数学高考复习 对称与最值

合集下载

高一数学复习考点知识与题型讲解12---二次函数在闭区间上的最值问题

高一数学复习考点知识与题型讲解12---二次函数在闭区间上的最值问题

高一数学复习考点知识与题型讲解第12讲二次函数在闭区间上的最值问题二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论.一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值.分析:将配方,得顶点为、对称轴为;当时,它的图象是开口向上的抛物线,数形结合可得在上的最值:(1)当时,的最小值是的最大值是中的较大者.(2)当时,由在上是增函数,则的最小值是,最大值是.(3)当时,由在上是减函数,则的最大值是,最小值是.当时,可类比得结论.【题型一】定轴动区间已知是二次函数,不等式的解集是,且在区间上的最大值是.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【解析】(1)是二次函数,且的解集是,可设-.(待定系数法,二次函数设为交点式)在区间-上的最大值是.由已知得,,-.(2)由(1)得,函数图象的开口向上,对称轴为(讨论对称轴与闭区间的相对位置)①当时,即时,在上单调递减,(对称轴在区间右侧)此时的最小值;②当时,在上单调递增,(对称轴在区间左侧)此时的最小值;③当时,函数在对称轴处取得最小值(对称轴在区间中间)此时,-综上所述,得的表达式为:.【点拨】①利用待定系数法求函数解析式;②对于二次函数,对称轴是确定的,而函数的定义域不确定,则按照对称轴在区间的“左、中、右”分成三种情况进行讨论.【题型二】动轴定区间求在区间上的最大值和最小值.【解析】的对称轴为.①当时,如图①可知,在上递增,,.②当时,在上递减,在上递增,而,(此时最大值为和中较大者)当时,,如图,当时,,如图③,③当时,由图④可知,在上递减,,.综上所述,当时,,;当时,,;当时,,;当时,,.【点拨】①题目中的函数的对称轴是不确定的,定义域是确定的,在求最小值时与“定轴动区间”的思考一样分对称轴在区间的“左、中、右”分成三种情况(即)进行讨论.②在求最大值时,当,还需要判断和时谁离对称轴更远些,才能确定、哪个是最大值,则还有分类;【题型三】逆向题型已知函数在区间上最大值为,求实数的值.【解析】若,(注意函数不一定是二次函数)则而在上的最大值,(2)若则的对称轴为,则的最大值必定是、、这三数之一,若,解得,此时而为最大值与为最大值矛盾,故此情况不成立.若,解得,此时而距右端点较远,最大值符合条件,.若,解得,当时,,则最大值不可能是;当时,此时最大值为,;综上所述或【点拨】本题没有按照分对称轴在定义域的“左、中、右”分离讨论,否则计算量会很大,还要考虑开口方向呢.思路是最大值必定是、、这三数之一,那逐一讨论求出值后再检验就行.巩固练习1 (★★) 已知函数.当时,求函数在区间上的值域;当时,求函数在区间上的最大值;求在上的最大值与最小值.【答案】(1) (2) ;(3)时, 最小值为,最大值为;时,最小值为,最大值为.时,最大值为,最小值为.【解析】(1)当时,,函数在--上单调递减,在-上单调递增,-,,,,函数在区间上的值域是;(2)当时,,,函数在区间上的最大值;,函数在区间上的最大值;函数在区间上的最大值;(3)函数的对称轴为,①当,即时,函数在-上是增函数,当时,函数y取得最小值为;当时,函数取得最大值为.②当,即时,当时,函数取得最小值为;当时,函数取得最大值为.③当-,即-时,-a时,函数取得最小值为-;当-时,函数取得最大值为-.④当-,即-时,函数在-上是减函数,故当-时,函数取得最大值为-;当时,函数取得最小值为.2(★★) 已知函数.(1)若,求在上的最大值和最小值;(2)若在为单调函数,求的值;(3)在区间上的最大值为4,求实数的值.【答案】(1)最大值是,最小值(2)或(3)或【解析】(1)时,;在-上的最大值是,最小值是-;(2)在为单调函数;区间-在f(x)对称轴-的一边,即--,或-;或-;-(3)-,中必有一个最大值;若---;--,符合-最大;若,;,符合最大;或.3(★★) 已知函数在上恒大于或等于,其中实数求实数的范围.【答案】【解析】若时,在上是减函数,即则条件成立,令(Ⅰ)当时,即则函数在上是增函数,=即,解得或,(Ⅱ)当即若解得与矛盾;(2)若时即解得与矛盾;综上述:.4(★★★)已知函数在区间上的最小值是,最大值是,求的值.【答案】【解析】解法1:讨论对称轴中与的位置关系。

函数的奇偶性、周期性与对称性-高考数学复习

函数的奇偶性、周期性与对称性-高考数学复习
±1,解得 a =0(舍去)或 a =2,故选D.
法二

− −1
因为 f ( x )是偶函数,所以 f (1)- f (-1)= - −
−1
−1
− −1

=0,所以 a -1=1,所以 a =2.故选D.
−1
目录
高中总复习·数学
解题技法
利用函数的奇偶性求参数值的解题策略
目录
高中总复习·数学
考向3 利用奇偶性求解析式及函数值
【例3】 (1)已知偶函数 f ( x ),当 x ∈[0,2)时, f ( x )=2
π
sin x ,当 x ∈[2,+∞)时, f ( x )=log2 x ,则 f (- )+ f (4)
3
=(

B. 1
D. 3
目录
高中总复习·数学
解析:∵函数 f ( x )是偶函数,当 x ∈[0,2)时, f ( x )=2 sin
所以 f ( x )既是奇函数又是偶函数.
目录
高中总复习·数学
(3) f ( x )=
36− 2
|+3|−3
解:由 f ( x )=

36− 2
|+3|−3
,可得
36 − 2 ≥ 0,
−6 ≤ ≤ 6,
⇒ቊ
故函数 f ( x )的定义域为

| + 3| − 3 ≠ 0 ≠ 0且 ≠ −6,
1(符合题意).故选A.
目录
高中总复习·数学
2. (多选)下列函数中为非奇非偶函数的是(

A. y = x +e x
目录
高中总复习·数学
解析:
记 f ( x )= x +e x ,则 f (-1)=-1+e-1, f (1)=

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

专题03 函数的奇偶性、对称性、周期性【方法点拨】1.常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . 2.函数奇偶性、对称性间关系:(1)若函数y =f (x +a )是偶函数,即f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称;一般的,若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称.(2)若函数y =f (x +a )是奇函数,即f (-x +a )+f (x +a )=0恒成立,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (a +x )+f (a -x )=2b 恒成立,则y =f (x )的图象关于点(a ,b )对称. 3. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.(注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)4. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化.【典型题示例】例1 (2022·全国乙·理·T12) 已知函数(),()f x g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A. 21-B. 22-C. 23-D.24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【解析】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()2211235(1)2k f f f f f f k =⎡⎤++++++⎣⎦=∑()()()4622f f f ⎡⎤+++⎣⎦13101024=----=-.故选:D例2 (2022·新高考Ⅱ卷·T8) 若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【解析】因为()()()()f x y f x y f x f y ++-=, 令1,0x y ==可得,()()()2110f f f =,所以()02f =, 令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-, 所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--, 故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .例3 (2021·新高考全国Ⅱ卷·8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A. 102f ⎛⎫-= ⎪⎝⎭B. ()10f -=C. ()20f =D.()40f =【答案】B【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.例4 (2021·全国甲卷·理·12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫=⎪⎝⎭( ) A. 94-B. 32-C.74 D.52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .例5 已知函数f (x )对任意的x ∈R ,都有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________. 【答案】4【分析】由f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12==,由函数 f (x +1)是奇函数,f (x )关于点(1,0)中心==,根据函数对称性、周期性间关系,知函数f (x )====2,====f (x )===即可.【解析】====f (x =1)=======f (=x =1)==f (x =1)====f ⎝⎛⎭⎫12=x = f ⎝⎛⎭⎫12=x ===f (1=x )=f (x )===f (x =1)==f (x )==f (x =2)==f (x =1)=f (x )= == ==f (x )====2========x =12=======f (x )========由图象可得 f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4. 例6 已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则下列结论正确的有( )A .f (1)f +(2)f +(3)(2019)0f +⋯+=B .直线5x =-是函数()y f x =图象的一条对称轴C .函数()y f x =在[7-,7]上有5个零点D .函数()y f x =在[7-,5]-上为减函数【分析】根据题意,利用特殊值法求出f (2)的值,进而分析可得1x =是函数()f x 的一条对称轴,函数()f x 是周期为4的周期函数和()f x 在区间[1-,1]上为增函数,据此分析选项即可得答案.【解答】解:根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当2x =时,有(0)2f f =(2)0=,则有f (2)0=,则有(2)()f x f x -=,即1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()f x f x -=--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数, 当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[0,1]上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1-,1]上为增函数; 据此分析选项:对于A ,(2)()f x f x +=-,则f (1)f +(2)f +(3)f +(4)[f =(1)f +(3)][f + (2)f +(4)]0=,f (1)f +(2)f +(3)(2019)504[f f +⋯+=⨯(1)f +(2)f +(3)f +(4)]f +(1)f +(2)+(3)f =(2)0=,A 正确;对于B ,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x = 是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,B 正确; 对于C ,函数()y f x =在[7-,7]上有7个零点:分别为6-,4-,2-,0,2,4,6;C 错误;对于D ,()f x 在区间[1-,1]上为增函数且其周期为4,函数()y f x =在[5-,3]-上为增函数,又由5x =-为函数()f x 图象的一条对称轴,则函数()y f x =在[7-,5]-上为减函数,D正确; 故选:ABD . 例7 已知函数()111123f x x x x =++---,()2g x x =-,则关于x 的方程()()f x g x =的实数根之和为______;定义区间(),a b ,[),a b ,(],a b ,[],a b 长度均为b a -,则()1111123f x x x x =++≥---解集全部区间长度之和为______. 【答案】①8 ②3【分析】根据题意得以函数()f x 关于点()2,0对称,进而利用导数研究函数()f x 性质,作出简图,树形结合求解即可得关于x 的方程()()f x g x =的实数根之和;令()1111123f x x x x =++=---整理得方程的实数根123,,x x x 满足1239x x x ++=,再数形结合得()1f x ≥解集为(](](]1231,2,3,x x x ,最后根据定义求解区间长度的和即可.【解析】因为()()1114321f x f x x x x-=++=----, 所以函数()f x 关于点()2,0对称, 由于()()()()222111'0123f x x x x =---<---,所以函数()f x 在()()()(),1,1,2,2,3,3,-∞+∞上单调递减,由于1x <时,()0f x <,(),0x f x →-∞→,()1,x f x -→→-∞,()1,x f x +→→+∞,()2,x f x -→→-∞,()2,x f x +→→+∞,()3,x f x -→→-∞,()3,x f x +→→+∞,(),0x f x →+∞→,且3x >时,()0f x >.故作出函数简图如图: 根据图像可知,函数()111123f x x x x =++---与函数()2g x x =-图像共有4个交点,且关于点()2,0对称,所以()()f x g x =的实数根之和为8;令()1111123f x x x x =++=---,整理得32923170x x x -+-=, 由图像知方程有三个实数解,不妨设为123,,x x x , 所以由三次方程的韦达定理得1239x x x ++=, 由函数图像得()1f x ≥解集为(](](]1231,2,3,x x x所以全部区间长度之和为12312312363x x x x x x -+-+-=++-=. 故答案为:8;3.【巩固训练】1.已知函数()1()2x af x -=关于1x =对称,则()()220f x f -≥的解集为_____.2.已知定义在R 上的函数()f x 满足(1)(3)f x f x +=--,且()f x 的图象与()lg4xg x x=-的图象有四个交点,则这四个交点的横纵坐标之和等于___________. 3.已知函数()()f x x R ∈满足(1)(1),(4)(4)f x f x f x f x +=-+=-,且33x -<≤时,()ln(f x x =,则(2018)f =( )A .0B .1 C.2) D.2)4. 已知f (x )是定义域为R 的函数,满足f (x +1)=f (x -3),f (1+x )=f (3-x ),当0≤x ≤2时,f (x )=x 2-x ,则下列说法正确的是( ) A.函数f (x )的周期为4B.函数f (x )图象关于直线x =2对称C.当0≤x ≤4时,函数f (x )的最大值为2D.当6≤x ≤8时,函数f (x )的最小值为-125.已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间上有四个不同的根,则6.(多选题)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则( ) A.f (x )为奇函数B.f (x )为周期函数C.f (x +3)为奇函数D.f (x +4)为偶函数7.若定义在R 上的函数()f x 满足()()2f x f x +=-,()1f x +是奇函数,现给出下列4个论断:①()f x 是周期为4的周期函数;②()f x 的图象关于点()1,0对称; ③()f x 是偶函数; ④()f x 的图象经过点()2,0-; 其中正确论断的个数是______________.8. (多选题)已知定义在R 上的函数f (x )满足f (x )=2-f (2-x ),且f (x )是偶函数,下列说法正确的是( )A.f (x )的图象关于点(1,1)对称B.f (x )是周期为4的函数C.若f (x )满足对任意的x ∈[0,1],都有f (x 2)-f (x 1)x 1-x 2<0,则f (x )在[-3,-2]上单调递增D.若f (x )在[1,2]上的解析式为f (x )=ln x +1,则f (x )在[2,3]上的解析式为f (x )=1-ln(x -2) 9. (2022·江苏常州·模拟)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )等于( ) A.0B.mC.2mD.4m)(x f (4)()f x f x -=-[]8,8-1234,,,x x x x 1234_________.x x x x +++=10.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5011.已知函数y kx b =+与函数11x x y e e --=-的图象交于A ,B ,C ,且|AB |=|BC |=2211e e+-,则实数k = .【答案与提示】1.【答案】[]1,2【解析】∵函数()1()2x a f x -=关于1x =对称,∴()111,2x a f x -⎛⎫== ⎪⎝⎭,则由()()12202f x f -≥=,结合图象可得0222x ≤-≤,求得12x ≤≤.2.【答案】8【解析】()lg 4x g x x =-,故(4)()g x g x -=-,即()y g x =的图象关于点(2,0)对称,又函数()f x 满足(1)(3)f x f x +=--,则函数()y f x =的图象关于点(2,0)对称,所以四个交点的横纵坐标之和为8.3. 【答案】D【解析】因为()()()()11,44f x f x f x f x +=-+=-,所以()(2),()(8)(2)(8)826,f x f x f x f x f x f x T =-=-∴-=-∴=-=(2018)(2)ln(25)f f ∴==+ .4. 【答案】ABC【解析】 由f (x +1)=f (x -3),得f (x )=f [(x -1)+1]=f [(x -1)-3]=f (x -4),所以函数f (x )的周期为4,A 正确.由f (1+x )=f (3-x ),得f (2+x )=f (2-x ),所以函数f (x )的图象关于直线x =2对称,B 正确.当0≤x ≤2时,函数f (x )在⎣⎡⎭⎫0,12上单调递减,在⎝⎛⎦⎤12,2上单调递增.所以当x =12时,函数f (x )在[0,2]上取得极小值-14,且f (0)=0,f (2)=2.作出函数f (x )在[0,8]上的大致图象,如图.由图可知,当0≤x ≤4时,函数f (x )的最大值为f (2)=2,C 正确;当6≤x ≤8时,函数f (x )的最小值为f ⎝⎛⎭⎫152=f ⎝⎛⎭⎫12=-14,D 错误.故选ABC.5. 【答案】-8【提示】四个根分别关于直线2x =,6x =-对称.【命题立意】本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.6.【答案】ABC【解析】法一 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (-x )+f (2+x )=0,f (-x )+f (4+x )=0,所以f (2+x )=f (4+x ),即f (x )=f (2+x ),-8 -6 -4 -2 0 2 4 6 8 yx f(x)=m (m>0)所以f (x )是以2为周期的周期函数.又f (x +1)与f (x +2)都为奇函数,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.法二 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (x )的周期为2|2-1|=2,所以f (x )与f (x +2),f (x +4)的奇偶性相同,f (x +1)与f (x +3)的奇偶性相同,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.7.【答案】3【解析】命题①:由()()2f x f x +=-,得:()()()42f x f x f x +=-+=, 所以函数()f x 的周期为4,故①正确;命题②:由()1f x +是奇函数,知()1f x +的图象关于原点对称,所以函数()f x 的图象关于点()1,0对称,故②正确;命题③:由()1f x +是奇函数,得:()()11f x f x +=--,又()()2f x f x +=-,所以()()()()()()21111f x f x f x f x f x -=--+=-+-=--=,所以函数()f x 是偶函数,故③正确;命题④:()()()2220f f f -=--+=-,无法判断其值,故④错误.综上,正确论断的序号是:①②③.8. 【答案】ABC【解析】根据题意,f (x )的图象关于点(1,1)对称,A 正确;又f (x )的图象关于y 轴对称,所以f (x )=f (-x ),则2-f (2-x )=f (-x ),f (x )=2-f (x +2),从而f (x +2)=2-f (x +4),所以f (x )=f (x +4),B 正确;由f (x 2)-f (x 1)x 1-x 2<0可知f (x )在[0,1]上单调递增,又f (x )的图象关于点(1,1)对称,所以f (x )在[1,2]上单调递增,因为f (x )的周期为4,所以f (x )在[-3,-2]上单调递增,C 正确;因为f (x )=f (-x ),x ∈[-2,-1]时,-x ∈[1,2],所以f (x )=f (-x )=ln(-x )+1,x ∈[-2,-1],因为f (x )的周期为4,f (x )=f (x -4),x ∈[2,3]时,x -4∈[-2,-1],所以f (x )=f (x -4)=ln(4-x )+1,x ∈[2,3],D 错误.综上,正确的是ABC.9.【答案】 B【解析】 ∵f (x )+f (-x )=2,y =x +1x =1+1x. ∴函数y =f (x )与y =x +1x的图象都关于点(0,1)对称, ∴∑m i =1x i =0,∑mi =1y i =m 2×2=m . 10.【答案】C【分析】同例1得f (x )的的的的4,故f (1) +f (2) +f (3) +f (4)=f (5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48),而f (1)=2,f (2)=f (0)=0(f (1-x )=f (1+x )中,取x =1)、f (3)=f (-1) =-f (1)=-2、f (4)=f (0)=0,故f (1) +f (2) +f (3) +f (4)=f(5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48) =0,所以f (1) +f (2) +f (3) +···+f (50) =f (47) +f (48) =f (1) +f (2) =2.11.【答案】1e e- 【解析】设()x x f x e e -=-,则()f x 为定义在R 上的单增的奇函数而11(1)x x y e e f x --=-=-,故其图象关于点(1,0)中心对称又因为|AB |=|BC |,所以B 的坐标为(1,0)为使运算更简单,问题可转化为过坐标原点的直线y kx =与()x x f x e e -=-交于一点D ,且k 的值 不妨设()000,x x D x e e --(00x >),== 解之得01x =,()11,D e e --,所以1k e e -=-.。

高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性

高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性

高考数学复习考点知识与题型专题讲解函数的奇偶性、周期性与对称性考试要求1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )为奇函数,则f (0)=0.(×)(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.(×)(3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.(√)(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.(√)教材改编题1.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案B解析根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.2.若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2023)=______.答案1 2解析∵f(x)的周期为2,∴f(2023)=f(1)=2-1=1 2.3.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性命题点1判断函数的奇偶性例1判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎨⎧ x 2+x ,x <0,-x 2+x ,x >0; (3)f (x )=log 2(x +x 2+1).解(1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3, 即函数f (x )的定义域为{-3,3},从而f (x )=3-x 2+x 2-3=0.因此f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.(3)显然函数f(x)的定义域为R,f(-x)=log2[-x+(-x)2+1]=log2(x2+1-x)=log2(x2+1+x)-1=-log2(x2+1+x)=-f(x),故f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.命题点2函数奇偶性的应用例2(1)(2022·哈尔滨模拟)函数f(x)=x(e x+e-x)+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为()A.-2B.0C.2D.4答案C解析依题意,令g(x)=x(e x+e-x),显然函数g(x)的定义域为R,则g(-x)=-x(e-x+e x)=-g(x),即函数g(x)是奇函数,因此,函数g(x)在区间[-2,2]上的最大值与最小值的和为0,而f(x)=g(x)+1,则有M=g(x)max+1,N=g(x)min+1,于是得M+N=g(x)max+1+g(x)min+1=2,所以M+N的值为2.(2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=________.答案1解析方法一(定义法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.方法二(取特殊值检验法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )() A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数答案C解析由9-x 2≥0且|6-x |-6≠0,解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0},关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x, 又f (-x )=9-(-x )2x =-9-x 2-x =-f (x ), 所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎨⎧ g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 答案-1解析∵f (x )为奇函数且f (-1)=g (-1),∴f (-1)=-f (1)=-(-1)=1,∴g (-1)=1,∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1(1)(2021·全国乙卷)设函数f (x )=1-x 1+x ,则下列函数中为奇函数的是() A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案B解析f(x)=1-x1+x=2-(x+1)1+x=21+x-1,为保证函数变换之后为奇函数,需将函数y=f(x)的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f(x-1)+1.(2)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=2x-2x+a,则a=________;当x<0时,f(x)=________.答案-1-2-x-2x+1解析∵f(x)是定义在R上的奇函数,∴f(0)=0,即1+a=0,∴a=-1.∴当x≥0时,f(x)=2x-2x-1,设x<0,则-x>0,∴f(-x)=2-x-2(-x)-1=2-x+2x-1,又f(x)为奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+2x-1,∴f(x)=-2-x-2x+1.题型二函数的周期性例3(1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝ ⎛⎭⎪⎫132等于() A .-94B .-14C.14D.94答案A解析由f (x -2)=f (x +2),知y =f (x )的周期T =4,又f (x )是定义在R 上的奇函数,∴f ⎝ ⎛⎭⎪⎫132=f ⎝ ⎛⎭⎪⎫8-32 =f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫32=-94. (2)函数f (x )满足f (x )=-f (x +2),且f (1)=2,则f (2023)=________.答案-2解析f (x )=-f (x +2),∴f (x +4)=-f (x +2)=f (x ),∴f (x )的周期为4,∴f (2023)=f (3)=-f (1)=-2.教师备选若函数f (x )=⎩⎨⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2023)=________.答案-1解析当x>0时,f(x)=f(x-1)-f(x-2),①∴f(x+1)=f(x)-f(x-1),②①+②得,f(x+1)=-f(x-2),∴f(x)的周期为6,∴f(2023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2023)等于() A.336B.338C.337D.339答案B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2021)+f(2022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2021)+f(2022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2021)+f(2022)=0.题型三函数的对称性例4(1)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是________.(填序号)①f(x)的图象关于直线x=2对称;②f(x)的图象关于点(2,0)对称;③f(x)的周期为4;④y=f(x+4)为偶函数.答案①③④解析∵f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故①正确,②错误;∵函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),∴f(x+4)=f(x),∴T=4,故③正确;∵T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故④正确.(2)函数f(x)=lg|2x-1|图象的对称轴方程为________.答案x=1 2解析内层函数t=|2x-1|的对称轴是x=12,所以函数f(x)=lg|2x-1|图象的对称轴方程是x =12.教师备选已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案-1解析因为f (x )关于点(0,1)对称,所以f (x )+f (-x )=2,故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2,解得a =0,所以f (x )=x 3+bx +1,又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1,所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3(1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2025)=________.答案1解析∵f (x )的周期为6,则f (2025)=f (3),又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称,∴f (3)=f (1)=1,∴f (2025)=1.(2)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是________.(填序号)①f (x )的图象关于y 轴对称;②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称;④f (x )的图象关于点(π,0)对称.答案②③④解析∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,图象关于原点对称,故①错误,②正确.∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x , f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,∴f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故③正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故④正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上()A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5答案C解析因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5.2.若函数f (x )=12x -1+a 为奇函数,则a 的值为() A .-2B .-12C.12D .2答案C解析方法一(定义法)∵f (x )为奇函数,∴f (-x )=-f (x ),∴12-x -1+a =-⎝ ⎛⎭⎪⎫12x -1+a , ∴2a =-⎝ ⎛⎭⎪⎫12-x -1+12x -1=1, ∴a =12.方法二(特值法)f (x )为奇函数,且x ≠0,∴f (-1)=-f (1),∴a -2=-(a +1),∴a =12.3.(2022·南昌模拟)函数f (x )=9x +13x 的图象()A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案B解析f(x)=32x+13x=3x+3-x,f(-x)=3-x+3x,∴f(-x)=f(x),故f(x)为偶函数,其图象关于y轴对称.4.已知函数f(x)的图象关于原点对称,且周期为4,f(3)=-2,则f(2021)等于()A.2B.0C.-2D.-4答案A解析依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(3)=-2,则有f(2021)=f(-3+506×4)=f(-3)=-f(3)=2,所以f(2021)=2.5.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=|f(x)|C.y=xf(x) D.y=f(x)+x答案D解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,|f(-x)|=|-f(x)|=|f(x)|,为偶函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.6.(2022·南昌模拟)已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于()A.0B.-1C.-2D.2答案C解析因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x),又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案1 3解析因为f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则有(a-1)+2a=3a-1=0,则a=13,同时f(-x)=f(x),即ax2+bx+1=a(-x)2+b(-x)+1,则有bx =0,必有b =0.则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝ ⎛⎭⎪⎫352=12,则m =______. 答案12解析由f (1-x )=f (1+x ),f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫352=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12=12, ∴14+12m =12,∴m =12.9.已知函数f (x )=⎩⎨⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于()A .-7B .-3C .3D .7答案B解析设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ),即f (x )-2=-f (-x )+2,故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=2x +a ,则g (1)等于()A .a +54B.54C.34D .a +34答案C解析依题意⎩⎨⎧ f (1)+g (1)=2+a ①f (-1)+g (-1)=12+a ,②又f (x )为偶函数,g (x )为奇函数,∴②式可化为f (1)-g (1)=12+a ,③由①③可得g (1)=34. 13.已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则下列结论正确的是________.(填序号)①f (x )的图象关于点(2,0)对称;②f (x )的图象关于直线x =2对称;③f (x )的周期为4;④f (x )的周期为8.答案①④解析∵f (x )为偶函数,∴f (x )的图象关于y 轴对称,f (-x )=f (x ),又∵f (x +2)是奇函数,∴f (-x +2)=-f (x +2),∴f (x )的图象关于(2,0)对称,又∵f (x +8)=-f (x +4)=f (x ),∴f (x )为周期函数且周期为8.14.已知函数f (x )对任意实数x 满足f (-x )+f (x )=2,若函数y =f (x )的图象与y =x +1有三个交点(x 1,y 1),(x 2,y 2),(x 3,y 3),则y 1+y 2+y 3=________.答案3解析因为f (-x )+f (x )=2,则f (x )的图象关于点(0,1)对称,又直线y =x +1也关于点(0,1)对称,因为y =f (x )与y =x +1有三个交点,则(0,1)是一个交点,另两个交点关于(0,1)对称,则y 1+y 2+y 3=2+1=3.15.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=________. 答案11011解析因为f (x )=4x4x +2, 所以f (x )+f (1-x )=4x 4x +2+41-x41-x +2=4x 4x +2+44x 44x +2=4x 4x +2+44x 4+2·4x 4x=4x 4x +2+44+2·4x=2·4x +44+2·4x =1,设f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=m ,① 则f ⎝ ⎛⎭⎪⎫20222023+…+f ⎝ ⎛⎭⎪⎫32023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫12023=m ,② ①+②得2022=2m ,即m =1011,故f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=1011. 16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P .(1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值.解(1)因为函数y =x 是增函数,所以函数y =x 不具有性质P ,当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立,所以y =cos x 具有性质P .(2)设x ∈(-π,0],则x +π∈(0,π], 由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝ ⎛⎭⎪⎫-π2=12.。

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π

减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3

3
3
2
1+ 2

|解题技法|
sin+

高考数学复习考点题型专题讲解2 中心对称轴对称和周期性

高考数学复习考点题型专题讲解2 中心对称轴对称和周期性

高考数学复习考点题型专题讲解 第2讲 中心对称、轴对称与周期性7类【题型一】中心对称性质1:几个复杂的奇函数【典例分析】 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是() A .(]0,e B .[]0,e C .(]0,1 D .[]0,1【答案】D 【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【详解】 ()1e e 21x x xf x -=+-+Q , ()()1111e e e e 121212121x x x xx x x x f x f x ----∴+-=+-+-+=++=+++ 令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x xx x x x xg x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e xx ≥当且仅当1e e xx=,即0x =时等号成立;ln 2ln 214222x x ≤++当且仅当122xx=,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g axg ax g ax ≥--=-,即2210axax -+≥对x ∀∈R 恒成立.当0a =时显然成立;当0a ≠时,需2440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.【变式演练】1.对于定义在D 上的函数()f x ,点(),A m n 是()f x 图像的一个对称中心的充要条件是:对任意x D ∈都有()()22f x f m x n +-=,判断函数()32234f x x x x =+++的对称中心______.【答案】270327⎛⎫- ⎪⎝⎭,【分析】根据点(),A m n 是()f x 图像的一个对称中心的充要条件,列出式子,即可得出结果.解:因为()32234f x x x x =+++,由于()32322222223323234x f x f x x x x x ⎛⎫⎛⎫⎛⎫+-⨯-=-⨯--⨯- ⎪ ⎪ ⎪⎝⎭+++++⎝⎭⎝⎭+701403422327272x +=⨯=⎛⎫-⨯- ⎪⎝⎭.即23m =-,7027n =.所以270327⎛⎫- ⎪⎝⎭,是()32234f x x x x =+++的一个对称中心.故答案为:270327⎛⎫- ⎪⎝⎭,.2.设函数())ln f x x =,若a ,b 满足不等式()()22220f a a f b b -+-≤,则当14a ≤≤时,2a b -的最大值为 A .1 B .10 C .5 D .8【答案】B 【详解】因为()))()ln ln0f x f x x x +-=+=,所以函数()f x 为奇函数,又因为()))0ln-lnx f x x x >==时为单调减函数,且(0)0f =所以()f x 为R 上减函数,因此()()()()()()2222222202222f a a f b b f a a f b b f a a f b b -+-≤⇔-≤--⇔-≤-+222222(1)(1){{2020a b a ba ab b a b a b a b ≥≤⇔-≥-+⇔-≥-⇔+-≥+-≤或,因为14a ≤≤,所以可行域为一个三角形ABC 及其内部,其中(1,1),(4,4),(4,2)A B C -,因此直线2z a b =-过点C 时取最大值10,选B.3..已知函数()ln 2e exf x x e x=-+-,若22018202020202020e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2019201920202e f a b ⎛⎫=+ ⎪⎝⎭,其中0b >,则12a a b +的最小值为A .34B .54C D 【答案】A 【分析】通过函数()f x 解析式可推得()()2f x f e x +-=,再利用倒序相加法求得2201820192020202020202020e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得到a b +的值,然后对a 分类讨论利用基本不等式求最值即可得出答案. 【详解】解:因为()ln 2e exf x x e x=-+-,所以()()()ln ()ln 22()e ex e e e xf x f e x x e x e x e e x -+-=-++--+---2()()lnln ln()ln 2ex e e x ex e e x e e x x e x x--=+=⋅==--, 令2201820192020202020202020e e e e S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 则2019220182019222019202020202020202020202020e e e e e e S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++=⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以2019S = 所以()201920192a b +=,所以2a b +=,其中0b >,则2a b =-. 当0a >时1||121212()112||2222a b a b a b a b a b a b -+⎛⎫+=+=+-=+⋅- ⎪⎝⎭15215511222224b a a b ⎛⎛⎫=++-≥+-= ⎪ ⎝⎭⎝ 当且仅当2,2b a a b =即24,33a b ==时等号成立;当0a <时1||1121212||222a a b a b a b a b a b ---+=+=+=++---112152()1122222b a a b a b a b --⎛⎫⎛⎫=+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝, 当且仅当2,2b a a b -=-即2,4a b =-=时等号成立;因为3544<,所以1||2||a a b +的最小值为34.故选:A.【题型二】中心对称性质2:与三角函数结合的中心对称【典例分析】已知函数sin 1y x =+与2x y x+=在[]a a -,(a Z ∈,且2017a >)上有m 个交点11()x y ,,22()x y ,,……,()m m x y ,,则1122()()()m m x y x y x y ++++++=A .0B .mC .2mD .2017【答案】B 【详解】由图可知交点成对出现,每对交点关于点(0,1)对称,横坐标和为0,纵坐标和为2,所以()()()1122m m x y x y x y ++++++=22mm ⨯=,选B.【变式演练】1.函数11()2sin[()]12f x x x π=+--在[3,5]x ∈-上的所有零点之和等于______. 【答案】8 【详解】分析:通过化简函数表达式,画出函数图像,分析图像根据各个对称点的关系求得零点的和. 详解:零点即()0f x =,所以112sin 12x x π⎡⎤⎛⎫=-- ⎪⎢⎥-⎝⎭⎣⎦ 即12cos 1x x π=-,画出函数图像如图所示函数零点即为函数图像的交点,由图可知共有8个交点 图像关于1x =对称,所以各个交点的横坐标的和为8点睛:本题考查了函数的综合应用,根据解析式画出函数图像,属于难题.2.若关于的函数的最大值为,最小值为,且,则实数的值为___________.【答案】 【解析】试题分析:由已知22222sin 2sin ()=t+tx x t x x xf x x t x t++++=++,而函数22sin x x y x t +=+为奇函数 又函数()f x 最大值为,最小值为,且,()242M t N t M N t t ∴-=--∴+==∴=考点:函数的奇偶性和最值【名师点睛】本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.解释要充分利用已知条件将函数变形为22sin ()=t+x x f x x t ++,则函数22sin x xy x t+=+为奇函数,而奇函数的最值互为相反数,可得()M t N t ∴-=--,则问题得解.3.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x x f f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为()A .()1-∞ B .(),1-∞-C .()1-D .()1,-+∞【答案】A 【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围. 【详解】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-, ∴()g x 为奇函数,又()2cos 0g x x '=+>,即()g x 为增函数,∵()()39334x x xf f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--,∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113xx +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈()1-∞.故选:A【题型三】轴对称【典例分析】 已知函数()()222212222x x x f x ea a ---=-+-有唯一零点,则负实数a =( ) A .2- B .12-C .1-D .12-或1- 【答案】A 【解析】函数()()222212222x x x f x ea a ---=-+-有有唯一零点,设1x t -=,则函数()()212222t t t f x e a a -=-+-有唯一零点,则()212222t t t e a a--+= 3e |t|-a (2t +2-t )=a 2,设()()1122222222tt t t t tg t e a g t e a g t ---=-+-=-+=(),()(),∴g t ()为偶函数,∵函数f t ()有唯一零点,∴yg t =()与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ∴-=,解得2a =-或1a =(舍去),故选A .【变式演练】1.已知函数()()()22241x x f x x x ee x --=--++在区间[]1,5-的值域为[],m M ,则m M +=( )A .2B .4C .6D .8【答案】C【详解】解:()()24x xy x e ex -=--+ 在[]3,3-上为奇函数,图象关于原点对称,()()()()()222222412423x x x x f x x x e e x x e e x ----⎡⎤=--++=---+-+⎣⎦是将上述函数图象向右平移2个单位,并向上平移3个单位得到,所以()f x 图象关于()2,3对称,则6m M +=,故选C .2.已知函数f (x )(x ∈R )满足f (x )=f (a-x ),若函数y=|x 2-ax-5|与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),且mi i 1x =∑=2m ,则a=( )A .1B .2C .3D .4【答案】D【详解】∵f (x )=f (a-x ),∴f (x )的图象关于直线x=2a对称,又y=|x 2-ax-5|的图象关于直线x=2a对称, 当m 为偶数时,两图象的交点两两关于直线x=2a 对称,∴x 1+x 2+x 3+…+x m =2m•a=2m,解得a=4.当m 奇数时,两图象的交点有m-1个两两关于直线x=2a 对称,另一个交点在对称轴x=2a上, ∴x 1+x 2+x 3+…+x m =a•-12m +2a=2m .解得a=4.故选:D .3.已知函数()()()22sin 122xf x x x x π=+-+,下面是关于此函数的有关命题,其中正确的有①函数()f x 是周期函数;②函数()f x 既有最大值又有最小值;③函数()f x 的定义域为R ,且其图象有对称轴;④对于任意的()1,0x ∈-,()0f x '<(()f x '是函数()f x 的导函数) A .②③ B .①③ C .②④ D .①②③【答案】A 【详解】函数()f x 定义域为R ,当x →+∞或x -∞←时,()0f x →,又0x =,1x =±,2x =±,3x =±,……时,()0f x =,且均为变号零点.又因为函数满足()()()()()()()()2222sin 1sin 1122111212x xf x f x x x x x x x ππ-===-⎡⎤⎡⎤+-+-+---+⎣⎦⎣⎦,所以函数()f x 关于直线12x =对称,函数图像如下图,故②③正确.【题型四】中心对称和轴对称构造出周期性【典例分析】已知函数 为定义域为 的偶函数,且满足,当 , 时, .若函数在区间 , 上的所有零点之和为__________.【答案】5【详解】∵足,∴ ,又因函数 为偶函数,∴,即 ,∴ ,令 ,,,即求 与交点横坐标之和.,作出图象:由图象可知有10个交点,并且关于 , 中心对称,∴其和为故答案为:5【变式演练】1.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .6【答案】A【分析】根据条件可得出()f x 的图象关于1x =对称,()f x 的周期为4,从而可考虑()f x 的一个周期,利用[]1,3-,根据()f x 在[)0,1上是减函数可得出()f x 在(]1,2上是增函数,()f x 在()1,0-上是减函数,在[)2,3上是增函数,然后根据()1f x =-在[)0,1上有实数根,可判断该实数根是唯一的,并可判断()1f x =-在一个周期[]1,3-内有两个实数根,并得这两实数根和为2,从而得出()1f x =-在区间[]1,11-这三个周期内上有6个实数根,和为30.【详解】由()()2f x f x -=知函数()f x 的图象关于直线1x =对称,∵()()2f x f x -=,()f x 是R 上的奇函数,∴()()()2f x f x f x -=+=-,∴()()4f x f x +=,∴()f x 的周期为4,考虑()f x 的一个周期,例如[]1,3-,由()f x 在[)0,1上是减函数知()f x 在(]1,2上是增函数,()f x 在(]1,0-上是减函数,()f x 在[)2,3上是增函数,对于奇函数()f x 有()00f =,()()()22200f f f =-==,故当()0,1x ∈时,()()00f x f <=,当()1,2x ∈时,()()20f x f <=,当()1,0x ∈-时,()()00f x f >=,当()2,3x ∈时,()()20f x f >=,方程()1f x =-在[)0,1上有实数根,则这实数根是唯一的,因为()f x 在()0,1上是单调函数,则由于()()2f x f x -=,故方程()1f x =-在()1,2上有唯一实数,在()1,0-和()2,3上()0f x >,则方程()1f x =-在()1,0-和()2,3上没有实数根,从而方程()1f x =-在一个周期内有且仅有两个实数根,当[]13,x ∈-,方程()1f x =-的两实数根之和为22x x +-=,当[]1,11x ∈-,方程()1f x =-的所有6个实数根之和为244282828282830x x x x x x +-++++-+++-+=+++++=.故选:A .2.已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为()A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【分析】由函数()f x 的图像关于原点对称,得出()00f =,再由()()30f x f x -+-=得出函数()f x 的最小正周期为6T =,由原函数与导函数具有相同的周期性可得函数'()f x 的最小正周期为6T =,由此可得选项.【详解】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .3.若函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,且1211x x -??时,2121[()()]()0f x f x x x -->,比较(2017)f ,(2018)f ,(2019)f 的大小为()A .(2017)(2018)(2019)f f f <<B .(2018)(2017)(2019)f f f <<C .(2018)(2019)(2017)f f f <<D .(2019)(2018)(2017)f f f <<【答案】D【分析】由题意可知,函数()y f x =的周期4T =,再由当1211x x -??时,2121[()()]()0f x f x x x -->可知函数()y f x =在[]1,1-上为增函数,然后计算比较即可.【详解】函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,∴()()f x f x -=-,(1)(1)-+=+f x f x ,∴()(4)f x f x =+,即函数()y f x =的周期4T =,1211x x -??时,210x x ->,2121[()()]()0f x f x x x -->,∴21()()0f x f x ->即21()()f x f x >,函数()y f x =在[]1,1-上为增函数, ∴(2017)(14504)(1)f f f =+⨯=,(2018)(24504)(2)(0)f f f f =+⨯==,(2019)(14505)(1)f f f =-+⨯=-,∴(2019)(2018)(2017)f f f <<.故选:D.【题型五】画图:放大镜【典例分析】设函数()y f x =的定义域为D ,如果存在非零常数T ,对于任意x D ∈,都有()()f x T T f x +=⋅,则称函数()y f x =是“似周期函数”,非零常数T 为函数()y f x =的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”()y f x =的“似周期”为1-,那么它是周期为2的周期函数; ②函数()2x f x =是“似周期函数”;③如果函数()cos f x x ω=是“似周期函数”,那么“2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ”. 以上正确结论的个数是() A .0 B .1C .2D .3【答案】C【分析】根据题意,首先理解“似周期函数”的定义,逐一分析,从而可判断命题的真假. 【详解】解:①∵“似周期函数”()y f x =的“似周期”为1-, (1)()f x f x ∴-=-,(2)(1)()f x f x f x ∴-=--=,故()y f x =它是周期为2的周期函数,故①正确;②若函数()2x f x =是“似周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅, 即22x T x T +=⋅恒成立,故2T T =成立,但无解,故②错误;③若函数()cos f x x ω=是“似周期函数”,则存在非零常数T ,则()()f x T T f x +=⋅, 即[]cos ()cos x T T x ωω+=恒成立,故cos()cos x T T x ωωω+=恒成立, 即cos cos sin sin cos x T x T T x ωωωωω⋅-⋅=恒成立,故cos sin 0T T T ωω=⎧⎨=⎩,故2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ,故③正确.所以以上正确结论的个数是2.故选:C.【变式演练】1.已知函数()f x 满足当0x ≤时,2(2)()f x f x -=,且当(2,0]x ∈-时,()|1|1f x x =+-;当0x >时,()log (0=>a f x x a 且1a ≠).若函数()f x 的图象上关于原点对称的点恰好有3对,则a 的取值范围是() A .(625,)+∞ B .(4,64)C .(9,625)D .(9,64)【答案】C 【分析】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可. 【详解】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,如图所示,当01a <<时,对称后的图象不可能与()f x 在(,0]-∞的图象有3个交点; 当1a >时,要使函数()f x 关于原点对称后的图象与所作的图象有3个交点,则11log 321log 54a a a ⎧⎪>⎪⎪->-⎨⎪⎪-<-⎪⎩,解得9625a <<.故选:C.2.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有1()2f x ≥-,则m 的取值范围是()A .3,2⎛⎤-∞ ⎥⎝⎦B.10,4⎛-∞ ⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D.⎛-∞ ⎝⎦【答案】B 【分析】作出图示,求出当23x <≤时,函数的解析式,求出1()2f x =-成立的x 的值,运用数形结合的思想可得选项. 【详解】解:(0,1]x ∈时,()=(1)f x x x -,(+1)=2()f x f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令14(2)(3)2x x --=-,解得12x x ==所以要使对任意(,]x m ∈-∞,都有1()2f x ≥-,则m ≤,m ⎛∴∈-∞ ⎝⎦, 故选:B .3.定义在R 上函数q 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是()A .72B .92C .134D .154【答案】D 【分析】 计算()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,画出图像,计算()116f x =,解得154x =,得到答案. 【详解】根据题设可知,当[)1,2x ∈时,[)10,1x -∈,故()()()11112322f x f x x =-=--, 同理可得:在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤.作函数()y f x =的图象,如图所示.在7,42⎡⎫⎪⎢⎣⎭上,由()11127816f x x =⎡--⎤=⎣⎦,得154x =. 由图象可知当154x ≥时,()116f x ≤. 故选:D .【题型六】利用对称解决恒成立和存在型【典例分析】已知函数()lg(f x x =,且对于任意的(12]x ∈,,21()[]01(1)(6)x mf f x x x ++>---恒成立,则m 的取值范围为()A .()0-∞,B .(]0-∞,C .[4)+∞,D .(12)+∞,【答案】B 【分析】本题根据函数的解析式先判断函数的奇偶性与单调性,再运用单调性转化不等式,接着运用参变分离构建新函数,最后借导函数求函数在指定区间内的最大值即可解题.【详解】()f x 的定义域为R ,()))()f x x x f x -===-=-,∴()f x 为奇函数,又()f x 在(0,)+∞上单调递增, ∴221()[][]1(1)(6)(1)(6)x m m f f f x x x x x +>-=------,∴211(1)(6)x mx x x +>----, 又(1,2]x ∈,则10x ->,60x -<,∴(1)(1)(6)x x x m +--<-恒成立; 设32()(1)(1)(6)66g x x x x x x x =+--=--+, 则22()31213(2)13g x x x x =--=--',当12x <≤时()0g x '<,∴()g x 在(12],内单调递减,()g x 的最大值为从负数无限接近于0,max ()0g x <, ∴0m ≤-,0m ≤,故选:B.【提分秘籍】基本规律常见不等式恒成立转最值问题:(1)min ()()x D f x m f x m ∀∈>⇔>,; (2)max ()()x D f x m f x m ∃∈>⇔>,;(3)()min ()()()()0x D f x g x f x g x ∀∈>⇔->,; (4)()max ()()()()0x D f x g x f x g x ∃∈>⇔->,; (5)12121min 2max ,()()()()x D x M f x g x f x g x ∀∈∈>⇔>,; (6)12121max 2min ,()()()()x D x M f x g x f x g x ∃∈∈>⇔>,; (7)12121min 2min ,()()()()x D x M f x g x f x g x ∀∈∃∈>⇔>,;(8)12121max 2max ,()()()()x D x M f x g x f x g x ∃∈∀∈>⇔>,;【变式演练】1.已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x =-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦【答案】D 【分析】问题转化为函数()f x 的值域是()g x 值域的子集,分别求出()f x 和()g x 的值域,得到关于m 的不等式组,解出即可. 【详解】对任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =, 即()f x 在[]0,1上的值域是()g x 在[]1,2上的值域的子集,22111()1212121x x x xxm m m f x +++--===++++, 当1m <时,∴10m -<,∴()f x 在[]0,1上单调递增,()f x ∴的值域为12,23m m ++⎡⎤⎢⎥⎣⎦, 又()(1)g x m x =-在[]1,2上单调递减,()g x ∴的值域为:[]22,1m m --,[]12,22,123m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦,1222213m m m m +⎧≥-⎪⎪∴⎨+⎪≤-⎪⎩,方程无解 当1m >时,10m ->,∴()f x 在[]0,1上单调递减,()f x ∴的值域为21,32m m ++⎡⎤⎢⎥⎣⎦()g x 的值域为:[]1,22m m --,[]21,1,2232m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦1222213m m m m +⎧≤-⎪⎪∴⎨+⎪≥-⎪⎩,解得5532m ≤≤ 当1m =时,()1,()0f x g x ==,显然不满足题意.综上,实数m 的取值范围为55,32⎡⎤⎢⎥⎣⎦故选:D .2.已知()f x 是定义在R 上的函数,且()1f x +关于直线1x =-对称.当0x ≥时,()211422,022log ,2x x f x x x -+⎧⎪≤<=⎨⎪-≥⎩,若对任意的[],1x m m ∈+,不等式()()22f x f x m -≥+恒成立,则实数m 的取值范围是()A .1,04⎡⎫-⎪⎢⎣⎭B .1,12⎡⎤⎢⎥⎣⎦C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】D 【分析】结合复合函数的单调性,可知()f x 在[)0,+∞上单调递减,由()1f x +关于直线1x =-对称,可知()f x 为偶函数,从而可将题中不等式转化为22x x m -≤+,整理得223(82)40x m x m -++-≤对任意的[],1x m m ∈+恒成立,进而结合二次函数的性质,可求出m 的取值范围.【详解】当02x ≤<时,()21142x f x -+=,函数2114y x =-+在[)0,2上单调递减,且2x y =是R 上的增函数,根据复合函数的单调性可知,函数()f x 在[)0,2上单调递减,且()2121421f x -⨯+=>;当2x ≥时,()22log f x x =-,易知函数()f x 在[)2,+∞上单调递减,且()()22log 221f x f -==≤. ∴函数()f x 在[)0,+∞上单调递减.∵()1f x +关于直线1x =-对称,∴()f x 关于0x =对称,即()f x 为偶函数,∴不等式()()22f x f x m -≥+可化为()()22f x f x m -≥+,∴22x x m -≤+恒成立,即2222x x m -≤+,整理得223(82)40x m x m -++-≤,令()223(82)4g x x m x m =-++-,∴对任意的[],1x m m ∈+,()0g x ≤恒成立,∴2222()3(82)40(1)3(1)(82)(1)40g m m m m m g m m m m m ⎧=-++-≤⎨+=+-+++-≤⎩, 即840410m m -+≤⎧⎨--≤⎩,解得12m ≥.故选:D.3.已知2()sin ||sin ||f x x x ππ=-,()|ln |g x x =,若对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,则实数m 的取值范围是_________.【答案】⎡⎫+∞⎪⎢⎪⎣⎭【分析】先分析题意即()()12min min f x g x ≥,再利用单调性求解()f x 的最小值和()g x 的最小值,解不等式即得结果. 【详解】依题意,对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,只需()()12min min f x g x ≥. 21,36x ⎡⎤∀∈--⎢⎥⎣⎦时()sin sin sin y x x x πππ==-=-,2,36x πππ⎡⎤--⎢⎣∈⎥⎦,0y <,故当232,x πππ⎡⎤--⎢⎣∈⎥⎦,即212,3x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递增, 当2,6x πππ⎡-∈⎤-⎢⎥⎣⎦,即1261,x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递减.而函数2()f x x x=-,显然在(),0x ∈-∞单调递减. 故根据复合函数单调性可知,2()sin ||sin ||f x x x ππ=-在212,3x ⎡⎤∈--⎢⎥⎣⎦单调递减,在1261,x ⎡⎤∈--⎢⎥⎣⎦上单调递增,故min 122()sin 11221sin 2f x f ππ⎛⎫=-=-=-= ⎪⎝⎭.对于12,x e e -⎡⎤∈⎣⎦,()|ln |g x x =,当1,1x e -⎡⎤∈⎣⎦时ln 0x ≤,故()ln g x x =-是单调递减的,当(21,x e ⎤∈⎦时ln 0x >,故()ln g x x =是单调递增的,故min ()(1)|ln1|g x g ===.故依题意知,1≥,即m ≥.所以实数m 的取值范围是⎡⎫+∞⎪⎢⎪⎣⎭.故答案为:⎡⎫+∞⎪⎢⎪⎣⎭.【题型七】函数整数问题【典例分析】定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是A .(,1]-∞-B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 【答案】D 【详解】由题意得,{}()()6N f x g x ⊗=表示不等式22|log |(1)2x a x <-+的解集中整数解之和为6.当0a >时,数形结合(如图)得22|log |(1)2x a x <-+的解集中的整数解有无数多个,22|log |(1)2x a x <-+解集中的整数解之和一定大于6.当0a =时,()2g x =,数形结合(如图),由()2f x <解得144x <<.在1(,4)4内有3个整数解,为1,2,3,满足{}()()6N f x g x ⊗=,所以0a =符合题意.当0a <时,作出函数2()|log |f x x =和2()(1)2g x a x =-+的图象,如图所示.若{}()()6N f x g x ⊗=,即22|log |(1)2x a x <-+的整数解只有1,2,3.只需满足(3)(3)(4)(4)f g f g <⎧⎨≥⎩,即2log 342292a a <+⎧⎨≥+⎩,解得2log 3204a -<≤,所以2log 3204a -<<. 综上,当{}()()6N f x g x ⊗=时,实数a 的取值范围是2log 32(,0]4-.故选D.【变式演练】1.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为A .15B .16C .17D .18【答案】D 【详解】定义在R 上的奇函数()f x 满足()()22f x f x +=-,得2222f x f x f x f x ++=--=-=-()()()(),即4?f x f x +=-()(),则44[]f x f x f x f x f x +=-+=--=∴()()()().()的周期为8.函数f x ()的图形如下:比如,当不同整数i x 分别为-1,1,2,5,7…时,b a -取最小值,141420f f f -=-==(),(),(),,至少需要二又四分一个周期,则b-a 的最小值为18,故选D2.已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式在[150,150]-上有且只有150个整数解,则实数t 的取值范围是()A .12(0,)e - B .1322(,3)e e --C .312(3,2)e e --D .112(,2)e e --【答案】B 【分析】利用导函数讨论当[0,3]x ∈时的单调性,结合对称性周期性数形结合求解. 【详解】当[0,3]x ∈时,2()xf x xe -=,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(]2,3x ∈时,()0f x ¢<,当[)0,2x ∈时,()0f x ¢>, 所以函数()f x 在(]2,3x ∈单调递减,在[)0,2x ∈单调递增, ()32(0)0,330f f e-=>=,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-, 所以()(3)(3)3f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322(,3)t e e --∈。

三角函数的周期性、奇偶性与对称性-高考数学复习

三角函数的周期性、奇偶性与对称性-高考数学复习
= f ( x ),所以函数 f ( x )是偶函数.令3 x = k π, k ∈Z,所以 x =
π
π
, k ∈Z,所以函数 f ( x )的图象关于直线 x = 对称.
3
3
目录
高中总复习·数学
三角函数性质的综合应用
【例4】 (多选)已知函数 f ( x )= sin
π
(2 x + ),则(
3
2
4
2
π
π
π

π

+ , k ∈Z,故B错误; <2 x < , < x < ,所以 f ( x )
4
2
2
2
4
π
π
π
π
点,B对;对于C选项,当- ≤ x ≤ 时,- ≤2 x + ≤ ,所以
12
12
2
3
2

π
函数 f ( x )在区间[- , ]上单调递增,C对;对于D选项,因
12
12
π
π
π
π
为对称轴满足2 x + = + k π, k ∈Z,解得 x = + , k ∈Z,当 k
3
2
12
2
π
=0时, x = ,D对.故选B、C、D.
6
2
6
π

(2 x - ), f (- )= A sin
6
12

π
(-2× - )=0.
12
6
目录
高中总复习·数学
解题技法
三角函数图象的对称轴和对称中心的求法
求三角函数图象的对称轴及对称中心,须先把所给三角函数式化
为 y = A sin (ω x +φ)+ b 或 y = A cos (ω x +φ)+ b 的形式,再把

高考数学专题复习 函数的周期性、对称性(原卷版)

高考数学专题复习   函数的周期性、对称性(原卷版)

第四讲函数的周期性与对称性【套路秘籍】一.对称性(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。

2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

⒁绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。

江苏省高三一轮复习轮换对称法求最值教案.doc

江苏省高三一轮复习轮换对称法求最值教案.doc

学习必备欢迎下载轮换对称法求最值学员姓名:年级:高三课时数:1辅导科目:数学学科教师:授课日期及时段知识与技能:掌握利用均值不等式求解最值得常规方法,以及利用轮换对称快速口算最值过程与方法:通过几道题目先猜测得出答案,然后再通过常规方法验证。

探索发现这类题教学目标目的共同特点,总结题型与方法。

情感、态度与价值观:通过猜测与验证科学的探索发现过程,激发学生自我思考探索的快乐,感受快速解题的震撼,让学生爱上数学。

重点:掌握利用轮换对称快速解题的方法教学重难点难点:能够正确快速识别出符合轮换对称的条件教学过程均值不等式求最值作为高总数学8 大 C 级考点之一,经常会出现在填空13,14 压轴题位置,难度较大,灵活度要求较高。

我们平时做题时要学会总结方法,能达到快速准确解题。

通过本节课学习韩老师将带你领略秒杀压轴题的快感。

考场如战场,请各位同学们清点一下自己的弹药包.......一、弹药清点(知识回顾)1.基本不等式:2. 重要不等式: a2+b2≥2ab(a ,b∈R)注意当且仅当a=b 时,取得“ =”b a3.重要不等式:a+b≥2(a , b 同号 )熟练记忆不等式链:二、武器库(题型方法总结)1 、(步枪) ------ 直接运用不等式法2 、(机关枪) ---- 倒数和形式 --- “1”的代换法或乘以“ 1”法3 、(机关枪) ---- ---- 对勾函数模型4 、(大炮) ----- 分式求和型 ---- 分母双换元法我们发现通过以上方法最后取得最值时,必有某两个变量相等以后求最值时是否可以直接让某两个变量相等,直接计算答案呢?嗯,我们需要威力更强大的武器三、武器研发 -----(猜测与探究)1、浙江高考)2.3、2019南京六校)11若均为正实数,且,则的最小值是四、列装利刃 ----(方法总结)第 1 秒------------① 取值范围相同第 2 秒---------②条件整式中互换位置不改变整式结构轮换对称法----战斗机第 3 秒--------③结论中互换位置不改变结论结构或不影响结果五、小试牛刀 ----三秒口算法解压轴题镇江一模) 14. 若实数满足,则当取得最大值时,的值为六、下节预告听说下节课要上终极大招了?嗯,让敌人闻风丧胆,所到之处寸草不生不会是万能判别式法吧?嘘.......七、靶场训练 --- 秒杀压轴题南通二模) 14.设实数 a, b, c 满足 a2+b2 ≤c≤1,则 a+b+c 的最小值为.无锡期末) 14、若第一象限内的动点P(x,y)满足,则以P为圆心 R为半径且面积最小的圆的方程为.C镇江期末)⒕已知,若不等式恒成立,则实数的最大值为盐城三模) 14. 若实数,满足,且,则的最小值是。

中考数学知识点考点复习指导利用轴对称求最值

中考数学知识点考点复习指导利用轴对称求最值

中考数学知识点考点复习指导利用轴对称求最值利用轴对称求最值是高中数学中的一个重要的知识点,也是中考数学中经常考察的内容之一、下面我将从以下几个方面为你详细介绍如何利用轴对称求最值。

1.轴对称性的概念轴对称性是指对于平面上的一个图形,如果沿条直线旋转180度后,旋转后的图形与原图形重合,那么我们就说这个图形具有轴对称性。

轴对称的直线称为轴线。

轴对称的图形的特点是:图形的任意一点关于轴线对称的点也在图形内部。

2.利用轴对称求最值的一般步骤求解最值的一般步骤为:首先明确最值是指最大值还是最小值,然后利用轴对称性把问题转化为一个等价的问题,利用已知条件求解这个等价问题,最后还原到原问题中,得到最值。

3.利用轴对称求最值的具体方法在具体的问题中,可以根据实际的情况,运用合适的方法进行求解。

下面是常见的一些方法:(1)利用轴对称线上的点求最值:对于轴对称的图形,如果可以确定图形上的其中一点关于轴线的对称点是最值点,那么这个最值点的横坐标就可以作为最值的解。

(2)利用轴对称图形的特点求最值:对于具有轴对称性的图形,如果能够找到一些特殊的点,使得这些点关于轴线对称,而且能够确定这些点是最值点,那么这个最值点就可以作为最值的解。

(3)利用轴对称图形的性质求最值:对于轴对称的图形,如果能够利用对称性与其他已知条件建立等式或不等式,然后求解这个等式或不等式的解,就可以得到最值的解。

(4)利用轴对称折线的特点求最值:对于轴对称的折线图,可以利用折线图的性质,比如单调性,交点等,将问题转化为求解折线的最值的问题,然后利用已知条件求解最值。

4.练习题示例为了更好地理解和掌握利用轴对称求最值的方法,我们可以通过一些练习题来加深印象。

下面是一些练习题的示例:(1)求函数y=2x^2-3x+1在区间[-1,2]上的最大值和最小值。

解:首先,求函数的极值点,对应的x值是-1/4、然后,将-1/4代入函数,得到y=-1/8、所以在[-1,2]上,最大值为1,最小值为-1/8(2)求函数y=x^3-3x^2+3x的最大值和最小值。

高考数学二轮复习专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(文)(解析版)

高考数学二轮复习专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(文)(解析版)

专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。

2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。

此时也说函数是这一区间上的单调函数。

在单调区间上,增函数的图像是上升的,减函数的图像是下降的。

例1-1.下列给定函数中,在区间)10(,上单调递减的函数是( )。

A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(+=x x h D 、12)(+=x x w【答案】B【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(+=x x h 在]1(--∞,上是减函数,在)1[∞+-,上是增函数,12)(+=x x w 在R 上是增函数,则)(x g 在区间)10(,上单调递减的函数,选B 。

(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。

函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。

但在某个区间上单调,在整个定义域上不一定单调。

如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。

高考数学 函数图像的对称问题专题总结

高考数学 函数图像的对称问题专题总结

函数图像的对称专题一、图像的对称变换(1)函数|()|y f x =的图像可以将函数()y f x =的图像____ 去下翻上_____得到;“去下翻上”详解:x 轴及其上方的图像不动,x 轴下方的图像(如果有的话)沿x 轴对称翻折到x 轴上方. (2)函数(||)y f x =的图像可以将函数()y f x =的图像______去左翻右____得到。

“去左翻右”详解:y 轴及其右边的图像不动,y 轴左边的图像(如果有的话)去掉 ,并将y 轴右边的图像沿y 轴对称翻折到y 轴左边.(3)关于,(,)x a y b y x a b ===,, 的对称翻折见二(二) 【例1】(1)2()2||3f x x x 的增区间是_________________.(1,0),(1,)(2)2()|2||3|f x x x k 的增区间是________________;(3,1),(0,1),(3,)(3)若2()|2||3|f x x x k 有6个零点,则k 的取值范围是________.(3,4)二、 图像的对称(一)自对称图一图二 图三1.基本结论:(1)若()y f x =满足()()f a x f b x +=-,则()y f x =的图象关于直线2a bx +=成轴对称(图一). 特殊化: ()()f a x f a x -=+⇔()y f x =的图象关于直线x a =对称; 再特殊化: ()()f x f x -=⇔()y f x =的图象关于直线0x =对称;(2)若()y f x =满足()()f a x f b x +=--,则()y f x =的图象关于点(,0)2a b+成中心对称(图二). 特殊化: ()()f a x f a x -=-+⇔()y f x =的图象关于点(,0)a 对称; 再特殊化: ()()f x f x -=-⇔()y f x =的图象关于点(0,0)对称.一般化:()()2()2()f a x f a x b f a x b f a x -++=⇔-=-+()2(2)f x b f a x ⇔=--()y f x ⇔=的图象关于点(,)a b 对称(图三).2.核心原理:中点坐标公式.从而易得()(2)f x f a x =-()()f a x f a x ⇔-=+3.梳理成表格:一般情况关于直线___对称)()(x b f x a f -=+差个 负号 ↔ )()(x b f x a f --=+关于点___对称 特殊化:上式b a =时 关于直线___对称 )()(x a f x a f -=+ 差个 负号 ↔ )()(x a f x a f --=+关于点___对称 更特殊:上式0=a 时关于 ___对称 )()(x f x f -=差个 负号 ↔)()(x f x f --=关于 ___对称3.核心原理:中点坐标公式【例2】(1)若函数()f x 满足:(1)(1)0f x f x +--=,则()f x 的图象的对称轴为________;1x = (2)若函数()f x 满足:()(4)f x f x -=-,则()f x 的图象的对称轴为________;2x =-(3)若函数()f x 满足:(22)(22)0f x f x +--=,则()f x 的图象的对称轴为________.2x = (4)若函数()f x 满足:(1)(1)0f x f x ++-=,则()f x 的图象的对称中心为________;(10), (5)若函数()f x 满足:()(4)f x f x -=--,则()f x 的图象的对称中心为________;(20)-, (6)若函数()f x 满足:(2)(2)2f x f x ++-=,则()f x 的图象的对称中心为________.(21), (7)已知函数1(bx f x x a-=-满足6)2()(=-+x f x f ,则=a ________;=b _________.1,3 (8)已知函数1312()(1)12x x f x x ---=+-++,则(2)()f x f x -+=______________.2 (9)已知函数()y f x =的图象关于1(,)2对称,则1()()...20222022f +2020...()2022f +2021()2022f +=_________.20212. (二)两个函数图像的对称初步(1)函数()y f x =-的图像与函数()y f x =的图像关于_______对称; (2)函数()y f x =-的图像与函数()y f x =的图像关于________对称; (3)函数()y f x =--的图像与函数()y f x =的图像关于______对称; (4)函数)2(x a f y -=的图像与函数()y f x =的图像关于______对称(图四); (5)函数2()y b f x 的图像与函数()y f x =的图像关于_______对称(图四);图四(6)函数2(2)ybf a x 的图像与函数()y f x =的图像关于_________对称(图四);(7)函数)(y f x =的图像与函数()y f x =的图像关于直线_________对称. 核心原理仍然是_____中点坐标公式______(图四).【例3】(1) 函数1lg600100y x=-与 x y lg =的图像关于______对称.(3,1)-(2)已知x x g lg )(=, )(x f 的图像与)(x g 的图像关于)1,2(对称,则)(x f 的解析式是________. (3)若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析:C 由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确.三、图像的应用(综合练习与巩固)【1】将函数()f x 的图象关于y x =对称,然后向右平移1个单位,所得图象与曲线e x y =关于y 轴对称,则()f x 的解析式为()BA .()ln 1f x x =-B .()ln 1f x x =--C .()1ln f x x =-D .()1e xf x --=【2】若函数y =f (2x +1)是偶函数,则函数y =f (x )图象的对称轴方程是( ) A .x =1 B .x =-1 C .x =2 D .x =-2解析:A 因为f (2x +1)是偶函数,所以f (2x +1)=f (-2x +1),所以f (x )=f (2-x ), 所以f (x )图象的对称轴为直线x =1.【3】对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确是_______________. 解析: ①②.作出f (x )的图象,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确.【4】已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-,则()()20172019f f +的值为__________.0A .1-B .1C .0D .无法计算解析:由题意,得(()1)g x f x ---=,∵()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数, ∴()()g x g x -=-,()()f x f x -=,∴()()11f x f x =--+,∴()(2)f x f x +=-,∴()()4f x f x =+,∴()f x 的周期为4,∴()20171f f =(),()()20193(1)f f f ==-,又∵()1100()f f g -===(),∴()()201720190f f +=.【5】若函数()f x 满足:()(4)f x f x -=-+,且与直线2y kx k =-交于四个点,则这四个点的横坐标之和x 1 +x 2 +x 3 +x 4 =__________.8.【6】已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程()12xf x -=的解的个数为______. 3 【变式一】已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程[()]0f f x =的解的个数为______. 5 【变式二】 已知函数满足22|1|,1(43,1x f x x x x -+<⎧=⎨-+≥⎩则方程[()]0f f x ≤的解集为__________. (,6][2,0][22,4]-∞--+【7】已知函数2()2||1f x x x =+-,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0解析:D.函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1), 即f (x 1)-f (x 2)<0.思考: 若上题的函数改为f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,呢?【8】已知当[]0,1x ∈时,函数21()y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1][23,+)∞B .(0,1][3,)+∞C .(0,2][23,+)∞D .(0,2][3,+)∞解析:B.在同一直角坐标系中,分别作出函数221()(1)f x mx m x m ⎛=-=-⎝与()g x x m =+的大致图象.分两种情形: (1)当01m <≤时,11m≥,如图①,当[]0,1x ∈时,()f x 与()g x 的图象有一个交点,符合题意. (2)当1m >时,10m<<,如图②,要使()f x 与()g x 的图象在[]0,1上只有一个交点,只需()()11g f ≤,即211()m m +≤-,解得3m ≥或0m ≤(舍去).综上所述,(][0,13),m ∈+∞.故选B .【9】函数0.5()|log |2x f x x -=的零点个数为________.解析:2.由()0f x =,得0.51|log |2x x ⎛⎫= ⎪⎝⎭,作出函数105log ||y x =.和212xy ⎛⎫=⎪⎝⎭的图象, 由上图知两函数图象有2个交点,故函数()f x 有2个零点.【变式一】函数f (x )=2x |log 0.5x |-1的零点个数为________. 解析:2.由f (x )=0,得|log 0.5x |=⎝⎛⎭⎫12x.【变式二】0.5()|log |(0)f x x k k =->的零点是1,x x ,则( )A A.11x x = B.11x x < C.11x x > D.112x x <【变式三】0.5()|log |2xf x x -=的零点是1,x x ,则( )B A.11x x = B.11x x < C.11x x > D.112x x <【10】(波浪锯齿形)若定义在R 上的偶函数f (x )满足(2)()f x f x -=,且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有_______个.解析: 4.因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.【11】(波浪锯齿形)定义在R 上的奇函数f (x ),满足(2)()f x f x -=,且f (x )在区间[0,1]上 是减函数,则( )C .A .f (x )的图象关于直线x =2对称B .f (x )的图象关于直线(3,0)-对称C .(3)(2018)(2019)f f f -<<D .[11,12] 是f (x )的一个单调增区间 【12】已知函数f (x )=2x ,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式[f (x )]2+f (x )-m >0 在 R 上恒成立,求m 的取值范围. 解:(1)令 F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出 F (x )的图象如图所示,由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,即原方程有一个解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,即原方程有两个解.(2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立, 应有m ≤0,即所求m 的取值范围为(-∞,0].四、真题赏析(全国卷中的对称)全国卷是“对称热爱狂”.新课标高考十六年以来(2007-2022)的和新高考三年以来(2020-2022),全国卷函数小题大约有共120道左右的,和对称有关的真题超过40道,占三分之一,是函数板块第一高频考点.现积累如下. 1.基础的对称【1】(2007全国一,文9,理9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【2】(2014全国一,文5,理3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( C ) A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数【3】(2014全国二,文15)偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.3【4】(2008全国一,理9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( D )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,解析:由奇函数()f x 可知()()2()0f x f x f x xx-<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.【5】(2014全国二,理15)已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.(1,3-)【6】(2020新高考全国一卷8)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A. [)1,1][3,-+∞B. 3,1][,[01]--C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【7】(2004全国一,理2,文,2)已知函数=-=+-=)(.)(.11lg)(a f b a f x xx f 则若( ) A .b B .-b C .b 1D .-b1【8】(2009全国二,文3)函数22log 2xy x-=+的图像(A )(A ) 关于原点对称 (B )关于主线y x =-对称 (C ) 关于y 轴对称 (D )关于直线y x =对称【9】(2017全国一,文9)已知函数()ln ln(2)f x x x =+-,则( C ) A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【10】(2018全国三,文7)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称 的是(B )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【11】(2021全国乙,文理4)设函数1(1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+ C. ()11f x +- D. ()11f x ++【答案】B【解析】由题意可得1()11xf x x-==-++,对于A ,()2112fx --=-不是奇函数;对于B ,()211f x x -=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()212f x x ++=+,定义域不关于原点对称,不是奇函数.故选:B【12】(2015全国一,理13)若函数()ln(f x x x =+为偶函数,则a =.【13】(2021新高考全国一,13)已知函数()()32xx a f x -=⋅-是偶函数,则a =______.【答案】1【解析】因为()()32xx a f x -=⋅-,故()()32xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()32222xx x x xa x a -⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =,故答案为:1【14】(2007全国一,文、理14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =__________.【15】(2008全国一,文8、理6)若函数(1)y f x =-的图像与函数ln 1y x =+的图像关于直线y x =对称,则()f x =( B )A .21x e -B .2xe C .21x e +D .22x e +【16】(2008全国二,文4、理3)函数1()f x x x=-的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【17】(2012全国新课标,理12)设点P 在曲线12x y e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( A )()A 1ln 2- ()B2(1ln 2)-()C 1ln 2+ ()D 2(1ln 2)+解析:函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为122x e d -=,设函数min min 111ln 2()()1()1ln 222x g x e x g x e g x d -'=-⇒=-⇒=-⇒=由图象关于y x =对称得:PQ 最小值为min 22(1ln 2)d =-【18】(2015全国一,文12)设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =(C )(A ) 1- (B )1 (C )2 (D )4此题的出现,提醒我们,理解到本质最重要.否则纲貌似超了,说不超说超纲也不超.【19】(2013全国一,理16)若函数()f x =22(1)()x x ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.16【20】(2018全国二,文12,理11)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…(C )A .50-B .0C .2D .50【21】(2021全国甲,理12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A. 94-B. 32-C.74D.52【答案】D 【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.955122222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,133512222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以935222f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .2.和零点有关的对称问题(或利用对称性求值)见下:1.具体函数对称性【22】(2010全国一理10)已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则2a b +的取值范围是( A )(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞【23】(2010全国一文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(C )(A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞【24】(2011全国新课标文12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =, 那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )A .10个B .9个C .8个D .1个【25】(2010全国一理15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是. (1,5)4解析:在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,414a a >⎧⎪⎨-<⎪⎩解得514a <<. 【26】(2015全国二文12)设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( A )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131--【27】(2016全国二文12)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑ (B)(A)0 (B)m (C) 2m (D) 4m【28】(2020全国二理9)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在1(,)2-单调递减 C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x⎫≠±⎨⎩,关于坐标原点对称, 又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1,2x ⎛∈-⎪⎝时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1,2⎛-⎪⎝上单调递增,()ln 12y x =-在1,2⎛-⎪⎝上单调递减,()f x ∴在1,2⎛-⎪⎝上单调递增,排除B ;当1,2x ⎛∈-∞-⎪⎝时,()()()212ln 21ln 12ln ln 12121x f x x x x +⎛=----==+⎪-⎝,2121x μ=+-在1,2⎛-∞- ⎪⎝上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛-∞- ⎪⎝上单调递减,D 正确. 故选:D.【29】(2020全国三理16)关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,12622f π⎛⎫=+=⎪⎝⎭,12622f π⎛⎫-=--=- ⎪⎭,则6f π⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛-=-+=--=-+=- -⎝,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,1sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎝⎭⎝⎭- ⎪⎝,1sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎝⎭⎝⎭+ ⎪⎝,则2f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③. 【30】(2022全国甲文理5)函数()33cos x x x -=-在区间ππ,2⎡-⎥⎣的图象大致为( )A. B.C. D.【答案】A【解析】令()()33cos ,,2xxf x x x ππ-⎤=-∈-⎥⎦, 则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈⎪⎝时,330,cos 0xx -->>,所以()0f x >,排除C.故选:A.【31】(2022全国新高考全国一卷9)记函数()sin (0)4f x x b πωω⎛=++> ⎝的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎝中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A. 1 B.32C.52D. 3【答案】A【解析】由函数的最小正周期T 满足23T ππ<<,得23πππω<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎝对称,所以3,2k k Z ππωπ+=∈,且2b =,所以2,6k k Z ω=-+∈,所以52ω=,5()sin 22f x x π⎛=++ ⎝, 所以5sin 21244f ππ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭.故选:A【32】(2022全国新高考全国二卷9)函数()sin(2)(0π)f x x ϕϕ=+<<的图象以2π,03⎛ ⎝中心对称,则( )A. y =()f x 在5π0,12⎛ ⎝单调递减B. y =()f x 在π11π,1212⎛-⎪⎝有2个极值点C. 直线7π6x =是一条对称轴 D. 直线2y =是一条切线【答案】AD【解析】由题意得:2π4πsin 03f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z , 即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛= ⎝.对A ,当5π0,12x ⎛∈⎪⎝时,2π2π3π2332x ⎛+⎪⎝,由正弦函数sin y u =图象知()y f x =在5π0,12⎛ ⎝上是单调递减;对B ,当π11π,1212x ⎛∈-⎪⎝时,2ππ5π2322x ⎛+⎪⎝,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π23x +,解得5π12x =,即5π12x =为函数的唯一极值点; 对C ,当7π6x =时,2π2π3x +,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y ⎛'=+=- ⎝得:2π1cos 23x ⎛+=- ⎝, 解得2π2π2π3x +=+或2π4π2π,3x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝处的切线斜率为02π2cos13x k y =='==-,切线方程为:(0)2y -=--即2y =.故选:AD .【33】(2022全国新高考全国一卷10)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线【答案】AC【解析】由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得3x -<<,所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(103f -=+>,103f =->,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝上有一个零点,当x ≥()03f x f ⎛≥ ⎝,即函数()f x 在3⎛∞ ⎝上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确; 令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误.故选:AC2.抽象函数对称性(或虽为具体函数但是具体函数虚晃一枪的对称)【34】(2009全国一,理11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D ) (A) ()f x 是偶函数(B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数【35】(2021新高考全国二8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A. 102f ⎫-= ⎪⎭B. ()10f -=C. ()20f =D. ()40f =【答案】B【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.【36】(2011全国新课标理12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(D) (A )2 (B) 4 (C) 6(D)8总结:换元后提取对称性【37】(2012全国新课标文16)设函数()f x =(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M+m =____解析()f x =22sin 11x x +++,设()g x =()1f x -=22sin 1xx ++,则()g x 是奇函数, ∵()f x 最大值为M ,最小值为m ,∴()g x 的最大值为M-1,最小值为m -1, ∴110M m -+-=,M m +=2. 总结:拆分后提取对称性【38】(2016全国二,理12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m x y x y x y ⋅⋅⋅则1)mi i xy ==∑ (B )(A )0 (B )m (C )2m (D )4m总结:换元后提取对称性【39】(2017全国三,理11,文12)已知函数211()2()x f x x x a e e --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .1总结:换元后提取对称性,背景在课本《必修一》P83,B 组4.【40】(2018全国三文16)已知函数())1f x x =+,()4f a =,则()f a -= ______.2-【41】(2022全国乙卷理12)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221(k f k==∑( )A. 21-B. 22-C. 23-D. 24-【答案】D【解析】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024.(k f f f f f f f f f k=+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑【42】(2022全国新高考全国一卷12)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f ⎛- ⎪⎝,(2)g x +均为偶函数,则( )A. (0)0f =B. 102g ⎛-= ⎪⎝ C. (1)(4)f f -= D. (1)(2)g g -=【答案】BC 【解析】因为322f ⎛-⎪⎝,(2)g x +均为偶函数, 所以322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即32f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,2x =对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=-⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以102g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【43】(2022全国新高考全国二卷8)若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221(k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【解析】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .。

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。

满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。

第02讲 函数的性质:单调性、奇偶性、周期性、对称性、最值(十六大题型)2025年高考数学一轮复习

第02讲 函数的性质:单调性、奇偶性、周期性、对称性、最值(十六大题型)2025年高考数学一轮复习

知识梳理·基础回归
解题方法总结
5、对称性技巧
(1)若函数 = ()关于直线 = 对称,则( + ) = ( − ).
(2)若函数 = ()关于点( , )对称,则( + ) + ( − ) = 2.
(3)函数 = ( + )与 = ( − )关于轴对称,函数 = ( + )与
D.既不充分也不必要条件
【答案】C
【解析】因为函数 在 0, +∞ 上单调递增,且 > 0, > 0,
由增函数的定义可知,当 > 时,有 > ,
充分性成立;当 > 时,若 = ,由函数定义可知矛盾,
若 < ,由函数单调性的定义可知矛盾,则 > ,必要性成立.

2
)
+
知识梳理·基础回归
解题方法总结
3、周期性技巧
函数式满足关系(x R)
f ( x T ) f ( x)
f ( x T ) f ( x)
1
1
f (x T )
; f (x T )
f ( x)
f ( x)
f (x T ) f (x T )
f (a x) f (a x)

f ( x)为奇函数
f (a x ) f (a x )

f (b x) f (b x)
f (a x ) f (a x )

f ( x)为奇函数
f (a x) f (a x )
对于选项D,由复合函数单调性“同增异减”知,() = log 2 (2) + 1在(0, +∞)上单调

三角函数的周期性、奇偶性、对称性-高考数学复习

三角函数的周期性、奇偶性、对称性-高考数学复习

π
直线 x = 对称,则函数 g ( x )=
6
sin x + a cos x 的图象(
C )
(1)因为函数 f ( x )= a sin x + cos x ( a 为常数, x ∈R)的图象关于直线 x
π
π
= 对称,所以 f (0)= f
6
3
= sin x +
3
2 3
cos x =
sin
3
3
,所以1=
π
= k π, k ∈Z,即φ= k π- , k ∈Z.
4
π
++
4
π
为奇函数,所以φ+
4
因此,选项D正确.
3.
π
(2024·河北衡水模拟)已知 x 0= 是函数 f ( x )=
6
cos
π
2
− 3 cos φ+
cos 3 x sin φ的一个极小值点,则 f ( x )的一个单调递增区间是(

则f
π

4
=- 2 sin 2 −
π
4
= 2 cos 2 x ,为偶函数,A正确.
π
π

令2 x = + k π, k ∈Z,则 x = + π, k ∈Z,
2
4
2
π

即 f ( x )的对称轴为 x = + π, k ∈Z,B错误.
4
2
因为 x ∈
π
π

3
2
,所以2 x ∈
所以 f ( x )单调递增,C正确.
(1)(2024·江苏苏州模拟)已知函数 f ( x )= cos (π- x )- cos
C. π

高一数学复习考点知识专题讲解14---对称问题

高一数学复习考点知识专题讲解14---对称问题

高一数学复习考点知识专题讲解对称问题在解析几何中,对称问题主要分为两类:一是中心对称,二是轴对称.在本章中,对称主要有以下四种:点点对称、点线对称、线点对称、线线对称,其中后两种可以化归为前两种类型,所以“点关于直线对称”是最重要的类型.一、几类常见的对称问题例1 已知直线l :y =3x +3,求:(1)点P (4,5)关于l 的对称点坐标;(2)直线y =x -2关于l 的对称直线的方程;(3)直线l 关于点A (3,2)的对称直线的方程.解 (1)设点P 关于直线l 的对称点为P ′(x ′,y ′),则线段PP ′的中点在直线l 上,且直线PP ′垂直于直线l ,即⎩⎪⎨⎪⎧ y ′+52=3×x ′+42+3,y ′-5x ′-4×3=-1,解得⎩⎪⎨⎪⎧x ′=-2,y ′=7. ∴P ′点坐标为(-2,7).(2)解方程组⎩⎪⎨⎪⎧ y =3x +3,y =x -2,得⎩⎨⎧ x =-52,y =-92,则点⎝⎛⎭⎫-52,-92在所求直线上. 在直线y =x -2上任取一点M (2,0),设点M 关于直线l 的对称点为M ′(x 0,y 0),则⎩⎨⎧ y02=3×x 0+22+3,y 0x 0-2×3=-1,解得⎩⎨⎧ x 0=-175,y 0=95.点M ′⎝⎛⎭⎫-175,95也在所求直线上. 由两点式得直线方程为y +9295+92=x +52-175+52, 化简得7x +y +22=0,即为所求直线方程.(3)在直线l 上取两点E (0,3),F (-1,0),则E ,F 关于点A (3,2)的对称点分别为E ′(6,1),F ′(7,4).因为点E ′,F ′在所求直线上,所以由两点式得所求直线方程为y -14-1=x -67-6, 即3x -y -17=0.反思感悟 对称问题的解决方法(1)点关于点的对称问题通常利用中点坐标公式.点P (x ,y )关于Q (a ,b )的对称点为P ′(2a -x ,2b -y ).(2)直线关于点的对称直线通常用转移法或取特殊点来求.设l 的方程为Ax +By +C =0(A 2+B 2≠0)和点P (x 0,y 0),则l 关于P 点的对称直线方程为A (2x 0-x )+B (2y 0-y )+C =0.(3)点关于直线的对称点,要抓住“垂直”和“平分”.设P (x 0,y 0),l :Ax +By +C =0(A 2+B 2≠0),P 关于l 的对称点Q 可以通过条件①PQ ⊥l ;②PQ 的中点在l 上来求得.(4)求直线关于直线的对称直线的问题可转化为点关于直线的对称问题.二、对称问题的应用例2 已知A (4,1),B (0,4)两点,在直线l :3x -y -1=0上找一点M ,使得||MA |-|MB ||的值最大,并求此时点M 的坐标及最大值.解 设B (0,4)关于直线l :3x -y -1=0的对称点为B ′(x 0,y 0),则⎩⎪⎨⎪⎧ y 0-4x 0-0=-13,3·x 0+02-y 0+42-1=0,解得⎩⎪⎨⎪⎧x 0=3,y 0=3, 所以B ′(3,3).设M ′为l :3x -y -1=0上任意一点,则有||M ′A |-|M ′B ′||≤|AB ′|,当且仅当M ′,B ′,A 三点共线时,上式等号成立,此时||M ′A |-|M ′B ′||取得最大值|AB ′|,即||M ′A |-|M ′B ||取得最大值|AB ′|,且|AB ′|=(4-3)2+(1-3)2= 5.因为过点A (4,1),B ′(3,3)的直线方程为y -13-1=x -43-4,即2x +y -9=0. 解方程组⎩⎪⎨⎪⎧ 2x +y -9=0,3x -y -1=0,得⎩⎪⎨⎪⎧x =2,y =5. 所以直线AB ′与直线l 的交点为M (2,5).所以当点M 的坐标为(2,5)时,||MA |-|MB ||取得最大值,且最大值为 5.例3 如图,一束光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线的方程及光线从O 点到达P 点所走过的路程.解 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上得⎩⎨⎧ b a ·⎝⎛⎭⎫-43=-1,8×a 2+6×b 2=25,解得⎩⎪⎨⎪⎧a =4,b =3, ∴A 的坐标为(4,3).∵反射光线的反向延长线过A (4,3),又由反射光线过P (-4,3),两点纵坐标相等, 故反射光线所在直线方程为y =3.由方程组⎩⎪⎨⎪⎧ y =3,8x +6y =25,解得⎩⎪⎨⎪⎧ x =78,y =3,由于反射光线为射线,故反射光线的方程为y =3⎝⎛⎭⎫x ≤78. 由光的性质可知,光线从O 到P 的路程即为AP 的长度|AP |,由A (4,3),P (-4,3)知,|AP |=4-(-4)=8,∴光线从O 经直线l 反射后到达P 点所走过的路程为8.。

高考数学解答题题型

高考数学解答题题型

高考数学解答题题型
高考数学解答题题型包括但不限于以下几种:
1. 三角函数问题:通常会涉及同角三角函数关系、诱导公式、和差倍半等公式的运用,以及正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心等性质的考查。

2. 解三角函数问题:可能会涉及判断三角形形状、正余弦定理的应用等。

3. 数列问题:包括数列的通项公式的求法,以及数列的前n项和的求法。

4. 利用导数研究函数的极值、最值、单调性:导数是高中数学中一个非常重要的概念,可以用来研究函数的极值、最值和单调性,以及切线方程等问题。

5. 定积分和微积分基本定理的应用:这部分内容考查对定积分和微积分基本定理的理解和应用。

6. 不等式的证明:不等式的证明是数学中的一个重要问题,可以通过作差法、作商法等方法进行证明。

7. 直线的斜率与截距:考查直线的斜率与截距的关系,以及如何根据已知条件求出直线的方程。

8. 圆锥曲线的方程与性质:考查圆锥曲线的方程与性质,包括椭圆、双曲线、抛物线的方程与性质。

9. 空间向量与立体几何:考查空间向量与立体几何中的点、线、面的关系,以及如何利用向量解决立体几何中的问题。

10. 排列组合与概率统计:考查排列组合与概率统计的基本概念和计算方法,包括古典概型、几何概型等。

以上是高考数学解答题可能出现的题型,但具体题型会根据当年的考试大纲和命题思路有所不同。

在备考时,建议多做历年高考真题,掌握不同题型的解题方法和技巧。

2024版高考数学总复习:不等式的性质与基本不等式教师用书

2024版高考数学总复习:不等式的性质与基本不等式教师用书

第四节不等式的性质与基本不等式考试要求:1.理解不等式的概念,掌握不等式的性质.2.掌握基本不等式푎 ≤푎+2(a >0,b >0),能用基本不等式解决简单的最值问题.一、教材概念·结论·性质重现1.两个实数比较大小的依据(1)a -b >0⇔a >b .(2)a -b =0⇔a =b .(3)a -b <0⇔a <b .2.不等式的性质(1)对称性:a >b ⇔b <a .(2)传递性:a >b ,b >c ⇒a >c .(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇒a +c >b +d .(同向可加性)(4)可乘性:a >b ,c >0⇒ac >bc ,a >b >0,c >d >0⇒ac >bd .(正数同向可乘性)(5)可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).(6)可开方性:a >b >0푎(1)a >b ,ab >0⇒ 3.基本不等式푎 ≤푎+2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中푎+2称为正数a ,b 的算术平均数,푎 称为正数a ,b 的几何平均数.4.利用基本不等式求最值已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2�(简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是�24(简记:和定积最大).1.使用基本不等式求最值时,2.“当且仅当(1)푎2+ 22≥(a ,b ∈R ).(2) 푎+푎≥2(ab >0)(当且仅当a =b 时取等号).(3)21푎+1≤푎 ≤푎+2≤a >0,b >0).(4)若a >b >0,m >0,则 푎<+�푎+�; 푎>−�푎−�(b -m >0).二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)一个不等式的两边同时加上或乘同一个数,不等号方向不变.(×)(2)一个非零实数越大,则其倒数就越小.(×)(3)不等式a 2+b 2≥2ab 与푎+2≥푎 成立的条件是相同的.(×)(4)函数f (x )=sinx +4sin �的最小值为4.(×)2.设b <a ,d <c ,则下列不等式中一定成立的是()A.a -c <b -d B.ac <bd C.a +c >b +dD.a +d >b +cC 解析:由同向不等式具有可加性可知C 正确.3.当x >0时,函数f (x )=2��2+1有()A.最小值1B.最大值1C.最小值2D.最大值2B 解析:f (x )=2�+1�≤x =1�(x >0),即x =1时取等号,所以f (x )有最大值1.4.已知a ,b 为正实数,且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是()A.P ≤Q B.P <Q C.P ≥Q D.P >QA解析:不妨取a =b =12,则P -Q =14(x +y )2-12x 2-12y 2=-14(x -y )2≤0,所以P ≤Q .5.若0<a<b,且a+b=1,将a,b,12,2ab,a2+b2从小到大排列为_______________.a<2ab<12<a2+b2<b解析:令a=13,b=23,代入2ab=49,a2+b2=59,所以a<2ab<12<a2+b2<b.考点1不等式的性质——基础性1.下列命题正确的是()A.若a>b,则1푎<1B.若a>b,则a2>b2C.若a>b,c<d,则a-c>b-dD.若a>b,c>d,则ac>bdC解析:对于A,若a>b,取a=1,b=-1,则1푎<1 不成立;对于B,若a>b,取a=0,b =-1,则a2>b2不成立;对于C,若a>b,c<d,则a-c>b-d,正确;对于D,若a>b,c>d,取a=1,b=-1,c=1,d=-2,则ac>bd不成立.2.(多选题)对于实数a,b,c,下列命题是真命题的为()A.若a>b,则ac<bcB.若ac2>bc2,则a>bC.若a<b<0,则a2>ab>b2D.若a>0>b,则|a|<|b|BC解析:当c=0时,ac=bc,A为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,B为真命题;若a<b<0,则a2>ab且ab>b2,即a2>ab>b2,C为真命题;当a=1,b=-1时,|a|=|b|,故D为假命题.3.(2022·济南质量检测)已知实数a,b,c满足a<b<c,且ab<0,那么下列各式中一定成立的是()A.푎 >푎�B.a(c-b)<0C.ac2>bc2D.ab(b-a)>0B解析:因为a<b<c,且ab<0,所以a<0<b<c.所以c-b>0,a<0,可得a(c-b)<0,选项B 正确;取a=-1,b=1,c=2,则푎 <푎�,ac2<bc2,ab(b-a)<0,即选项A,C,D都不正确.4.已知实数b>a>0,m<0,则mb________ma, −�푎−�______ 푎.(填“>”或“<”)<<解析:因为b >a >0,m <0,所以b -a >0.因为mb -ma =m (b -a )<0,所以mb <ma .因为−�푎−�−푎=<0,所以 −�푎−�< 푎.解决这类问题一是要充分利用不等式的性质,作差法比较两个代数式的大小.考点2利用基本不等式求最值——综合性考向1配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________;23解析:因为0<x <1,所以4-3x >0,所以x (4-3x )=13·3�4−3�≤13=43,当且仅当3x =4-3x ,即x =23时,等号成立.(2)当�+�+1x =_______.4解析:��+1+9-1=5,当且仅当�+1=x =4时,等号成立.(1)依据:基本不等式.(2)技巧:通过添项、拆项、变系数、凑因子等方法凑成和为定值或积为定值的形式,即符合(1)已知a >0,b >0,a +b =1,则1푎+1的最小值为_________.4解析:因为a +b =1,所以1푎+1=+a +b a =b =12时,等号成立.(2)已知x +2y =xy (x >0,y >0),则2x +y 的最小值为_________.9解析:由x+2y =xy 得2�+1�=1,所以2x +y =(2x +y +=5+2��+2��≥5+2=9,当且仅当2��=2��,即x =y 时,等号成立,所以2x +y 的最小值为9.(1)根据已知条件或其变形确定定值(常数).(2)把确定的定值(常数)变形为(1)已知正数a ,b ,c 满足2a -b +c =0,则푎�2的最大值为()A.8B.2C.18D .16C 解析:因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以푎�2=푎�4푎2+4푎�+�2=14푎�+�푎+4≤=18,当且仅当c =2a >0时,等号成立.(2)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是_________.45解析:方法一:由5x 2y 2+y 4=1,可得x2=1−�45�2,由x 2≥0,可得y 2∈(0,1],则x 2+y2=1−�45�2+y 2=1+4�45�2=154�2+≥15·2=45,当且仅当y 2=12,x 2=310时,等号成立,故x 2+y 2的最小值为45.方法二:4=(5x 2+y 2)·4y 2=254(x 2+y 2)2,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310,等号成立,故x 2+y 2≥45,即x 2+y 2的最小值为45.(1)消元法,即根据条件建立两个量之间的函数关系,(2)如果出现多元的问题,(多选题)设正实数m ,n 满足m +n =2,则()A.1�+2�的最小值为22B.�+�的最小值为2C.��的最大值为1D.m 2+n 2的最小值为2CD 解析:因为正实数m ,n 满足m +n =2,所以1�+2�=m +n )×12=123+��+≥123+=3+222,当且仅当��=2��且m +n =2,即m =22-2,n =4-22时取等号,A 错误;(�+�)2=m +n +2��=2+2��≤2+2×�+�2=4,当且仅当m =n =1时取等号,所以�+�≤2,即最大值为2,B 错误;由mn=1,当且仅当m =n =1时取等号,此时��2取最大值12,C 正确;m 2+n 2=(m +n )2-2mn =4-2mn ≥2,当且仅当m =n =1时取等号,即m 2+n 2的最小值为2,D 正确.考点3利用基本不等式解决实际问题——应用性某公司生产的商品A ,当每件售价为5元时,年销售10万件.(1)据市场调查,价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多可提高多少元?(2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入�4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才能使技术革新后的该商品销售收入等于原销售收入与总投入之和?解:(1)设商品的单价提高a 元,则(10-a )·(5+a )≥50,解得0≤a ≤5.所以商品的单价最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx 万元,若技术革新后的销售收入等于原销售收入与总投入之和,只需满足mx =12(x 2+x )+�4+50(x >5)即可,此时m =12x +34+50�≥234=434,当且仅当12x =50�,即x =10时等号成立.故销售量m 至少应达到434万件时,才能使技术革新后的销售收入等于原销售收入与总投入之和.(1)利用基本不等式解决实际问题时,的函数关系式,然后用基本不等式求解.1.司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析()A.甲合适B.乙合适C.油价先高后低甲合适D.油价先低后高甲合适B解析:设甲每次加m 升油,乙每次加n 元钱的油,第一次加油x 元/升,第二次加油y元/升.甲的平均单价为��+��2�=�+�2,乙的平均单价为2���+��=2���+�.因为x ≠y ,所以�+�22���+�=�2+�2+2��4��>4��4��=1,即乙的两次平均单价低,乙的方式更合适.2.(多选题)(2022·枣庄期末)如图所示,一座小岛距离海岸线上最近的点P 的距离是2km,从P 点沿海岸线正东方向12km 处有一个城镇.假设一个人驾驶小船的平均行进速度为3km/h,步行的平均速度为5km/h,时间t (单位:h)表示他从小岛到城镇的时间,x (单位:km)表示此人将船停在海岸距点P 处的距离.设u =�2+4+x ,v =�2+4-x ,则()A.函数v =f (u )为减函数B.15t -u -4v =32C.当x =1.5时,此人从小岛到城镇花费的时间最少D.当x =4时,此人从小岛到城镇花费的时间不超过3h AC 解析:因为u =�2+4+x ,v =�2+4-x ,所以�2+4=�+�2,x =�−�2,uv =4,则v =4�,其在(0,+∞)上是减函数,A 正确;t =�2+43+12−�5=�+�6+125−�−�10,整理得15t =u +4v +36,B 错误;15t =u +16�+36≥2�·16�+36=44,当且仅当u =16�,即u =4时等号成立,则4=�2+4+x ,解得x =1.5,C 正确;当x =4时,t =253+85,t -3=253−75=105−2115=500−44115>0,则t >3,D 错误.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元.8解析:每台机器运转x 年的年平均利润为��=18-�25�而x >0,故��≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大值为8万元.拓展考点绝对值三角不等式定理1如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立定理2如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|≤3×16+2×14=1,即|x +5y |≤1.证明绝对值不等式的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明.(3)转化为函数问题,数形结合进行证明.(多选题)(2022·新高考Ⅱ卷)若实数x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1[四字程序]读想算思若实数x ,y 满足x 2+y2-xy =1不等式的性质、基本不等式、配方法的应用x 2+y 2,xy ,(x ±y )2的关系转化与化归x +y ≤1;x +y ≥-2;x 2+y 2≤2;x 2+y 2≥11.构造不等式.2.代数换元.3.三角换元1.构造关于所求代数式的不等式.2.令x +y =t 消y ,依据关于x 的方程有解列不等式.3.求xy 的范围,把x +y ,x 2+y 2看作关于xy 的函数.4.三角换元1.利用基本不等式可以实现积化和、和化积、和化和.2.三角代换的适用条件和新变元范围的确定思路参考:利用xy ,xy ≤�2+�22构造关于x +y ,x 2+y2的不等式,解不等式求范围.BC 解析:由x 2+y 2-xy =1,得(x +y )2-1=3xy ,解得-2≤x +y ≤2,当且仅当x=y 时,取等号,即当x =y =-1时,x +y =-2,当x =y =1时,x +y =2,所以A 错误,B 正确.由x 2+y 2-xy =1,得(x 2+y 2)-1=xy ≤�2+�22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确.当x y x 2+y 2=23<1,D 错误.故选BC.思路参考:令x +y =t 消y ,依据关于x 的方程有解列不等式.BC 解析:令x +y =t ,则y =t -x ,代入x 2+y 2-xy =1得关于x 的方程3x 2-3tx +(t 2-1)=0,则Δ=(-3t )2-4×3×(t 2-1)≥0,解得-2≤t ≤2,即-2≤x +y ≤2.令x 2+y 2=m ,则由x 2+y 2-xy =1得xy =m -1,于是有m ≥2|m -1|,解得23≤m ≤2,即x 2+y 2232,所以AD 错误,BC 正确.故选BC.思路参考:求xy 的范围,把x +y ,x 2+y 2看作关于xy 的函数,求函数的值域得范围.BC解析:由xy +1=x 2+y 2≥2|xy |得xy ∈−13,1,则x 2+y 2=xy 232,(x +y )2=x 2+y 2+2xy =3xy +1∈[0,4],即x +y ∈[-2,2],所以AD 错误,BC 正确.故选BC.1.利用均值不等式,通过恒等变形及配凑,使“和”或“积”为定值,是求解最值问题的常用方法.其中常见的变形手段有拆项、并项、配式及配系数等.2.基于新课程标准,求最值问题一般要有对代数式的变形能力、推理能力和表达能力,本题的解答体现了逻辑推理、数学运算的核心素养.已知x >0,y >1,且x +2y =xy +1,则x +y 的最小值为_________.5解析:令x +y =t ,则x =t -y .将x =t -y 代入x +2y =xy +1,得t +y =ty -y 2+1,即y 2+(1-t )y +t -1=0,Δ=(1-t )2-4(t -1)=t 2-6t +5≥0,得t ≤1(舍去)或t ≥5.故x +y 的最小值为5.课时质量评价(四)A 组全考点巩固练1.(2023·日照模拟)若a ,b ,c 为实数,且a <b ,c >0,则下列不等关系一定成立的是()A.a +c <b +c B.1푎<1C.ac >bc D.b -a >cA解析:对于A,因为a <b ,c =c ,所以由不等式的性质可得,a +c <b +c ,故A 正确;对于B,令a =-2,b =-1,满足a <b ,1푎>1,故B 错误;对于C,令a =-2,b =1,c =1,满足a <b ,c >0,但ac <bc ,故C 错误;对于D,令a =1,b =2,c =1,满足a <b ,c >0,但b -a =c ,故D 错误.故选A.2.若x >0,y >0,则“x +2y =22��”的一个充分不必要条件是()A.x =y B.x =2y C.x =2且y =1D.x =y 或y =1C 解析:因为x >0,y >0,所以x +2y ≥22��,当且仅当x =2y 时,等号成立.故“x =2且y =1”是“x +2y =22��”的一个充分不必要条件.3.(2022·滨州三校高三联考)已知a >0,b >0,若不等式4푎+1≥�푎+恒成立,则m 的最大值为()A.10B.12C.16D.9D解析:由已知a >0,b >0,若不等式4푎+1≥�푎+ 恒成立,则ma +b )恒成立,转化成求y a +b )的最小值.y a +b )=5+4 푎+푎≥5+2当且仅当a=2b 时,等号成立,所以m ≤9.故选D.4.(多选题)已知1푎<1<0,则下列结论正确的有()A.a <b B.a +b <ab C.|a |>|b |D.ab <b 2BD 解析:由1푎<1<0,得b <a <0,所以a +b <0<ab ,|b |>|a |,b 2>ab .因此BD 正确,AC 不正确.5.《几何原本》中的几何代数法(以几何方法研究代数问题)成了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示,在AB 上取一点C ,使得AC =a ,BC =b,过点C 作CD ⊥AB 交圆周于点D ,连接OD .作CE ⊥OD 交OD 于点E ,则下列不等式可以表示CD ≥DE 的是()A.푎 ≥2푎푎+(a >0,b >0)B.푎+2푎 (a >0,b >0)≥푎+2(a >0,b >0)D.a 2+b 2≥2ab (a >0,b >0)A解析:连接DB ,因为AB 是圆O 的直径,所以∠ADB =90°.在Rt△ADB 中,中线OD =퐴2=푎+2.由射影定理可得CD 2=AC ·BC =ab .所以CD =푎 .在Rt△DCO 中,由射影定理可得CD 2=DE ·OD ,即DE =��2푂�=푎푎+ 2=2푎푎+.由CD ≥DE 得푎 ≥2푎푎+.6.(2023·济南模拟)若正数a ,b 满足ab =4,则1푎+9的最小值为_________.3解析:因为a >0,b >0,且ab =4,所以1푎+9≥21푎·9 =2×푎=2×4=3,当且仅当1푎=9,即a =23,b =6时取“=”,所以1푎+9的最小值为3.7.若a >0,b >0,则1푎+푎2+b 的最小值为_________.22解析:因为a >0,b >0,所以1푎+푎2+b ≥21푎·푎 2+b =2+b ≥22· =22,当且仅当1푎=푎2且2=b ,即a =b =2时等号成立,所以1푎+푎2+b 的最小值为22.8.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是_________.3解析:由x 2+2xy -3=0,得y =3−�22�=32�−12x ,则2x +y =2x +32�−12x =3�2+32�≥23�2·32�=3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.9.(2022·唐山模拟)已知a >0,b >0,c >0,d >0,a 2+b 2=ab +1,cd >1.(1)求证:a +b ≤2;(2)判断等式푎�+ =c +d 能否成立,并说明理由.(1)证明:由题意得(a +b )2=3ab 푎+ 2+1,当且仅当a =b 时,等号成立.解得(a +b )2≤4.又a >0,b >0,所以a +b ≤2.(2)解:不能成立.理由:a >0,b >0,c >0,d >0,由基本不等式得푎�+ ≤푎+�2++2,当且仅当a =c 且b=d 时等号成立.因为a +b ≤2,所以푎�+ ≤1+�+2.因为c >0,d >0,cd >1,所以c +d =�+2+�+2≥�+2+� >�+2+1≥푎�+ ,故푎�+ =c +d 不能成立.B 组新高考培优练10.已知正实数a ,b 满足a +b =3,则11+푎+44+的最小值为()A.1B.78C.98D.2C解析:因为a+b=3,所以(1+a)+(4+b)=8,所以11+푎+44+=18[(1+a)+(4+b=185+4+1+푎+≥18×(5+4)=98,当且仅当4+b=2(1+a),即2a-b=2,即a=53,b=43时等号成立.11.(2022·滨州联考)已知a>0,b>0,若不等式4푎+1≥�푎+ 恒成立,则m的最大值为() A.10B.12C.16D.9D解析:由已知a>0,b>0,若不等式4푎+1 ≥�푎+ 恒成立,则ma+b)恒成立,转化成求y a+b)的最小值.y a+b)=5+4 푎+푎 ≥5+2当且仅当a =2b时,等号成立,所以m≤9.故选D.12.(多选题)(2023·重庆模拟)已知正实数a,b,c满足a2-ab+4b2-c=0,当�푎 取最小值时,下列说法正确的是()A.a=4bB.c=6b2C.a+b-c的最大值为34D.a+b-c的最大值为38BD解析:对于A,由a2-ab+4b2-c=0,得c=a2+4b2-ab,则�푎 =푎 +4 푎-1≥2-1=3,当且仅当푎 =4푎,即a=2b时等号成立,故A不正确;对于B,当�푎 取最小值时,由�푎 =3,푎=2 ,得c=6b2,故B正确;对于C,D,a+b-c=2b+b-6b2=-6b2+3b=-6+38≤38,当且仅当a=12,b=14,c=38时等号成立,所以(a+b-c)max=38,故C不正确,D正确.13.若不等式1�+11−4�-m≥0对x∈0m的最大值为()A.7B.8C.9D.10C解析:将不等式化为1�+11−4�≥m,只需当x∈0m+即可.由1�+11−4�=+x+1-4x)=4+1−4��+4�1−4�+1≥5+2=5+4=9,当且仅当x =16时,等号成立,故m ≤9.故m 的最大值为9.故选C.14.(2022·贵阳模拟)已知正实数x ,y 满足等式1�+3�=2.(1)求xy 的最小值;(2)若3x +y ≥m 2-m 恒成立,求实数m 的取值范围.解:(1)2=1�+3�≥2xy ≥3,当且仅当x =1,y =3时等号成立,所以xy 的最小值为3.(2)3x +y =12(3x +y=126+9��≥126+x =1,y =3时等号成立,即(3x +y )min =6,所以m 2-m ≤6,所以-2≤m ≤3.15.已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是R (x )=−14�2+500x (单位:元),P (x )为每天生产x 件产品的平均利润(平均利润=总利润÷总产量).销售商从工厂每件a 元进货后又以每件b 元销售,b =a +λ(c -a ),其中c 为最高限价(a <b <c ),λ为销售乐观系数.据市场调查,λ由当b -a 是c -b ,c -a 的比例中项时来确定.(1)每天生产量x 为多少时,平均利润P (x )取得最大值?求P (x )的最大值.(2)求乐观系数λ的值.(3)若c =600,当厂家平均利润最大时,求a 与b 的值.解:(1)依题意,总利润为-14x 2+500x -100x -40000=-14x 2+400x -40000,所以P (x )=−14�2+400�−40000�=-14x -40000�+400≤-200+400=200.当且仅当14x =40000�,即x=400时,等号成立,故每天生产量为400件时,平均利润最大,最大值为200元.(2)由b =a +λ(c -a )得λ=−푎�−푎.因为b -a 是c -b ,c -a 的比例中项,所以(b -a )2=(c -b )(c -a ),两边除以(b -a )2,得−푎·�−푎−푎=−1·�−푎−푎,所以−1·1�,解得λ=5−12.(3)由(1)知,当x =400时,厂家平均利润最大,所以a =40000�+100+P (x )=40000400+100+200=400(元).每件产品的利润为b -a =λ(c -a )=100(5-1),所以b =100(5+3),所以a =400,b =100(5+3).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称点,由点斜式即得
所求直线为l1:x+y+9=0.
(-1,-8)
思路分析
变题2 已知直线l1与直线 l:x+y+1=0 关于点 y
A(-1,-4)对称,求直线l1的方程. l 思路3: 由于两条直线
平行,且与点A等距离. 可设l1:x+y+m=0, llx: y1 0
4.求直线关于直线的对称直线方程;
5.求圆关于定点对称的圆的方程;
6.求圆关于直线对称的圆的方程.
问题研究
如何求点关于直线的对称点的坐标?
典型例题1
例1 求点A(-1,-4)关于直线 l: x+y+1
=0的对称点A1的坐标.
思路分析
例1 求点A(-1,-4)关于直线 l: x+y+1=0 y l
A1, 4
l1 lx: y1 0
由点到直线的距离公式,
A1, 4
l1 lx: y1 0
A1, 4
l1 lx: y1 0
可得m=9或m=1(舍去).
所求直线为l1:x+y+9=0.
变式训练
变题2 已知直线l1与直线 l:x+y+1=0 关于点
A(-1,-4)对称,求直线l1的方程. l 思路4:直线l1就是直线 l上任意一点关于点A的
求解过程
设点A1(a,b),由AA1⊥l及点线距离公式,得 b+ 4 k AA1 = =1, a +1 y a + b + 1 = -1+ 4 + 1 . 2 2 l 解法1
a +b- 3= 0, a = 3, A1 a -b- 3= 0. b= 0. O M a +b+ 5= 0, a =-1, 或 (舍去) A a -b- 3= 0. b=- 4.
A(-1,-4)对称,求直线l1的方程. l 思路1:根据两点确定一条 直线,可分别求出直线l上
的两点关于点A的对称点,
A1, 4
l1
-1
A.
O
x
l1 lx: y1 0
再由两点式写出直线方程.
答案 l1:x+y+9=0
-1
(-2,-7) (-1,-8)
归纳:线点对称
点点对称
思路分析
第 15 讲
对称与最值
主要内容
聚焦重点: 与直线和圆有关的对称问题. 破解难点: 与直线和圆有关的最值问题. 廓清疑点:
如何确定最值点的位置.
聚焦重点:与直线和圆有关的对称问题
基础知识
主要涉及以下问题: 1.求点关于定点的对称点的坐标;
2.求点关于直线的对称点的坐标;
3.求直线关于定点对称的直线方程;
A1
的对称点A1的坐标.
分析:①求点A1的坐标, 需要几个独立条件? ②两点A、A1关于 直线 l 对称,满足哪两
A
O
x
个几何条件?
思路分析
例1 求点A(-1,-4)关于直线 l: x+y+1 y l
A1
=0的对称点A1的坐标.
思路1 ①直线AA1⊥l; ②A、A1到直线 l 的 距离相等.
A
O
x
故所求对称点为A1(3,0).
x
思路分析
例1 求点A(-1,-4)关于直线 l: x+y+1 y l
A1 M
=0的对称点A1的坐标.
思路2 ①直线AA1⊥l; ②线段AA1的中点M在 直线 l 上.
A
O
x
求解过程
解法2 设点A1(a,b),则线段AA1的中点为 a -1 b- 4 M , . 由已知,得方程组 2 2
y+4=x+1, 即 x-y-3=0.
又直线 l 的方程是 x+y+1=0, 联立方程组,解得 x =1, 即AA1中点是 y =- 2.
y
l
A1 M
M 1, 2 . 设点A1(a,b),由中点公式,得
O A
x
所求对称点为A1(3,0).
回顾反思
(1)基本方法:待定系数法 (2)思维策略:①寻找两个独立条件; ②将几何条件代数化.
垂直关系 点在线上
(3)数学思想: 几何条件
斜率关系 点的坐标满足直线方程.
数形结合
数量关系
变式训练
变题1 光线自点A(-1,-4)出发,经直线l:x+
1 y+1=0反射后,反射线所在直线斜率为 , 求入射 2
线所在直线的方程.
l
y
O A.
x
思路分析
变题1 光线自点A(-1,-4)出发,经直线l:x+
1 y+1=0反射后,反射线所在直线斜率为 , 求入射 2
线所在直线的方程.
①求出A的对称点A1(3,0);
l
y
②写出反射线所在直线方程: C x+2y-3=0 ; ③求出反射线与直线l的交点: C(-5,4). ④写出入射线所在直线的方程: 2x+y+6=0.
O A.
A1
x
回顾反思
研究光线关于某直线的反射问题,根据光学 知识,就是求一点关于该直线的对称点问题.这是
对称点的集合.
A1, 4
y
l1
A.
O
x
l1 lx: y1 0
A1, 4
l1 lx: y1 0
A1, 4
l1 lx: y1 0
A1, 4
l1 lx: y1 0
A1, 4
l1 lx: y1 0
A1, 4
因为:入射光线与反射光线关于表示镜面的直线成
轴对称,那么入射光线上任意一点关于表示镜面所 在直线的对称点必在反射光线所在的直线上.
变式训练
变题2 已知直线l1与直线 l:x+y+1=0 关于点
A(-1,-4)对称,求直线l1的方程.
A1, 4
l1 lx: y1 0
思路分析
变题2 已知直线l1与直线 l:x+y+1=0 关于点 y
b+ 4 k AA1 = =1, a +1 a -1 + b- 4 + 1=0. 2 2 a +b- 3= 0, a = 3, a -b- 3= 0. b= 0.
y l
A1 M
O A
x
故所求对称点为A1(3,0).
求解过程
解法3 ∵AA1⊥l, ∴直线AA1的方程是
变题2 已知直线l1与直线 l:x+y+1=0 关于点 y
A(-1,-4)对称,求直线l1的方程. l 思路2: 利用几何知识可
以证明:两条直线必平行. 可设l1:x+y+m=0,
A1, 4
l1
l1 lx: y1 0
-1
A.
O
x
A1, 4
l1 lx: y1 0
再求出l上一点关于点A的
相关文档
最新文档