态的获取和计算;其次,结合元认知环结构的语义推理算法对异常情景进行检测和评估,并反馈于Agent,最终做出符合当前情景下用户需求的动作或反应。

经过在智能家居环境中的实验验证,在原有几种具有代表性的机器学习处理方法基础上,所提方法在其决策精确性上平均提高10%以上,响应时间则增加5%左右,且实现了在应用领域上的拓展,增强了实用性。

关键词:智能体;序贯决策;环境智能;异常情景;情景本体;“时一空”状态;元认知环中图分类号:TP18文献标识码:ASequential decision-making-oriented interaction problem processing method for perturbation contextAN Jingmin1'2,LI Guanyu2+,ZHANG Dongqing1,JIANG Wei2(1.Faculty of Computer and Software,Dalian Neusoft University of Information,Dalian116023,China;work Information Center,Dalian Maritime University,Dalian116026,China)Abstract:The current researches of sequential decision-making on ambient intelligence mainly are focused on the problem of Agents interaction decision-making over uncertain context,and solution for perturbation context is not involved.For this problem,the Agent interactive decision-making mechanism was proposed.The entity-spatio-tem­poral contexts based on the modified context ontology was acquired and calculated)and then the semantic-based metacognitive loop was used to detect and evaluate perturbation context so as to feedback to user-serving Agent.Ul­timately,experiments in a smart home environment showed that the proposed method improved the accuracy o£deci­sion-making by more than10%on the basis of several representative machine learning processing methods,while the response time increased by less than5%,which achieved the expansion in the application field and enhanced the practicabilit y.Keywords:Agent;sequential decision-making;ambient intelligence;perturbation context;spatio-temporal context;metacognitive loop0引言的研究成为了人工智能领域的热点和重点问题m,但因MAS难以解决的维数灾难的问题,使其发展近年来,随着智能决策和服务推荐的兴起,对多遭遇到了瓶颈。

A weapon-target assignment approach to media allocation

A weapon-target assignment approach to media allocation

A weapon–target assignment approachto media allocationEyu ¨p C¸etin *,Seda Tolun Esen Istanbul University,Faculty of Business Administration,Quantitative Methods Department,Avcilar Campus,34320Istanbul,TurkeyAbstractAn important problem which media planners face with is media allocation including budget allocation for an advertising campaign in an optimal frame.This study devel-oped a near optimization model,originated from the weapon–target assignment prob-lem of military operations research,that allocates both media and budget.The proposed model,which is independent of the duration of an advertising campaign,also schedules advertisements during the day.The presented model is an integer nonlinear program-ming problem.A hypothetical example is given and solved by MS Excel as a powerful spreadsheet tool.MS Excel Õs Solver is also proposed to solve NP-complete type prob-lems.This study is a good example of military operations research models that can be adapted to contemporary business world applications.Ó2005Elsevier Inc.All rights reserved.Keywords:Media modeling;Advertising campaign;Budget allocation;Integer nonlinear programming;Spreadsheet modeling;Military operations research0096-3003/$-see front matter Ó2005Elsevier Inc.All rights reserved.doi:10.1016/j.amc.2005.08.041*Corresponding author.E-mail addresses:eycetin@.tr (E.C ¸etin),stolun@.tr (S.TolunEsen).E.C¸etin,S.Tolun Esen/put.175(2006)1266–127512671.IntroductionIn advertising;the term media refers to communication vehicles such as tele-vision,radio,Internet,newspapers,billboards,printings,e-mail and etc. Advertisers use these vehicles to convey their commercial messages to target audiences who are the potential customers.Media planning is the process of selecting time and space in various media for advertising,in order to maximize the effectiveness of advertising effort[1]. The best media plans provide the target audience with an optimum level of cov-erage and opportunities to see the campaign[2].Media allocation is to appor-tion the information to appropriate media vehicles and in determining the number of ads in each vehicle[3].An advertising campaign should be more than just the sum of its parts[2].A synergy,a media mix should be constituted.One of the core issues in media allocation is how to allocate the media bud-get;that is,deciding in which markets to advertise and how much to spend in each of these markets in order to match media audiences with the target audi-ence[1].A value analysis of budgeting should be made for this decision. Approximate apportioning of the advertising budget among media vehicles is crucial[4].Media tactics primarily consist of the activities of selecting media vehicles in the most cost-effective manner to ensure the successful application of media strategies[1].Although the literature on the issue of media allocation is virtually silent[5], the studies of the topic go back to early1960s.Optimization studies on media planning and selection werefirstly started by Riorden[6],Lee and Burkart[7]. Day[8]and Engel and Warshaw[9]proposed linear programming models for media allocation.Stasch[10]and Brown and Warshaw[11]also developed lin-ear programming models for media selection and planning.Little and Lodish [12]and Maffei[13]determined the problem as a dynamic programming prob-lem.Some researchers(e.g.[14])approached to the problem in a multi-objec-tive frame.Aaker[15]and Zufryden[16]determined the issue as a probabilistic model.Locander et al.[3]proposed a media allocation model using nonlinear benefit curves.Fruchter and Kalish[17]presented a differential game model for media budgeting and allocation.Berkowitz et al.[18]studied the impact of differential lag effects on the allocation of advertising budgets across media.Even in the congressional advertising campaigns,media and budget allocation are extremely important[19,20].These are all highlights of the literature review of the subject.Richards[21]has presented a well-designed review of the literature.In this study,we propose a media allocation model,including budget alloca-tion,based on the weapon–target assignment problem.The paper is organized in the following way:The weapon–target assignment problem isfirstly defined, then the proposed model is developed and a hypothetical numerical example is solved using MS Excel as a tool of spreadsheet modeling.2.The weapon–target assignment problemThe Weapon–Target Assignment(WTA)problem is a fundamental problem arising in defense related applications,considering the total expected damage value of the targets to be maximized[22].The WTA problem is also defined as tofind a proper assignment of weapons to targets with an appropriate objec-tive[23].The mathematical formulation of the WTA problem is as follows[22,24]:Let there be T targets numbered1,2,...,T,and W weapon types numbered 1,2,...,W.Let U j denote the value of target j and let p ij denote the probability of destroying target j by a single weapon of type i.x ij is the number of weapons of type i assigned to target j.W i is the number of weapons of type i,in other words the capacity.T j is the minimum number of weapons required for target j.maxX Tj¼1U j1ÀY Wi¼1ð1Àp ijÞx ij!subject toX Tj¼1x ij6W i;X Wi¼1x ij P T j;x ij P0and integer;8i¼1;2;...;W;8j¼1;2;...;T.It is important to mention that the p ijÕs can be interpreted as the damaged portion of the target j by the weapon i[24].The WTA problem is known to be NP-complete.There do not exist any exact methods for the WTA problem, which can solve even small size problems.Although several heuristic methods have been proposed to solve the WTA problem,due to the absence of exact methods,no estimates are available on the quality of solutions produced by such heuristics[22].3.Formulating the modelBy an analogy that the weapons can be determined as media vehicles to be advertised when the military targets as target audiences(segments)to be in-tended to reach.In this study,TV,radio,Internet,newspaper,billboard,print-ings,e-mail and etc.are given as media vehicles.People exposed by media vehicles in different times of the day are given as target audiences.The number of weapons(x ij)is determined as the number of ads.The number of ads(frequency)refers to the number of times within a given period of time an audience is exposed to a media schedule.Effective frequency 1268 E.C¸etin,S.Tolun Esen/put.175(2006)1266–1275is defined as the level of frequency that is necessary to achieve the desired com-munication goals of marketing strategy[1].The mathematical programming model is as follows under the assumption that the target audience is constant to be exposed by such media vehicles(as in military targets)in a given time period.Let i=1,2,...,t,...,r,...,w,...,n,...,W be the number of kinds of advertisements,w be the number of renewable(can be updated during the day)media type, t be the number of TV appropriate to be advertised,rÀt be the number of radio appropriate to be advertised,wÀr be the number of renewable media types other than TV and radio (such as Internet),nÀw be the number of newspaper appropriate to be advertised,WÀw be the number of unrenewable media type,WÀn be the number of press(unrenewable)media type other than news-paper(such as billboards,printing etc.),j=1,2,...,T be the number of segments,W i be the number of advertisements type i available,T j be the minimum number of ads required for target audience j,U j be the relative segment weights,p ij be the probability of reaching the target audience j by a single ad type i,c ij be the unit variable cost of an ad i to the target audience j,x ij be the number of advertisements of type i assigned to target audience j,B be the total advertising campaign budget,q1be the upper limit for percentage of total budget invested to TV,q2be the upper limit for percentage of total budget invested to radio, q3be the upper limit for percentage of total budget invested to newspaper.The objective is to maximize the total percentage(probability)of reaching (exposure)the target audiences,maxX Tj¼1U j1ÀY Wi¼1ð1Àp ijÞx ij!.Total assignment cost must not exceed the total ad campaign budget.The expres-sion enclosed in parenthesis denotes the sum of costs of each media vehicle,X T j¼1X wi¼1c ij x ijþX Wi¼wþ11c ij x ij!6B.The total budget allocation to TV,radio and newspapers is restricted by de-sired proportions respectively,E.C¸etin,S.Tolun Esen/put.175(2006)1266–12751269X T j¼1X ti¼1c ij x ij6B q1;X T j¼1X ri¼tþ1c ij x ij6B q2;X T j¼1X ni¼wþ11Tc ij x ij6B q3.There are specific numbers of advertisements available for different advertise-ment vehicles,X Tj¼1x ij6W i;where"i=w+1,...,W,W i=Tk and k2Z+.In fact,Tk refers to k ads for those due to the stability nature of press media during the day.Each target audience requires at least some number of advertisements,due to the fact that there is a threshold(effective frequency)for a media vehicle, which the total volume of this medium exceeds.The probability of arising the persons intention to buy the product or service under the influence of this kind of advertisements does not increase after this point[25].We take the limits of each media vehicle as a whole.The model imposes the assignment to be as close as possible to the lower bounds and thus,X Wi¼1x ij P T j.For press media vehicles,it is compulsory to be the same advertisement number(weapon)through different target audiences,8i¼wþ1;...;W;x ij¼x iðjþ1Þ;8j¼1;2;...;TÀ1.Finally,non-negativity and integer constraints complete the mathematical model,x ij P0and integer;8i¼1;2;...;W;8j¼1;2;...;T.The model is an integer nonlinear programming model which can be solved by any appropriate software(e.g.LINGO and MS Excel Solver[26]).On the other hand,the proposed model is NP-hard(NP-complete).As in WTA problem, there is no exact algorithm to solve this model.Therefore,heuristic approaches can be employed for near optimal solutions.In this paper,we also propose MS ExcelÕs Solver tool as an alternative method to reach near optimal solutions. 1270 E.C¸etin,S.Tolun Esen/put.175(2006)1266–1275E.C¸etin,S.Tolun Esen/put.175(2006)1266–127512714.A numerical exampleA hypothetical example is as follows:Suppose that a company is planning to start an advertising campaign for a particular product.The duration is up to the company management.The company takes four target audiences(T=4) as morning time,afternoon time,prime time and night time of the day.Also, it hasfifteen media vehicles(W=15)to be advertised as ATV,BTV,CTV, DTV,ETV,FTV,GTV,K Radio,L Radio,Internet,P Newspaper,R News-paper,billboard,printings and e-mail.From the past rating and circulation observations,the company knows the percentages and unit costs of reaching the target audiences in different time partitions according to media vehicles. The unit refers to different measures for different media vehicles.The percent-ages(probabilities)are shown in Table1while the unit variable costs(in $10.000),ad capacities,segment weights(the values of targets)and the number of ads required for each target is shown in Table2.In this example,TV,radio and Internet are determined as renewable media,while newspaper,billboard, printings and e-mail are press media.It is seen in Table1that some vehicles has0probability to reach some targets.As shown in Table2,prime time is the most important segment,as night time is the least important segment for the product.These weights can be changed with respect to the features of the product.Total advertising budget is B=$75.000.The management wants to restrict total TV,radio and newspaper expenditure shares with q1=0.55, q2=0.15and q3=0.25respectively.The problem is the media and budget allo-cation subject to the constraints so that the total percentage(probability)of reaching the target audiences is maximized(in theory)within the given budget. Table1The probability matrixMorning time(1)Afternoon time(2)Prime time(3)Night time(4) ATV(1)0.210.120.120.23BTV(2)0.350.240.120.07CTV(3)0.190.040.000.19DTV(4)0.000.260.190.13ETV(5)0.130.190.250.00FTV(6)0.240.140.220.09GTV(7)0.090.000.180.28K Radio(8)0.390.170.470.00L Radio(9)0.240.310.140.43Internet(10)0.100.230.030.35P Newspaper(11)0.120.110.030.09R Newspaper(12)0.320.230.090.21Billboard(13)0.320.100.280.02Printings(14)0.230.120.080.03E-mail(15)0.290.070.040.32The model is solved using MS Excel Õs Solver as a powerful decision making tool.The methodology of the Solver is branch and bound,which is a special case of implicit enumeration [27].The Solver Õs default tolerance is 5%[27].A tolerance setting of 0.05means that if Solver finds a feasible solution that is guaranteed to have an objective value no more than 5%from the optimal value,it will quit and report this ‘‘good’’solution (which might even be the optimal solution).Therefore,if the default value is accepted,the integer solu-tions will sometimes not be optimal,but they will be close [27].In this hypo-thetical example,we use the default tolerance,which is 5%.Thus,our objective value will be at least near optimal.Any calculus-based approach,such as LINGO and MS Solver,to solving nonlinear programming models runs the risk of finding a local extremum that is not a global extremum [26].In order to eliminate this handicap,different starting points should be chosen and the obtained objective values should be compared with each other.We get the weighted reach (exposure)of the relaxation (without integer con-straints)model from a number of different starting points as 9.995730429336.The CPU time of the relaxation model solution is only 2s on a computer with Pentium (R)4CPU 3.00GHz and 512MB RAM.We obtained the objective function value of the IP model,which is near optimal,as 9.995405062449.We also get this solution by comparing solutions of different starting points.The CPU time is 13s on the same computer.The near optimal objective value is within the tolerance 5%.For the tolerances 3%,2%and 1%,we get the sameTable 2The unit variable cost matrixMorningtime (1)Afternoon time (2)Prime time (3)Night time (4)Ad capacities ATV (1)0.1400.1200.1400.1508BTV (2)0.1100.1300.1500.1007CTV (3)0.1000.0430.1000.0859DTV (4)0.1300.1300.1300.1255ETV (5)0.1300.1350.1400.1406FTV (6)0.1500.1500.1500.1508GTV (7)0.1600.1600.1600.1803K Radio (8)0.0150.0100.0100.01010L Radio (9)0.0250.0200.0200.02715Internet (10)0.0500.0500.0500.06512P Newspaper (11)0.1000.1000.1000.1008R Newspaper (12)0.1600.1600.1600.1604Billboard (13)0.0960.0960.0960.0964Printings (14)0.0200.0200.0200.0204E-mail (15)0.0080.0080.0080.0084Number of ads required16182510Segment weights 23411272 E.C ¸etin,S.Tolun Esen /put.175(2006)1266–1275E.C¸etin,S.Tolun Esen/put.175(2006)1266–12751273 objective value.Total advertising cost is$57.160.Total TV expenditure is $40.400when radio and newspapersÕare$4.120and$3.600respectively.In other words,the remaining$9.040is allocated to other media vehicles.Almost optimal assignments are as follows:x21=7,x31=8,x34=1,x42=5,x52=1, x53=5,x61=1,x63=5,x81=1,x83=9,x92=14,x94=1,x(10)(4)=12,and press media are x(11)(1)=2,x(11)(2)=2,x(11)(3)=2,x(11)(4)=2,x(12)(1)=1, x(12)(2)=1,x(12)(3)=1,x(12)(4)=1,x(13)(1)=1,x(13)(2)=1,x(13)(3)=1, x(13)(4)=1,x(14)(1)=1,x(14)(2)=1,x(14)(3)=1,x(14)(4)=1,x(15)(1)=1, x(15)(2)=1,x(15)(3)=1,x(15)(4)=1and others0.According to near optimal solution,the model,for instance,assigns CTV eight ads to morning and one ads to nighttime.For example,near optimal prime time advertising policy is the combination of ETV,FTV,K Radio,P Newspaper,R Newspaper,bill-board,printings and e-mail with the number of ads5,5,9,2,1,1,1,1respec-tively.It is observed that there is no assignment for zero probabilities.The target audiences are media exposed by the percentages99.917%,99.955%, 99.987%and99.888%respectively.We see that target audiences are exposed with respect to their segment weights since the correlation coefficient between the weights and the weighted exposures is1.The total cost of morning time is$18.560,afternoon time is$11.860,prime time is$16.610and that of night-time is$10.130.The most expensive vehicle is FTV with15.75%share of total cost when the cheapest vehicles are ATV and GTV with no assignments.5.ConclusionsWe develop a near optimization model which allocates media vehicles and budget to predetermined target segments.The main frame of the model is the well-known weapon–target assignment problem which is an important argument of military operations research.The model is user friendly because of the fact that the decision maker can spec-ify the capacities for each media tool and requirements of each target segment. Total advertising campaign budget can also be diversified into different major media vehicles which are determined as TV,radio and newspaper in this study.That is without doubt the proposed model also schedules advertisements during the day.Besides,the model is independent of the duration of an adver-tising campaign.Moreover,the segment weights facilitate marketers to give relative importance with respect to product or service characteristics.Further-more,we also propose classical MS Excel Solver tool rather than heuristic ap-proaches for near optimal solutions of NP-hard type problems.The hypothetical numerical example has60decision variables and is solved by MS Excel Solver as a powerful spreadsheet tool in a short time.These features of the proposed model submit a practical opportunity to industrial advertising planners.1274 E.C¸etin,S.Tolun Esen/put.175(2006)1266–1275 As a topic of further research,the combination of the duration of an adver-tising campaign and the proposed model can be taken into consideration. Another topic of future research is to approach to the presented model in a multi-objective way.Also,another military operations research models can be adapted to contemporary business world applications.References[1]L.Hairong,Advertising media(02/10/2005).Available from:<>.[2]Fox Media Company,Independent media planning and buying specialists(02/12/2005).Available from:</homepages/foxmedia/mediap_htm>. [3]W.B.Locander,R.W.Scamell,R.M.Sparkman,J.P.Burton,Media allocation model usingnonlinear benefit curves,Journal of Business Research6(1978)273–293.[4]F.E.Orenstein,Are automobile dealers good judges of media allocations?Journal ofMarketing76(1962).[5]H.Kinnucan,Y.Miao,Media-specific returns to generic advertising:the case of catfish,Agribusiness15(1)(1999)81–99.[6]J.Riorden,An Introduction to Combinatorial Analysis,John Wiley,New York,1958.[7]A.M.Lee, A.J.Burkart,Some optimization problems in advertising media planning,Operational Research Quarterly11(1960)113–122.[8]R.L.Day,Linear programming in media selection,Journal of Advertising Research2(1962)40–44.[9]J.F.Engel,M.R.Warshaw,Allocating advertising dollars by linear programming,Journal ofAdvertising Research4(1964)42–48.[10]S.F.Stasch,Linear programming and space–time considerations in media selection,Journal ofAdvertising Research5(1965)40–46.[11]D.B.Brown,M.Warshaw,Media selection by linear programming,Journal of MarketingResearch2(1965)83–88.[12]J.D.C.Little,L.M.Lodish,A media selection model and its optimization by dynamicprogramming,Industrial Management Review8(1966)15–23.[13]R.B.Maffei,Planning advertising expenditures by dynamic programming methods,Manage-ment Technology1(1960)94–100.[14]A.Charnes,W.W.Cooper,D.B.Lerner,E.F.Snow,Note on an application of a goalprogramming model for media planning,Management Science14B(1968)431–436.[15]D.A.Aaker,A probabilistic approach to industrial media selection,Journal of AdvertisingResearch8(1968)46–54.[16]F.S.Zufryden,Media scheduling:a stochastic dynamic model approach,Management Science19(1973)1395–1406.[17]G.E.Fruchter,S.Kalish,Dynamic promotional budgeting and media allocation,EuropeanJournal of Operational Research111(1998)15–27.[18]D.Berkowitz,A.Alaway,G.DÕSouza,The impact of differential lag effects on the allocationof advertising budgets across media,Journal of Advertising Research41(2)(2001)27–37. [19]R.A.Weaver-Lariscy,S.F.Tinkham,The influence of media expenditure and allocationstrategies in congressional advertising campaigns,Journal of Advertising16(3)(1987)13–22.[20]R.A.Weaver-Lariscy,S.F.Tinkham,Use and impact of direct mail in the context of integratedmarketing communications:US congressional campaigns in1982and1990,Journal of Business Research37(3)(1996)233–244.[21]J.I.Richards,Bibliography of advertising topics(02/23/2005).Available from:<http:///research/biblio/>.E.C¸etin,S.Tolun Esen/put.175(2006)1266–12751275[22]R.K.Ahuja,A.Kumar,J.Krishna,J.B.Orlin,Exact and heuristic methods for the weapontarget assignment problem,MIT Sloan School of Management Working Paper4464-03(2003) 1–20.[23]Z.Lee,C.Lee,S.Su,An immunity-based ant colony optimization algorithm for solvingweapon–target assignment problem,Applied Soft Computing2(1)(2002)39–47.[24]Y.Tulunay,Mathematical Programming and Business Applications,third ed.,I.U.BusinessFaculty Publications,Istanbul,1991(a Turkish publication).[25]A.S.Belenky,N.Consulting,An approach to planning an advertising campaign of goods andservices,Computers and Mathematics with Applications42(2001)993–1008.[26]W.L.Winston,Operations Research:Application and Algorithms,fourth ed.,Brooks/Cole,Belmont,2004.[27]W.L.Winston,S.C.Albright,Practical Management Science,second ed.,Brooks/Cole,PacificGrove,2001.。

一种精细表示多值属性的知识图谱嵌入模型

一种精细表示多值属性的知识图谱嵌入模型

影向量(而不是属性值嵌入)来定义属性三元组的评分函数,从而可以为多值属性的不同属性值学得不同的嵌入。实验表
明,在实体预测和属性预测两项任务上,KGE-EAV 的准确度均优于 KR-EAR 和三个基线模型。
关键词
知识图谱嵌入;多值属性;属性三元组;实体预测;属性预测
中图分类号
TP18
DOI:10. 3969/j. issn. 1672-9722. 2020. 03. 027
ues of a multivalued attribute,that is,KR-EAR fails to finely represent multivalued attributes,thus affecting the accuracy of down⁃
stream tasks. In this paper,a knowledge graph embedding model,called KGE-EAV,for fine representation of multivalued attri⁃
您所在的网络环境存在频繁操作滑动滑块进行验证
Vol. 48 No. 3
638
总第 365 期
计算机与数字工程
Computer & Digital020 年第

一种精细表示多值属性的知识图谱嵌入模型


俞耀维
(河海大学计算机与信息学院



南京
211100)
知识图谱嵌入模型 KR-EAR 用实体及其属性值的嵌入(向量)来定义属性三元组的评分函数,导致多值属性的
show that the accuracy of KGE-EAV is better than that of KR-EAR and three baseline models in both entity prediction and attribute

英语中数字翻译技术介绍

英语中数字翻译技术介绍

The Development History of English Digital Translation Technology
02
The Core Technologies of English Digital Translation
Natural language processing (NLP) is a branch of artificial intelligence that focuses on enabling computers to understand, analyze, and generate human language.
Facility international business
Digital translation technology can help businesses quickly understand foreign customers' needs and requirements, and promote international business cooperation and trade
The rapid development stage
With the development of AI technology in the 1990s, digital translation technology has made great progress Machine translation systems based on statistical translation models and neural networks have significantly improved translation accuracy and fluency, making digital translation more practical and widely used in various fields

三单匹配机器人环节感受

三单匹配机器人环节感受

三单匹配机器人环节感受1. 引言三单匹配机器人是一种利用人工智能技术,特别是自然语言处理和对话系统技术,来实现大规模自动问答的机器人。

它能够根据用户提出的问题,快速准确地匹配相关的答案,从而提供有用的信息。

本文将从三单匹配机器人的原理、工作流程、应用场景以及个人感受等方面进行深入探讨。

2. 三单匹配机器人原理三单匹配机器人的核心原理是基于自然语言处理技术中的三单匹配模型。

三单匹配模型是一种基于问答对的学习方法,通过将问题和答案对作为训练数据,构建一个模型来预测问题与答案之间的匹配程度。

该模型采用了深度学习中的神经网络算法,通过多层神经网络来提取句子的语义特征,从而实现对问题和答案的语义匹配。

具体而言,三单匹配模型首先将问题和答案转化为向量表示,一般使用词向量来表示句子的语义信息。

然后,通过神经网络的前馈计算,将问题和答案的向量输入到模型中,并经过一系列的隐藏层计算,最终输出问题和答案之间的匹配分数。

根据匹配分数的大小,可以得到问题和答案的匹配程度,从而选择最佳的答案。

3. 三单匹配机器人工作流程三单匹配机器人的工作流程可以分为以下几个步骤:3.1 数据准备首先,需要准备训练数据和预训练的词向量,作为模型的输入。

训练数据是一组问题和对应的答案对,需要根据需要进行收集和整理。

预训练的词向量可以使用一些开源的工具和数据集来获取。

3.2 模型训练在数据准备完成后,可以开始进行模型的训练。

训练过程主要包括以下几个步骤:构建模型、定义损失函数、选择优化算法、迭代训练等。

通过不断迭代训练,模型会学习到问题和答案之间的语义关系,从而能够根据用户提出的问题快速准确地匹配合适的答案。

3.3 问题匹配当用户提出问题时,三单匹配机器人将问题转化为向量表示,并输入到训练好的模型中进行匹配计算。

模型会计算问题和训练数据中的答案之间的匹配分数,并选择匹配分数最高的答案作为输出。

3.4 答案生成最后,根据选择的答案,三单匹配机器人将答案生成并输出给用户。

基于潜在语义特性的语义双关语检测及双关词定位

基于潜在语义特性的语义双关语检测及双关词定位

o引言
双关语是一种文字游戏,即利用一词多义或者 语音相似来达到多个含义的一种修辞方式在文 学、演讲和广告语中,双关语也是标准的修辞手段。 例如,莎士比亚因为他的双关语而闻名世界凶,甚至 在非喜剧作品中双关语也广泛存在。众所周知,双 关语作为一个广泛研究的有趣对象,能够洞察文字
游戏和双重含义的本质性质。
的定位是自然语言处理任务中的一项困难和挑战。该文在语义双关语的理论基础上,挖掘了 一系列的潜■在语义特
性,并构建了对应毎个特性的特征集,用以检测语义双关语;同时从潜在语义特性出发,提出了一种基于词向量和
同义词融合的语义相似度匹配算法实现语义双•关词的定位。在SemEval 2017 Task 7和Pun of the Day数据集上
3. College of Computer Science and Technology・Xinjiang Normal University, Urumqi, Xinjiang 830054,China)
Abstract: Homographic pun, as a common source of humor in jokes and other comedic word, is hard to detect and locate the homographic pun words. We design a series of latent semantic characteristics and corresponding features to detect homographic puns. Then, a semantic similarity matching algorithm is proposed to locate pun words based on the fusion of Word Embedding and Sysnet. Experiment results on SemEval 2017 Task 7 and Pun of the Day dem­ onstrate the effectiveness of the proposed method. Keywords: homographic; latent semantic characteristics; homographic puns detection; word embedding; sy文所提出的检测算法和定位算法。

相似模型知识点总结

相似模型知识点总结

相似模型知识点总结在本文中,我们将介绍几种常见的相似模型,包括文本相似模型、图像相似模型和音频相似模型,并详细讨论它们的原理、应用和训练方法。

1. 文本相似模型文本相似模型是用于比较两个文本之间的相似性的模型。

在自然语言处理领域,文本相似模型有着广泛的应用,例如在搜索引擎中用于文本匹配、推荐系统中用于相似文本推荐等。

常见的文本相似模型包括词向量模型(Word Embedding)、文本向量模型(Text Embedding)、语义匹配模型(Semantic Matching)等。

词向量模型是一种将词表示为实数向量的模型,通过将每个词映射到一个向量空间中的点,来表征词之间的相似性。

常见的词向量模型有Word2Vec、GloVe、FastText等。

这些模型通过训练词向量,使得相似意思的词在向量空间中距离较近,而不相似的词在向量空间中距离较远。

文本向量模型是一种将整个文本表示为一个实数向量的模型,通过将文本映射到向量空间中的点,来表征文本之间的相似性。

常见的文本向量模型有Doc2Vec、BERT等。

这些模型通过训练文本向量,使得相似内容的文本在向量空间中距离较近,而不相似的文本在向量空间中距离较远。

语义匹配模型是一种将两个文本进行比较的模型,通过计算两个文本之间的语义相似度,来评估它们的相似程度。

常见的语义匹配模型有Siamese Network、MatchPyramid等。

这些模型通过训练学习两个文本之间的语义表示,从而实现文本相似度的计算。

除了上述模型外,还有一些其他的文本相似模型,如LSTM、GRU等循环神经网络模型,以及深度学习模型、迁移学习模型等。

这些模型都可以用于比较文本之间的相似性,但具体选择哪种模型取决于具体的应用场景和需求。

在训练文本相似模型时,通常需要大量的文本数据和相应的标签。

数据预处理包括分词、去停用词、构建词表等,而模型训练过程则包括损失函数的选择、优化器的选择、超参数的调整等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A Semantic Matching Approach for MediatingHeterogeneous SourcesMichel Schneider 1,2, Lotfi Bejaoui1, Guillaume Bertin21 Cemagref, 24 Avenue des Landais, 63172 Aubière Cedex, France2 LIMOS, Complexe des Cézeaux, 63173 Aubière Cedex, France{michel.schneider, lotfi.bejaoui}@cemagref.fr, bertin.guillaume2@Abstract.Approaches to make multiple sources interoperable were essentiallyinvestigated when one are able to resolve a priori the heterogeneity problems.This requires that a global schema must be elaborated or that mappings betweenlocal schemas must be established before any query can be posed. The object ofthis paper is to study to what extend a mediation approach can be envisagedwhen none of these features are a priori available. Our solution consists inmatching a query with each of the local schema. We designed a first prototypewhich showed that the approach could be efficient. We propose in this paper anew more sophisticated prototype. A friendlier query language is available. Thedetection of matching is more successful. This kind of system can be installedon super-nodes in P2P networks in order to facilitate accesses to data by theirsemantics. It can thus contribute to the pervasive computing paradigm.Keywords: Semantic Matching, Heterogeneous Sources, Mediation, XMLSources, OWL Representation1 IntroductionThe interoperability of multiple heterogeneous sources represents an important challenge considering the proliferation of numerous information sources both in private networks (intranet) and in public networks (internet). Heterogeneity is the consequence of the autonomy: sources are designed, implemented and used independently. Heterogeneity can appear for different reasons: different types of data, different representations of data, different management software packages.One interoperability approach which has been studied for several years is based on mediation [23], [5]. A mediator analyzes the query of a user, breaks it down into sub-queries for the various sources and re-assembles the results of sub-queries to present them in a homogeneous way. The majority of mediation systems operate in a closed world where one knows a priori the sources to make interoperable. There are several advantages to this. First it is possible to build an integrated schema which constitutes a reference frame for the users to formulate their queries. Then it is possible to supply the mediator with various informations which are necessary for the interoperability and particularly to resolve heterogeneity problems. The different kinds of heterogeneity to be resolved are now clearly identified: heterogeneity of concepts orintentional semantic heterogeneity; heterogeneity of data structures or structural semantic heterogeneity; heterogeneity of values or extensional semantic heterogeneity. Different solutions have been studied and experimented on to solve these problems. For example we can cite the work of [7] and [9]. From these initial investigations, very numerous works intervened to propose automatic approaches of integration of schemas. An approach was particularly investigated: the mapping of schemas. It led to the elaboration of several systems such as SEMINT [12], DIKE [18], COMA [3], CUPID [13]. One will find analyses and comparisons of such systems in [19] or [6] or [16]. The practical aspects of the application of such systems are discussed in [1]. The role of ontologies was also investigated. In [2] and [15], the interest of ontologies for the semantic interoperability is underlined. Several approaches of integration of information based on ontologies were suggested. One will find a synthesis of it in [22]. It is necessary also to quote the work of [10] suggesting a logical frame for the integration of data. In all these works, the objective is to build a global schema which integrates all the local schemas.When one operates in an evolutionary world where sources can evolve all the time, the elaboration of a global schema is a difficult task. It would be necessary to be able to reconstruct the integrated schema each time a new source is considered or each time an actual source makes a number of changes. To overcome these drawbacks an another approach has also been investigated: the query based approach. In this approach no global schema is required. The integration problems are solved during querying. Three main systems can be classified in this category: Information Manifold system, InfoSleuth system and Singapore system. Information Manifold [11] uses sources capabilities to determine how a query can be solved. InfoSleuth [17] is an agent-based system using ontologies for performing information gathering and analysis tasks. Singapore system 4] proposes an object language to formulate exact or fuzzy queries.Our approach can also be considered as query-oriented. It is based on a semantic matching between the user query and each source schema. The user formulates its query by using its knowledge of the domain. Only the sources whose schemas match with the query are considered. The user query is rewritten for each of these sources according to its information capacity. These sources are then interrogated. Results are formatted and integrated. This approach offers several advantages. The rewriting process is simpler. A new source can be inserted at any time; the only obligation is to provide an adequate representation of this source. We have implemented a first prototype [21] to validate this approach.The second prototype which we present in this paper possesses various advantages on the first. The query language is more intuitive and so is more convenient for a non specialized user. The matching between a query and a source is more successful. The system is capable of identifying itself the potential sources available on the Web.We will consider in this paper only XML sources, but our approach can be adapted to deal with any kind of sources.The paper is organised as follows. In section 2 we explain the principle of our approach. Section 3 describes the architecture and the working of the system. Section 4 is devoted to the OWL representation of sources. In section 5 we explain the main features of our matching algorithm. Section 6 is devoted to some experiments with thesecond version of our prototype. Section 7 presents some others features and section 8 presents a number of conclusions and perspectives.2 Principle of the ApproachOur approach does not use a global schema or some predefined mappings. The user thus formulates his query by using his implicit knowledge of the domain or by making an explicit reference to an ontology of the domain.The syntax of our query language is inspired by that of SQL. The query is cut in three clauses with the reserved words Select, From and Where. The "Select" clause defines the searched elements and the "Where" clause specifies the properties which have to verify these elements. The "From" clause is not indispensable because the user does not know the structures in which elements must be looked for. It is the system which has the task to localize these structures. Nevertheless it is necessary in certain situations for introducing alias of elements. The "Where" clause contains the conditions. We need two types of conditions: "link conditions" allowing to specify the existence of links between elements of the query, and "valuation conditions" allowing to impose values on certain elements of the query. For example suppose that a user looks for the name of the customers living in the same region as a supplier having a name “easymarket”. He has to specify in the query that name is linked to customer, that name is linked to supplier, that region is linked to customer, that region is linked to supplier. In our query language this query is specified as:Q1 : Select a()namefrom customer a, supplier bwhere a()region=b()region and b()name=”easymarket”We use the double symbol () to specify a link condition between two elements.The alias in the "From" clause have a precise signification. For example using the alias a for customer imposes that it is the same instance of a that is connected with name in a()name and with region in a()region. So query Q1 can be paraphrased as follows : search for an instance ain of customer and an instance bin of supplier such that ain is connected to an instance of name and an instance rin1 of region, bin is connected to an instance of name whose value is "easymarket" and an instance rin2 of region, the values of rin1 and rin2 are equal.Fig. 1. : XML trees of two sourcesA correspondence (matching) is established with a source if each term of the query has a correspondent in the source and if each link is present in the source. A term has a correspondent if it exists in the source the same term or a synonym or a hyponym. Synonym and hyponym are determined by scanning a domain ontology. A link a()b is present in the source if it exists a semantic connection between the correspondents of a and b. We will explain further how this connection is detected.We will illustrate how the matching can work with the two XML sources of figure 1. It is straightforward to infer that the query Q1 matches with the first source since the supplier element and the customer element are both connected to an element the name of which is region. A matching for the second source cannot be inferred so immediately. First the matcher must discover that buyer is a hyponym of customer. Then it must found the connection of buyer and supplier with the shared element region. Supplier is not connected to a name element but since supplier is a leaf element it can suppose that its value represents its name. So this second source matches also with the query since it respects the semantics of the query.The rewritings of the query in the user language for the two sources are respectively:Select a()namefrom customer a, supplier bwhere a()region=b()region and b()name=”easymarket”(same as the initial specification)Select a()namefrom buyer a, supplier bwhere a()region=b()region and b=”easymarket”The system proposes all the rewritings to the user. The user can then ask the execution of some of them. The system has to rewrite each one in the source language.Two other points must be mentioned about our query language.- Since the user does not know the structure of the data sources, it is not possible for him to indicate that a term corresponds to an element or to an attribute. So the system will have to look both for elements and for attributes when searching a correspondence.- No difference is made in the query user between lower case and upper case letters. The system will make sure the exact writing of a term is retrieved for the rewriting of the query.Presently we do not handle the problem of the semantics of a link condition. For example in a source it can exist a link between employee and department which means that the employee works in the department and in another source a link which means that the employee manages the department. The specification employee()department in our query language does not make distinction between the two situations. We plan to handle this problem by allowing the user to introduce a verb to specify the semantics of the link. So the specification employee(manage)department allows to look for only the links of which meaning is manage. Note that the matching can be solved only if the sources are suitably annotated.3 Architecture and Working of the SystemThe matcher is the central element of the system (Figure 2). It receives the user query, and has the task to determine if this query can be applied to a data source. To achieve this processing, it possesses a representation of each data source in a common formalism (we propose OWL to support this formalism, cf. section 4). It must search for a correspondence between the query and each source by taking into account the terms and the structure of the query. A source can answer a query, if the terms of the query correspond to those of the source and if the linksof the query corresponds to that of the source. Correspondences between terms of the query and terms of sources descriptions are established by using a domain ontology.Fig. 2. : The architecture of the systemThe working of our system comprises three phases.In the first phase the system initializes the connection with the ontology and the OWL descriptions of the sources. The system is then ready to handle queries.In the second phase, when the system receives a query, it first interrogates the ontology to retrieve the synonyms and the hyponyms of the terms of the query. It then initiates the operation of matching for each of the sources. Several rewriting possibilities can be proposed on one or several sources.The third phase triggers the execution of one or several of these rewritings on the corresponding sources. Execution can be triggered automatically or by the user. The user can choice a rewriting to be executed on the basis of the terms and the links included in this rewriting. An execution necessitates a new step of rewriting in the language of the source (XML, relational, …).4 OWL Representation of the SourcesPresently we are working only with XML sources. To make the matching, the system could directly work on the DTD or on the XML schema of the sources. We preferred to describe every source in OWL for various reasons. At first, as we want to operate with several types of sources, the matching will be implemented with a single kind of description and will be so independent from the types of the sources. Then it is possible to take advantage of OWL features to implement the matching. Finally we foresee improved versions of the matcher, in particular by placing semantic annotations in the description of sources. The management of these annotations will be made more rationally with an OWL representation.We elaborated an algorithm with which a DTD can be mapped into an OWL representation. This mapping is bijective: from the OWL representation, it is possible to regenerate the DTD. In the following we give the principles of the mapping.The main idea is to represent every element of the DTD by an OWL class. Every father-son link between two elements is then represented by an OWL property. An attribute is also represented by a property. When a father element has only a single son element, the cardinality of this son is represented by creating a restriction on the property connecting the two elements. When the father element is a complex element, we add an intermediate class to be able to express correctly all the cardinalities.Agreements for the names of classes and properties are as following. The class representing an element will be named with the name of the element. For an intermediate class (associated to a complex element), the name of the class willcontain the names of elements with their separator, all in brackets. When this name is long, an entity can be used. A property between two classes will carry the two names separated by a point. For attributes, the symbol '@' is used to separate the name of the class and the name of the attribute.As an example let us consider the element ORDER defined as follows:<!ELEMENT ORDER(CUSTOMER, STATUS, PRODUCT+)>In order to obtain its OWL representation, a class ORDER is created and also an intermediate class the name of which is (CUSTOMER, STATUS, PRODUCT+). For clearer under-standing, the entity &complexe1 is introduced to replace this name in the OWL file. Then a property connecting ORDER with the complex class is created, and the cardinality in the class ORDER is restricted. In the definition of the complex class the limitations of cardinalities are introduced for each of the elements. For CUSTOMER and STATUS, the cardinality is forced to be 1. Then properties are created to connect the complex class with each of the classes CUSTOMER, STATUS, and PRODUCT (figure 3).Using the same principles, it is possible to design an algorithm which maps a relational schema into an OWL representation. So our approach can be extended to deal also with relational sources.5 Matching AlgorithmThe first step of the matching consists in extracting from the ontology synonyms and hyponyms (by possibly limiting the level of these last ones) for each of the terms of the query. A source is a candidate if it contains for every term of the request a synonym or a hyponym. Sources which are not candidates are definitively discarded. This step does not put particular difficulty.The second step of the matching consists in determining if every link condition of the query is verified in each of the candidate sources. We then say that such a source matches with the query.Let a()b be a link condition of the query and let a' and b ' be correspondents (synonyms or hyponyms) for a and b existing in the source S.First matching rule: If in source S, a' and b ' are directly connected (i.e. they are linked by a property in the OWL file in the direct direction or in the inverse direction), then S satisfies the link condition.Example: Let us consider again the query Q1 of section 2 which looks for the name of the customers living in the same region as a supplier having a name “easymarket”.Q1 : Select a()namefrom customer a, supplier bwhere a()region=b()region and b()name=”easymarket”Each of the link conditions is verified for each of the two sources of figure 2. So, these two sources match with the query.But this first rule does not cover all the situations where one can find a matching for a link condition. Let us consider for example the query Q2 and the source of figure 4.Q2 : Select a()name from customer awhere a()city="Aubière"The link condition a()city is verified because buyer is a correspondent of customer, urban-center is a correspondent of city and these two correspondents are not directly connected but by an intermediate node which does not change the meaning of the connection (address being a hypernym of urban-center). One can make the same analysis with the link a()name. So this source matches with query Q2.Fig. 4. : Example of a source which matches with query Q2This induces us to propose another matching rule for a link condition.Second matching rule : If in source S, a' and b' are indirectly connected (i.e. they are linked by several sequential properties in the OWL file in the direct direction or in the inverse direction), then S satisfies the link condition of the query if each intermediate class is a synonym or a hypernym or a hyponym of the previous class or the next class.We give below a description of the matching algorithm.AlgorithmResources : OWL descriptions of a set T of sources; an ontology of the domain Input : a query QOuput : the set of matching queries for Q1- For each term of Q create the list of correspondents with the term, its synonyms and its hyponyms at level < k; let L be the set of lists so obtained.2- S:= set of sources of T which have in their OWL description at least one member of each list of L.3- For each source of S3.1 - Generate the different combinations C for associating a correspondent to each term of the source;3.2 - For each combination of CIf it exists a link in the source for each link in Q (test by using the matching rules) Then generate a new matching query by replacing each term in Q by its correspondent and by prefixing each attribute by the symbol @.The overall complexity of this algorithm is linear with the number of sources. For a given source the complexity is linear with the number of combinations generated instage 3.1. This number depends of the parameter k (exploration depth in the ontology for hyponyms). For our experiments (section 6), we have chosen k=3.Note that a matching query for a source must be rewritten in the language of this source. In our case, each matching query is rewritten in XQUERY. We do not detail this rewriting process. To construct the various paths of the FOR WHERE RETURN clauses, one starts from the matching query and one organizes its terms into a hierarchy. The FOR clause contains the definition of the paths which allow to reach from the root of the XML document the highest terms previously defined. The paths of the WHERE clause integrate the link conditions and the valuation conditions. The RETURN clause contains the searched elements, i.e. those associated to the SELECT clause of the matching query.6 Prototype and ExperimentsThe prototype which we built implements the architecture presented in figure 2. We incorporated the tool SAXON-B [20] to access the OWL representations. We used WORDNET [14] as the domain ontology. Since WORDNET is in fact a general ontology, we shall use sources for our experiments which do not contain highly specialized terms. WORDNET is thus used only to provide synonyms and hyponyms of terms and to control that a succession of terms along a link is acceptable. Access to WORDNET is made through the JAVA API Java WordNet Library [8]. The body of the matcher is written in JAVA.Our experiments were conducted on six sources A, B, C, D, E, F containing data on sales of products. Sources contained from 8 to 14 elements. Every element had on average two attributes. They were built manually. OWL files were generated automatically by our transformation algorithm. We submitted ten different queries to the matcher. To save space we give only the results obtained on sources A and B for the first two queries. Extracts of the schemas of sources A and B are given in figures 5 and 6.Fig. 5. : Partial XML tree of source AFig. 6. : Partial XML tree of source BQuery 1 : Names of the customers which live in "Aubière" and which have "Castorama" among their suppliers.User query:SELECT a()name FROM customer a, supplier bWHERE a()b AND a()city="Aubière" ANDb()name="Castorama"Matching query n° 1 for source A provided by the matcher:SELECT a()@name FROM client a, supplier bWHERE a()b AND a()address()@city="Aubière" ANDb()name="Castorama"Rewriting n° 1 for source A provided by the matcher:FOR $a IN sales/clientWHERE $a/address/@city="Aubière" AND$a/supplier/name="Castorama"RETURN {$a/@name}For this query the matcher proposes a unique matching for source A. It uses the term customer as synonym of client. We observed that attributes are well detected and are marked with symbol @ in the matching query. No matching is proposed for source B.Query 2 : Names of the products of the brand "Siemens".User query:SELECT a()name FROM product a, manufacturer bWHERE a()b AND b="Siemens"Matching query n°1 for source A provided by the matcher:SELECT a()@name FROM product a, producer bWHERE a()b AND b="Siemens"Matching query n°2 for source B provided by the matcher:SELECT a()@name FROM product a, manufacturer bWHERE a()b AND b="Siemens"Rewriting n°1 for source A provided by the matcher:FOR $a IN sales/client/productWHERE $a/producer="Siemens"RETURN {$a/@name}Rewriting n°2 for source B provided by the matcher:FOR $a IN sales/productWHERE $a/manufacturer/@name="Siemens"RETURN {$a/@name}In source A, the term producer acts as a synonym of manufacturer. It is a leaf element and is used for the valuation condition. In source B, manufacturer has an attribute name which is used to specify the condition. In both cases, the matcher provides the correct rewriting.For the studied queries the performances of the matcher are good or very good. Lacks in the matching occur when ambiguous words are used in the queries or in the sources. Our matcher does not consider in the immediate the sense of words. Improvements in this direction are so envisaged.7 Other FeaturesTo increase the efficiency of the system it is interesting to be able to equip it with the possibility of automatically incorporating new data sources. We have implemented a module in our prototype to try this possibility. The administrator of the system can describe a domain of application by keywords and ask the system, by using a search engine, to look for XML sources (and their DTD) compatible with the keywords. These sources after validation by the administrator are then incorporated automatically into the system (by translation of the DTD into OWL and by insertion in the directory of sources to be used for the matching). This feature appears very efficient.By leading these experiments we noticed that numerous tags, in XML documents coming from the Web, contained abbreviations which were unknowns from the ontology (WORDNET). For example one often sees terms such as "lastdate" or "pubdate". It is possible with WORDNET to declare these abbreviations as synonyms of existing terms and to make them so accessible by the matcher. We tested this possibility and it appears efficient.8 Conclusion and PerspectivesThrough the results obtained, it appears that our system is able to find data from an intuition of the user, intuition expressed through an implicit vision of the domain compatible with the ontology.The main advantage of our approach is its robustness with regard to the evolution of sources. When a new source is inserted, it is sufficient to elaborate its OWL representation so that it can be exploited by the system. When a source evolves, it is sufficient to reshape its OWL representation.The main limitations come from the fact that our system does not actually handle sense of terms and sense of link conditions. These two points are strictly connected. To determine the most adequate sense of a term during a matching it is necessary toknow the context in which the user takes place and this context could be be determine through the links.Our system was designed to handle this problem. By allowing the user in his query to supply the semantics of a link condition, the matcher will get back useful information to characterize the user context. To improve the matching, the OWL representation of sources can be fitted out to memorize annotations on the sense of terms (at the level of the corresponding classes) and on the sense of links (at the level of properties). The main problem is that of the installation of these annotations in sources.These annotations can be installed manually by the administrator of each source. This solution is now recommended by many experts. We investigate another solution which consists to permit the system to provide some of these annotations during its working. It appears possible to seek the opinion of the user when the results of a query are displayed and to infer so some semantic features of the corresponding source.We think that these improvements could result in an efficient system.The system can be extended to deal with other types of sources (relational, object).We are also engaged in another improvement of our prototype in order to allow the join of results coming from different sources. In that case a query is rewritten in several sub-queries, each sub-queries being relative to a different source. Our matching algorithm can be adapted for this more general situation. It is necessary to verify a link condition by using information coming from different sources.Another important point concerns the performances of our matching algorithm. Without join between sources (as in this version of our prototype), the complexity of the matching is linear with N, the number of sources, and does not induce any problem to scale up. By implementing the join, we will increase the complexity of the matching (it becomes exponential). We investigate different solutions in order to permit the system to scale up. A possible way would be to explore only the most realistic matching cases, by using for example a learning approach, or by introducing constraints.Such a system can be very useful for different applications. Incorporated into an intranet system, it would allow a user to reach the data sources without knowing their schemas, by being based only on the domain ontology. In a P2P system, it could be installed on some peers or on the super-peers to facilitate access to data by their semantics. The only obligation for a peer would be to publish its data by using the OWL representation.References1. Bernstein P. A., Melnik S., Petropoulos M., and Quix C.: Industrial-strength schema matching. SIGMOD Record, Vol. 33, No 4, pp 38-43, 2004.2. Cui Z., Jones D., O’Brien P.: Issues in Ontology-based Information Integration. IJCAI, Seattle, 2001.3. Do H. H., Rahm E.: COMA - A System for Flexible Combination of Schema Matching Approaches. VLDB 2002, pp. 610-621.。

相关文档
最新文档