几种天线的比较
主流卫星通信天线对比
常用卫星通信天线介绍(一)原文:寇松江(爱科迪)★★★★(7020207)添加点图片天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
几种短波天线的比较
几种短波天线的比较(ZT)这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。
当然,还很多的其他的天线类型。
这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。
还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。
1. 国产的10米波段1/2波长垂直天线:这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。
缺点是单波段天线,一个波段得要一根。
另外每节1米左右,携带不算很麻烦也不算容易。
2. 曰本钻石公司的HV-4:这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。
但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。
所以其实是不适合野营使用的。
3. 自制的加感天线:振子是1.5米长的拉杆天线,收起来的时候很短。
加感线圈在底部,另外还需要地线配合。
由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。
所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。
只有摆成当年调试的样子,才能谐振。
回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。
看来这天线也必须这样做才成,它太受环境的影响。
这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。
但是也不算太差。
阻抗匹配概念阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
电视发射天线的种类
电视发射天线的种类电视发射天线是电视信号的重要传输装置,主要用于将电视信号发送到接收器,使电视节目能够在用户家中的电视机上播放。
根据不同的工作原理和使用场景,电视发射天线可以分为多种类型。
下面将详细介绍几种常见的电视发射天线:1.家用室内电视发射天线:家用室内电视发射天线是最常见的一种电视发射天线,通常用于户内环境中。
这种天线采用电磁感应原理,通过接收电视信号并将其转化为电流,然后传输到电视机上进行解码播放。
家用室内电视发射天线的特点是安装简便、接收范围广、使用便捷。
2.室外电视发射天线:室外电视发射天线是安装在建筑物屋顶或外墙上的一种天线。
它能够接收到更远距离和更稳定的电视信号,并传输到电视机上。
室外电视发射天线通常具有更高的增益和方向性,可以减少来自不同方向的干扰信号,提高接收质量。
3.卫星电视发射天线:卫星电视发射天线主要用于接收卫星信号,并传输到接收器中。
这种天线通常有很高的增益和宽频带特性,能够接收到卫星信号源提供的高质量电视节目。
卫星电视发射天线一般安装在户外,位置尽量避免被建筑物或树木遮挡,以保证信号接收质量。
4.有线电视发射天线:有线电视发射天线是一种特殊的电视发射天线,主要用于有线电视系统中。
它将有线电视信号发送到用户家中的接收器,用户可以通过有线电视接收器观看电视节目。
有线电视发射天线的特点是信号传输稳定、不受天气和地理条件影响,适合长距离传输和大规模用户接入。
此外,还有一些其他类型的电视发射天线,如地面数字电视发射天线、车载电视发射天线等,它们根据具体的使用场景和需求有所不同。
总的来说,不同类型的电视发射天线在工作原理、信号传输距离、天线特性等方面各有差异。
用户在选择电视发射天线时,应根据实际需要和使用环境来选择适合自己的天线类型,并注意天线的安装和调试,以提高信号质量和观看效果。
(整理)几种天线的比较.
天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
几种常用卫星天线的工作原理和性能的比较
理来 说 , 常见 的卫 星天线 又分 为 : 物 面天线 、 抛 卡塞 格 伦天线 、 环焦 天线等几 种 。
图 1 Βιβλιοθήκη 3 工 作 原 理 卫 星 天线 的反 射 面 由主反 射 面 和副 反 射面 两部
分组成 。 物面天线 、 抛 偏馈 天线 没有副 反射面 , 主反射
面均 是 由抛 物线 旋转 而 形成 的抛 物面 。卡塞 格 伦 天 线、 环焦 天线 的主反 射面也 是 由抛物 线旋转 而形 成 的
即 : P+ l = P+ 2 F IPAlF 2 PA2
( ) 曲线 的性质 2双 平 面内 , 两个定 点 F 、2的距 离 的差 的绝 对值 与 lF
面, 而环焦 天线 的副反射 面是椭 圆面 。
要 了解 抛物 面 天线 、 卡塞 格 伦 天线 、 焦 天线 和 环
始终 为一定 值 的点 所形 成的轨 迹 叫做 双 曲线 。 两个定
从图 5中可以看出, 标准型卡塞格伦天线由三部
蕾 ÷ 囊
过反射  ̄ , Ft C
一
分 成 即 个 物 形 的 反 面一 双 面 组 ,一 抛 面 成 主 射 ,个 曲
个 形 的副 反射 面和一个 馈源 喇叭 。
P
图 2
主
,/ 嚣 I . F
l F l
卫星广播
有 线 电视 技 术
:
暑 饯 善 罄和性 墙 天 的 椎番 箍的 较
陈 超 国家广电总局 5 4台 5
摘 要 : 文 介 绍卫 星 天 线 的工 作 原 理 , 将 它们 的性 能特 点 进 行 比较 。 本 并 关 键词 : 卫星 天 线 工作 原 理 性 能 比较
同相聚 焦保 证 了经 过反 射 面 反射 汇 聚 在焦 点 处
全向天线和定向天线的区别(2.4G WiFi)
全向天线和定向天线的差异天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。
根据方向性的不同,天线有全向和定向两种。
下面主要讲解一下它们之间的区别以及相关参数。
【全向天线】:全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性。
一般情况下波瓣宽度越小,增益越大。
全向天线在通信系统中一般应用距离近,覆盖范围大,价格便宜。
增益一般在9dB以下。
下图所示为全向天线的信号辐射图。
全向天线的辐射范围比较象一个苹果【定向天线】:定向天线,在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性。
同全向天线一样,波瓣宽度越小,增益越大。
定向天线在通信系统中一般应用于通信距离远,覆盖范围小,目标密度大,频率利用率高的环境。
从增益上看是两种天线没有区别,但有一条非常重要的是:定向天线正因为它的指向尖锐,对于来自指向外的干扰信号都被很好地屏蔽了,这对评价接收效果也是十分重要的指标!我们也可以这样子来思考全向天线和定向天线之间的关系:全向天线会向四面八方发射信号,前后左右都可以接受到信号,定向天线就好像在天线后面罩一个碗壮的反射面,信号只能向前面传递,射向后面的信号被反射面挡住并反射到前方,加强了前面的信号强度。
下图为定向天线的信号辐射图。
定向天线的主要辐射范围象个倒立的不太完整的圆锥通过上文我们能够形象的认识到什么是全向天线,什么是定向天线,那么在实际应用时该注意些什么呢?天线的选购如果需要满足多个站点,并且这些站点是分布在AP的不同方向时,需要采用全向天线;如果集中在一个方向,建议采用定向天线;另外还要考虑天线的接头形式是否和AP匹配、天线的增益大小等是否符合您的需求;天线的安装对于室外天线,天线与无线AP之间需要增加防雷设备;定向天线要注意天线的正面朝向远端站点的方向;天线应该安装在尽可能高的位置,天线和站点之间尽可能满足视距(肉眼可见,中间避开障碍)。
附:TL-ANT2414A天线参数增益:14dBi(天线的重要参数,一般来说越大越好)驻波比:<1.92(反映发射能量是否能够有效传输到天线的参数,一般来说越接近于1越好)输入阻抗:50Ω(现代产品一般都为50Ω,一般不用担心匹配问题)最大功率:1W(所能接收的最大的功率,关系不大)接头形式:REVERSE SMA母座(倒置)(接头,注意是否匹配)电缆xx:1米(馈线xx)波瓣宽度:水平和垂直方向均为60度(电磁波辐射的角度,要认真比较是否满足您的现实环境,2409A和2406A的波瓣宽度:水平和垂直方向均为120度)其它内容收集:小灵通手机的功率很小,平均功率只有10mW,因此基站上行采用8天线分集接收(UT500mW为例),采用8根全向天线的上行分集增益在6到8dB左右,而定向天线的上行分集增益较差,在3到4dB左右,因此采用定向天线的基站的无线侧指标(如建立在请求率,切换掉话率,TCH接入成功率)相对较差。
几种短波天线的比较
几种短波天线的比较(ZT)这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。
当然,还很多的其他的天线类型。
这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。
还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。
1.国产的10米波段1/2波长垂直天线:这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。
缺点是单波段天线,一个波段得要一根。
另外每节1米左右,携带不算很麻烦也不算容易。
2.曰本钻石公司的HV-4:这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。
但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。
所以其实是不适合野营使用的。
3.自制的加感天线:振子是1.5米长的拉杆天线,收起来的时候很短。
加感线圈在底部,另外还需要地线配合。
由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。
所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。
只有摆成当年调试的样子,才能谐振。
回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。
看来这天线也必须这样做才成,它太受环境的影响。
这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。
但是也不算太差。
阻抗匹配概念阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
陶瓷天线和PCB天线以及IPEX天线有哪些区别?
陶瓷天线和PCB天线以及IPEX天线有哪些区别?陶瓷天线是一种适合于蓝牙装置使用的小型化天线。
陶瓷天线又分为块状陶瓷天线和多层陶瓷天线。
块状天线是使用高温将整块陶瓷体一次烧结完成后再将天线的金属部分印在陶瓷块的表面上。
而多层天线烧制采用低温共烧的方式讲多层陶瓷迭压对位后再以高温烧结,所以天线的金属导体可以根据设计需要印在每一层陶瓷介质层上,如此一来可以有效缩小天线尺寸,并能达到隐藏天线目的。
由于陶瓷本身介电常数比pcb电路板的要高,所以使用陶瓷天线能有效缩小天线尺寸。
PCB天线是指无线接收和发射用的PCB上的部分。
发射时,它把发射机的高频电流转换为空间电磁波;接收时,它又把从空间获取的电磁波变换成高频电流输入接收机。
它的优点是:空间占用较少,成本低廉,不需单独组装天线,不易触碰损坏,整机组装方便,但有代价---牺牲性能。
缺点是:单个天线场型很难做到圆整,插损高,效率相对低下,容易遭到主板上的干扰。
IPEX天线是一种作为射频电路和天线的接口,被广泛应用于无线局域网(WLAN)相关产品单板上。
它的优点是:场型能控制更好,插损低,信号的方向指向性好,效率高,抗干扰能力强,能减少受到主板上的干扰,而且不用太多的调试匹配,作为终端制造者,只需要外面接一个IPEX的天线即可;当然也有弊端:成本叫高,组装起来比较麻烦。
深圳云里物里科技股份有限公司(股票代码:872374)是一家专业的物联网(IOT)解决方案供应商,秉承“让每个物体接入物联网”的企业使命,“将世界带入物联网时代”的企业愿景,多年来一直专注于IOT领域的研发创新,为客户提供有物联网解决方案、防丢器产品、传感器产品、蓝牙模块等。
目前,云里物里业务遍及全球80多个国家和地区,截止2017年1月累计销售了800多万台物联网智能产品。
云里物里已经与中国邮政、中国电信、华为、Google、Inbev,Ericsson等二十多家全球500强公司建立战略合作伙伴关系。
短波天线——精选推荐
一般开始玩主要在国内聊天7.050/14.270/21.400,再以后就玩玩dx。
.8上面主要是cw常用的短波天线(组图)常用的短波天线常用的短波天线主要分为3类,第一类是垂直天线(GP),第二类是偶级天线(DP),第三类为八木天线(YAGI)。
除此之外,还有框型、钻石型、碟型等等,这里我们主要讨论前三类天线,其中重点探讨偶级天线及其变形。
从使用来看,GP天线主要用于近距离—中距离通讯,尤其是近距离通讯依靠地波传送,效果非常好。
而DP天线的近距离通讯效果惨不忍睹。
由于高度的限制,普通爱好者不可能架设很高的天线,一般来说5-10米高度的GP天线适合自己架设。
但是对于短波波长来说,这样的高度是远远不够的,例如180米波,即使1/2波长也有90米高,对于普通爱好者来说这是根本不可能实现的。
因此5- 10米高的短波天线如果希望用于短波全段就必须加感,这样发射的效率就很低了。
通常GP天线用于21-29M频段较为普遍,再低的频段就不再使用GP天线了。
此外,GP天线的防雷也比较难做,总不可能在天线旁边树一根比天线还高的铁管做避雷针吧?这是一支典型的DP天线的结构,其中红色部分为绝缘子,和两端的牵引绳隔开。
主振子长度为1/2波长*0.95缩短率。
为何要采用1/2波长呢?这是因为1/2波长中心抽头后两端各为1/4波长,这样天线的阻抗为50欧姆,才能够和发射机相匹配。
DP天线主要采用天波通讯,远距离通讯的效果非常好,且架设简单,不需要竖起很高的天线,制作成本低廉,因此为大多数无线电爱好者所采用。
DP天线有许多变形,下面我向大家一一做个介绍。
倒“V”天线,这是DP天线的一种变形方式,这样做的一则可以节省天线的占地面积,另一方面,可以改善原先DP天线的近距离地波通讯效果。
但这样做之后,天线具有了方向性,参见图中的最大辐射方向。
由于短波发射机可以工作在0-30M的各个波段,因此单一长度的天线就不能满足我们的需要了,而为每一个波段分别制作一根天线又不现实。
对数天线,八木天线与栅格天线的区别
对数天线,八木天线与栅格天线的区别
对数天线、八木天线和栅格天线都是不同类型的室外天线,它们在结构、性能和应用场景上存在一些区别。
对数天线:这是一种八木的升级版,增加了外层保护罩,方向性比较强。
对数周期天线价格昂贵,但可以使用在多种频率和仰角上,其方向性更强,对无用方向信号的衰减更大。
对数天线主要用于链路中继、无线电测向等,特别适用于中、短波通信。
八木天线:这是一种增益较高的定向天线,由日本东北大学的八木秀次和宇田太郞两人发明。
它具有增益较高、结构轻巧、架设方便、价格便宜等优点,特别适用于点对点的通信或者将室外信号引入到室内。
八木天线在短波通信中通常用于大于6 MHz以上频段,应用于窄带和高增益短波通信,可架设安装在铁塔上,具有很强的方向性。
八木天线的单元数越多,其增益越高,通常采用6-12单元的八木定向天线,其增益可达10-15dBi。
栅格天线:外观呈渔网状,一般用在偏远山区地方、或者偏僻的城中村,具体要看实际情况搭配套装使用。
有的栅格天线采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。
综上所述,对数天线、八木天线和栅格天线在结构、性能和应用场景上各有特点。
对数天线方向性强,适用于中、短波通信;八木天线增益高、价格便宜,适用于点对点通信和室外信号引入;而栅格天线则主要用在特定环境如偏远山区或城中村。
选择哪种天线主要取决于具体的需求和场景。
几种天线的比较
天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等.下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射.由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量.图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0。
7—0。
75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
5G天线对比(64TR_32TR)
2832
3.5G 200M 64TR
2124
3.5G 200M 32TR
站间距ISD=350米
上行/Mbps
1416
1625
1219
610
366
3.5G 200M 8TR
2.6G 160M 64TR
2.6G 160M 32TR
2.1G 2*50M
4TR
700M 2*30M
4TR
• 2.6G 64TR AAU下行容量仅略高于3.5G 32TR AAU,700M仅 解决有无问题,无法补充容量,建议在选择64TR AAU
64TR设备天线增益高,赋形能力强,空分效率高
64TR AAU天线设计
功放
32TR AAU天线设计
移相器
功放
对比分析 选型建议
64/32TR 天线垂直赋形
• 64通道TRX、PA独立,不用功分,无移相器件, 无额外插损
• 天线设计:4*8*2,水平16通道,垂直4通道, 空分效率高,水平及垂直赋形能力强。
20米
32T 64T -1.26 -0.35
0.9dB
30米
32T
64T
-1.5 -5.5
4dB
50.00% 40.00% 30.00% 20.00% 10.00%
0.00%
37.89%
43.45%
7.04%
12.06%
19.38%
1-5层
6-10层
11-15层 16-20层 21-25层
站间距ISD=350米,中国移动广州5G商用网验证
3 64TR波束增益高,空分性能优异,适应业务©量ZTE高All rig、hts res用erved户密度大、室内表层覆盖等多种场景部署
不同天线类型的极化原理
不同天线类型的极化原理一、引言无线通讯技术的快速发展使得通信系统对天线性能的需求越来越高,天线的极化类型在此背景下显得尤为关键。
天线的极化类型主要包括线极化和圆极化两种类型。
线极化又可分为垂直极化和水平极化。
不同的极化类型在不同的应用场景下具有不同的优势和劣势。
本文将分别阐述线极化和圆极化的原理和应用场景。
二、线极化线极化是一种较为常见的天线极化类型,也是目前应用最广泛的一种。
线极化分为两种类型:垂直极化和水平极化。
1.垂直极化原理垂直极化是指电磁波在空间中的电场矢量垂直于地面的一种天线极化类型。
一般电视、电台和移动通信系统中的基站都采用垂直极化,因为这种极化在水平面上传输距离更远和相对稳定。
图1 垂直极化在图1中,发射天线所产生的电磁场垂直于天线的方向,也就是垂直于地面。
在接收端,接收天线所接收到的信号的电场矢量也应该是垂直于地面的。
2.水平极化原理水平极化是指电磁波在空间中的电场矢量平行于地面的一种天线极化类型。
一般无线麦克风、雷达和天空信号接收器等应用采用水平极化。
图2 水平极化在图2中,发射天线所产生的电磁场平行于天线的方向,也就是平行于地面。
在接收端,接收天线所接收到的信号的电场矢量也应该是平行于地面的。
三、圆极化除了线极化外,还有一种天线极化类型为圆极化。
圆极化是指电磁波在空间中的电场矢量作圆形运动的一种天线极化类型。
图3 左旋和右旋圆极化1.左旋圆极化和右旋圆极化圆极化分为两种类型:左旋圆极化和右旋圆极化。
其交替变化的次数每秒要达到一定的频率才能实现,这个频率叫做圆极化频率。
圆极化常用于卫星通信、无线电监测设备以及CT扫描仪等医疗设备中。
在图3中,左旋圆极化的电场矢量沿着逆时针方向旋转;右旋圆极化的电场矢量沿着顺时针方向旋转。
在通信过程中,若发射端以右旋圆极化方式工作,那么接收端必须使用左旋圆极化天线才能收到数据。
同样地,若发射端以左旋圆极化方式工作,那么接收端必须使用右旋圆极化天线才能收到数据。
民用级无线路由的天线标准
民用级无线路由的天线标准
3. 天线类型:常见的无线路由器天线类型包括全向天线、定向天线和扇形天线。全向天线 可以在360度范围内辐射信号,适用于覆盖较广的场景;定向天线可以将信号集中在特定方 向上,适用于远距离传输;扇形天线则可以在特定角度范围内辐射信号,适用于有方向性需 求的场景。
民用级无线路由的天线标准
民用级无线路由器的天线标准通常涉及到无线频段、增益和天线类型等方面。以下是一些 常见的民用级无线路由器天线标准:
1. 2.4GHz和5GHz频段:大多数民用级无线路由器支持2.4GHz和5GHz两个频段。 2.4GHz频段具有更好的穿透能力,但速度较慢;5GHz频段具有更高的速度,但穿透能力较 差。
常用卫星通信天线介绍
常用卫星通信天线介绍天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
一文看懂PCB天线、FPC天线、LDS天线的特性
⼀⽂看懂PCB天线、FPC天线、LDS天线的特性物联⽹、智能硬件产品,要联⽹传输数据,都需要有天线。
空间越⼩、频段越多,天线设计越复杂。
外置天线⼀般都是标准品,买频段合适的,⽆需调试,即插即⽤。
例如快递柜、售货机这些,普遍使⽤磁吸的外置天线,吸在铁⽪外壳上即可。
这些天线不能放在铁⽪柜⾥⾯,⾦属会屏蔽天线信号,所以只能放在外⾯。
好处是使⽤⽅便、价格便宜,坏处是不能⽤在⼩尺⼨产品上。
天线的长度⼤约是电磁波波长的1/4,所以信号频率越低,天线的长度越长。
因此100MHz左右的FM收⾳机需要长杆天线,400MHz左右的对讲机,也需要⽤外置长杆天线。
物联⽹常⽤的433MHz的⽆线串⼝,通常也⽤外置天线。
天线做的更短,如1/8波长或1/16波长,也能⽤,只是效率会下降。
某些设备会采⽤“短天线+LNA”的⽅式,也能达到长天线的接收效果。
但是短天线要达到长天线的发射效果,就需要提升发射功率了,因此对讲机需要发射信号,都是长的外置天线,⽽FM收⾳机只收不发,有内置接收天线。
例如2G(900MHz)、4G(700-2600MHz)、WIFI和蓝⽛(2.4GHz)、GPS(1.5GHz),这些常⽤的物联⽹通信⽅式,可以做内置天线。
对于⼿持机、穿戴设计、智能家居等⼩尺⼨产品,很少使⽤外置天线,普遍采⽤内置天线。
集成度⾼,产品外观更美观,性能⽐外置天线略弱⼀点。
内置天线主要有:陶瓷天线、PCB天线、FPC/钢⽚天线、LDS天线陶瓷天线陶瓷天线,在物联⽹产品中⽤的最多的,就是GPS天线和蓝⽛天线了。
优点是:占⽤空间很⼩、性能⽐较好。
缺点是:很难做到多频段,因此难以应⽤在4G类产品中。
对电路板净空要求⽐较⾼,不适⽤于特别紧凑的产品。
GPS、蓝⽛和GSM陶瓷天线PCB天线上⾯讲了,天线就是⼀根特定长度的导线。
这根线也可以画在PCB板上,这就是PCB 天线。
PCB天线⼤量应⽤于蓝⽛模块、WIFI模块、ZIGBEE模块等单⼀频段的模块电路板上。
双极化天线和单极化天线的区别
双极化天线和单极化天线的区别
垂直单极化天线与双极化天线的比较:从发射的角度来看,由于垂直于地面的手机更容易与垂直极化信号匹配,因此垂直单极化天线会比其他非垂直极化天线的覆盖效果要好一些。
特别是在开阔的山区和平原农村就更明显。
实验证明,在开阔地区的山区或平原农村,垂直极化天线的覆盖效果比双极化(±45°)天线更好。
但在城区由于建筑物林立,电磁波经过建筑物表面的多次反射、建筑物内外的金属体和金属氧化膜玻璃都很容易使极化发生旋转,因此无论是垂直极化还是±45°极化天线在覆盖能力上没有多大区别。
从接收的角度来看,由于垂直极化天线要用两根天线才能实现分集接收,而双极化天线只要一根就可以实现分集接收,因此单极化天线需要更多的安装空间,且在以后的维护工作方面要比双极化天线要大。
另外空间分集与极化分集增益差别不大。
从天线尺寸方面来说由于双极化天线中不同极化方向的振子即使交叠在一起也可保证有足够的隔离度,因此双极化天线的尺寸不会比单极化天线更大。
偶极子天线和单极子天线的半功率波束宽度
偶极子天线和单极子天线的半功率波束宽度摘要:1.偶极子天线和单极子天线的定义和基本原理2.半功率波束宽度的定义及其与天线性能的关系3.偶极子天线和单极子天线的半功率波束宽度比较4.影响偶极子天线和单极子天线半功率波束宽度的因素5.结论与展望正文:1.偶极子天线和单极子天线的定义和基本原理偶极子天线和单极子天线是两种常见的无线电天线类型。
偶极子天线由两个相等长度的导线组成,它们平行放置并保持一定的间距。
单极子天线则是由一根垂直于地面的导线组成。
这两种天线都利用电磁波的特性来传输信号。
2.半功率波束宽度的定义及其与天线性能的关系半功率波束宽度是指天线发射或接收电磁波时,能量衰减到一半的角度范围。
这个参数反映了天线的方向性性能,对于通信、广播等应用具有重要意义。
通常情况下,半功率波束宽度越窄,天线的方向性性能越好。
3.偶极子天线和单极子天线的半功率波束宽度比较偶极子天线的半功率波束宽度相对较窄,具有较好的方向性性能。
这是因为偶极子天线在发射和接收电磁波时,能量主要集中在两个导线之间的空间。
而单极子天线的半功率波束宽度相对较宽,因为单极子天线在发射和接收电磁波时,能量分布较为分散。
4.影响偶极子天线和单极子天线半功率波束宽度的因素偶极子天线和单极子天线的半功率波束宽度受多种因素影响,包括天线长度、间距、工作频率等。
一般来说,天线长度和间距越大,半功率波束宽度越窄;工作频率越高,半功率波束宽度越宽。
5.结论与展望通过对偶极子天线和单极子天线的半功率波束宽度进行比较,可以发现偶极子天线具有较好的方向性性能。
然而,在实际应用中,还需根据具体情况选择合适的天线类型。
弹簧天线作用分类有哪些优缺点
弹簧天线作用|分类有哪些优缺点在无线通信领域中,弹簧天线扮演着非常重要的角色,并且在很多项目方案中常与无线模块配合使用。
下面本文将详细介绍弹簧天线的作用、分类,以及有哪些优缺点。
希望通过本篇文章,能够帮助到大家。
一、弹簧天线作用弹簧天线在无线通信中是很重要的一部分,其作用是辐射和接收无线电波。
发射时,把高频电流转换为电磁波;接收时,把电磁波转换为高频电流。
简单来说,就是接受发射信号。
二、弹簧天线分类1、按频率分类:315MHz弹簧天线,433MHz弹簧天线,868/915MHz弹簧天线,470/490MHz弹簧天线。
2、按材质分类:镀金弹簧天线、铜质弹簧天线、镀镍弹簧天线。
三、弹簧天线有哪些优缺点优点:弹簧天线的成本相对于其他天线比较低,并且尺寸小、易安装,天线驻波比性能好,具有很好的防振动防老化能力。
无线模块与天线配合使用,可以让无线传输距离更远。
缺点:其增益比较小,而且不防水,一般作为内置天线使用。
一般无线模块使用天线有:弹簧天线、棒状天线、吸盘天线,吸盘天线相对来说价格比弹簧和棒状天线要贵一些。
选择天线的时候主要看频率、增益、阻抗、驻波比、材质、大小等参数是否符合自己的需求。
常见的弹簧天线产品图以上就是弹簧天线作用以及分类,以及优缺点。
大家选择天线的时候可以根据项目实际情况来选择。
思为无线的弹簧天线型号有:镀金弹簧天线SW315-TH23、铜质弹簧天线SW433-TH10、433MHz镀金弹簧天线SW433-TH22、SW433-TH32、433MHz镀镍弹簧天线SW433-TH32DN等,大家可通过思为无线网站产品详情页了解相关产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线
抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线
抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线
卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。
缺点是副反射面极其支干会造成一定的遮挡。
图2 卡塞格伦天线
3.格里高利天线
格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。
与卡塞格伦天线不同的是,它的副反射面是一个椭球面。
馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重合。
格里高利天线的许多特性都与卡塞格伦天线相似,不同的是椭球面的焦点是一个实焦点,所有波束都汇聚于这一点。
图3格里高利天线
4.环焦天线
对卫星通信天线的总要求是在宽频带内有较低的旁瓣、较高的口面效率及较高的G/T值,当天线的口面较小时,使用环焦天线能较好地同时满足这些要求。
因此,环焦天线特别适用于VSAT地球站。
环焦天线由主反射面、副反射面和馈源喇叭三部分组成,结构如图4所示。
主反射面为部分旋转抛物面,副反射面由椭圆弧CB绕主反射面轴线OC旋转一周构成,馈源喇叭位于旋转椭球面的一个焦点M上。
由馈源辐射的电波经副反射面反射后汇聚于椭球面的另一焦点M’,M’是抛物面OD 的焦点,因此,经主反射面反射后的电波平行射出。
由于天线是绕机械轴的旋转体,因此焦点M’构成一个垂直于天线轴的圆环,故称此天线为环焦天线。
环焦天线的设计可消除副反射面对对电波的阻挡,也可基本消除副反射面对馈源喇叭的回射,馈源喇叭和副反射面可设计得很近,这样有利于在宽
频带内降低天线的旁瓣和驻波比,提高天线效率。
缺点是主反射面地利用率低,如图4所示,AA’间的区域没有作用。
图4环焦天线
5.偏馈型天线
无论是抛物面天线,还是卡塞格伦天线,都有一个缺点,总有一部分电波能量被副反射面阻挡,造成天线增益下降,旁瓣增益增高。
可以使用天线偏馈技术解决这个问题。
所谓偏馈天线,就是将馈源和副反射面移出天线主反射面的辐射区,这样就不会遮挡主波束,从而提高天线效率,降低旁瓣电平。
偏馈型天线广泛应用于口径较小的地球站。
这类天线的几何结构比轴对称天线的结构要复杂得多,特别是双反射面偏馈型天线,其馈源、焦距的调整要复杂得多。
图5偏馈天线
6.双频段天线
如果使用频率选择表面(FSS)作副反射面,就可以构成双频段天线。
FSS是一种空间滤波器,通过在空间放置周期性的金属贴片或金属缝隙构成,它在某些频率可让电磁波无衰减的通过,而在另外一些频率将电磁波完全反射。
其结构及电磁特性如图6所示,在频率f1电磁波被完全反射,在频率f2电磁波完全通过。
如果我们使用这样的FSS作副反射面,并使馈源1工作在f1,馈源2工作在f2,则两个馈源可无干扰地工作在同一副天线上,如图7所示。
利用相同地原理,可制成多频段天线,这种技术已在卫星上得到应用。
这种天线地优点是可有效利用反射面,降低天线重量。
图6 FSS的结构及电磁特性
图7双频段天线。