【2014】江苏省常州市2013-2014学年八年级上期末考试数学试题及答案(高清扫描版)【苏科版】
2013-2014学年上学期期末考试(含答案)八年级数学
八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。
2013-2014学年上学期八年级期末数学学业水平测验(含答案)
A 2013-2014学年上学期八年级期末学业水平测验(含答案)数学试卷(满分:100分考试时间:120分钟)号一二三总分分一、选择题(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A、8,3,6B、5,6,11C、5,4,10D、7,5,22.下列运算正确的是()A.2a a a+=B.632a a a÷=C.222()a b a b+=+D.3226()ab a b=3.下面有4个汽车标志图案,其中不是轴对称图形的是 ( )A.B.C.D.4.在平面直角坐标系中,已知点P的坐标是(1,2),则点P关于x轴对称的点的坐标是()A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)5.若等腰三角形有一个角是50°,则它的另外两个角的度数为()A.80°和50°B.65°和65°C.80°和50°或65°和65°D.无法确定6.要使分式15-x有意义,则x的取值范围是 ( ) A.x≠1 B.x>1 C.x<1 D.x≠-17.内角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形8.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠AOB图7 AFB CDE第14题图ACEBDC .OA=OBD .AB 垂直平分OP 二、填空题(每小题3分,共21分) 9. 计算:21a a-=_________.10.分解因式:29ax a -= .11.分式方程210x-=的解是 .12. 已知点D 是ABC ∆的BC 边的中点,2S =30ABC cm ∆,则D S =AB ∆ .13.如图,在△ABC 中,∠C =90°,BD 平分∠ABC,若CD =3cm,则点D 到AB 的距离 cm.14. 如图中的五角星,∠A+∠B+∠C+∠D+∠E= 度.15.如图,AF = DC ,BC ∥EF ,只需补充一个条件 ,就得ABC DEF ∆∆≌.三、解答题(共55分)16.(6分)计算:0201311( 3.14)(1)()13π--+-+--||17.(6分)解方程: 212xx x +=+.18.(6分)先化简,再求值:212)212(22-+-÷---a a a a a a ,其中a =3.第12题图第15题图第8题图ABC DO19. (6分)已知:如图,AD 、BC 相交于点O ,AB OD OA ,=∥CD 。
2013-2014学年江苏省常州市初中毕业、升学模拟调研测试数学试题及答案
常州市2013-2014学年初中毕业、升学模拟调研测试2014.4数 学 试 题注意事项:1.本试卷满分为120分,考试时间为120分钟.2.学生在答题过程中不能使用任何型号的计算器和其它计算工具;若试题计算没有要求取近似值,则计算结果取精确值(保留根号与π). 3.请将答案按对应的题号全部填写在答题纸上,在本试卷上答题无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个选项是正确的)1.下列各式中,与2是同类二次根式的是 A .4B .8C .12D .242.已知四边形ABCD 是平行四边形,下列结论中不正确...的是 A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形3.若两圆的半径分别为5 cm 和3 cm ,圆心距为2 cm ,则两圆的位置关系是A .内切B .外切C .内含D .相交4.下列各点中,在函数xy 12-=的图象上的点是 A .(3,4) B .(-2,-6)C .(-2,6)D .(-3,-4)5.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是A .众数是100B .平均数是30C .极差是20D .中位数是206.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD , 若︒=∠35CAB ,则ADC ∠的度数为A .35°B .55°C .65°D .70°7.把二次函数c bx ax y ++=2的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x 轴的交点是A .(-2.5,0)B .(2.5,0)C .(-1.5,0)D .(1.5,0)第6题图8.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是 .A (2,0) .B (-1,1).C (-2,1).D (-1,-1)二、填空题(本大题共9小题,第9小题4分,其余8小题每小题2分,共20分)9. 计算:=-22 ▲,= ▲ ,=⨯22 ▲ ,=÷22 ▲ .10.函数23-=x y 中自变量x 的取值范围是 ▲ ,当x =1时,y = ▲ . 11.若关于x 的方程x 2-5x -3k =0的一个根是-3,则k = ▲ ,另一个根是 ▲ . 12.在△ABC 中,若AB =AC =5,BC =8,则sinB = ▲ .13.如图,在Rt ABC ∆中,90C ∠=︒,AC =5cm , BC =12cm ,以BC 边所在的直线为轴,将ABC ∆旋转一周得到的圆锥侧面积是 ▲ .14.如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为10 cm ,则四边形EFGH 的周长是 ▲ cm .15.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 ▲ . 16.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,当m = ▲ 时,1y =2y .17.已知点A (0,-4),B (8,0)和C (a,-a ),若过点C 的圆的圆心是线段AB 的中点,则这个圆的半径的最小值等于 ▲ .DAB CDEFGH第14题图A BC第13题图三、解答题(本大题共有11小题,共84分.请在答题卡指定区域内作答,解答时 应写出必要的文字说明、证明过程或演算步骤)18.化简(每题4分) ⑴︒+-45sin 1821⑵ 145tan 230tan 3-19.解方程(每题5分) ⑴ )3(7)3(+=+x x x ⑵ 0652=-+x x20.(本小题满分7分) 甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.⑴ 请将甲校成绩统计表和图2的统计图补充完整;⑵ 经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.乙校成绩条形统计图分数图2乙校成绩扇形统计图图1甲校成绩统计表21.(本小题满分8分)小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么红色和蓝色在一起配成了紫色,游戏者获胜.求游戏者获胜的概率.(用列表法或树状图)22.(本小题满分6分)已知:如图,□ABCD 中,∠BCD 的平分线交AB 于E ,交DA 的延长线于F . 求证:AE =AF .23.(本小题满分7分)如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,P 为边AC 上一个点(可以包括点C 但不包括点A ),以P 为圆心P A 为半径作⊙P 交AB 于点D ,过点D 作⊙P 的切线交边BC 于点E . 试猜想BE 与DE 的数量关系,并说明理由.A 盘B 盘ABCDEFABCE24.(本小题满分6分)如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平线夹角为θ1,且在水平线上的射影AF 为140cm .现已测量出屋顶斜面与水平面夹角为θ2,并已知tan θ1≈1.1,tan θ2≈0.4.如果安装工人已确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?25.(本小题满分6分)某五金店购进一批数量足够多的Q 型节能电灯,进价为35元/只,以50元/只销售,每天销售20只.市场调研发现:若每只每降1元,则每天销售数量比原来多3只.现商店决定对Q 型节能电灯进行降价促销活动,每只降价x 元(x 为正整数).在促销期间,商店要想每天获得最大销售利润,每只应降价多少元?每天最大销售毛利润为多少?(注:每只节能灯的销售毛利润指每只节能灯的销售价与进货价的差)26.(本小题满分8分)对于平面直角坐标系中的任意两点A (a,b ),B (c,d ),我们把|a -c |+|b -d |叫做A 、B 两点之间的直角距离,记作d (A ,B )⑴ 已知O 为坐标原点,①若点P 坐标为(-1,2),则d (O,P )=_____________; ②若Q (x,y )在第一象限,且满足d (O,Q )=2,请写出x 与y 之间满足的关系式,并在平面直角坐标系内画出符合条件的点Q 组成的图形.⑵ 设M 是一定点,N 是直线y =mx +n 上的动点,我们把d (M,N )的最小值叫做M 到直线y =mx +n 的直角距离,试求点M (2,-1)到直线y =x +3的直角距离.DCBA A BC EF Dθ 1 θ227.(本小题满分8分)已知,如图,四边形ABCD 中,∠BAD =∠BCD =90°,M 为BD 的中点,AB =AD ,BD=CD =2.⑴ 取AC 中点E ,连接ME ,求证:ME ⊥AC ;⑵ 在⑴的条件下,过点M 作CD 的垂线l,垂足为F ,并交AC 于点G ,试说明:△MEG 是等腰直角三角形.28.(本小题满分10分)如图,在平面直角坐标系中, 点A 为二次函数142-+-=x x y 图象的顶点,图象与y 轴交于点C ,过点A 并与AC 垂直的直线记为BD ,点B 、D 分别为直线与y 轴和 x 轴的交点,点E 是二次函数图象上与点C 关于对称轴对称的点,将一块三角板的直角顶点放在A 点,绕点A 旋转,三角板的两直角边分别与线段OD 和线段OB 相交于点P 、Q 两点.⑴ 点A 的坐标为____________,点C 的坐标为_____________. ⑵ 求直线BD 的表达式.⑶ 在三角板旋转过程中,平面上是否存在点R ,使得以D 、E 、P 、R 为顶点的四边形为菱形,若存在,直接写出P 、Q 、R 的坐标;若不存在请说明理由.备用图 ABCDM常州市2013-2014学年初中毕业、升学模拟调研测试数学参考答案 2014.4一、选择题二、填空题18.⑴︒+-45sin 1821⑵ 145tan 230tan 3-=222322+- --------------- 3分 =112333-⨯⨯------------ 3分=22- ----------------------------- 4分=1 ------------------- 4分19.)3(7)3(+=+x x x⑵ 0652=-+x xx (x+3)-7(x+3)=0 ----------------------- 1分(x+3)(x-7)=0 ----------------------------- 3分 449252=⎪⎭⎫ ⎝⎛+x ---------------- 2分7;321=-=x x ------------------------ 5分--- 2725±=+x ---------------------- 3分 6;121-==x x ------------------ 5分3 及画图正确 --------------------------------------------------------------------------------------- 3分 ⑵ 甲校的平均分=8.3分,中位数是:7分, ------------------------------------------- 5分22.证明:∵CF 平分∠BCD ∴∠BCE=∠DCE , ∵平行四边形ABCD ∴AB ∥DE ,AD ∥BC∴∠F=∠BCE ,∠AEF=∠DCE∴∠F=∠AEF --------------------------------------------------- 4分∴AE=AF , ----------------------------------------------------- 6分23.猜想:BE=DE --------------------------------1分证明: 连接PD . ∵DE 切⊙O 于D .∴PD ⊥DE . -------------------------------------------------------------------------------------------------- 2分 ∴∠BDE+∠PDA=90°. ------------------------------------------------------------------------------------ 3分 ∵∠C=90°.∴∠B+∠A=90°. ------------------------------------------------------------------------------------------ 4分 ∵PD=PA .∴∠PDA=∠A .--------------------------------------------------------------------------------------------------------- 5分 ∴∠B=∠BDE . -------------------------------------------------------------------------------------------- 6分∴BE=DE ; ------------------------------------------------------------------------------------------------- 7分24.矩形ABEF 中,AF=BE=140,AB=EF=25. -------------------------------------------------- 1分 Rt △DAF 中:∠DAF =θ1,DF =AF tan θ1 ≈154 -------------------------------------------------------------------- 3分 Rt △CBE 中:∠CBE =θ2,CE =BE tan θ2 ≈56 --------------------------------------------------------------------- 4分 DE=DF+EF=154+25=179, --------------------------------------------------------------------------- 5分 DC=DE-CE=179-56=123.答:支架CD 的高为123cm. ------------------------------------------------------------------------ 6分25.每天的销售毛利润W=(50-35-x )(20+3x )=-3x 2+25x+300 ---------------------- 2分 ∴ 图象对称轴为625=x ------------------------------------------------------------------------- 3分 ∵x 为正整数,x=4或5且62554625-<- ------------------------------------------------- 5分∴x=4时,W 取得最大值,最大销售毛利润为352元 ------------------------------------- 6分26.⑴ ①3 ----------------------------------------------------------------------------------------------------- 2分;画图正确 --------------------------------------------------------------------------------------------- 5分 ⑵ d(M,N)=∣x-2∣+∣x+4∣………7分, d 最小=6 -------------------------------------------- 8分 27. ⑴ 理由正确 ----------------------------------------------------------------------------------------- 3分⑵ △MEG 是等腰直角三角形理由正确 --------------------------------------------------------- 8分 28. ⑴ 点A 的坐标为(2,3),点C 的坐标为(0,-1) ---------------------------------------------------- 2分 ⑵ 直线BD 的表达式为:421+-=x y ------------------------------------------------------ 4分 ⑶ P 1(8-17,0),Q 1(0,31723+-),R 1(4-17,-1); P 2(847,0),Q 2(0,125),R 2(,849,-1) (以上各点分别1分) -------------------------------------- 10分。
【初中数学】江苏省常州市2013-2014学年第二学期期末考试八年级数学试卷(解析版) 苏科版
江苏省常州市2013-2014学年第二学期期末考试八年级数学试卷参考答案与试题解析一、填空题(共10小题,每小题2分,共计20分)1.(2分)为了了解全班同学课外阅读的情况,对全班每个同学进行调查,这次调查采用的方式是全面调查,其中,总体是全班同学课外阅读的情况.2.(2分)当x≠2时,分式有意义;当x>2时,分式的值为正数.时,分式有意义;时,分式3.(2分)(2013•南京联合体一模)若式子有意义,则实数x的取值范围是x≥1.4.(2分)若反比例函数y=的图象经过A(1,2),B(2,a)两点,则k=2,a=1.y=的图象经过a=5.(2分)(2013•苏州)方程=的解为x=2.6.(2分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.则报名参加甲组和丙组的人数之和占所有报名人数的百分比为7.(2分)如图,A、B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则S=4.的比例的面积等于S=8.(2分)(2011•绍兴)若点A(1,y1)、B(2,y2)是双曲线y=上的点,则y1>y2(填“>”,“<”或“=”).y=中9.(2分)已知是正整数,则实数n的最大值为11.10.(2分)(2013•河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.AC==5,BE=;的长为或故答案为:或二、单项选择题(共6小题,每小题3分,共18分)=33,原式计算错误,故本选项错误;与=≠,原式计算错误,故本选项错误;12.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取D反比例函数(.13.(3分)某同学随机将一枚硬币抛向空中20次,有12次出现反面,那么正面出现的频率正面出现的频率:=0.415.(3分)(2008•鄂州)已知,则a的取值范围是()解:由已知,本题考查了二次根式的意义与化简.二次根式时,=a 时,=16.(3分)如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在正比例函数y=x的图象上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若函数y=的图象与△ABC有交点,则k的取值范围是()解答:的中点的坐标为(,)三、解答题(17题8分,18题4分,共12分)17.(8分)计算:(1)2+3﹣;(2)(+3)(﹣3).+64=4()18.(4分)(2013•广州)先化简,再求值:,其中.==x+y=1+22四、解答题(19题、21题、22题、23题每题8分;20题、24题、25题每题6分,共50分)19.(8分)(2013•天河区一模)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?依题意得﹣=1020.(6分)(2013•汕头)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.构造出分式,==.21.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DB;(2)若AB⊥AC,试判断四边形AFCD的形状,并证明你的结论.22.(8分)水产公司有一种海产品共518千克,为寻求合适的销售价格,进行了3天试销,y(千克)与销售价格x (元/千克)之间的关系,现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的关系式,并补全表格;(2)在试销3天后,公司决定将这种海产品的销售价格定为15元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?即为所需要的天数.(故函数解析式为y==8023.(8分)(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得=();②参照(四)式得=()(2)化简:.)==++24.(6分)如图,在平面直角坐标系中,一次函数y=2x+b(b<0)的图象与坐标轴交于A、B两点,与函数y=(x>0)的图象交于D点,过点D作DC⊥x轴,垂足为点C,连接OD、BC,已知四边形OBCD是平行四边形.(1)如果b=﹣1,求k的值;(2)求k(用含b的代数式表示k).(OA=AC=OA=,bb bx=,OA=AC=OA=,b点坐标为(﹣bb25.(6分)在平面直角坐标系中xOy中,点A与原点O重合,点B(4,0),点E、(0,2),过点E作平行于x轴的直线l,点C、D在直线上运动(点C在点D的左侧),CD=4,连接BC,过点A作关于直线BC的对称点A′,连接AC、A′C.(1)当A′,D两点重合时,则AC=4;(2)当A′,D两点不重合时,若以点A′、C、B、D为顶点的四边形是正方形,求点C的坐标.解答:AB=2。
20132014学年八年级上册数学期末考试试卷及答案实用
八年级数学期末复习试题一、选择题1.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)2.下列图形是轴对称图形的是A .B .C .D .3.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限4.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A.31-,0 B .π,4C .2-,4D .2-,π 5.下列各式中是最简二次根式的是( )A .3aB .12a C .8a D .2a 6、式子77-+-a a 有意义,则字母a 的取值范围是( )A 5a ≥B 7a ≤C 5a ≥或B 7a ≤D 57a ≤≤7、使等式312332--=--m m m m 成立的实数m 的取值范围是( ) A m >3或m <21 B 0<m <3 C m ≥21D m >3 8.如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC 的长为( )A .3B .6C .33D .369.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A. 3 :4B. 5 :8C. 9 :16D. 1 :2ABCDABCD10.平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm11.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是( ) A .甲班 B .乙班 C .两班成绩一样稳定 D .无法确定 二、填空题:(每题2分,共16分)12.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 . 13 如图一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分....a 的长度范围是( )A.1213a ≤≤B.1215a ≤≤C.512a ≤≤D.513a ≤≤14. 如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2;以此下去…,则正方形A 4B 4C 4D 4的面积为__________.15. 如图:已知,梯形ABCD 中,AD ∥BC ,E 是AB 中点,EF ⊥CD 于F ,CD =5,EF =6,则梯形ABCD 的面积是 .16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是__________。
2013-2014学年度第一学期期末测试(含答案)初二数学
2013-2014学年度第一学期阶段性测试八年级数学寄语:数学使人严谨,数学使人聪明,数学充满趣昧.同学们,准备好了吗?让我们一起对学过的课程做一次小结回顾吧!本试卷采用长卷出题,请你根据自己的学习情况,自主选择题目解答,考出水平,考出风采!本试题分第1卷(选择题)和第II卷(非选择题)两部分,第1卷共3页,第1I 卷共7页,本试题共10页,考试时间为120分钟,答卷前,请考生务必将直己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器,第1卷(选择题)注意事项:。
第1卷为选择题,每小题选出答案盾,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一、选择题(本大题共20个小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是A.2 B.-2 C.士2 D.42.下列几组数据能作为直角三角形的三边长的是A. 2,3,4B. 3,4,6C.4,6,9D.5,12, 133.不等式的解集在数轴上表示为4.下列调查,适合用普查方式的是A.了解济南市居民的年人均消费B.了解某班学生对“创建全国卫生城市”的知晓率C.了解济南电视台《有一说一》栏目的收视率D.了解某一天离开济南市的人口流量5.如图所示,△DEF经过平移可以得到△ABC,那么ED的对应边是A,ACB. BAC. BDD. BC6.甲、乙、丙、丁四位射击选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是A.甲 B.乙 C.丙 D.丁7.不等式绢的解集是8.要使分式有意义,则x应满足的条件是9.计算的结果为10.下列各式中从左到右的变形,是因式分解的是11.如图,点4、曰、C、D、D都在方格纸的格点上,若△COD是由△AOB绕点D按逆时针方向旋转而得,则旋转的最小角度为12.下列各式能用平方差公式闵式分解的是13.已知若a+b=14cm, c=10cm,则Rt△ABC的面积为A.24cm2B.36cm2 .C.48cm2D.60cm214.狗平方根是15.关于实数集的下列判断中,正确的是A.没有最大的数,有最小的数B.没有绝对值最大的数,有绝对值最小的数C.没有最小的数,有最大的数D.没有最小的数,也没有绝埘值最小的数16.等腰三角形底边上的高为8,局长为32,则三角形的面积为A. 56 B. 48 C.40 D. 3217.已知多项武分解冈式为(x +3)(ix -2),则6,c的值为A.b = l,c = -6B.b = -6,c = IC.b = -l,c = 6D.b = 6,c = -118.不等式组佝解集是x>7,则厅的取值范围是19.若整式4x2+1与口的和是完全平方式,则口可以是A.4x B.-4xG.士4x D. 4X4或土4x20.如图,在AB的垂直平分线ED交BC的延长线于p点,垂足为£,则第1I卷(非选择题)注意事项:1.第II卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共10个小题,每小题3分.把答案填在题中横线上.)21.分解因式:22.三条线段m、n、p满足以这三条线段为边组成的三角形为____.23.如图所示,△DEF是△ABC沿水玉方向向右平移后的对应图形,若则∠D的度数是____ 度.24.当x= 时,分式的值为零.25.26.有一组数据如下:3,a,,4,6,7,它们的平均数是a,那么这组数据的方差为.27.已知关于x的方程的解是正数,则m的取值范围为.28.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG= CD,DF=DE,则∠E= 度,,29.如图,Rt△ABC中,么B=900,AB = 3cm,AC=5cm,将△ABC折叠,使点C与4重合,得折痕DE,则△ABE的周长等于 cm.30.如图,在△ABC中,AD平分∠BAC,AB= AC - BD,则∠B:∠C的值是.三、解答题(本大题共12个小题,解答应写出文字说明,证明过程或演算步骤.)31.(本小题满分8分)32.(本小题满分8分)(1)分解因式:(2)解不等式组并将解集表示在数轴上:33.(本小题满分6分)先化简,再求值:其中x=l.34.(本小题满分6分)《中华人民共和国道路交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时,一辆",J、汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪”正前方30米C处,过了2秒后,测得“小汽车”与“车速检测仪”间的距离变为50米,这辆“小汽车”超速了吗?为什么?35.(本小题满分7分)如图,已知AB=AC,AD=AE.求证;BD=CE.36.(本小题满分6分)为帮助灾区人民重建家同,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,谢次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数,37.(奉小题满分6分)在某市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动腑学生共有__ __ 名;(2)请补全频数、频率统计表和频数分布赢方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.38.(本小题满分8分)为迎接新年,美化济南,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配4、曰两种园艺造型共50个摆放在泉城广场两侧,已知搭配一个爿种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个爿种造型的成本是800元,搭配一个召种造型的成本是960元试说明(1) 中哪种方案成本最低?最低成本是多少元?39.(本小题满分8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来.40.(本小题满分9分)如图,点E、F在BC上,BE= CF,∠A=∠D,∠B =∠C, AF与DE交于点D.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由..ll.(本小题满分9分)如图,正方形ABCD的边长为4,边AD的中点为E,F是DE的中点.∠CBF的角平分线BG交AD延长线与点G求证:(1)BF=FG; (2)∠ABE=∠G.42.(本小题满分9分)如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连结BE.(1)求证:△ACD≌△BCE:(2)延长BE至Q,P为BQ上一点且使CP =CQ=5,若BC=8时,求PQ的长.八年级数学试题参考答案与评分标准,:一、选择题二、填空题21.( x+4)(x-4)22.直角二角形23. 7024.326.228. 1529.730.2:1(或2)三:解答题31.解:两边都乘以(x -3)得x-2=2(x一3)...... (1)x=4……… ……………………3分’经检验,x=4是原方程的根.…… ……..4分32.解:(其它解法可酌情给分)36.解:改第二次捐款人数为.人,则第一次捐款人数为(x-50)人........ (1)解这个方程,得x= 200. (4)经检验,x= 200是所列方程的根.……… …….5分 答:该校第二次捐款人数为200人.……… ……..6分. 37.解:(1)50......... .........1分 (2)补全百方图 ........4分 (3)180人............ (6)38解:(1)设搭配A 种造型r 个,则B 种造型为(50一x)个,......... (1)。
2013—2014学年第二学期八年级数学期末试题(含答案)
2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
2013-2014学年八年级上数学期末试题及答案
2013-2014学年(上)期末教学质量测评试题八年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1.下列语句中,是命题的是A .延长线段AB 到C B .垂线段最短 C .过点O 作直线a ∥bD .锐角都相等吗2.下列关于5的说法中,错误..的是 A .5是无理数 B .2<5<3 C .5的平方根是5 D .2552-=-3.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这A .25.6,26B .26,25.5C .26,26D .25.5,25.54.如图所示,AB ⊥EF 于B ,CD ⊥EF 于D ,∠1=∠F =30°,则与∠FCD 相等的角有A .1个B .2个C .3个D .4个5.将平面直角坐标系内某图形上各个点的横坐标都乘以1-,纵坐标不变,所得图形与原图形的关系是 A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 沿x 轴向下平移1个单位长度6.若正整数a ,b ,c 是直角三角形三边,则下列各组数一定还是直角三角形三边的是 A .a+1,b+1,c+1 B .a 2,b 2,c 2 C .2a ,2b ,2cD .a -1,b -1,c -17.一次函数y =-2x +2的图象是A .BC .D .8.已知点A (-3,y 1)和B (-2,y 2)都在直线y = 121--x 上,则y 1,y 2的大小关系是 A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .大小不确定9.已知一个两位数,它的十位上的数字x 比个位上的数字y 大1.若颠倒个位与十位数字 的位置,得到的新数比原数小9,求这两个数所列的方程组正确的是A.1()()9x y x y y x -=⎧⎨+++=⎩, B.1109x y x y y x =+⎧⎨+=++⎩,C.110109x y x y y x =+⎧⎨+=+-⎩, D.110109x y x y y x =+⎧⎨+=++⎩10.一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了A. 20分钟 B . 22分钟 C . 24分钟 D . 26分钟二、填空题(每小题3分,共l 5分) 11.已知32=x ,则x =_______.12.如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为______.13.如图,点O 是三角形两条角平分线的交点,若∠BOC =110°,则∠A = . 14.直线13+=x y 向左平移2个单位长度后所得到的直线的解析式是 .15.已知24x y =⎧⎨=⎩是方程组73228x y x y -=⎧⎨+=⎩的解,那么由这两个方程得到的一次函数y =_________和y =_________的图象的交点坐标是 .三、解答题(本大题共5个小题,共55分) 16.(每小题5分,共20分) (1)计算: 32-512+618(2))21(3)解方程组:⎩⎨⎧=-=+421y x y x ②① (4)解方程组:132(1)6x y x y ⎧+=⎪⎨⎪+-=⎩17.(本小题满分8分)如图所示,已知∠AED=∠C ,∠3=∠B ,请写出∠1与∠2的数量关系,并A对结论进行证明.18.(本小题满分8分)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格进行计算,证明你的结论.19.(本小题满分8分) 下表是某地2012年2月与2013年2月8天同期的每日最高气温,根据表(1)2012年2月气温的极差是 ,2013年2月气温的极差是 .由此可见, 年2月同期气温变化较大.(2)2012年2月的平均气温是,2013年2月的平均气温是. (3)2012年2月的气温方差是 , 2013年2月的气温方差是 ,由此可见, 年2月气温较稳. 20.(本小题满分11分)如图,在平面直角坐标系xOy 中,直线l 经过(0,4)A 和(2,0)B 两点. (1)求直线l 的解析式及原点到直线l 的距离; (2)C 、D 两点的坐标分别为(4,2)C 、(,0)D m ,且⊿ABO ≌⊿OCD 则m 的值为 ;(直接写出结论) (3)若直线l 向下平移n 个单位后经过(2)中的点D ,求n 的值.B 卷(共50分)一、填空题(每小题4分,共20分) 21.若32-=x ,则122+-x x = .22.三元一次方程组⎪⎩⎪⎨⎧===++4:5:2:3:111z y x y z y x 的解是 .23.在锐角三角形ABC 中,BC =23,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 最小值是 . 24.一个一次函数图象与直线y=54x+954平行,•与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-20),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有 个. 25.如图,已知直线l :x y 3=,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 6的坐标为__________. 二、解答题(本大题共有3个小题,共30分)26.(本小题满分8分)为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的? (2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?27.(本小题满分10分)如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 绕点B 逆时针旋转60°得到线段BO ′.(1)求点O 与O ′的距离; (2)证明:∠AOB =150°;(3)求四边形AOBO ′的面积. (4)直接写出△AOC 与△AOB 的面积和为________.28.(本小题满分12分)如图1所示,直线AB 交x 轴于点A (4,0),交y 轴于点B (0,-4),(1)如图,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标; (2)在(1)的条件下,如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.2013-2014学年(上)期末教学质量测评试题八年级数学参考答案及评分标准一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。
江苏省常州市八年级(上)期末数学试卷(含答案)
江苏省常州市八年级(上)期末数学试卷(含答案)一、选择题1.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .2.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1) 3.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,84.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<325.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 6.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1B 3C .2D 57.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .768.在平面直角坐标系中,将函数3y x 的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)9.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°10.下列四个图案中,不是轴对称图案的是( ) A .B .C .D .二、填空题11.圆周率π=3.1415926…精确到千分位的近似数是_____.12.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.13.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.14.已知22139273m ⨯⨯=,求m =__________. 15.点(−1,3)关于x 轴对称的点的坐标为____. 16.点()2,3A 关于y 轴对称点的坐标是______. 17.使函数6y x =-有意义的自变量x 的取值范围是_______.18.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .19.比较大小:5-_______6-.20.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.三、解答题21.计算:()03420121-- (21383322++. 22.(13168-;(2)求x 的值:2(2)90x .23.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润. 24.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆. (1)画出DEF ∆;∆的面积为 .(2)DEF25.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,此时,QA2+QC2的长度之和最小值为.(在图中画出点Q的位置,并直接写出最小值答案)四、压轴题26.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平--=.面直角坐标系,点A(0,a),C(b,0a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).27.如图,在平面直角坐标系中,直线y=﹣34x+m分别与x轴、y轴交于点B、A.其中B点坐标为(12,0),直线y=38x与直线AB相交于点C.(1)求点A的坐标.(2)求△BOC的面积.(3)点D为直线AB上的一个动点,过点D作y轴的平行线DE,DE与直线OC交于点E (点D与点E不重合).设点D的横坐标为t,线段DE长度为d.①求d与t的函数解析式(写出自变量的取值范围).②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t的取值范围.28.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度; ②当t 为何值时,点M 与点N 重合; ③当△PCM 与△QCN 全等时,则t = .29.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.30.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE . (1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴. 【详解】解:A 、是轴对称图形,不符合题意; B 、是轴对称图形,不符合题意; C 、是轴对称图形,不符合题意;D 、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意; 故选:D . 【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C解析:C 【解析】 【分析】根据点(1,1)A ,点(3,2)C 建立平面直角坐标系,再结合图形即可确定出点B 的坐标. 【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2), ∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.3.B解析:B 【解析】 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可. 【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误; B 、∵2223+4=5,∴三条线段能组成直角三角形,正确; C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误; D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误; 故选:B . 【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.B解析:B 【解析】 【分析】由mx ﹣2<(m ﹣2)x+1,即可得到x <32;由(m ﹣2)x+1<mx ,即可得到x >12,进而得出不等式组mx ﹣2<kx+1<mx 的解集为12<x <32. 【详解】 把(12,12m )代入y 1=kx+1,可得 12m=12k+1, 解得k=m ﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6.D解析:D【解析】【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P=故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.7.B解析:B 【解析】 【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数. 【详解】∵DE 是AC 的垂直平分线, ∴AE=BE , ∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE , ∴∠A=76°÷2=38°, ∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°, 故选B. 【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.8.B解析:B 【解析】 【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案. 【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(-2,0), 故选B. 【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.9.B解析:B 【解析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.10.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分解析:142【解析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5 大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入. 12.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.13.(,)【解析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为,作点D关于OA的对称点E,点E 恰好落在y轴上,连接CE,解析:(185,185)【解析】【分析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为y x=,作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,则点E坐标为(0,3),然后求出直线CE的解析式,联合y x=,即可求出点P的坐标.【详解】解:在Rt△ABO中,∠OBA=90°,AB=OB,∴△ABO是等腰直角三角形,∵点C在边AB上,且C(6,4),∴点B为(6,0),∴OB=6=AB,∴点A坐标为:(6,6),∴直线OA的解析式为:y x=;作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163kb⎧=⎪⎨⎪=⎩,∴直线CE 的解析式为:136y x =+; ∴136y x y x ⎧=+⎪⎨⎪=⎩,解得:185185x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为:(185,185); 故答案为:(185,185). 【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P 点的位置是解题的关键. 14.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.15.(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.16.(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.17.【解析】【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可.【详解】解:∵有意义∴6-x≥0∴故答案为:【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条x≤解析:6【解析】【分析】a≥0,可得6-x≥0,解不等式即可.【详解】解:∵y=∴6-x≥0x≤∴6x≤故答案为:6【点睛】,被开方数a≥0是解题的关键.18..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,-,.解析:(21)【解析】【分析】【详解】如图,过点C 作CD ⊥y 轴于点D ,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO ,在△ABO 与△BCD 中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB ,∴△ABO ≌△BCD (AAS ),∴CD=OB ,BD=AO ,∵点A (1,0),B (0,2),∴CD=2,BD=1, ∴OD=OB-BD=1,又∵点C 在第二象限,∴点C 的坐标是(-2,1).19.>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵,∵5<6∴.【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个解析:>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵2(5)5=,2(6)6=∵5<6∴56>-【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个负数,绝对值大的反而小.20.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.三、解答题21.(1)4;(2)22+. 【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】解:(1)原式=2+1+1=4;(2)原式2=22+. 【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键.22.(1)6;(2)x =1或x =5-.【解析】【分析】(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)移项后,两边直接开平方即可得到x +2=3,x +2=﹣3,求解即可.【详解】(1)原式=4-(-2)=4+2=6;(2)x +2=±3.x +2=3,x +2=-3.x =1或x =-5.【点睛】本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.23.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x ,那么乙的件数为:200-x ,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x )得到:y=-0.1x+100所以y 与x 之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.24.(1)见详解;(2)4.【解析】【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A、B、O三个对应点D、E、F的坐标,然后画出图形即可;(2)把△DEF放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)∵点A(1,3),B(3,1),O(0,0),∴把△ABO向下平移3个单位再向右平移2个单位后A、B、O三个对应点D(1+2,3-3)、E(3+2,1-3)、F(0+2,0-3),即D(3,0)、E(5,-2)、F(2,-3);如图:(2)△DEF的面积:11133131322=9 1.5 1.52=4 222⨯-⨯⨯-⨯⨯-⨯⨯---.【点睛】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.25.(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③2【解析】【分析】(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;(2)根据坐标系即可写出点C的坐标;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①即可在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.【详解】(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系;(2)根据坐标系可知:点C的坐标为(﹣2,5),故答案为:﹣2,5;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①如图即为坐标系中画出的△A2B2C2;②点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,∴点P2的坐标为(﹣m,n﹣6),故答案为:﹣m,n﹣6;③根据对称性可知:在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,即为A2C1的长,A2C1=2,∴QA2+QC2的长度之和最小值为2.故答案为:2.【点睛】此题主要考查平面直角坐标系中三角形的平移以及对称性的运用,熟练掌握,即可解题.四、压轴题t 时,使得△ODP与△ODQ的面积相等;(3)26.(1)6;8;24;(2)存在 2.4∠GOD+∠ACE=∠OHC,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.【详解】解:(1) 解:(1)∵b 80-=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.27.(1)点A坐标为(0,9);(2)△BOC的面积=18;(3)①当t<8时,d=﹣9 8t+9,当t>8时,d=98t﹣9;②12≤t≤1或7617≤t≤8017.【解析】【分析】(1)将点B坐标代入解析式可求直线AB解析式,即可求点A坐标;(2)联立方程组可求点C坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y=﹣34x+m与y轴交于点B(12,0),∴0=﹣34×12+m,∴m=9,∴直线AB的解析式为:y=﹣34x+9,当x=0时,y=9,∴点A坐标为(0,9);(2)由题意可得:38394y xy x⎧=⎪⎪⎨⎪=+⎪⎩,解得:83 xy=⎧⎨=⎩,∴点C(8,3),∴△BOC的面积=12×12×3=18;(3)①如图,∵点D的横坐标为t,∴点D(t,﹣34t+9),点E(t,38t),当t<8时,d=﹣34t+9﹣38t=﹣98t+9,当t>8时,d=38t+34t﹣9=98t﹣9;②∵以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,∴12≤t≤1或919829918t tt t⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩,∴12≤t≤1或7617≤t≤8017.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.28.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.29.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <,83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.30.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,。
江苏省常州市2013~2014学年八年级上期中教学质量调研数学试题(含答案)
常州市2013~2014学年第一学期期中教学质量调研八年级数学试题一、选择题(共8小题,每小题2分,满分16分)1.如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图我国四大银行的商标图案中轴对称图形的有 ---------------------------------------------------------- 【 】① ② ③ ④ A .①②③B .②③④C .③④①D .④①②2.按下列各组数据能组成直角三角形的是 ---------------------------------------------------------- 【 】A .11,15,13B .1,4,5C .8,15,17D .4,5,6 3.如果等腰三角形两边长是6和3,那么它的周长是 ------------------------------------------- 【 】 A .9B .12C .15或12D .154.如图所示,有一块直角三角形纸片,∠C =90°,AC =4cm ,BC =3cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为 ---- 【 】 A .1cm B .1.5cm C .2cm D .3cm 5.如图,△ABD ≌△ACE ,∠AEC =110°,则∠DAE = --------------------------------------- 【 】A .30°B .40°C .50°D .60°6.如图,点F 、A 、D 、C 在同一直线上,△ABC ≌△DEF ,AD =3,CF =10,则AC等于 --------------------------------------------------------------------------------------------------------- 【 】 A .5 B .6 C .6.5 D .77.电子钟镜子里的像如图所示,实际时间是 ------------------------------------------------------- 【 】A .21:10B .10:21C .10:51D .12:01AB CDE F题图第6ABCD E题图第5ABCD E 题图第42013.118.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 --------------------------------------------------------------------------------------- 【 】 A .含30°角的直角三角形; B .顶角是30的等腰三角形; C .等边三角形D .等腰直角三角形.12.如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD = . 13.如图,由四个直角边分别为3和4全等的直角三角形拼成“赵爽弦图”,其中阴影部分面积为 .14.如图,市政府准备修建一座高AB 为6米的过街天桥,已知地面BC 为8米,则桥16.如图,△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为 .17.已知△ABC 是等边三角形,点D 、E 分别在AC 、BC 上,且CD =BE ,则∠AFD = °. 18.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,DE ⊥AB 于E .若AB =6,则△DBE 的周长 .ABCDEF题图第10ABCD题图第18A BDE题图第16HABCD题图第12ACFD题图第17题图第13ABCD题图第11ABCABCDEFC'D'三、解答题(共64分) 19.(8分)如图,点A 在直线l 上,请在直线l 上另找一点C ,使△ABC 是等腰三角形.请找出所有符合条件的点,并简要说明作法,保留作图痕迹.l20.(6分)如图,C 为线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,且CD =CE ,求证:△ACD ≌△BCE .21.(6分)如图,线段AB 经过线段CD 的中点E ,且AC =AD , 求证:BC =BD .AC BDEACDE22.(6分)如图,在△ABC 中,AB =13,BC =10, BC 边上的中线AD =12.求:⑴ AC 的长度;⑵ △ABC 的面积.23.(6分)△ABC 中,∠C =90°,AC =3,BC =4,在BC 边上找一点P ,使得点P 到点C的距离与点P 到边AB 的距离相等,求BP 的长.24.(8分)如图,△ABC 中,∠BAC =110°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G分别为垂足.⑴ 求∠DAF 的度数. ⑵ 如果BC =10,求△DAF 的周长.ACB AB D CABD EGC25.(8分)如图,AD 为△ABC 的高,∠B =2∠C ,求证:CD =AB +BD .(提示:用轴对称知识)26. (8分)△ABC 中,∠ACB =90°,AC =BC =6,M 点在边AC 上,且CM =2,过M 点作 AC 的垂线交AB 边于E 点.动点P 从点A 出发沿AC 边向M 点运动,速度为每秒1个单位,当动点P 到达M 点时,运动停止.连接EP ,EC .在此过程中, ⑴ 当t 为何值时,△EPC 的面积为10?⑵ 将△EPC 沿CP 翻折后,点E 的对应点为F 点,当t 为何值时,PF ∥EC ?AB CD BFBM27.(8分)探索与研究:在△ABC 中,∠ABC =90°,分别以边AB 、BC 、CA 向△ABC 外作正方形ABHI 、正方形BCGF 、正方形CAED ,连接GD ,AG ,BD . ⑴ 如图1,求证:AG =BD . ⑵ 如图2,试说明:S △ABC =S △CDG . (提示:正方形的四条边相等,四个角均为直角)图1图2A CB F GE I H A CBFGEIH八年级数学参考答案及评分意见一、选择题(共16分)1、B2、C3、D4、A5、B6、C7、B8、C 二、填空题(共20分)9、50°或80° 10、答案不唯一 11、3 12、51213、114、10 15、65° 16、4 17、60°18、6三、解答题(共64分)19.如图,作线段AB 的中垂线,交l 于点1C ;以点A 为圆心,AB 长为半径作圆,交直线l 于点2C 与点3C ;以点B 为圆心,AB 长为半径,交直线l 于点4C (另一交点为A ).l每点2分,共8分.20.证明:∵C 为线段AB 的中点∴AC =CB ∵CD 平分∠ACE ∴∠ACD =∠DCE ∵CE 平分∠BCD ∴∠DCE =∠ECB∴∠ACD =∠ECB -------------------------------------------------------------------------- 2分 在△ACD 和△ECB 中 AC =CB ∠ACD =∠ECB CD =CE∴△ACD ≌△BCE (SAS ) ----------------------------------------------------------------- 6分21.解:∵AC =AD ,E 是线段CD 的中点∴AE ⊥CD --------------------------------------------------------------------------------------- 3分 ∴AB 是线段CD 的垂直平分线∴BC =BD --------------------------------------------------------------------------------------- 6分22.解:⑴ AC =13 ⑵△ABC 的面积为60.说明直角2分,AC 长2分,面积2分.23. 解:如图,作∠CAB 平分线,交BC 于点P .过P 作PD ⊥AB ,垂足为点D ,则PD =PC , 且Rt ADP Rt ACP ∆∆≌. ∴AC =AD =3,从而BD =2 ---------------------------------------------------------------------- 2分设CP =x ,则PD =x ,BP =4-x .从而222(4)2x x -=+.解得:32x =,∴BP =52 即BP 的长为52-------------------------------------------------------------------------------------- 6分24.解:⑴ 40°.方法不唯一. ------------------------------------------------------------------------ 5分⑵ △DAF 的周长为10. ----------------------------------------------------------------------------- 8分25.证明:由于AD ⊥BC ,故可作出△ABD 关于直线AD 的对称图形,点B 的对称点E 必在BC边上.(也可以用传统作辅助线的方法叙述:在线段CD 上取一点E ,使DE =BD ),连结AE . -------------------------------------------------------------------------------------------------------- 2分说明AB =AE =EC ,BD =DR -------------------------------------------------------------------- 6分 结论CD =AB +BD ---------------------------------------------------------------------------------- 8分ACB DP26.解:⑴ 当t =1秒时,△EPC 的面积为10.∵△ABC ,∠ACB =90°,AC =BC =6 ∴∠A =∠B =45° ∵EM ⊥AC∴∠AEM =∠A =45° ∴AM =EM =4EPC S ∆=ME PC ⋅21=4)6(21⋅-t =10解之得t =1经检验,t =1时,符合题意. ----------------------------------------------------------- 4分 ⑵ 当t =2秒时,PF ∥EC .由翻折可得PF =PE ,∠FPC =∠EPC ∵PF ∥EC ∴∠FPC =∠PCE ∴∠EPC =∠PCE ∴PE =CE ∵EM ⊥AC ∴CM =PM =2 ∴AP =2 ∴t =2经检验,t =2时,符合题意. ----------------------------------------------------------- 8分27.解:⑴ ∵正方形ACDE 和正方形BCGF 中,AC =DC ,BC =GC ,∠ACD =∠BCG =90° ∴∠ACD +∠ACB =∠BCG +∠ACB 即∠ACG =∠DCB 在△ACG 和△DCB 中, AC =DC ∠ACG =∠DCB CG =CB∴△ACG ≌△DCB (SAS )∴AG =BD ------------------------------------------------------------------------------------- 4分 ⑵ 说理方法不唯一.如图,作BM ⊥AC 于M ,作GN ⊥CD ,交DC 延长线于N . ∴ ∠BMC =∠GNC =90° ∵∠MCN =∠BCG =90°∴∠MCN -∠BCN =∠BCG -∠BCN 即∠BCM =∠GCN ∵BC =GC∴△BMC ≌△GNC (AAS ) ∴BM =NG ∵AC =CD ∴ABC S ∆=21AC ·BM =21CD ·NG =CDG S ∆ -------------------------------------- -8分ACBFGEIHA CBFGE DIHMN。
2013-2014八年级上册数学期末试卷及答案
八年级数学期末试卷(总分100分 答卷时间120分钟)一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出 的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A ’C B’,∠BCB ’=30°,则∠ACA ’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【 】6.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 【 】7.若0a >且2x a =,3ya =,则x ya-的值为A .-1B .1C .23D .32【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下题号 一 二三总分 结分人19~20 21~22 23~24 25~262728得分得分 评卷人CABB 'A '(第4题)(第8题)s /千米t /分3 2 1 O610坡速度相同,那么他回来时,走这段路所用的时间为A .12分B .10分C .16分D .14分二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:32128x x ⎛⎫⨯-⎪⎝⎭= . 10.一次函数(24)5y k x =++中,y 随x 增大而减小,则k 的取值范是 . 11.分解因式:22m n mn -= .12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为 .13.计算:(1-)2009-(π-3)0+4= . 14.当12s t =+时,代数式222s st t -+的值为 . 15.若225(16)0x y -++=,则x +y = .16.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x = 过点A ,则不等式20x kx b <+<的解集为 . 17.如图,小量角器的零度线在大量角器的零度线上, 且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点P 在小量角器上对应的度数为66°,那么在大量角器上对应的度数为__________° (只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)19.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.得分 评卷人得分 评卷人ADCEB(第12题)(第17题)(第16题)OB Ay20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC 的形状和大小完全相同的模具△A B C ''',需要从残留的模具片中度量出哪些边、角?请简要说明理由. (2)作出模具A B C '''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)21.已知2514x x -=,求()()()212111x x x ---++的值.22.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组100x y mx y n -+=⎧⎨-+=⎩请你直接写出它的解.x(第22题)(第20题)(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △; (2)写出点111A B C ,,的坐标.24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .1 23 4AB CDO (第24题)(第23题)(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴.① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ② 画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画∠AOB 的对称轴,并写出画图的方法.【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC .(2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).ODCABEF(第26题)BC图1AOB 图2(第27题8分)27. 如图,在平面直角坐标系xOy 中,已知直线AC 的解析式为122y x =-+,直线AC 交x轴于点C ,交y 轴于点A .(1)若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标; (2)过点B 作x 轴的垂线l ,在l 上是否存在一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.(第27题)28.元旦期间,甲、乙两个家庭到300 km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(1)由于汽车发生故障,甲家庭在途中停留了h;(2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.y八年级数学(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)9.514x -10.k <-2 11.m n (m -n ) 12.37° 13.0 14.1415.9 16.-2<x <-1 17.48° 18.7三、解答题(本大题共10小题,共60分.)19.解:(1))8(21)2)(2(b a b b a b a ---+2224214b ab b a +--=……………………………………………………4分 ab a 212-=…………………………………………………………………6分 (2)322x x x ---=2(1)x x x -++ …………………………………………………………3分 =2(1)x x -+ …………………………………………………………5分20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.……………………………3分 (2)按尺规作图的要求,正确作出A B C '''∠的图形.……………………………5分 21.解:()()()212111x x x ---++=22221(21)1x x x x x --+-+++……………………………………………2分 =22221211x x x x x --+---+ ……………………………………………3分 =251x x -+………………………………………………………………………4分 当2514x x -=时,原式=2(5)114115x x -+=+= ……………………………………………5分22.解:(1)∵),1(b 在直线1+=x y 上,∴当1=x 时,211=+=b .……………………………………………3分 (2)解是⎩⎨⎧==.2,1y x …………………………………………………………………5分23.(1)画图正确; ………………………………………………………………………2分(2)111(4,3)A B C (1,5),(1,0),………………………………………………5分 24.证明:(1)在△ABC 和△ADC 中1234AC AC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC .………………………………………………………3分 (2)∵△ABC ≌△ADC∴AB =A D ……………………………………………………………………4分又∵∠1=∠2∴BO =DO …………………………………………………………………6分25.(1)画图正确……………… …………………………………………………………2分(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ;③画直线OE ,直线OE 即为∠AOB 的对称轴.………………………………6分 (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF …………………………………………………………………………1分 ∵E 为OB 的中点,F 为OC 的中点,∴OB =OC ……………………………………………………………………………2分 又∵∠A =∠D ,∠AOB =∠DOC ,△AOB ≌△DOC ………………………………………………………………4分 ∴AB=DC …………………………………………………………………………5分 (2)假 ………………………………………………………………………………6分 27.(1)B (2,2); ………………………………………………………………………2分 (2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P . ……………………………………3分把x =2代入122y x =-+,得y =1,∴点P 的坐标为(2,1)……………………………………………………………4分 (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=-……………………………………………6分 解得43m = 或4m =-…………………………………………………………7分∴点Q 的坐标为(43,43)或(4-,4)……………………………………8分(漏解一个扣2分)28.(1)1;…………………………………………………………………………………1分 (2)易得y 乙=50x -25…………………………………………………………………2分当x =5时,y =225,即得点C (5,225).由题意可知点B(2,60),……………………………………………………3分设BD所在直线的解析式为y=kx+b,∴5225,260.k bk b+=⎧⎨+=⎩解得55,50.kb=⎧⎨=-⎩∴BD所在直线的解析式为y=55x-50.………………………………………5分当y=300时,x=70 11.答:甲家庭到达风景区共花了7011h.……………………………………………6分(3)符合约定.…………………………………………………………7分由图象可知:甲、乙两家庭第一次相遇后在B和D相距最远.在点B处有y乙-y= -5x+25=-5×2+25=15≤15;在点D有y—y乙=5x-25=7511≤15.……………………………………………8分。
2013—2014学年第一学期期末考试八年级数学试卷(含答案)
111---a a a 11-+a a1--aa 2013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是()A 、a+a=a 2B 、(3a) 2=6a 2C 、(a+1) 2=a 2+1D 、a·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm 3、观察下列中国传统工艺品的花纹,其中轴对称图形是()4、计算的结果为( )A 、B 、C 、 -1D 、1-a 5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是()A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A′OA )是()A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A 、(a+b) 2=a 2+2ab+b 2B 、(a-b) 2=a 2-2ab+b 2C 、a 2-b 2=(a+b)(a-b)D 、(a+2b)(a-b)()⎪⎭⎫⎝⎛∙-b a ab 243853-x 22322=--+x x x =a 2+ab-2b 28、如图,已知△AB C≌△CDA ,下列结论:(1)AB=CD,BC=DA ;(2)∠BAC=∠DCA,∠ACB=∠CAD ;(3)A B∥CD,BC∥DA。
其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算:=10、当x时,分式有意义11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是(只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2, 则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 313118、(7分)先化简再求值:(a 2b-2ab 2-b 2)÷b-(a+b)(a-b),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。
江苏省常州市八年级上学期期末数学试卷 (解析版)
江苏省常州市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 3.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE4.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 5.由四舍五入得到的近似数48.0110⨯,精确到( )A .万位B .百位C .百分位D .个位6.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD7.下列各点中,在函数y=-8x图象上的是( ) A .(﹣2,4)B .(2,4)C .(﹣2,﹣4)D .(8,1)8.在下列各数中,无理数有( )33224,3,,8,9,07π A .1个B .2个C .3个D .4个9.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .15B .13C .58D .38二、填空题11.1﹣π的相反数是_____.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.14.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是_____.15.阅读理解:对于任意正整数a ,b ,∵()20a b-≥,∴20a ab b -+≥,∴2a b ab +≥,只有当a b =时,等号成立;结论:在2a b ab +≥(a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab .若1m ,1m m +-有最小值为__________.16.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.17.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.18.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______19.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.20.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y三、解答题21.如图,已知函数12y x =+的图像与y 轴交于点A ,一次函数2y kx b =+的图像经过点(0,4)B ,与x 轴交于点C ,与12y x =+的图像交于点D ,且点D 的坐标为2,3n ⎛⎫ ⎪⎝⎭.(1)求k 和b 的值;(2)若12y y >,则x 的取值范围是__________. (3)求四边形AOCD 的面积.22.如图,CA CD =,12∠=∠,BC EC =. (1)求证:AB DE =;(2)当21A ∠=︒,39E ∠=°时,求ACB ∠的度数.23.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知13(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.24.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -. (1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点).25.如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点. (1)在图①中,以格点为端点画一条长度为13的线段MN ; (2)在图②中,A 、B 、C 是格点,求∠ABC 的度数.四、压轴题26.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______; (2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;…… ①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)27.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.28.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?29.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)30.如图,直线l 1的表达式为:y=-3x+3,且直线l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C . (1)求点D 的坐标; (2)求直线l 2的解析表达式; (3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t , 根据题意得到12-3t=t ,解得:t=3, 故选B . 【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.A解析:A 【解析】 【分析】23a b a a b a ⨯⨯即可求解. 【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A . 【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.3.B解析:B 【解析】 【分析】根据全等三角形的性质和判定即可求解. 【详解】解:选项A ,∠B =∠C 利用 ASA 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误; 选项B ,BE =CD 不能说明 △ABE ≌△ACD ,说法错误,故此选项正确; 选项C,AD =AE 利用 SAS 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误; 选项D ,BD =CE 利用 SAS 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误; 故选B. 【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.4.A解析:A 【解析】 【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN ,即DN+BN=AB=9,可得△DNB 的周长.【详解】解:∵D 是BC 的中点,BC=6, ∴BD=3,由折叠的性质可知DN=AN ,∴△DNB 的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12. 故选A. 【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5.B解析:B 【解析】 【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案. 【详解】解:∵48.0110⨯=80100,数字1在百位上, ∴ 近似数48.0110⨯精确到百位, 故选 B. 【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.6.D解析:D 【解析】A .添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意; B .添加AB =DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意; C .添加∠ACB =∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意. 故选D .7.A解析:A 【解析】 【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上 【详解】 解:-2×4=-8 故选:A 【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.8.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn,难度适中. 二、填空题11.π﹣1. 【解析】 【分析】根据相反数的定义即可得到结论. 【详解】1﹣π的相反数是. 故答案为:π﹣1. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.解析:π﹣1. 【解析】 【分析】根据相反数的定义即可得到结论. 【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.12.【解析】 【分析】过A 作AC⊥直线y=x 于C ,过C 作CD⊥OA 于D ,当B 和C 重合时,线段AB 最短,推出AC=OC ,求出AC 、OC 长,根据三角形面积公式求出CD ,推出CD=OD ,即可求出B 的坐标. 解析:(1,1)--【解析】 【分析】过A 作AC ⊥直线y=x 于C ,过C 作CD ⊥OA 于D ,当B 和C 重合时,线段AB 最短,推出AC=OC ,求出AC 、OC 长,根据三角形面积公式求出CD ,推出CD=OD ,即可求出B 的坐标. 【详解】解:过A 作AC ⊥直线y=x 于C ,过C 作CD ⊥OA 于D ,当B 和C 重合时,线段AB 最短,∵直线y=x , ∴∠AOC=45°, ∴∠OAC=45°=∠AOC , ∴AC=OC ,由勾股定理得:2AC 2=OA 2=4, ∴2,由三角形的面积公式得:AC×OC=OA×CD , 22=2CD , ∴CD=1, ∴OD=CD=1, ∴B (-1,-1). 故答案为:(-1,-1). 【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B 和C 重合时,线段AB 最短,题目比较典型,主要培养了学生的理解能力和计算能力.13.5×108 【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数. 14.【解析】分析:连接AD 由PQ 垂直平分线段AB ,推出DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题; 详解:连接AD .∵PQ垂直平解析:8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.3【解析】【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.准确理解阅读内容,灵活运用题中结论,解析:3 【解析】 【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m1211=31m m即:当1m 时,m m 3, 故答案为:3. 【点睛】准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.16.5 【解析】 【分析】先根据勾股定理求得AB 的长度,再由全等三角形的性质可得DE 的长度. 【详解】解:在Rt△ACB 中,∠C=90°,AC=4,BC=3, 由勾股定理得:AB=5, ∵△ABC≌解析:5 【解析】 【分析】先根据勾股定理求得AB 的长度,再由全等三角形的性质可得DE 的长度. 【详解】解:在Rt △ACB 中,∠C=90°,AC=4,BC=3, 由勾股定理得:AB=5, ∵△ABC ≌△EDB , ∴DE=AB=5.本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键.17.2 【解析】 【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根解析:2 【解析】 【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案. 【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线, ∴∠DBF=∠FBC ,∠ECF=∠FCB , ∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB , ∴∠DFB=∠DBF ,∠EFC=∠ECF , ∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==, ∴EF=2, ∴EC=2 故答案为:2 【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.18.—1 【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数. 【详解】∵AD 长为2,AB 长为1, ∴AC=, ∵A 点表示-1, ∴E 点表示的数为:1 【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴= ∵A 点表示-1,∴E ,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.19.17 【解析】 【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案. 【详解】解:是的垂直平分线, ,,的周长为11, , 的周长, 故答案为:17. 【点睛】 本题考解析:17 【解析】 【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案. 【详解】解:PH 是AC 的垂直平分线, PA PC ∴=,26AC AH ==, ABP ∆的周长为11,11AB BP PA AB BP BC AB BC ∴++=++=+=,ABC ∆∴的周长17AB BC AC =++=, 故答案为:17. 【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.三、解答题21.(1)k和b的值分别为2-和4;(2)23x>;(3)103.【解析】【分析】(1)根据点D在函数y=x+2的图象上,即可求出n的值;再利用待定系数法求出k,b 的值;(2)根据图象,直接判断即可;(3)用三角形OBC的面积减去三角形ABD的面积即可.【详解】(1)函数12y x =+的图像过点D ,且点D 的坐标为2(,)3n ,则有28233n =+=. 所以点D 的坐标为28(,)33.所以有4,28.33b k b =⎧⎪⎨+=⎪⎩解得2,4.k b =-⎧⎨=⎩所以k 和b 的值分别为2-和4.(2)由图象可知,函数y =kx +b 大于函数y =x +2时,图象在直线x =23的左侧, ∴x <23, 故答案为:x <23. (3)已知函数12y x =+的图像与y 轴交于点A , 则点A 坐标为(0,2).所以422AB OB OA =-=-=. 函数2y kx b =+的图像与x 轴交于点C ,令20y =, 则240x -+=.2x =.所以点C 坐标为(2,0). ∴2OC =.则四边形AOCD 的面积等于112104222233BOC BAD S S ∆∆-=⨯⨯-=⨯⨯. 【点睛】本题主要考查一次函数的交点,解决此题时,明确二元一次方程组与一次函数的关系是解决此类问题的关键.第(3)小题中,求不规则图形的面积时,可以利用整体减去部分的方法进行计算.22.(1)详见解析;(2)120° 【解析】 【分析】(1)根据题意,由“SAS ”证明ABC DEC ∆≅∆即可得解; (2)由ABC DEC ∆≅∆及三角形的内角和定理即可求解. 【详解】 (1)∵12∠=∠∴12ACE ACE ∠+∠=∠+∠ ∴ACB DCE ∠=∠ 在ABC ∆与DEC ∆中CA CD ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩∴ABC DEC ∆≅∆(SAS ) ∴AB DE =;(2)∵ABC DEC ∆≅∆,39E ∠=° ∴39B ∠=︒ ∵21A ∠=︒∴1801803921120ACB B A ∠=︒-∠-∠=︒-︒-︒=︒. 【点睛】本题主要考查了三角形全等的判定及性质、三角形的内角和定理,熟练掌握三角形全等的证明方法是解决本题的关键. 23.(1)(0,3);(2)112y x =-. 【解析】 【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标; (2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式. 【详解】(1)在Rt △AOB 中, ∵222OA OB AB +=,∴2222OB +=, ∴OB=3,∴点B 的坐标是(0,3) . (2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4, ∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.24.(1)36y x =-;(2)6.【解析】 【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式; (2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面积. 【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩, ∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2, 当x=0时,066y =-=-,故(0,6)B -,OB=6, ∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键.25.(1)见解析;(2)45° 【解析】 【分析】(1)根据网格和勾股定理即可在图①中,以格点为端点画一条长度为13的线段MN ; (2)连接AC ,根据勾股定理及逆定理可得三角形ABC 是等腰直角三角形,进而可求∠ABC 的度数. 【详解】 解:(1)如图根据勾股定理,得 MN 22AM AN +2223+13(2)连接AC∵AC 221310BC ,AB ==∴AC 2+BC 2=AB 2,∴ABC 是等腰直角三角形,∴∠ABC =45°.【点睛】此题考查的是勾股定理和网格问题,掌握勾股定理及逆定理是解决此题的关键.四、压轴题26.(1)2,7,4;(2)83x ≥;(3)①t 的内数=有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+,解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数=②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.27.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M 是AC 中点知AM=CM ,结合∠AMD=∠CMB 和DM=BM 即可得证; (2)①由点M ,N 分别是AC ,BC 的中点及AC=BC 可得CM=CN ,结合∠C=∠C 和BC=AC 即可得证;②取AD 中点F ,连接EF ,先证△EAF ≌△ANC 得∠NAC=∠AEF ,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE ≌△DFE 得∠EAD=∠EDA=∠ANC ,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM 即可得证.【详解】解:(1)∵点M 是AC 中点,∴AM=CM ,在△DAM 和△BCM 中,∵AM CM AMD CMB DM BM =⎧⎪∠=∠⎨⎪=⎩,∴△DAM ≌△BCM (SAS );(2)①∵点M 是AC 中点,点N 是BC 中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.28.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ;②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC =12BC =5cm ,BD =CQ =6cm , ∴t =52, ∴点Q 的运动速度=612552=cm /s ,∴当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s点P与点Q第一次相遇在线段AB上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.29.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.30.(1)(1,0);(2)362y x -=;(3)92;(4)(6,3). 【解析】【分析】(1)由题意已知l 1的解析式,令y=0求出x 的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b , ∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD的距离,即C纵坐标的绝对值=|-3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,所以P(6,3).【点睛】本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.。
常州市八年级(上)期末数学试卷(含答案)
一、选择题
1.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P表示的数是()
A. B. C. D.
2.下列各式从左到右变形正确的是( )
A.
B.
C.
D.
3.在平面直角坐标系中,点 到原点的距离是()
A.1B. C.2D.
4.能表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数且m≠0)的图象的是( )
②是否存在 、 两个实数都是整数的情况?若存在,请求出 、 的值;若不存在,请说明理由.
23.解方程
24.已知, +(x+y﹣1)2=0,求y﹣2x的平方根.
25.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示
二、填空题
11.17.85精确到十分位是_____.
12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠C=70°,则∠B=_____°.
13.一次函数y=2x+b的图象沿y轴平移3个单位后得到一次函数y=2x+1的图象,则b值为_____.
14.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.
(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.
求证:∠BCD=3(∠CEP-∠OPE).
2013-2014学年八年级上期末数学试卷及答案
初二数学期末试题一、选择题 (每题3分,共30分)1.如图,下列图案中是轴对称图形的是( )A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(2)、(3)2.在3.14、722、2-、327、3π、0.2020020002这六个数中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个3.已知点P 在第四象限,且到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标为( )A .(-2,3)B .(2,-3)C .(3,-2)D .(-3,2)4. 已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,则一次函数y=x+k 的图象大致是下列选项中的 ( )5.根据下列已知条件,能唯一画出△ABC 的是( )A .AB =5,BC =3,AC =8 B .AB =4,BC =3,∠A =30°C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =66.已知等腰三角形的一个内角等于50º,则该三角形的一个底角的余角是( )A .25ºB .40º或30ºC .25º或40ºD .50º7.若等腰三角形的周长是100cm ,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是( )A B C D8.设0<k <2,关于x 的一次函数(2)2y k x =-+,当1≤x ≤2时,y 的最小值是( )A .22k -B .1k -C .kD .1k +9.下列命题①如果a 、b 、c 为一组勾股数,那么3a 、4b 、5c 仍是勾股数;②含有30°角的直角D C BA三角形的三边长之比是3∶4∶5;③如果一个三角形的三边是31,41,51,那么此三角形 必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(c > a = b ),那么a 2∶b 2∶c 2=1∶1∶2;⑤无限小数是无理数。
江苏省常州市2014年八年级(下)期末数学试题(含答案)
江苏省常州市2013-2014学年第二学期期末考试八年级数学试卷一、填空题(共10小题,每小题2分,共计20分)1.(2分)为了解全班同学课外阅读的情况,对全班每个同学进行调查,这次调查采用的方式是_________,其中,总体是_________.2.(2分)当x_________时,分式有意义;当x_________时,分式的值为正数.3.(2分)(2013•南京联合体一模)若式子有意义,则实数x的取值范围是_________.4.(2分)若反比例函数y=的图象经过A(1,2),B(2,a)两点,则k=_________,a=_________.5.(2分)(2013•苏州)方程=的解为_________.6.(2分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_________.7.(2分)如图,A、B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y 轴,△ABC的面积记为S,则S=_________.8.(2分)(2011•绍兴)若点A(1,y1)、B(2,y2)是双曲线y=上的点,则y1_________ y2(填“>”,“<”或“=”).9.(2分)已知是正整数,则实数n的最大值为_________.10.(2分)(2013•河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为_________.二、单项选择题(共6小题,每小题3分,共18分)11.(3分)(2013•泰州)下列计算正确的是()42=312.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()D13.(3分)某同学随机将一枚硬币抛向空中20次,有12次出现反面,那么正面出现的频率是()14.(3分)(2013•聊城)下列命题中的真命题是()15.(3分)(2008•鄂州)已知,则a的取值范围是()16.(3分)如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在正比例函数y=x的图象上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若函数y=的图象与△ABC有交点,则k的取值范围是()三、解答题(17题8分,18题4分,共12分)17.(8分)计算:(1)2+3﹣;(2)(+3)(﹣3).18.(4分)(2013•广州)先化简,再求值:,其中.四、解答题(19题、21题、22题、23题每题8分;20题、24题、25题每题6分,共50分)19.(8分)(2013•天河区一模)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?20.(6分)(2013•汕头)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.21.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DB;(2)若AB⊥AC,试判断四边形AFCD的形状,并证明你的结论.22.(8分)水产公司有一种海产品共518千克,为寻求合适的销售价格,进行了3天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系,现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的关系式,并补全表格;(2)在试销3天后,公司决定将这种海产品的销售价格定为15元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?23.(8分)(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得=();②参照(四)式得=()(2)化简:.24.(6分)如图,在平面直角坐标系中,一次函数y=2x+b(b<0)的图象与坐标轴交于A、B两点,与函数y=(x>0)的图象交于D点,过点D作DC⊥x轴,垂足为点C,连接OD、BC,已知四边形OBCD是平行四边形.(1)如果b=﹣1,求k的值;(2)求k(用含b的代数式表示k).25.(6分)在平面直角坐标系中xOy中,点A与原点O重合,点B(4,0),点E、(0,2),过点E作平行于x轴的直线l,点C、D在直线上运动(点C在点D的左侧),CD=4,连接BC,过点A作关于直线BC的对称点A′,连接AC、A′C.(1)当A′,D两点重合时,则AC=_________;(2)当A′,D两点不重合时,若以点A′、C、B、D为顶点的四边形是正方形,求点C 的坐标.参考答案一、填空题1、普查全班同学课外阅读的情况2、≠2;>23、x≥14、2;15、x=26、40%7、48、>9、1110、或3二、选择题:11-16、CCBCCC17、解:(1)原式=2+6﹣4=4;(2)原式=()2﹣(3)2=5﹣18=﹣13.18、解:原式===x+y=1+2+1﹣2=219、解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.20、解:选②与③构造出分式,,原式==,当a=6,b=3时,原式==.21、(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFB=∠DBE,在△AEF和△DEB中∴△AEF≌△DEB(AAS),∴AF=BD;(2)四边形AFCD是菱形,证明:∵D为BC的中点,∴CD=BD,∵AF=BD,∴AF=CD,∵AF∥BC,∴四边形AFCD是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵D为BC的中点,∴AD=DC,∴四边形AFCD是菱形.22、解:(1)设反比例函数的解析式为y=(k≠0),将x=40,y=30代入得:k=30×40=1200,故函数解析式为;表中填30.(2)由题意可知:当x=15时,y==80,设余下的这些海产品预计再用z天可以全部售出,由题意得:80z+(30+40+80)=518,解得:z=5.答:余下这些海产品预计再用5天可以售完.23、(1)=,=;(2)。
(完整word版)2013-2014学年常州市八年级(上)期末数学试卷
2013-2014学年常州市八年级(上)期末数学试卷班级 姓名 一、填空题(共10小题,每小题2分,满分20分)1.9的平方根是 ______ ;x 3=﹣8,则x= _________ .2.|1﹣|= _________ ,比较大小: _________ .3.一个数由四舍五入法得到近似数0.1020,这个近似数精确到 ____ 位.4.如图,已知CD 垂直平分线段AB ,AC=1,∠A=40°,则BC= _____ ,∠B= ______ .5.如图,已知BD 平分∠ABC ,AD ⊥AB 于点A ,DC ⊥BC 于点C ,若BC=8,AD=6,则DC= ,BD= .第4题 第5题 第8题 第9题6.已知点P 的坐标是(﹣2,3),则点P 关于x 轴对称的点P 1的坐标是 ,点P 到y 轴的距离是.7.等腰三角形的周长为14,其一边长为4,那么它的底边为 _________ .8.如图,AB ⊥CD 于点A ,△ABC ≌△ADE ,若∠B=30°,BC=6cm ,则∠DEA= ,DE= cm9.如图,在△ABC 中,∠BAC=126°,AD ⊥BC 于点D ,将△ABD 沿AD 折叠,点B 落在DC 上的点E 处,若AB=CE ,则∠C= _________ .10.已知函数y 1、y 2与自变量x 的关系分别由下表给出,那么满足y 1>y 2的自变量x 的取值是 ____ . x ﹣1 0 1 2 3 y 1﹣3 2 1 0 ﹣1 二、选择题(共6小题,每小题3分,满分18分)11.在下列实数中:﹣2,,,0,π,,﹣3.030030003…,无理数有( )A .1个B . 2个C . 3个D .4个12.下列交通标识中,是轴对称图形的是 ( )A .B .C .D .13.如图,已知AD 与BC 相交于点O ,AC ⊥BC 于点C ,AD ⊥BD 于点D ,添加下列条件中的一个条件:(1)AC=BD (2)OC=OD (3)OA=OB (4)∠BAC=∠ABD其中能使△ABC ≌△BAD 的条件个数有( )A .1个B . 2个C .3个D .4个14.关于函数y=﹣x+1,下列结论正确的是( )A .图象必经过点(﹣1,1)B . y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限x ﹣1 0 1 2 3y 2﹣3 ﹣1 1 3 5A.B.C. D16.一次函数y1=mx+n(m≠0,m,n为常数)与一次函数y2=ax+b(a≠0,a,b为常数)的图象如图所示,这两个函数的图象交点在y轴上,那么使y1、y2的值都大于0的x的取值范围是()A.x>1 B.x<﹣1 C.x<1 D.﹣1<x<2三、解答题(共8小题,满分62分)17.(10分)求下列各式中的x的值(1)x2=49 (2)(x﹣1)3=﹣125.18.(5分)计算:()2﹣﹣()19.(8分)如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.20.(8分)如图,在△ABC中,已知AB=AC=4,AD平分∠BAC,E是AC边的中点.(1)求DE的长;(2)求证:DE∥AB.21.(9分)在平面直角坐标系中,每个小正方形的边长为1,△ABC顶点坐标分别为A(1,﹣2),B(4,﹣4)C(3,﹣1).按下列要求画图:(1)画出函数y=﹣x的图象,该图象记作:直线l;(2)画△A1B1C1,使它与△ABC关于y轴对称:画△A2B2C2,使它与△A1B1C1关于直线l对称;(3)若△ABC与△A3B3C3关于x轴对称,请你判断△A2B2C2与△A3B3C3是否关于某条直线对称?并说说你的理由.22.(8分)如图,把一个直角三角形板放在平面直角坐标系中,直角顶点与原点O重合,另两个顶点分别落在x、y的正半轴上点A、点B处,作原点O关于直线AB的对称点O′,连接AO′,并延长AO′交y 轴于点C.已知点B坐标(0,3),点C坐标(0,8)(1)求点B与点O′之间的距离.(2)若一次函数的图象经过点A、C,求该一次函数的表达式.23.(6分)某玩具厂工人的工作时间:每月25天,每天8小.待遇:按件计酬,多劳多得.每月另加福利工资1000元,按月结算.该厂生产甲、乙两种产品,每生产一件甲种产品,可得报酬1.5元,每生产一件乙种产品,可得报酬2.8元.工人小李每生产一件甲种产品需小时,每生产一件乙种产品需小时.设小李每月生产甲种产品x件(x为非负整数),月工资数目为w元.(1)小李每月生产甲种产品所需时间是多少小时?小李每月生产乙种产品多少件?(用含x的代数式表示).(2)如果生产各种产品的数目没有限制,求小李每月的月工资数目w元的范围.24.(8分)如图(1),公路上有A、B、C三个车站,A、B两地相距630千米,甲、乙两车分别从A、B 两地同时出发,匀速相向而行,甲车9小时到达C站后停止行驶,乙车经过2小时到达C站并继续行驶,乙车的速度是甲车速度的,线段MG与折线段ND﹣DF分别表示甲、乙两车到C站的距离为y1(千米)、y2(千米)与它们的行驶时间x(小时)之间的函数图象如图(2)所示.(1)求甲、乙两车的速度;(2)两小时后,求乙车到C站的距离y2与行驶时间x(小时)之间的函数表达式;(3)两函数图象交于点E,求点E的坐标,并说明它表示的实际意义.。