相反数,绝对值、倒数专项拓展题
数轴、相反数、绝对值专题练习(含答案)
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
第一课:相反数绝对值倒数巩固练习
第一课:相反数绝对值倒数巩固练习1、已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是,则b = . 2、-5/3的倒数的绝对值是___________。
3、若a 、b 互为相反数,c 、d 互为倒数,则(a + b)33-cd =__________。
4、一个数和它的倒数相等,则这个数是( ) A .1 B .1- C .±1 D .±1和05、下面说法正确的有( )① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数. A.0个 B.1个 C.2个 D.3个6、2++b a 与4)12(-ab 互为相反数,求代数式++-+ba abab b a 33)(21的值. 第二课 数轴、无理数、科学记数法一、与数轴相关的考点 (一)、在数轴上求两点的距离:1、求数轴上3到-5的距离____________________________________________2、数轴上A 点表示2,把A 点先向左移动3个单位在向右移动5个单位得到点B ,则点B 表示的数是_________________3、数轴上和原点的距离等于321的点表示的有理数是 。
(二)、看数轴大小比较和化简代数式。
4、已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是( )A 、a >bB 、ab <0C 、b —a >0D 、a +b >05、如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( ) A.a b c <<B.a c b <<C.b a c <<D.c b a <<6、实数a ,b在数轴上的位置如图所示,的化简结果为 .二、与科学记数法相关的考点。
7、首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达601.1亿美元,用科学记数法表示应为( ) A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯8、某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数( )A 、9.4X10-7B 、9.4x10-8C 、0.94x10-7D 、9.4x10-9三、与无理数相关的考点9、下列实数种中,无理数是( )A 、-2B 、0C 、πD 、10、的值在( )(A )2到3之间 (B )3到4之间 (C )4到5之间 (D )5到6之间第三课、实数的运算1、数的乘方:求几个相同因数a 的积德运算叫做乘方,即n 个a 相乘记作a n.注:-an与(-a n )的区别:___________________________.2、零次幂:若a ≠0,则a=______。
专题1.2 相反数、绝对值【十大题型】(举一反三)(人教版)(解析版)
专题1.2 相反数、绝对值【十大题型】【人教版】【题型1 相反数与绝对值的概念辨析】 (1)【题型2 相反数的几何意义的应用】 (3)【题型3 绝对值非负性的应用】 (5)【题型4 化简多重符号】 (6)【题型5 化简绝对值】 (8)【题型6 利用相反数的性质求值】 (9)【题型7 解绝对值方程】 (11)【题型8 绝对值几何意义的应用】 (13)【题型9 有理数的大小比较】 (16)【题型10 应用绝对值解决实际问题】 (18)【知识点1相反数与绝对值】相反数:1.概念:只有符号不同的两个数叫做互为相反数.相反数的表示方法:一般地,a和-a互为相反数,这里的a表示任意一个数可以是正数、负数也可以是零,特别地,一个数的相反数等于它本身这个数是零.2.性质:若a与b互为相反数,那么a+b=0.绝对值:1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.2.性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【题型1相反数与绝对值的概念辨析】【例1】(2023秋·福建龙岩·七年级校考阶段练习)与-4的和为0的数是()A.14B.4C.-4D.−14【答案】B【分析】与-4的和为0的数,就是-4的相反数4.【详解】解:与-4的和为0的数,就是求出-4的相反数4,【点睛】此题考查相反数的意义,掌握互为相反数的两个数的和为0的性质是解决问题的基础.【变式1-1】(2023·江苏·七年级假期作业)将符号语言“|a|=a(a≥0)”转化为文字表达,正确的是()A.一个数的绝对值等于它本身B.负数的绝对值等于它的相反数C.非负数的绝对值等于它本身D.0的绝对值等于0【答案】C【分析】根据绝对值的含义及绝对值的性质逐项判断即可解答.【详解】解:∵一个非负数的绝对值等于它本身,一个负数的绝对值等于它的相反数,∴A项不符合题意;∵a≥0,表示的是非负数的绝对值,不是负数的绝对值,∴B不符合题意;∵一个非负数的绝对值等于它本身,∴C符合题意;∵a≥0,表述的是非负数的绝对值,不只是0的绝对值,∴选项D不符合题意;故选:C.【点睛】本题考查了绝对值的含义及绝对值的性质,掌握绝对值的性质是解题的关键.【变式1-2】(2023·江苏·七年级假期作业)下列各对数中,互为相反数的是( )A.−(+1)和+(−1)B.−(−1)和+(−1)C.−(+1)和−1D.+(−1)和−1【答案】B【分析】先化简各数,然后根据相反数的定义判断即可.【详解】解:A、−(+1)=−1,+(−1)=−1,不是相反数,故此选项不符合题意;B、−(−1)=1,+(−1)=−1,是相反数,故此选项符合题意;C、−(+1)=−1,不是相反数,故此选项不符合题意;D、+(−1)=−1,不是相反数,故此选项不符合题意;故选:B.【点睛】本题主要考查了相反数.先化简再求值是解题的关键.【变式1-3】(2023秋·江苏盐城·七年级江苏省响水中学阶段练习)绝对值小于2016的所有的整数的和【答案】0【详解】绝对值小于2016的所有整数为:−2015,...,0,1, (2015)故-2015+(-2014)+(-2013)+…+2013+2014+2015=(-2015+2015)+( -2014+2014)+( -2013+2013)+…+(-1+1)+0=0;故答案为0.点睛:由于数比较多,不可能挨个求和,故考虑用“互为相反数的两个数的和等于0”这个性质.【题型2相反数的几何意义的应用】【例2】(2023·全国·七年级假期作业)如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?【答案】(1)-1(2)点C表示的数是0.5,D表示的数是-4.5【分析】(1)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C表示的数即可;(2)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C、D表示的数即可.【详解】(1)由点A、B表示的数是互为相反数可知数轴上原点的位置如图,故点C表示的数是-1.(2)由点D、B表示的数是互为相反数可知数轴上原点的位置如图,故点C表示的数是0.5,D表示的数是-4.5.【点睛】本题考查了相反数的定义和数轴,解题的关键是根据题意找出原点的位置.【变式2-1】(2023秋·七年级课时练习)如图,数轴上两点A、B表示的数互为相反数,若点B表示的数为6,则点A表示的数为()A.6B.﹣6C.0D.无法确定【答案】B【分析】根据数轴上点的位置,利用相反数定义确定出点A表示的数即可.【详解】解:∵数轴上两点A,B表示的数互为相反数,点B表示的数为6,∴点A表示的数为﹣6,故选:B.【点睛】此题考查数轴与有理数,相反数的定义,理解相反数的定义是解题的关键.【变式2-2】(2023·全国·七年级假期作业)如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在()A.线段AB上B.线段BC上C.线段BD上D.线段AD上【答案】A【分析】根据相反数的性质,数轴的定义可知,a,b位于原点两侧,据此即可求解.【详解】解:∵a,b均为有理数,且a+b=0,∴a,b位于原点两侧,∴a,b在数轴上的位置不可能落在线段AB上,故选:A.【点睛】本题考查了相反数的性质,数轴的定义,数形结合是解题的关键.【变式2-3】(2023秋·江苏无锡·七年级校考阶段练习)用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2023⇒2018)⇐(2023⇒2015)=__________【答案】2018.【分析】根据题意,(a⇒b)=-b,(a⇐b)=-a,可知(2023⇒2018)=-2018,(2023⇒2015)=-2015,再计算(-2018⇐-2015)即可.【详解】解:∵(a⇒b)=-b,(a⇐b)=-a,∴(2023⇒2018)⇐(2023⇒2015)=(-2018⇐-2015)=2018.故答案为:2018.【点睛】本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.【题型3绝对值非负性的应用】【例3】(2023秋·云南昭通·七年级校考阶段练习)已知|a﹣2|与|b﹣3|互为相反数,求a+b的值.【答案】5.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列非常求出a、b的值,然后代入代数式进行计算即可得解.【详解】∵|a-2|与|b-3|互为相反数,∴|a-2|+|b-3|=0,∴a-2=0,b-3=0,解得a=2,b=3,所以,a+b=2+3=5.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式3-1】(2023秋·云南楚雄·七年级校考阶段练习)对于任意有理数a,下列式子中取值不可能为0的是()A.|a+1|B.|−1|+a C.|a|+1D.−1+|a|【答案】C【分析】根据绝对值的非负性即可得出答案.【详解】解:A.当a=−1时,a+1=0,则|a+1|=0,故A选项不符合题意;B.当a=−1时,|−1|+a=1−1=0,故B选项不符合题意;C.|a|≥0,则|a|+1≥1,不可能为0,故C选项符合题意;D.当a=±1时,−1+|a|=−1+1=0,故D选项不符合题意;故选:C.【点睛】本题考查了绝对值的非负性,解题的关键是掌握任何数的绝对值都是非负数,两个非负数的和一定为非负数.【变式3-2】(2023秋·山东潍坊·七年级统考期中)若|a−1|+|b+2|=0,求a+|−b|.【答案】3【分析】根据绝对值的非负性求解即可.【详解】解:∵|a−1|+|b+2|=0,∴a−1=0,b+2=0,解得:a=1,b=−2,故a +|−b |=1+2=3.【点睛】本题考查了绝对值的非负性,准确的计算是解决本题的关键.【变式3-3】(2023秋·七年级课时练习)对于任意有理数m ,当m 为何值时,5−|m−3|有最大值?最大值为多少?【答案】5【分析】根据绝对值的非负性得到|m−3|≥0,得到当m =3时,|m−3|最小,代入求解即可;【详解】解:由绝对值都是非负数,得|m−3|≥0.当m =3时,|m−3|最小,最小值为0,此时5−|m−3|有最大值,最大值是5.【点睛】本题主要考查了绝对值的非负性应用,准确计算是解题的关键.【题型4 化简多重符号】【例4】(2023秋·全国·七年级专题练习)化简下列各数:(1)−−=________ ;(2)−=________;(3)−{+[−(+3)]}=________.【答案】 23 −45 3【分析】根据多重符合化简的法则,化简结果的符合由符号的个数决定,确定符号后可得结果.【详解】解:−−=23,−=−45,−{+[−(+3)]}=3,故答案为:23,−45,3.【点睛】本题考查了化简多重符号,多重符号的化简是由“−”的个数来定,若“−”个数为偶数个时,化简结果为正;若“−”个数为奇数个时,化简结果为负.【变式4-1】(2023·浙江·七年级假期作业)下列化简正确的是( )A .+(−6)=6B .−(−8)=8C .−(−9)=−9D .−[+(−7)]=−7【答案】B【分析】根据化简多重符号的方法逐项判断即可求解.【详解】解:A. +(−6)=−6,原选项计算错误,不合题意;B. −(−8)=8,原选项计算正确,符合题意;C. −(−9)=9,原选项计算错误,不合题意;D. −[+(−7)]=7,原选项计算错误,不合题意.故选:B .【点睛】本题考查有理数的多重符合化简,化简多重符号就是看数字前负号的个数,如果负号的个数是奇数个则最终符号为负号,如果负号个数为偶数个则最终符号为正号.【变式4-2】(2023秋·江苏无锡·七年级统考期末)在−(+2.5),−(−2.5),+(−2.5),+(+2.5)中,正数的个数是( )A .1B .2C .3D .4【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:∵−(+2.5)=−2.5,−(−2.5)=2.25,+(−2.5)=−2.5,+(+2.5)=2.5,∴正数的个数是2个,故选B .【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【变式4-3】(2023·全国·七年级假期作业)化简下列各式的符号:(1)﹣(+4);(2)+(﹣37);(3)﹣[﹣(﹣325)];(4)﹣{﹣[﹣(﹣π)]}.化简过程中,你有何发现?化简结果的符号与原式中的“﹣”号的个数与什么关系吗?【答案】(1)-4;(2)−37;(3)−325;(4)π;最后结果的符号与﹣的个数有着密切联系,如果一个数是正数,当﹣的个数是奇数,最后结果为负数,当﹣的个数是偶数,最后结果为正数【分析】根据已知数据结合去括号的法则化简各数,进而得出结果的符号与原式中的“-”号的个数的关系.【详解】解:(1)﹣(+4)=﹣4;(2)+(−37)=−37;(3)﹣[﹣(﹣325)]=﹣325;(4)﹣{﹣[﹣(﹣π)]}=π.最后结果的符号与“﹣”的个数有着密切联系,如果一个数是正数,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数.【点睛】本题考查了相反数的意义,正确发现数字变化规律是解题的关键.【题型5化简绝对值】【例5】(2023春·黑龙江哈尔滨·六年级统考期中)有理数a,b,c在数轴上的位置如图所示,化简|b+c|+ |a−c|=_______.【答案】a−b−2c【分析】先由数轴判断a,b,c与0的大小关系,其中a>0,b<0,c<0,则b+c<0,a−c>0,再根据绝对值的意义,正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0,进而得出结果.【详解】解:∵a>0,b<0,c<0,∴b+c<0,a−c>0,∴|b+c|+|a−c|=−(b+c)+a−c=−b−c+a−c=a−b−2c故答案为:a−b−2c.【点睛】本题主要考查了数轴上的点以及绝对值的意义,其中正确掌握正负数的绝对值是解题的关键.【变式5-1】(2023秋·江苏宿迁·七年级统考期中)如果|m|=|n|,那么m,n的关系()A.相等B.互为相反数C.都是0D.互为相反数或相等【答案】D【分析】利用绝对值的代数意义化简即可得到m与n的关系.【详解】解:∵|m|=|n|,∴m=n或m=−n,即互为相反数或相等,故选:D.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.【变式5-2】(2023·浙江·七年级假期作业)化简:(1)|−(+7)|;(2)−|−8|;【答案】(1)7(2)−8【分析】(1)先化简括号的符号,然后再根据绝对值的性质化简即可;(2)直接化简绝对值即可.【详解】(1)解:|−(+7)|=|−7|=7(2)−|−8|=−8.【点睛】本题主要考查绝对值的化简,熟练掌握运算法则是解题关键.【变式5-3】(2023·全国·七年级假期作业)求下列各数的绝对值:(1)−38;(2)0.15;(3)a(a<0);(4)3b(b>0);【答案】(1)38(2)0.15(3)−a(4)3b【分析】根据正数与0的绝对值是其本身,负数的绝对值是其相反数即可求解.【详解】(1)|−38|=38;(2)|0.15|=0.15;(3)∵a<0,∴|a|=−a;(4)∵b>0,∴3b>0,∴|3b|=3b【点睛】本题考查了绝对值的性质,准确把握“正数与0的绝对值是其本身,负数的绝对值是其相反数”是解题的关键.【题型6利用相反数的性质求值】【例6】(2023·全国·七年级专题练习)已知-21的相反数是x,-5的相反数是y,z的相反数是0,求x+3y +z 的相反数.【答案】-713【分析】根据相反数的概念求出x ,y ,z 的值,代入x +y +z 即可得到结果.【详解】解:∵-213的相反数是x ,-5的相反数是y ,z 相反数是0,∴x =213,y =5,z =0,∴x +y +z =213+5+0=713.∴x +y +z 的相反数是-713 .【点睛】本题考查了相反数的定义,熟记相反数的概念是解题的关键.【变式6-1】(2023秋·湖北孝感·七年级统考期中)在数轴上表示整数a 、b 、c 、d 的点如图所示,单位长度为1,且a +b =0,则c +d 的值是________.【答案】−4.【分析】根据题意先确定原点的位置,然后得到c 、d 表示的数,再进行计算即可.【详解】解:∵a +b =0,∴a 与b 互为相反数,由数轴可知,如图:∴a =−2,b =2,c =−8,d =4,∴c +d =−8+4=−4;故答案为:−4.【点睛】本题考查了数轴的定义,相反数的定义,解题的关键是熟练掌握所学的知识进行解题.【变式6-2】(2023春·广东河源·七年级校考开学考试)若 a +b =0,则 a b 的值是 ( )A .−1B .0C .无意义D .−1或无意义【答案】D【分析】分b =0,b ≠0两种情形计算即可.【详解】当b ≠0时,∵a +b =0,∴a =−b ,∴a b =−b b =−1;当b =0时,∵a +b =0,∴a =0,∴a b 无意义,∴a b 的值是−1或无意义,故选D .【点睛】本题考查了相反数的意义,及其商的意义,熟练掌握相反数的意义是解题的关键.【变式6-3】(2023秋·湖南永州·七年级校考阶段练习)已知a ,b 互为相反数,则a +2a +3a +⋯+49a +50a +50b +49b +⋯+3b +2b +b =________.【答案】0【分析】根据相反数的概念,得到a +b =0,继而可得出答案.【详解】解:∵a ,b 互为相反数,∴a +b =0.∴a +2a +3a +...+49a +50a +50b +49b +...+3b +2b +b=(a +b )+2(a +b )+3(a +b )+...+50(a +b )=0.故答案为:0.【点睛】本题考查了相反数的概念,属于基础题,注意掌握相反数的概念是关键.【题型7 解绝对值方程】【例7】(2023秋·江苏宿迁·七年级泗阳致远中学校考阶段练习)若|−m|=|−12|,则m 的值为()A .±2B .−12或12C .12D .−12【答案】B【分析】根据绝对值的性质,进行化简求解即可.|【详解】解:|−m|=|−12|−m|=1,2∴m=±1,2故选:B.【点睛】本题考查了绝对值方程问题,解题的关键是掌握绝对值化简的性质,正数的绝对值是本身,负数的绝对值是其相反数.【变式7-1】(2023秋·海南省直辖县级单位·七年级校考阶段练习)如果|x|−2=2,那么x是()A.4B.-4C.±2D.±4【答案】D【分析】根据绝对值意义进行解答即可.【详解】解:∵|x|−2=2,∴|x|=4,∴x=±4,故选:D.【点睛】本题考查了绝对值的意义,绝对值表示该数在数轴表示的点距原点的距离.【变式7-2】(2023秋·湖北孝感·七年级统考期中))已知|a+1|=2,|2b−1|=7,a<b,求|a|+|b|.【答案】5或7【分析】根据绝对值的意义以及a与b的关系求出a和b的值,代入计算即可.【详解】解:∵|a+1|=2,|2b−1|=7,∴a=1或-3,b=4或-3,∵a<b,∴a=1,b=4,或a=-3,b=4,|a|+|b|=5或7.【点睛】本题考查了绝对值的意义,解题的关键是掌握已知一个数的绝对值,求这个数.【变式7-3】(2023秋·江苏·七年级专题练习)解方程:3x−|x|+5=1.【答案】x=−1【分析】根据绝对值的意义,分类讨论求解即可.【详解】解:当x≥0时,3x−x+5=1,解得:x=−2(不符合题意,舍去),当x<0时,3x+x+5=1,解得:x=−1,综上所述:x=−1,∴原方程的解为:x=−1.【点睛】本题考查了绝对值方程,解本题的关键在熟练掌握绝对值的意义.正数的绝对值为它本身,负数的绝对值则是它的相反数,0的绝对值还是为0.【题型8绝对值几何意义的应用】【例8】(2023秋·全国·七年级专题练习)|x−1|+|x−2|+|x−3|+⋅⋅⋅+|x−2021|的最小值是()A.1B.1010C.1021110D.2020【答案】C【分析】x为数轴上的一点,|x-1|+|x-2|+|x-3|+…|x-2021|表示:点x到数轴上的2021个点(1、2、3、…2021)的距离之和,进而分析得出最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|求出即可.【详解】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤2021时,|x-1|+|x-2021|有最小值2020;当2≤x≤2020时,|x-2|+|x-2020|有最小值2018;…当x=1011时,|x-1011|有最小值0.综上,当x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值,最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|=1010+1009+…+0+1+2+…+1010=1011×1010=1021110.故选:C.【点睛】本题考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值是解题关键.【变式8-1】(2023秋·七年级单元测试)小亮把中山路表示成一条数轴,如图所示,把路边几座建筑的位置用数轴上的点,其中火车站的位置记为原点,正东方向为数轴正方向,公交车的1站地为1个单位长度(假设每两站之间距离相同)回答下列问题:(1)到火车站的距离等于2站地的是和.(2)到劝业场的距离等于2站地的是和.(3)在数轴上,到表示1的点的距离等于2的点有个,表示的数是.(4)如果用a表示图中数轴上的点,那么|a|表示该点到火车站的距离,当|a|=2时,a=2或−2.请你结合图形解释等式|a−1|=2表达的几何意义,并求出当|a−1|=2时,a的值.【答案】(1)烈士陵园,北国商城(2)人民商场,博物馆(3)2,−1或3(4)表达的几何意义见解析,a的值为3或−1【分析】(1)由图即可直接得出结论;(2)由图即可直接得出结论;(3)结合数轴即可直接得出结论;(4)结合图形可知|a−1|=2的几何意义为:该点到劝业场的距离等于2,进而可直接得出a的值.【详解】(1)解:由图可知到火车站的距离等于2站地的是人民商场和劝业场.故答案为:烈士陵园,北国商城;(2)解:由图可知到劝业场的距离等于2站地的是人民商场和博物馆.故答案为:人民商场,博物馆;(3)解:在数轴上,到表示1的点的距离等于2的点有2个,分别是−1和3.故答案为:2,−1或3;(4)解:该题中|a−1|=2的几何意义为:该点到劝业场的距离等于2,且为人民商场或博物馆.即到表示1的点的距离等于2的点.结合图形可知当|a−1|=2时,a的值为3或−1.【点睛】本题考查数轴上两点之间的距离,用数轴上的点表示有理数,绝对值的意义.利用数形结合的思想是解题关键.【变式8-2】(2023春·浙江·七年级期末)方程|x|+|x−2022|=|x−1011|+|x−3033|的整数解共有()A.1010B.1011C.1012D.2022【答案】C【详解】根据绝对值的意义,方程表示整数x到0与2022的距离和等于到1011与3033的距离的和,进而得出x为1011与2022之间的整数,据此即可求解.【分析】解:方程的整数解是1011至2022之间的所有整数,共有1012个.故选:C.【点睛】本题考查了绝对值的意义,数轴上两点的距离,理解绝对值的意义是解题的关键.【变式8-3】(2023秋·七年级单元测试)阅读材料:因为|x|=|x−0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1−x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x−2|=3的几何意义是什么?这里x的值是多少?(2)等式|x−4|=|x−5|的几何意义是什么?这里x的值是多少?(3)式子|x−1|+|x−3|的几何意义是什么?这个式子的最小值是多少?【答案】(1)几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,x=−1或5(2)几何意义是点P到点A的距离等于点P到点B的距离,x=412(3)几何意义是点P到点M的距离与点P到点N的距离的和,最小值为2【分析】(1)根据|x1−x2|的几何意义求解可得;(2)先去绝对值,再解方程即可求解;(3)由题意知|x−1|+|x−3|表示数x到1和3的距离之和,当数x在两数之间时式子取得最小值.【详解】(1)解:等式|x−2|=3的几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,这里x=−1或5.(2)解:设数轴上表示数x,4,5的点分别为P,A,B,.则等式|x−4|=|x−5|的几何意义是点P到点A的距离等于点P到点B的距离,即PA=PB,所以x=412(3)解:设数轴上表示数x,1,3的点分别为P,M,N,则式子|x−1|+|x−3|的几何意义是点P到点M的距离与点P到点N的距离的和,即PM+PN.结合数轴可知:当1≤x≤3时,式子|x−1|+|x−3|的值最小,最小值为2.【点睛】本题考查了一元一次方程的应用,数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.【题型9 有理数的大小比较】【例9】(2023·湖北孝感·七年级统考期中))在1,−2,0,32这四个数中,绝对值最小的数是( )A .1B .−2C .0D .32【答案】C【分析】先求绝对值,然后根据有理数大小比较即可求解.【详解】解:∵1,−2,0,32这四个数的绝对值分别为1,2,0,32∴绝对值最小的数是0,故选:C .【点睛】本题考查了绝对值,有理数的大小比较,熟练掌握绝对值的定义,有理数的大小比较是解题的关键.【变式9-1】(2023秋·广东河源·七年级校考开学考试)已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.−5,+3,−|−3.5|,0,−(−2),−1【答案】数轴见解析,−5<−|−3.5|<−1<0<−(−2)<+3【分析】先去括号,去绝对值符号,把各数在数轴上表示出来,按原数从小到大的顺序用“<”把这些数连接起来即可.【详解】解:−|−3.5|=−3.5,−(−2)=2,如图,故−5<−|−3.5|<−1<0<−(−2)<+3.【点睛】本题主要考查数轴上有理数的表示及大小比较,熟练掌握数轴上有理数的表示及大小比较是解题的关键.【变式9-2】(2023·浙江·七年级假期作业)(1)试用“<”“ >”或“=”填空:①|+6|−|+5| |(+6)−(+5)|;②|−6|−|−5| |(−6)−(−5)|;③|+6|−|−5| |(+6)−(−5)|;(2)根据(1)的结果,请你总结任意两个有理数a 、b 的差的绝对值与它们的绝对值的差的大小关系为|a|−|b| |a−b|;(3)请问,当a 、b 满足什么条件时,|a|−|b|=|a−b|?【答案】(1)①=;②=;③<;(2)≤;(3)①当a>b>0,②a<b<0,③a=b,④b=0,时|a|−|b|=|a−b|.【分析】(1)先计算,再比较大小即可;(2)根据(1)的结果,进行比较即可;(3)根据(1)的结果,可发现,当a、b同号时,|a|−|b|=|a−b|.【详解】解:(1)①|+6|−|+5|=1,|(+6)−(+5)|=1,∴|+6|−|+5|=|(+6)−(+5)|;②|−6|−|−5|=1,|(−6)−(−5)|=1,∴|−6|−|−5|=|(−6)−(−5)|;③|+6|−|−5|=1,|(+6)−(−5)|=11,∴|+6|−|−5|<|(+6)−(−5)|;故答案为:=,=,<;(2)|a|−|b|⩽|a−b|;故答案为:≤;(3)①当a>b>0,②a<b<0,③a=b,④b=0,时|a|−|b|=|a−b|.【点睛】本题考查了有理数的大小比较及绝对值的知识,解题的关键是注意培养自己由特殊到一般的总结能力.【变式9-3】(2023秋·湖北黄冈·七年级统考期末)有理数a,b,c在数轴上的位置如图所示,下列关系正确的是()A.|a|>|b|B.a>﹣b C.b<﹣a D.﹣a=b【答案】C【分析】先根据各点在数轴上的位置得出b﹤-c﹤0﹤a﹤c,再根据绝对值、相反数、有理数的大小逐个判断即可.【详解】从数轴可知:b﹤-c﹤0﹤a﹤c,∴∣a∣﹤∣b∣,a﹤-b,b﹤-a,-a≠b,所以只有选项C正确,故选:C.【点睛】本题考查了有理数的大小比较、相反数、绝对值、数轴的应用,解答的关键是熟练掌握利用数轴比较有理数的大小的方法.【题型10应用绝对值解决实际问题】【例10】(2023·浙江·七年级假期作业)某汽车配件厂生产一批圆形的零件,现从中抽取6件进行检查,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查记录如下表:123456+0.5−0.3+0.10−0.1+0.2(1)找出哪件零件的质量相对好一些?(2)若规定与标准直径相差不大于0.2毫米的产品为合格产品;则这6件产品中有哪些产品不合格?【答案】(1)第4件质量最好;(2)第1件、第2件产品不合格.【分析】(1)根据绝对值越小质量越好,越大质量越差即可知道哪件零件的质量相对来讲好一些;(2)按绝对值由大到小排即可.【详解】(1)解:∵|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2,∵0<0.1=0.1<0.2<0.3<0.5,∴|0|<|+0.1|=|-0.1|<|+0.2|<|-0.3|<|+0.5|,∴第4件质量最好;(2)解:∵|+0.5|=0.5>0.2,|-0.3|=0.3>0.2,∴第1件、第2件产品不合格.【点睛】本题主要考查绝对值的意义,可以结合绝对值的意义进行解答.【变式10-1】(2023秋·辽宁沈阳·七年级统考期中)如图,为了检测4个足球质量,规定超过标准质量的克数记为正数,不足标准质量的克数记为负数.下列选项中最接近标准的是( )A.B.C.D.【答案】B【分析】根据绝对值最小的最接近标准,可得答案.【详解】解:|−1.4|=1.4,|−0.5|=0.5,|0.6|=0.6,|−2.3|=2.3,0.5<0.6<1.4<2.3,则最接近标准的是−0.5.故选:B.【点睛】本题考查了正数和负数,利用绝对值的意义是解题关键.【变式10-2】(2023秋·山东济南·七年级校考阶段练习)按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_____.威化咸味甜味酥脆+10(g)-8.5(g)+5(g)-7.3(g)【答案】甜味【分析】找出表格中四个数值的绝对值最小的即可得.【详解】解:|+10|=10,|−8.5|=8.5,|+5|=5,|−7.3|=7.3,因为5<7.3<8.5<10,所以最符合标准的一种食品是甜味,故答案为:甜味.【点睛】本题考查了绝对值的应用,理解题意,正确求出各数的绝对值是解题关键.【变式10-3】(2023秋·浙江金华·七年级校考阶段练习)已知零件的标准直径是100mm,超过标准直径的数量记作正数,不足标准直径的数量记作负数,检验员抽查了五件样品,检查结果如下:序号12345直径(mm)+0.10−0.15+0.20−0.05+0.25(1)指出哪件样品的直径最符合要求;(2)如果规定误差的绝对值在0.18mm之内是正品,误差的绝对值在0.18~0.22mm之间是次品,误差的绝对值超过0.22mm是废品,那么这五件样品分别属于哪类产品?【答案】(1)第4件样品的直径最符合要求;(2)第1,2,4件样品是正品;第3件样品为次品;第5件样品为废品.【分析】(1)表中的数据是零件误差数,所以这些数据中绝对值小的零件较好;(2)因为绝对值越小,与规定直径的偏差越小,每件样品所对应的结果的绝对值,即为零件的误差的绝对值,看绝对值的结果在哪个范围内,就可确定是正品、次品还是废品.【详解】解:(1)∵|−0.05|<|+0.10|<|−0.15|<|+0.20|<|+0.25|,∴第4件样品的直径最符合要求.(2)因为|+0.10|=0.10<0.18,|−0.15|=0.15<0.18,|−0.05|=0.05<0.18.所以第1,2,4件样品是正品;因为|+0.20|=0.20,0.18<0.20<0.22,所以第3件样品为次品;因为|+0.25|=0.25>0.22,所以第5件样品为废品.【点睛】考查了绝对值,绝对值越小表示数据越接近标准数据,绝对值越大表示数据越偏离标准数据.。
(完整版)相反数和绝对值经典练习题
(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。
这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。
这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。
这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。
这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。
如果x = -5,请计算小明和小红的体重。
小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。
这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
《相反数》《绝对值》精编测试题及参考答案
《相反数》精编测试题一、选择题1.﹣2023的相反数是( )A .﹣2023B .2023C .−12023D .−120232.下列各组数中,互为相反数的是( ) A .−13和0.3 B .0.1和﹣(+1) C .﹣1.5和+112 D .5和﹣0.53.在①+(+7)与-(-7) ②-(+1)与+(-1) ③+(+3)与-(+3) ④+(-5)与-(-5)中,互为相反数的是( )A .①②B .②③C .③④D .②④ 4.﹣(﹣8)的值为( )A .18B .−18C .8D .﹣85.有理数a ,b 在数轴上的对应点的位置如图所示,则a ,b ,-a ,-b 的大小关系是( )A .b a a b ->>->B .b b a a ->>>-C .a b b a >->>-D .a b a b >->->6.下列各组互为相反数的是( )A .+(-1)和-(+1)B .-(-5)和+(+5)C .-3和-(-3)D .-2和-(+2)7.如图,数轴上点A ,B 表示的数互为相反数,且AB =4,则点A 表示的数( )A .4B .-4C .2D .-28. a-b 的相反数( )A .a+bB .a-bC .-a+bD . -a-b 9.下列几组数中,互为相反数的是( )A .-(+1)和+(-1)B .∣-2∣和-(-2)C .-(-3)和-∣-3∣D .-4和1410.下列各数相等的是( )A .+1与-(+1)B .-(-2)与+(-2)C .-(-3)与+∣-3∣D .∣-2∣与-(+2)11. 下列有关-a 的论述正确的是( )A.-a一定是负数 B.-a一定是正数C.-a一定是0 D. -a是正数、负数或0都有可能二、填空题12.数轴上点A表示的数是-(+2),点A、B表示的数互为相反数,则点B表示的数是______.13.在① +(+1)与﹣(﹣1);② +(﹣2)与﹣(+2);③ +(+3)与+(﹣3);④ +(+4)与﹣(+4);⑤ +(﹣5)与﹣(﹣5);⑥﹣(﹣7)与﹣(+7)这六对数中,它们是互为相反数的有________组.14. -(-4)的值是________,-(+8) 的值是_________,+(-7) 的值是_________15. -(-5)的相反数是________,-(+6) 的相反数是________,+(-9) 的相反数是________.16.化简:- [-(-6)]= _______;-[-(+7)]=_________.17.已知x=-1,则-(-x)=_______.三、解答题18.阅读理解:因为a的相反数是-a,所以①-(+2)为+2的相反数,故-(+2)=-2;②-(-2)为-2的相反数,故-(-2)=2.即利用相反数的意义可以对多重符号进行化简.化简:(1)−(+12025)(2)−(−12025)(3)−[+(−12025)](4)−[−(−2025)]《绝对值》精编测试题一、选择题1.数轴上表示-2的点到原点的距离是()A.-2 B.2 C.-2 D.2或-22.|−12|的值是()A.-2 B.−12 C.12D.23.|+15|的值是()A .-5B .−15C .15D .54.﹣|﹣2023|与-(-2023)的值分别是( )A .2023与2023B .﹣2023与+2023C .12023与-2023D .−12023与-20235.|﹣5|的相反数为( ) A .5 B .﹣5 C .15D .−156.绝对值等于8的数是( )A .-8B .8C .8或-8D .07.在-8,0,|−6|,-(-5),−|−9|五个数中,是正数的有( )A .0B .1C .2D .3 8.设x 为一个有理数,若|a |=a ,则a 是( )A .负数B .正数C .非负数D .零9.若|x −3|=−(x −3),则x 的取值范围是( )A .x ≥3B .x >3C .x ≤3D .x <310.如果|a |=|−2|,则a 的值是( )A .-2B .2C .2D .2或-211.若有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .|a |<|b |B .ab <bC .a >-bD . b >-a12. |x ﹣5|+|2﹣x|的最小值为( )A .2B .3C .5D .7二、填空题13.数轴上到原点的距离等于10的点表示的数是______.14.若|x |=5,则x ______.15.当式子|a −1|+2023取最小值时,a=______,最小值是______.16.计算:|π−5| =_______(结果保留π).17.已知有理数 a 、b 表示的点在数轴上的位置如图所示,化简|a +1|+|1-b|=____.18.|a |≤227的整数有__________________________.19.对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.3]=1,[5]=5,[﹣3.5]=﹣4,则[5.9]=_____,[﹣8.1]=_____.三、解答题20.比较下列两数的大小.(1)−|−6|与+(−5)(2)−14与−25(3)−|−35|与−(−35)21.已知|a|=3,|b|=5, b<a,求a与b 的值.22.已知:有理数a、b、c在数轴上的位置如图所示,化简|c|+|a|+|﹣b|.《相反数》参考答案一、选择题BCCCA CDCCC D二、填空题12. 213. ③④⑤⑥14.4,-8,-715.-5,6,916.-6,-717.-1三、解答题18.(1) −12025(2)12025(3)12025(4)-2025《绝对值》参考答案一、选择题BCCBB CCCCD BB二、填空题13. ±1014. ±515.1,202316.5-π17.a+b18. ±1, ±2, ±3,019.5,-9三、解答题20. (1)−|−6|<+(−5)(2)−14>−25(3)−|−35|>−(−35)21.当a=3时,b=-5; 当a=-3时,b=-5.22. c-a-b。
数轴、相反数、绝对值(习题及答案)
数轴、相反数、绝对值(习题)巩固练习1.下列图形表示数轴正确的是( )101234-1A .B .12-1-2-2-121C .D .2.下列说法正确的是( ) A .正数和负数统称有理数 B .正整数和负整数统称为整数 C .小数3.14不是分数D .整数和分数统称为有理数3.下列各组数中,互为相反数的是( ) A .( 3.2)--与 3.2-B .2.3与 2.31-C .[]( 4.9)-+-与4.9D .(1)-+与(1)+-4.下列说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的射线B .离原点近的点所对应的有理数较小C .任意一个有理数都可以用数轴上的一个点来表示D .原点在数轴的正中间5.关于相反数的叙述,错误的是( ) A .两数之和为0,则这两个数互为相反数B .到原点距离相等的点所表示的两个数互为相反数C .符号相反的两个数,一定互为相反数D .零的相反数是零6. 任何一个有理数的绝对值一定( ) A .大于0 B .小于0 C .不大于0 D .不小于07. 如果a a >,那么a 是( )A .正数B .负数C .非正数D .非负数8.下列说法正确的是( )A .绝对值等于它本身的数是正数B .相反数等于它本身的数是负数C .相反数等于它本身的数是0D .任意一个数小于它的绝对值9.如图,若点A ,B ,C 所对应的数为a ,b ,c ,则下列大小关系错误的是( )CBA -3-2-1321A .b c a <<B .a b c -<<C .b c a <-<D .a c b <<-10. 有如下一些数:-3,3.14,-20,0,6.8,0.34,12-,9-,其中是非正整数的有____________________________.11. 在数轴上点A 表示-1,点B 表示-0.5,则离原点较近的是点__________. 12. 在数轴上距离原点为2的点所对应的数为________,它们互为_____________. 13. 数轴上-1所对应的点为A ,将点A 向右移4个单位再向左移6个单位,则此时点A 到原点的距离为__________.14. 绝对值最小的数是________;绝对值越小,则该数在数轴上所对应的点离原点越________. 15. 若0x>,则x --=_______;若m n >,则n m -=________.16.填空: (1)43=__________________;----= (2)21=____________----=;(3)32_____________-⨯-=⨯=; (4)33=___________________________42-÷-÷=⨯=.思考小结 1. 在数轴上距离原点3个单位长度的点表示的数是_________. 2.若字母a 表示一个有理数,则-a 一定是负数吗? 我们的思考过程是这样的:-a 表示a 的相反数,若a 为正数,则-a 为__________; -a 表示a 的相反数,若a 为0,则-a 为__________; -a 表示a 的相反数,若a 为负数,则-a 为__________.综上:若字母a 表示一个有理数,则-a 可能是正数、负数或0,因此,-a___________(“一定”或“不一定”)是负数. 3.请判断下列说法的正误.(对的打“√”,错的打“×” ) (1)所有的有理数都能用数轴上的点表示 ( ) (2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )【参考答案】巩固练习1. D2. D3. A4. C5. C6. D7. B8. C9. D10.-3,-20,011.B12.±2,相反数13.314.0,近15.-x,-n+m16.(1)4,3,1 (2)2,1,1(3)3,2,6 (4)34,32,34,23,12思考小结1.±32.负数;0;正数.不一定3.(1)√;(2)×;(3)×;(4)×;(5)√;(6)√;(7)×;(8)×.。
七年级上:有理数、数轴、相反数、绝对值,20道巩固培优经典考题.doc
9题和10题,绝对值的几何意义,借助数轴但是你听课不认真此题也不简单。
12题,13题,15题,数轴上的点的距离,绝对值和的最小值。
14题,相反数基础知识,这道题你应该可以全对。
简答题,这三道题难吗?相信你们数学老师肯定也讲过许多遍。
方老师这几天的视频里,文章专题里也讲过许多。
阅读理解18题,只要你认真读完题目,开动脑经自然不难。而且老师也讲过类似的题型。
阅读理解19题,这题你应该可以做对。
七年级上:有理数、数轴、相反数、绝对值,20道巩固培优经典考题
这四道题,应该不难,其实不管相反数也好,绝对值也好,都离不开数轴。
所以,解决这类问题,一定养成在草稿本上画数轴的方法。很多同学,从来就不晓得,主动去画数轴。
这六道题,绝对值经典考试题型。5题,借助数轴,找出A、B、C所在的位置,这题目太简单。
相反数绝对值专项小练习(附详细答案)
相反数基础练习1.﹣(+5)表示 的相反数,即﹣(+5)= ;﹣(﹣5)表示 的相反数,即﹣(﹣5)= 。
2.﹣2的相反数是 ;75的相反数是___;0的相反数是 。
3.化简下列各数:﹣(﹣68)= ﹣(+0.75)= ﹣(﹣53)= ﹣(+3.8)= +(﹣3)= +(+6)=4,下列说法中正确的是( )A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数 拓展提高1.﹣(﹣3)的相反数是 。
2.已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 。
3.已知a 与b 互为相反数,b 与c 互为相反数,且c=﹣6,则a= 。
4.一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a 0.5.数轴上A 点表示﹣3,B 、C 两点表示的数互为相反数,且点B 到点A 的距离是2,则点C 表示的数应该是 。
6.下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b 互为相反数,那么a+b=0;⑤若有理数a,b 互为相反数,则它们一定异号。
A 、2个B 、3个C 、4个D 、5个7,如果a=﹣a ,那么表示a 的点在数轴上的什么位置?绝对值基础练习:1.互为相反数的两个数的绝对值_____.2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.3.-32的绝对值是_____. 4.绝对值最小的数是_____.5.绝对值等于5的数是_____,它们互为_____.6.若b <0且a =|b |,则a 与b 的关系是______.7.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).8.如果|a |>a ,那么a 是_____.9.绝对值大于2.5小于7.2的所有负整数为_____.10.将下列各数由小到大排列顺序是_____. -32,51 ,|-21|,0,|-5.1| 11.如果-|a |=|a |,那么a =_____.12.已知|a |+|b |+|c |=0,则a =_____,b =_____,c =_____.13.比较大小(填写“>”或“<”号)(1)-53_____|-21| (2)|-51|_____0 (3)|-56|_____|-34| 14.计算(1)|-2|×(-2)=_____(2)|-21|×5.2=_____(3)|-21|-21=_____ 拓展提高15.任何一个有理数的绝对值一定( )A.大于0B.小于0C.不大于0D.不小于016.若a >0,b <0,且|a |<|b |,则a +b 一定是( )A.正数B.负数C.非负数D.非正数17.下列说法正确的是( )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数18.下列结论正确的是( )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b |19.“南辕北辙” 这个成语讲的是我国古代某人要去南方,却向北走了起来,有人预言他无法到达目的地,他却说:“我的马很快,车的质量也很好”,请问他能到达目的地吗?“马很快,车质量好”会出现什么结果,用绝对值的知识加以说明.20.某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?相反数基础练习1.﹣(+5)表示 +5 的相反数,即﹣(+5)= -5 ;﹣(﹣5)表示 ﹣5 的相反数,即﹣(﹣5)= +5 。
相反数绝对值练习题
相反数绝对值练习题相反数绝对值练习题数学作为一门基础学科,是我们日常生活中无处不在的。
在数学的世界里,有许多有趣的概念和规则,其中相反数和绝对值就是其中之一。
相反数是指两个数值大小相等,但符号相反的数,而绝对值则是指一个数离0的距离。
相反数和绝对值的概念在解决实际问题和进行数学运算时起着重要的作用。
下面,我们来通过一些练习题来巩固和加深对相反数和绝对值的理解。
1. 请写出以下数的相反数和绝对值:a) 12b) -5c) 0d) -8.5解析:a) 相反数:-12,绝对值:12b) 相反数:5,绝对值:5c) 相反数:0,绝对值:0d) 相反数:8.5,绝对值:8.52. 比较以下两组数的大小:a) -7和-3的绝对值b) -2和2的相反数解析:a) -7和-3的绝对值分别为7和3,显然7大于3,所以-7的绝对值大于-3的绝对值。
b) -2和2的相反数分别为2和-2,显然2大于-2,所以-2的相反数大于2的相反数。
3. 将以下数按照绝对值从小到大排列:-5,7,-3,2,-1解析:按照绝对值从小到大排列,首先找到绝对值最小的数。
-1的绝对值为1,然后是2的绝对值为2,接下来是-3的绝对值为3,然后是-5的绝对值为5,最后是7的绝对值为7。
所以按照绝对值从小到大排列的顺序为:-1,2,-3,-5,7。
4. 请写出以下数的相反数,并判断它们的绝对值之和是否等于0:a) 6和-6b) 9和-9c) 0和0解析:a) 6的相反数为-6,-6的相反数为6。
绝对值之和为6+6=12,不等于0。
b) 9的相反数为-9,-9的相反数为9。
绝对值之和为9+9=18,不等于0。
c) 0的相反数为0,绝对值之和为0+0=0,等于0。
5. 请用绝对值的概念解决以下问题:小明家离学校有5公里,小红家离学校有8公里,小明和小红相约在距离学校最近的地方见面,请问他们应该在哪个位置见面?解析:要找到距离学校最近的地方,可以计算小明和小红的距离与学校的距离之差的绝对值。
相反数,绝对值、倒数专项拓展题
相反数、绝对值、倒数专项拓展题先练兵(1)互为相反数,则 _____________________ ,(2)互为倒数,则 _______________________________(3)相反数等于本身的____________ ,绝对值等于本身的 ______________________倒数等于本身的 __________ ,平方等于本身的数是立方等于本身的_______________(4)最大的负整____________ 最小的正整 ____________________ 绝对值最小的有理数—例1、已知3, b为相反数,c, d互为倒数,m的绝对值等于2, D是数轴上到原査的距盅为*1的数,求;卩2007—加+誥+加2的值・练习1、已知a、b互为相反数,c、d互为倒数,求代数式-2 (a + b)彳-蟲 + 金的值2、己知3、b直为相反数30) , u迈为倒数,啲绝对值等于2,试求曲a+b+cd)x +(网W(灿皿啲值.3、若a, b互为相反数,c,d互为倒数,m的绝对值是3, n在有理数王国里既不是正数也不是负数,求( ) s>:)s+m2-( cd):皿+n ( a+b+c+d [的值・4、若实数r D互为相反数丿c, d互为倒数'm的细对值为2,求孕廿7也)仁(1-2m+m2)的值5、己知;a与b立为相反数」c^d立为倒数.x=3Ca-1) -( a-2b) > y=cd-tc( 8十b),求3x-2y的值例2、已知(xn-1)'与|x+2|互为相反数> a. D互为倒数 > 试求x>r+ab的值.曲(+2)%年0,比bWffl, c, dIW.求代数封紡3b+2cd的值练习1、如因”己知A、B、c三点分别君应数轴上的数日、bs c. ---- ---------------- -- --- ---------- >c b a)«:|a-b|+|c-bh|c-a|.)若a二申,b=-z2, c=-4mn・JM足谒迈为相反数,猩绝对值*小的负整数> m、n互为倒数,试求9旳+9加+100啲1.)在(2)的条件下「在数轴上找-点D「满足D点表示的整数圖点A, C的距竝和为仙并求岀所有这些整数的和.一:填空题:1、已知a、b互为倒数,x、y互为相反数,m二2,则収+ 丫)• | - ab + m的值为__________________________ 。
相反数、倒数与绝对值专题提高
相反数、倒数与绝对值专题提高1、【相反数】:【代数定义】:只有符号不同的两个数叫做互为相反数,规定:零的相反数是零。
相反数是成对出现的,指两个数字之间的关系,一个数与它的相反数时一对数字。
【几何意义】:从数轴上看,互为相反数的两个数所对应的点关于原点对称,即这两个数分居在原点两侧,并且到原点距离相等。
【解题技巧】:①表示一个数的相反数,只要在这个数的前面添一个“-”号。
如:a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
②多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
【重要结论】:如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
【知识应用】:Eg1:【相反数的理解】:相反数反应的是两个数字之间的关系:①运算关系:和为0;②数字特征关系:只有符号不同。
而不体现大小关系1.有理数的相反数是,它们之间的大小关系().A.> B.< C.> 或= D.不能确定2.如果,那么- =______ ;如果-x=-(-12),那么x= __________Eg2:【相反数结论】:若a与b互为相反数,则a+b=0【例】:若a+5与—1互为相反数,则a=________Eg3:【多重符号的化简】:下列各式中,化简正确的是().A. -[+(-7)]=-7 B. +[-(+7)]=7 C. -[-(+7)]=7 D. -[-(-7)]=7★ Eg4 :【相反数的几何意义】:1.数轴上,若A.B表示互为相反数,A在B的右侧,并且这两点的距离为8,则这两点所表示的数分别是_______【跟踪练习1】:一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( ).A .-2B .2C .D .【跟踪练习2】:有理数a,b 在数轴上的位置如图所示,试比较a,b,-a,-b 的大小,并用“<”把它们连接起来。
相反数和绝对值练习题
相反数和绝对值练习题相反数和绝对值是数学中的基本概念,它们在我们的日常生活中也有着广泛的应用。
通过练习题的形式,我们可以更好地理解和掌握这两个概念。
1. 问题一:请计算下列数的相反数和绝对值。
a) -5b) 0c) 3.14d) -2.5解答:a) -5的相反数是5,绝对值是5。
b) 0的相反数仍然是0,绝对值是0。
c) 3.14的相反数是-3.14,绝对值是3.14。
d) -2.5的相反数是2.5,绝对值是2.5。
通过这些例子,我们可以看到,一个数的相反数与它的符号相反,而绝对值则是将数的符号去掉。
2. 问题二:请判断下列等式的真假,并说明原因。
a) |-8| = 8b) |-3.5| = -3.5c) |0| = 0d) |-2| = |-(-2)|解答:a) |-8| = 8,这个等式是正确的,因为-8的绝对值是8。
b) |-3.5| = -3.5,这个等式是错误的,因为-3.5的绝对值是3.5,绝对值不可能是一个负数。
c) |0| = 0,这个等式是正确的,因为0的绝对值是0。
d) |-2| = |-(-2)|,这个等式是正确的,因为-2和-(-2)都是同一个数,它们的绝对值相等。
通过这些例子,我们可以发现,一个数的绝对值永远是非负数,而不管这个数本身的正负。
3. 问题三:请计算下列数的相反数,并判断这些数是否相等。
a) 6和-6的相反数是否相等?b) 0和0的相反数是否相等?c) 2.5和-2.5的相反数是否相等?d) -3和-(-3)的相反数是否相等?解答:a) 6和-6的相反数分别是-6和6,它们相等。
b) 0和0的相反数仍然是0,它们相等。
c) 2.5和-2.5的相反数分别是-2.5和2.5,它们相等。
d) -3和-(-3)的相反数分别是3和-3,它们不相等。
通过这些例子,我们可以得出结论,一个数与它的相反数相加等于0,而相反数只有在数的绝对值相等时才相等。
相反数和绝对值是数学中的基础概念,它们在我们的日常生活中也有着广泛的应用。
2020秋七年级数学上册培优专项《相反数、倒数、绝对值综合代数式求值专题》
相反数、倒数、绝对值综合代数式求值专题1.已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于()A 、2B 、-2C 、1D 、-12.若x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,则()2016﹣(﹣ab )2015+c 3=.3.如果a 、b 互为倒数,c 、d 互为相反数,,则代数式2ab-(c+d )+=_______;4.如果a 、b 互为相反数,c 、d 互为倒数,m 为非负数且m 的绝对值为3,那么c b a b a ++++m -cd 的值为___________5.(8分)已知|x|=3,a 与b 互为相反数,c 与d 互为倒数,求cd y x b a x -+++))((的值。
6.已知a 与b 互为相反数,c 与d 互为倒数,x 的绝对值为2,试求200920102)()()(cd b a x cd b a x -+++∙++-的值7.(本题8分)已知a 、b 互为相反数,且a ≠0,c 、d 互为倒数,m 的绝对值等于2,求m 2-2014)(20132b a b a ++-3cd 的值8.(6分)有理数a 、b 分别是最大的负整数和最小的正整数,c 、d 互为倒数,数e 在数轴上所表示的点到原点的距离是3,求a +b -12+cd -e 的值。
9.已知a 与-2b 互为相反数,b 与c 互为倒数,且有理数m 的立方等于它本身(1)当m ≠0时,求3a -6b -3ac -5m 2的值(2)当m <0且a >1时,化简:|2a +3b |-2|a +b -m |-|21-b |10.(本题7分)已知(x +y -1)2与|x +2|互为相反数,a 、b 互为倒数,c 绝对值为5,试求x y +ab -c 2的值。
绝对值倒数相反数综合练习题
绝对值、倒数、相反数练习题一、选择题1. -2的绝对值是( )(A )-2. (B )2. (C )-21. (D )21.2. -m的相反数是( )(A )-m. (B )m. (C )m 1. (D )m 1-.3. 下列说法错误的是( )(A )0的相反数是0. (B )正数的相反数是负数.(C )一个数的相反数必是正数. (D )互为相反数的两个数到原点的距离相等.4. 若a =34,则a 的值为( )(A )34. (B )43. (C )34或34-. (D )43或43-.5. 绝对值等于本身的有理数共有( )(A )1个. (B )2个. (C )0个. (D )无数个.6. 下列各组数中,互为相反数的有( )⑴ 3. 2 与 -2. 3 ⑵ -(- 4)与 – 8 ⑶ – (- 8)与 – 8 ⑷ -21与-[-(-21)](A )1组. (B )2组. (C )3组. (D )4组.7. 下列式子正确的是( )(A )3-->2--. (B )0<2-. (C )5-<4--. (D )8--=)8(--.8. 下列说法正确的个数有( )⑴所有的有理数都能在数轴上找到唯一的一点 ⑵数轴上每一点都表示有理数⑶0是最小的有理数 ⑷因为负数小于零,所以031<⎪⎭⎫ ⎝⎛--(A )1个. (B )2个. (C )3个. (D )0个.9. 以下是关于5.1-这个数在数轴上的位置的描述,其中正确的描述是( )(A )在25-左边. (B )在0. 1右边. (C )在原点与34-之间. (D )在56-左边. 10. 在数轴上2-与2之间的有理数有( )(A )5个. (B )4个. (C )3个. (D )无数个.二、填空题11. 最大的负整数是________,最小的正整数是_____________.12. -2在原点___边,距原点____个单位长度,数5在数轴上距原点____个单位,-5距5___个单位.13. _________的相反数是本身.14. ()8--是_________的相反数. ()2-+是___________的相反数.15. 在数轴上表示离开原点的距离是3,那么a =__________.16. 2的相反数的绝对值是________________.17. 绝对值不大于2的整数是__________________.18. 如果m 2-与1-m 互为相反数,那么m=_____________.19. 若032=-+-y x ,则____________,__________==y x . 20. 若_____________,0,2,3=+<==b a b b a 则.三、解答题21. 计算下列各题(1)1113---+- (2)2324-⨯-÷-(3)43311-÷- (4)71249-⨯-22. 把211,0,5.4,3,2--在数轴上表示出来.23. 某城市早上测得的温度是3℃,中午测量时发现温度上升了5℃,晚上测量时比中午下降了6℃,问晚上的气温比早上气温变化了多少记作什么借助数轴加以分析.24. 化简下列各数:(1) ()2-- (2)()6.2+-(3)()5.3++(4)()8-+ (5)()[]4+-+(6)()[]6---25. 已知b a 和互为相反数,m 、n 互为倒数,(),2--=c 求c mn b a ++.26. 已知y x y x y x +>==求且,,12,7的值.27. 已知c b a c b a 32,0432++=-+-+-计算.28. 在数轴上有三个点A、B、C,如图所示:⑴将B点向左移动4个单位,此时该点表示的数是多少⑵将C点向左移动6个单位得到数x1,再向右移2个单位得到x2,x1,x2分别是多少用“>”把B,x1,x2连接起来.⑶怎样移动A、B、C中的两点,才能使3个点表示的数相同有几种方法。
相反数和绝对值经典练习题
相反数和绝对值经典练习题哎呀,今天我们来聊聊一个非常有趣的话题——相反数和绝对值。
这两个概念听起来好像很高深,其实呢,它们就像是我们生活中的小伙伴,时不时地出现在我们的身边,给我们带来一些小惊喜。
我们来说说相反数。
想象一下,你和你的小伙伴在一起玩耍,突然有人说:“你们俩互换一下位置!”这时候,你们的位置就发生了变化,变成了对方的相反数。
那么,什么是相反数呢?简单来说,一个数的相反数就是这个数前面加上负号的数。
比如说,5的相反数就是-5,-3的相反数就是3。
0的相反数还是0哦,因为0前面加上负号还是0。
接下来,我们来说说绝对值。
想象一下,你和你的小伙伴在一起玩捉迷藏,其中一个人藏在了房子里,另一个人去寻找他。
这时候,寻找的人发现他离房子的距离有10米、20米、30米......那么,什么是绝对值呢?简单来说,一个数的绝对值就是这个数到0的距离。
比如说,5的绝对值是5,-3的绝对值是3。
0的绝对值还是0哦,因为0到任何数的距离都是0。
现在,我们来说说这两个概念之间的关系。
有时候,一个数的相反数和绝对值是相等的。
比如说,5的相反数是-5,5的绝对值也是5;-3的相反数是3,-3的绝对值也是3。
这种情况叫做相反数和绝对值相等。
还有一些情况下,一个数的相反数和绝对值是不相等的。
比如说,5的相反数是-5,5的绝对值是5;-3的相反数是3,-3的绝对值是3。
这种情况叫做相反数和绝对值不相等。
在我们的日常生活中,相反数和绝对值也有很多应用。
比如说,我们在做数学题的时候,经常会遇到需要求一个数的相反数或者绝对值的情况;在学习物理的时候,我们也需要用到绝对值的概念;在描述物体的位置的时候,我们也会用到相反数的概念。
所以呢,学好相反数和绝对值对我们的生活和学习都是非常有帮助的。
相反数和绝对值是我们生活中非常有趣的两个概念。
它们就像是我们生活中的小伙伴,时不时地出现在我们的身边,给我们带来一些小惊喜。
希望通过今天的分享,大家对相反数和绝对值有了更深入的了解。
【精品】初中数学七年级上册《相反数、绝对值》拓展训练
《相反数、绝对值》拓展训练一、选择题1.若(a+3)的值与4互为相反数,则a的值为()A.﹣7B.﹣C.﹣5D.2.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b3.如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点A C.点C和点B D.点D和点B 4.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和15.若M﹣1的相反数是3,那么﹣M的值是()A.+2B.﹣2C.+3D.﹣36.当m为偶数时,(a﹣b)m•(b﹣a)n与(a﹣b)m+n的关系是()A.相等B.互为相反数C.大于D.无法确定7.已知x<0,且2x+|x|+3=0,则x等于()A.﹣1B.﹣2C.﹣D.﹣38.设有理数a、b、c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x﹣|+|x﹣|+|x+|的最小值是()A.B.C.D.9.化简|a﹣1|+a﹣1=()A.2a﹣2B.0C.2a﹣2或0D.2﹣2a10.若a,b互为相反数,则在①a+b=0,②a=﹣b,③|a|=|b|,④ab=﹣b2,⑤a2=b2中,一定成立的有()A.2个B.3个C.4个D.5个二、填空题11.已知(﹣3a)3与(2m﹣5)a n互为相反数,则的值为.12.已知m=x+1,n=,且m、n互为相反数,则x的值为.13.若|a|+|b|=2,则满足条件的整数a、b的值有组.14.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)15.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.三、解答题16.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?17.(1)已知:x和2x﹣12互为相反数,求x的值(2)已知:a是1的相反数,b的相反数是﹣3,c是最大的负整数,求a+b+c 的值.18.若|a|=5,|b|=2,且a<b,求a﹣b的值.19.分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:(1)当a=5时,求的值.(2)当a=﹣2时,求的值.(3)若有理数a不等于零,求的值.(4)若有理数a、b均不等于零,试求的值.20.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.《相反数、绝对值》拓展训练参考答案与试题解析一、选择题1.若(a+3)的值与4互为相反数,则a的值为()A.﹣7B.﹣C.﹣5D.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:∵(a+3)的值与4互为相反数,∴a+3+4=0,解得:a=﹣7.故选:A.【点评】此题主要考查了互为相反数,正确把握定义是解题关键.2.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b【分析】直接利用互为相反数的定义分析得出答案.【解答】解:A、∵a和b互为相反数,∴﹣2a3和﹣2b3,互为相反数,故此选项错误;B、∵a和b互为相反数,∴a2和b2,相等,故此选项正确;C、∵a和b互为相反数,∴﹣a和﹣b,互为相反数,故此选项错误;D、∵a和b互为相反数,∴3a和3b,互为相反数,故此选项错误;故选:B.【点评】此题主要考查了互为相反数的定义,正确判断各数的符号是解题关键.3.如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点A C.点C和点B D.点D和点B【解答】解:由题意,得:点A表示的数为:2,点B表示的数为:1,点C表示的数为:﹣2,点D表示的数为:﹣3,则A与C互为相反数,故选:A.【点评】本题考查了数轴和相反数的定义,知道数轴上某点表示的数,并熟练掌握相反数的定义即可.4.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.5.若M﹣1的相反数是3,那么﹣M的值是()A.+2B.﹣2C.+3D.﹣3【分析】根据只有符号不同的两个数互为相反数,可得关于M的方程,根据解方程,可得M的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【解答】解:由M﹣1的相反数是3,得M﹣1=﹣3,解得M=﹣2.﹣M=2,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.6.当m为偶数时,(a﹣b)m•(b﹣a)n与(a﹣b)m+n的关系是()A.相等B.互为相反数C.大于D.无法确定【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:由m为偶数时,(a﹣b)m•(b﹣a)n=(b﹣a)m•(b﹣a)n=(b﹣a)m+n,m+n为偶数时(a﹣b)m+n=(b﹣a)m+n,m+n为奇数时(a﹣b)m+n=﹣(b﹣a)m+n,故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.已知x<0,且2x+|x|+3=0,则x等于()A.﹣1B.﹣2C.﹣D.﹣3【分析】直接利用绝对值的性质化简进而得出答案.【解答】解:∵x<0,且2x+|x|+3=0,∴2x+3=﹣|x|,则2x+3=﹣(﹣x),解得:x=﹣3.故选:D.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.8.设有理数a、b、c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x﹣|+|x﹣|+|x+|的最小值是()A.B.C.D.【分析】根据ac<0可知a,c异号,再根据a>b>c,以及|c|<|b|<|a|,即可确定a,﹣a,b,﹣b,c,﹣c在数轴上的位置,而|x﹣|+|x﹣|+|x+|表示到,,﹣三点的距离的和,根据数轴即可确定.【解答】解:∵ac<0,∴a,c异号,∵a>b>c,∴a>0,c<0,又∵|c|<|b|<|a|,∴﹣a<﹣b<c<0<﹣c<b<a,又∵|x﹣|+|x﹣|+|x+|表示到,,﹣三点的距离的和,当x在,﹣之间时距离最小,即|x﹣|+|x﹣|+|x+|最小,最小值是与﹣之间的距离,即.故选:C.【点评】本题考查了绝对值函数的最值问题,解决的关键是根据条件确定a,﹣a,b,﹣b,c,﹣c之间的大小关系,把求式子的最值的问题转化为距离的问题,有一定难度.9.化简|a﹣1|+a﹣1=()A.2a﹣2B.0C.2a﹣2或0D.2﹣2a【分析】分为a≥1和a<1两种情况进行解答即可.【解答】解:当a≥1时,|a﹣1|+a﹣1=a﹣1+a﹣1=2a﹣2.当a<1时,|a﹣1|+a﹣1=1﹣a+a﹣1=0.故选:C.【点评】本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.10.若a,b互为相反数,则在①a+b=0,②a=﹣b,③|a|=|b|,④ab=﹣b2,⑤a2=b2中,一定成立的有()A.2个B.3个C.4个D.5个【分析】由相反数的定义可知:只有符合不同的两个数互为相反数,0的相反数还是0,可得互为相反数的两数之和为0,绝对值相等,平方相等,即可判断①②③⑤,根据等式的性质即可判断④.【解答】解:∵a,b互为相反数,∴a+b=0,即a=﹣b,∴|a|=|b|,ab=b2,a2=b2,选项①②③④⑤正确;其中一定成立的有5个;故选:D.【点评】此题考查了有理数的混合运算,利用了相反数的定义及性质,熟练掌握互为相反数的两数的特点是解本题的关键,同时注意0的相反数是0的规定.二、填空题11.已知(﹣3a)3与(2m﹣5)a n互为相反数,则的值为5.【分析】直接利用互为相反数的定义求出m,n,的值,进而得出答案.【解答】解:∵(﹣3a)3与(2m﹣5)a n互为相反数,∴﹣27a3+(2m﹣5)a n=0,则2m﹣5=27,n=3,解得:m=16,故==5.故答案为:5.【点评】此题主要考查了相反数的定义,正确得出m,n的值是解题关键.12.已知m=x+1,n=,且m、n互为相反数,则x的值为﹣.【分析】依据互为相反数的两数之和为0列方程求解即可.【解答】解:∵m、n互为相反数,∴x+1+=0.去分母得:4x+20+5(2x+1)=0,去括号得:4x+20+10x+5=0移项得:4x+10x=﹣20﹣5,合并同类项得:14x=﹣25,系数化为1得:x=﹣.故答案为:﹣.【点评】本题主要考查的是相反数、解一元一次方程,掌握解一元一次方程的步骤和方法是解题的关键.13.若|a|+|b|=2,则满足条件的整数a、b的值有8组.【分析】根据|a|+|b|=2,可得|a|、|b|;根据|a|、|b|,可得a、b的值.【解答】解:∵|a|+|b|=2,∴|a|=0,|b|=2或|a|=1|b|=1,或|a|=2,|b|=0,∴a=0,b=2;a=0,b=﹣2;a=1,b=1;a=1,b=﹣1;a=﹣1,b=1;a =﹣1,b=﹣1;a=﹣2,b=0;a=2,b=0,故答案为:8.【点评】本题考查了绝对值,先根据|a|+|b|=2,求出根据|a|、|b|的值,再分别求出a、b的值,注意不能遗漏.14.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点C或点D.(填“A”、“B”“C”或“D”)【分析】根据数轴的特点及绝对值的定义,分三种情况进行讨论.【解答】解:由图示知,b﹣a=4,①当a>0,b>0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,舍去;②当a<0,b<0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,故数轴的原点在D点;③当a<0,b>0时,由题意可得|a|=3|b|,即﹣a=3b,解得a=﹣3,b=1,故数轴的原点在C点;综上可得,数轴的原点在C点或D点.故填C、D.【点评】本题考查的是数轴的特点及绝对值的定义,注意不要漏解.15.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是1119.【分析】要使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值,则保证两正数之差最大,于是a=1,d=9,再根据低位上的数字不小于高位上的数字解答.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c为1,此时b只能为1.所以此数为1119.故答案为1119.【点评】此题考查了绝对值的性质,同时要根据低位上的数字不小于高位上的数字进行逻辑推理.三、解答题16.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?【分析】(1)根据互为相反数的定义确定出点O的位置,再根据数轴写出点C 表示的数即可;(2)根据互为相反数的定义确定出点O的位置,再根据数轴写出点C、D表示的数即可.【解答】解:(1)点C表示的数是﹣1;(2)点C表示的数是0.5,D表示的数是﹣4.5.【点评】本题考查了相反数,数轴,熟练掌握相反数的定义并确定出原点的位置是解题的关键.17.(1)已知:x和2x﹣12互为相反数,求x的值(2)已知:a是1的相反数,b的相反数是﹣3,c是最大的负整数,求a+b+c 的值.【分析】(1)直接利用互为相反数的定义得出x的值;(2)直接利用相反数以及最大负整数的定义得出a,b,c的值即可得出答案.【解答】解:(1)∵x和2x﹣12互为相反数,∴x+2x﹣12=0,解得:x=4;(2)∵a是1的相反数,∴a=﹣1,∵b的相反数是﹣3,∴b=3,∵c是最大的负整数,∴c=﹣1,∴a+b+c=﹣1+3﹣1=1.【点评】此题主要考查了互为相反数的定义,正确把握互为相反数的定义是解题关键.18.若|a|=5,|b|=2,且a<b,求a﹣b的值.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a|=5,|b|=2,∴a=±5,b=±2,∵a<b,∴a=﹣5,b=±2,∴a﹣b=﹣5﹣2=﹣7,或a﹣b=﹣5﹣(﹣2)=﹣5+2=﹣3,所以,a﹣b的值为﹣3或﹣7.【点评】本题考查了有理数的减法,绝对值的性质,熟记性质并求出a、b的值以及对应情况是解题的关键.19.分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:(1)当a=5时,求的值.(2)当a=﹣2时,求的值.(3)若有理数a不等于零,求的值.(4)若有理数a、b均不等于零,试求的值.【分析】(1)直接将a=5代入求出答案;(2)直接将a=﹣2代入求出答案;(3)分别利用a>0或a<0分析得出答案;(4)分别利用当a,b是同正数或当a,b是同负数或当a,b是异号分析得出答案.【解答】解:(1)当a=5时,=1;(2)当a=﹣2时,=﹣1;(3)若有理数a不等于零,当a>0时,=1,当a<0时,=﹣1;(4)若有理数a、b均不等于零,当a,b是同正数,=2,当a,b是同负数,=﹣2,当a,b是异号,=0.【点评】此题主要考查了绝对值,正确分类讨论得出是解题关键.20.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣1;(2)当x=﹣4或2时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤1;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动或2秒时,点P到点E,点F的距离相等.【分析】(1)根据数轴上两点间的距离的表示列出方程求解即可;(2)根据AB的距离为4,小于6,分点P在点A的左边和点B的右边两种情况分别列出方程,然后求解即可;(3)根据两点之间线段最短可知点P在点AB之间时点P到点A,点B的距离之和最小最短,然后写出x的取值范围即可;(4)设运动时间为t,分别表示出点P、E、F所表示的数,然后根据两点间的距离的表示列出绝对值方程,然后求解即可.【解答】解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.【点评】本题考查了绝对值,数轴,主要利用了数轴上两点间的距离的表示方法,读懂题目信息,理解两点间的距离的表示方法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反数、绝对值、倒数专项拓展题
先练兵(1)互为相反数,则,(2)互为倒数,则
(3)相反数等于本身的数是,绝对值等于本身的数是
倒数等于本身的数是,平方等于本身的数是
立方等于本身的数是
(4)最大的负整数是最小的正整数是绝对值最小的有理数
例1、
练习1、已知a、b互为相反数,c、d互为倒数,求代数式的值
2、
3、若a,b互为相反数,c,d互为倒数,m的绝对值是3,n在有理数王国里既不是正数也不是负数,求
4、
5、,求3x-2y的值
1
例2、
练习1、
、
一:填空题:
1、已知a、b互为倒数,x、y互为相反数,|m|=2,则的值为。
2、已知a、b互为相反数,c、d互为倒数,x=2且x+|y|=5,则的值为。
3、已知a、b互为倒数,x、y互为相反数,则代数式4(x+y)+5ab+3的值为。
4、。
5。
6、。
7、。
8、。
9、为。
2
10、。
11、已知m是6的相反数,n比m的相反数小6,则m比n大
3。