八年级数学《1.1 分式--分式的值》教学课件(1)
人教版八年级上册数学《分式的基本性质》分式PPT教学课件(第1课时)
同类题检测:平板推题
1.下列分式中,是最简分式的是
(填序号).
x3 (1)
3x
;(2)x+y 2x
;(3) c
c 2+7c
;(4)xx2++yy2
;(5)xx2++yy2 .
2.下列约分正确的是( ) A. 2(b c) 2 a 3(b c) a 3
B.
(a b)2 (b a)2
1
C.
的分子分母中各项的系数都化为整数,
4
结果为
。
自学释疑、拓展提升
知识点二:分式的约分 自学问题:分式约分的关键是约去公因式,对于分子分母是多项式的需
要先进行因式分解后再约去公分母;约分进行式子变形时,易忽略分子 与分母的符号变化。 学生典型问题展示: 展示《15.1.2分式的基本性质(1)课前自测》中第5、6题的正确率 ,以及做错的学生的错题选项;学案上知识点二学生中存在问题图片展 示。 问题解决: 问题1:观察教材129页例2(1)中的两个分式,在变形前后的分子、分 母有什么变化?类比分数的相应变形,你联想到什么? 归纳总结: 根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分
A.x<0 B.x>0 C.x≠0 D.x≠0且x≠-2
2.下列等式:①
(a b) a b
c
c
x y ;② x
x y x
a b a b
;③ c
c
;④
m n m n
m
m
中,成立的是( )
A.①②
B.③④
C.①③a
D.②④
0.4b
3.不改变分式的值,将分式
2 0.6a 3 b
课前检测和学案整体完成情况较好的学生:图片展示(课前自主学习整体完成优秀展示)
新人教版-八年级(初二)数学上册-分式章节-分式的化简求值(1).讲义教师版
内容 基本要求略高要求较高要求分式的概念 了解分式的概念,能确定分式有意义的条件能确定使分式的值为零的条件分式的性质 理解分式的基本性质,并能进行简单的变型能用分式的性质进行通分和约分分式的运算 理解分式的加、减、乘、除运算法则会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题一、比例的性质: ⑴ 比例的基本性质:a cad bc b d=⇔=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项⑶ 反比性(把比例的前项、后项交换):a c b db d a c=⇒=⑷ 合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kdb d b d±±=⇒=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m ab d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c⋅÷=⨯=⋅乘方:()n nn nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数) 整数指数幂运算性质:⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)知识点睛中考要求分式的化简求值(1)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a bc c c+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、化简后直接代入求值【例1】 先化简再求值:2111x x x---,其中2x = 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南郴州【解析】原式()()111x x x x x =---()111x x x x-==-当2x =时,原式112x ==【答案】12【例2】 已知:2221()111a a a a a a a ---÷⋅-++,其中3a =【考点】化简后直接代入求值 【难度】2星 【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【巩固】先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =- 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考例题精讲【解析】()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭- 当1a =-时,原式112123a a -===---【答案】13【例3】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=⋅+-+-+ ()()12x x x =-+-22x =-当x 时,原式224=-=.【答案】4【例4】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +- 当5-=x 时,原式21x x =+-521512+-=-=-. 【答案】12【巩固】先化简,再计算:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中3a =. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南省岳阳市中考试题【解析】原式2223221a a a a a a +--⎛⎫=+⨯⎪--+⎝⎭()()22121a a a a a +-+=⨯-+ 2a =+【答案】2a +【例5】 当12x =-时,求代数式22226124111x x x x x x x x ⎛⎫++-+-+÷ ⎪--+⎝⎭的值 【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(1)1(1)(1)2413x x x x x x x x x x -++=⨯==+--+- 【答案】13【例6】 先化简分式22222936931a a a a a a a a a ---÷-+-+-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省深圳市中考试题【解析】原式()()()()223332313a a a a a a a a a a a a +-+-=⋅-=+=--+ 当0123a =,,,时,原式0246=,,, 【答案】0,2,4,6【巩固】先化简:22222a b ab b a a ab a⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,再从22a -<<的范围内选取一个合适的整数a 代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,贵州省贵阳市中考试题【解析】原式()()()()22221a b a b a ab b a b a a a b a a a ba b +-+++=÷=⋅=-++在22a -<<中,a 可取的整数为101-,,,而当1b =-时,①若1a =-,分式222a b a ab--无意义;②若0a =,分式22ab b a +无意义;③若1a =,分式1a b+无意义. 所以a 在规定的范围内取整数,原式均无意义(或所求值不存在)【答案】a 在规定的范围内取整数,原式均无意义(或所求值不存在)【巩固】已知212242xA B C x x x ===--+,,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值其中3=x . 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,河南省中考试题【解析】选一:()()()21221242222x x x A B C x x x x x x x +⎛⎫-÷=-÷=⨯= ⎪--++--⎝⎭ 当3x =时,原式1132==- 选二:()21212124222x A B C x x x x x x x -÷=-÷=-=--+--,当3x =时,原式13=【答案】选一:当3x =时,原式1132==- 选二:当3x =时,原式13=【例7】 先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a +++÷--÷-+,其中4a =【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(3)5(2)(2)[2](34)(2)a a a a a a a a +++=÷--÷-+4(3)(2)(2)5(34)(2)2a a a a a a +-+-=÷-++ 4(3)2(34)(2)(3)(3)a a a a a a ++=⋅-+-+4(34)(3)a a =-- 当4a =时,原式441(34)(3)(344)(43)2a a ===--⨯--本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似,分式的四则混合运算 的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 【答案】12【例8】 已知22a b ==a bb a-的值. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北荆门市中考试题【解析】∵22a b =+=∴4a b +=,a b -=,1ab =而a b b a -22()()a b a b a b ab ab -+-==∴a b b a -=()()a b a b ab+-==【答案】【例9】 先化简,再求值:()()x yy x y x x y -++,其中11x y ==,. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南湘潭市中考试题【解析】原式()()22x y xy x y xy x y =-++ ()22x y xy x y -=+()()()x y x y xy x y -+=+x y xy-=当 11x y ==,时,11221x yxy--=== 【答案】2【例10】 化简,再求值:11-a b b a ⎛⎫+ ⎪+⎝⎭ab a b ÷+.其中1a =, b =. 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,黄石市中考试题【解析】原式()()()()()2b a a b a b a b b a ab a b b++-+=⋅=-+-∵1a b ==,∴原式1b ==,∴=【巩固】先化简,再求值:22112b a b a b a ab b⎛⎫-÷ ⎪-+-+⎝⎭,其中11a b ==-【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,宣武一模试题【解析】原式()()()()()()22a b a b a b a b a b a b b a b+----=⋅=-++当11a b ==-==【答案】【例11】 先化简,再求值:22211x yx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中11x y ==, 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,广西桂林中考试题 【解析】原式2222222x y x y x yx y x y x y ⎛⎫+-=+÷ ⎪---⎝⎭ 22222x y x y x y x y x y++--=⨯- 222x x y xy==当11x y ==,原式22131xy====-【答案】1【例12】 求代数式()()22222222222a b c a b c ab ac a a ab ab a b a b -----+⋅÷-++-的值,其中1a =,12b =-,23c =- 【考点】化简后直接代入求值 【难度】3星 【题型】解答 【关键词】【解析】()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++-()()()()2a b c a a b c a b c a b a b a a b a b c a b c a b -+-+--+-=⋅⋅-+--++a b ca b --=+. ∴当1a =,12b =-,23c =-时,原式12123112++=-1313263=⨯=. 【答案】133二、条件等式化简求值1. 直接换元求值【例13】 已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,石景山二模【解析】由2244a b ab +=得2b a =原式2a ba b-=+当2b a =时,原式42a aa a-=+1=-【答案】1-【例14】 已知:34x y =,求2222222x y xy y x xy y x xy -+÷-+-的值【考点】直接换元求值(分式)【难度】3星 【题型】解答 【关键词】【解析】2222222()()()32()()4x y xy y x y x y y x y x x xy y x xy x y x x y y -++-+÷=÷==-+--- 【答案】34【巩固】已知x y z ,,满足235x y z z x ==-+,则52x yy z-+的值为( ) A.1 B.13C.13-D.12【考点】直接换元求值(分式) 【难度】4星 【题型】选择【关键词】2007年,全国初中数学联赛试题【解析】B ;由235x y z z x ==-+得332y x z x ==,,∴55312333x y x x y z x x --==++ 【答案】13【例15】 已知12=x y ,求2222222-⋅+-++-x x y y x xy y x y x y 的值. 【考点】直接换元求值(分式)【难度】2星 【题型】解答【关键词】2010年,海淀一模【解析】y x y y x y x y xy x x-++-⋅+-2222222 22()()2()x x y x y yx y x y x y -+=⋅++--22()x y x y x y =+--2()()x y x y +=-.当21=y x 时,x y 2=. 原式2(2)6(2)x x x x +==--.【答案】6-【例16】 已知221547280x xy y -+=,求xy的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答 【关键词】【解析】221547280x xy y -+=,∴(37)(54)0x y x y ++=,∴370x y +=或540x y +=,由题意可知:0y ≠,73x y =-或45x y =-. 【答案】45-【巩固】已知22690x xy y -+=,求代数式 2235(2)4x yx y x y+⋅+-的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,海淀二模【解析】22690x xy y -+=,2(3)0x y -=.∴ 3x y =. ∴原式35(2)(2)(2)x yx y x y x y +=⋅++-352x yx y +=-3(3)52(3)y yy y+=-145=. 【答案】145【例17】 已知x =,求351x x x ++的值.【考点】条件等式化简求值 【难度】4星 【题型】解答【关键词】降次,整体置换【解析】21x -=21x x =+,0x ≠.则()233245555111x x x x x x x x x x x++++=====【例18】 已知123a b c a c ==++,求ca b+的值. 【考点】直接换元求值(分式) 【难度】4星 【题型】解答【关键词】第8届,华罗庚金杯复赛【解析】23b c a a c a +=⎧⎨+=⎩22b c a c a +=⎧⇒⎨=⎩02b c a =⎧⇒⎨=⎩,所以220c aa b a ==++.【答案】2【例19】 已知22(3)0x y a b -+-=,求32223322232332a x ab y b xya x ab y b xy++++的值.【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】第9届,华罗庚金杯总决赛1试【解析】由已知可得:2y x =,3a b =,故原式7297=. 【答案】7297【巩固】已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由已知可得22230a ab b --=,则(3)()0a b a b -+=,所以3a b =或a b =-∵0a >,0b >,∴3a b =,则23255322a hb b b a b b b b ++===-- 【答案】52【巩固】已知分式1x y xy+-的值是m ,如果用x ,y 的相反数代入这个分式,那么所得的值为n ,则m 、n 是什么关系?【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】 【解析】由题可知:()()()1.1x y m xy x y n x y +⎧=⎪-⎪⎨-+-⎪=⎪---⎩,①② 由②得:11x y x y n m xy xy--+==-=---. ∴m n =-,∴0m n +=.所以m n ,的关系为互为相反数.【答案】m n ,的关系为互为相反数【例20】 已知:233mx y +=,且()22201nx y x y -=≠≠-,.试用x y ,表示m n. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】∵0x ≠,∴由233mx y +=,得:()()231133y y y m x x +--==.由222nx y -=,得:222122y y n x x ++==. ∵1y ≠-,∴0n ≠, ∴()()()231121y y y m n x x +-+=÷()()()231121y y x x y +-=⋅+()312x y -=. 【答案】()312x y -【例21】 已知:230a b c -+=,3260a b c --=,且0abc ≠,求3332223273a b c ab bc a c-++-的值. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由题意可知:2303260a b c a b c -+=⎧⎨--=⎩,解得43a c b c =⎧⎨=⎩,333322233215173453a b c c ab bc a c c -+-==-+- 【答案】13-【巩固】已知方程组:230230x y z x y z -+=⎧⎨-+=⎩(0xyz ≠),求:::x y z 【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】【解析】把z 看作已知数,解关于x 、y 的方程组,解得5y z =,7x z =,所以::7:5:1x y z =.【答案】::7:5:1x y z =【例22】 设自然数x 、y 、m 、n 满足条件58x y m y m n ===,求的x y m n +++最小值. 【考点】直接换元求值(分式)【难度】5星【题型】解答【关键词】黄冈市初中数学竞赛 【解析】58x y =,58y m =,85m y =,864525n m y ==,从而y 是825200⨯=的倍数,当200y = 586412520032051211578525x y m n y y y y +++=+++=+++= 【答案】1157【例23】 设有理数a b c ,,都不为0,且0a b c ++=, 则222222222111b c a c a b a b c +++-+-+-的值为___________。
八年级数学上册第1章分式全章教学课件湘教版
1
3 4
6
8
9 ;
12
2
6 18
3
9
1.
3
分式的分子、分母都乘同一个 不为0的数,分式的值不变;
分式的分子、分母都除以它们 的公约数,分式的值不变。
对于分式是否也有类似于分数的性质?如 果有,分式的分子、分母应当都乘或除以一个 什么式子?
有类似分数的性质.分式的分子、 分母应当乘同一个非零整式。
2x 3
求下列条件下分式 x 5 的值:
x6
(1)x=3;
(2)x=-0.4.
1.分式也是代数式,求分式的值就是将字母 的值代入分式进行计算求值;
2.求分式的值要注意符号,结果是分式的要 约分化成最简分数 .
解: (1) 当x=3时, x 5 3 5 2 . x6 36 9
(2) 当x=-0.4时, x 5 0.4 5 5.4 27 . x 6 0.4 6 5.6 28
当x取什么值时,分式
x2 2x 3
的值
(1)不存在; (2)等于0?
(1)分式的值不存在,就是分式无意义,此时 分式的分母等于0;
(1)分式的值等于0,必须分子等于0时,同时 满足分母不等于0 .
解: (1) 当分母2x-3=0,即x= 3 时,分子的 2
值不存在.
(2) 当分子x-2=0,即x=2时,分母2x-3≠0, 分式 x 2 的值等于0.
分式的分子、分母都除以它们的一个公因 式,所得分式与原分式相等。
你能用公式表示分式除以分子、分母的一个 公因式的性质吗?
f mk m . g nk n
下列等式是否成立?为什么?
成立.把分式的分子、分母都乘-1, 即可由每个等式的左边得出右边。
人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3
8
8
x 2 2x 15 x 2 16x 48
x2
x2x159
x2
16x
48
2
经检验, x 9 是原方程的根
2
11 1 1 x 3 x 4 x 5 x 12
1 1 11 x 3 x 12 x 5 x 4
2x 9 0
x
2x
3x
9 12
x
2x 9
5x
4
x 9 2
x2 9x 36 x2 9x 9
经检验, x 9 是 2
原方程的根
例3 :解方程 y 4 y 5 y 7 y 8 y5 y6 y8 y9
点拨: 此方程的特点是:各分式的分子与分母的次数相
同, 这样一般可将各分式拆成: 整式+分式 的形式。
解:1 1 1 1 1 1 1 1
y 5
y6
y 8
y9
1
1
1
y 1 y 2y01yy12y1,y2102yyy1121y,y220 20
下面的过程请同学们自己完成 相信你们能行
以下各方程能利用换元法进行换元吗?
x x2 1
x2 1 x
5 2
能 y 1 5 y2
( x )2 5( x ) 3 能 y2 5y 3
x 1
x 1
x2 x2
1 1
3(x2 1) x2 1
2x
0
不能
小结
有些分式方程用常规方法-----------去分母,是很复 杂 ,甚至无法求解,有时要采取其他的方法
①采取局部通分法,会使解法很简单.这种解 法称为 ——通 分 法
②各分式的分子、分母的次数相同,且相差 一定的数,可将各分式拆成几项的和。这种 解法称为 —— 拆 项 法
北师大版数学八年级下册《第五章 分式与分式方程 1 认识分式 第1课时 分式的概念》教学课件
第1课时 分式的概念
北师版 八年级下册
新课导入
面对日益严重的土地沙漠化问题,某县决定在
一定期限内固沙造林2400hm2,实际每月固沙造林
的面积比原计划多30hm2 ,结果提前完成原计划的
任务.如果设原计划每月固沙造林xhm2,那么
(1)原计划完成造林任务需要多少月? 2 4 0 0
b a x
上面问题中出现了代数式 2 4 0 0 , 2 4 0 0 ,
35a 45b , b
x
x + 30
,它们有什么共同特征?
ab a x
观察下列两组式子,它们都是整式吗? 它们有什么特点? (1)a,-3x2y3,5x-1,x2+xy+y2 (2) 2 ,y,a ,c
m-n x 9a-1 ab
x2
A. ±2
B.2 C. -2
D.4
分析 分式的值为零,即分子为零且分母不为零. 根据题意,得x2-4=0且x-2≠0, 解得x=-2.
3.有下列式子:①x; ②y2; ③5; ④x2 .
3 y x2
其中是分式的有( B )
A. 1个
B.2个 C. 3个
D.4个
课后小结
一般地,.只要分母不 等于零,分式就有意义;
(2)有关求分式有意义、无意义的条件的问题, 常转化为不等式的问题.
分式的值为零的条件
分式的值为零的条件:分子为零,分母不为零. 用式子表示:B A=0A=0且B0 例 当x为何值时,分式 x 2 9 的值为零.
x3
[分析] 分式的值为零 分 分子 母= 00xx239 解出x的值.
解 依题意,得
x 2 9 = 0 ①
湘教版数学八年级上册《1.1 分式》教学设计
湘教版数学八年级上册《1.1 分式》教学设计一. 教材分析湘教版数学八年级上册《1.1 分式》是学生在学习了有理数、实数等知识后,进一步对数学概念和数学表达式的深入学习。
本节课主要介绍了分式的概念、分式的性质、分式的运算等。
教材通过丰富的例题和练习题,帮助学生掌握分式的基本知识,培养学生解决实际问题的能力。
二. 学情分析学生在七年级时已经学习了有理数、实数等知识,对数学概念和数学表达式有一定的理解。
但是,对于分式的概念和性质,学生可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对于分式的运算规则和技巧还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解分式的概念,掌握分式的性质。
2.学会分式的基本运算,提高解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.分式的概念和性质的理解。
2.分式的运算规则和技巧的掌握。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解分式的概念和性质。
2.使用实例和练习题,让学生通过动手操作和思考来掌握分式的运算规则和技巧。
3.采用小组合作的学习方式,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.教材和教学参考书。
2.投影仪和幻灯片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过向学生提出实际问题,引发学生对分式的思考,进而导入本节课的主题。
示例问题:某商品的原价是100元,现在打8折出售,求打折后的价格。
2.呈现(10分钟)通过幻灯片向学生介绍分式的概念和性质。
分式的概念:分式是形如a/b的表达式,其中a和b是整式,b不为0。
分式的性质:分式的分子和分母都可以乘以(或除以)同一个非零整式,分式的值不变。
3.操练(10分钟)让学生通过动手操作,解决一些简单的分式问题,巩固对分式的理解。
练习题:求分式的值。
1.1/2 + 2/32.3/4 - 1/23.1/3 × 4/54.巩固(10分钟)让学生通过解决实际问题,运用分式的知识。
人教八年级数学上册《分式的加减 第1课时:分式的加减法法则》精品教学课件
2
p
1
3q
-
2
1 p-3q
.
解:(1)
2
p
1
3q
2
1 p-3q
=
(2
p
2 p-3q 3q)(2 p-3q)
(2
p
2 p 3q 3q)(2 p-3q)
2 p-3q 2 p 3q (2 p 3q)(2 p-3q)
(2 p
4p 3q)(2 p-3q)
通分
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
1
8 a2 4
8(a2 4) 8(a2 1) (a2 1)(a2 4) (a2 1)(a2 4)
8(a2 4) 8(a2 1)
(a2 1)(a2 4)
8(a2 4 a2+1) (a2 1)(a2 4)
(a2
24 1)(a 2
4)
.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
3q2 p
3q
3q
2p
6q
3q2 p
3q
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
异分母分式相加减的一般步骤: (1)通分:将异分母分式转化为同分母分式; (2)加减:写成分母不变、分子相加减的形式; (3)合并:若分子有括号,则先去括号、再合并同类项; (4)约分:分子、分母约分,将结果化成最简分式或整式.
1+ 1 两队共同工作一天完成这项工程的__n___n___3_.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
问题2:2019年、2020年、2021年某地的森林面积 (单位:km2) 分别是S1,S2,S3,2021年与2020年相比,森林面积增长率提高了 多少?
湘教版八年级上册数学精品教学课件 第1章分式 可化为一元一次方程的分式方程 第2课时 分式方程的应用
们同时到达,已知汽车的速度是自行车的 3 倍,求两车
的速度.
解:设自行车的速度为 x 千米/时,那么汽车的速度是
3x 千米/时,依题意得:
15 15 2 . 3x x 3
解得 x=15.
经检验,x=15 是原方程的根. 由 x=15 得 3x=45.
答:自行车的速度是15千米/时,汽车的速度是45千米/时.
因此 x = 2200 是原方程的根,且符合题意.
答:该款空调补贴前的售价为每台 2200 元.
2. 一轮船往返于 A、B 两地之间,顺水比逆水快 1 小时到
达.已知 A、B 两地相距 80 千米,水流速度是 2 千米/时,
求轮船在静水中的速度.
解:设船在静水中的速度为 x 千米/时,根据题意得
80 80 1. x2 x2
答:面包车的速度为 100 km/h,小轿车的速度为 90 km/h.
做一做 1.小轿车发现跟丢时,面包车行驶了 200 km,小轿车 行驶了 180 km,小轿车为了追上面包车,他就马上提 速,他们约定好在 300 公里的地方碰头,他们正好同 时到达,请问小轿车提速多少 km/h?
0
180 200
甲的工1作效(1率 1是) 13
,根据题意得 1 1 1, 即
3
2 x2
1 1 2 2x
1.
方程两边同乘 2x,得 x 1 2x.
解得 x = 1.
检验:当 x = 1 时,2x≠0. 所以,原分式方程的解为 x = 1. 由上可知,若乙队单独施工 1 个月可以完成全部
任务,而甲队单独施工需 3 个月才可以完成全部任务, 所以乙队的施工速度快.
车行驶了 200 km 时,发现小轿车只行驶了 180 km,若 面包车的行驶速度比小轿车快 10 km/h,请问面包车、 小轿车的速度分别为多少?
湘教版数学八年级上册:1.1分式(共44张PPT)
1.分式的定义:
类似地,一个整式f 除以一个非零整式 g
(g 中含有字母),所得的商
f g
叫作分
式,其中f 是分式的分子,g 是分式的分母
,g≠0.
如:式子 理解:
S x
,xa ++ by
a ,__6_-0__4__ 都是分式.
①分式就是表示两个整式_相__除__的式子,其
中分母含有字__母__. ②分式与整式的区别是_看_分__母__是__否__含_有__字__母_
(2 ) _____________ 5x2
(3)
x
5x 2-3
x
=(
x
5
-3
)
x2 +xy
(4)____________
x+y
x __________ = 1 ( )
3.根据分式的基本性质确定分子与分母的 符号变化
(1)
1--aa2
=(
a2 -1
a
)
4x 5
-4x w ( ) ____________
则它的宽为___Sx____m;
2. 如果两块面积分别为x公顷,y公顷的稻
田,分别产稻谷a kg,b kg,那么这两
块稻田平均每公顷产稻谷__xa_++__by___kg.
分式
本节课的学习目标
1.类比分数的定义理解掌握分式的定义; 2.知道分式有意义的条件是什么; 3.知道分式的值等于0的条件是什么;
4.分数 2 与 4 有什么区别? 5 10
其中 2 称为_最__简__分数; 4 中的分
5
10
子与分母有公__因__数__2_,可以约去公__因__数__2
《分式》PPT教学课件(第1课时)
a b2 a b2
1
b a4 a b4 a b2 .
注意 判断一个分式是不是最简分式,要严格按照定义来 判断,就是看分子、分母有没有公因式.分子或分母 是多项式时,要先把分子、分母因式分解.
三 分式的求值
分式的求值 对一些较复杂的分式求值,应先约分化简,再代入具体数据 求值.常用方法有整体代入法,倒数法,换元法和配方法等.
课堂小结
❖分式的概念 ①分子分母都是整式; ②分母中必含有字母. ❖分母中字母的取值不能使分母值为零,否则分式无意义. ❖当分子为零且分母不为零时,分式值为零. ❖分式的基本性质
课后作业
见《学练优》本课时练习
第十二章 分式和分式方程
分式
第2课时
学习目标
1.理解约分和最简分式的意义.(难点) 2.根据定义找出分式中分子与分母的公因式,并会约分. 3.理解分式求值的意义,学会根据已知条件求分式值.(重点)
1
;
2
a b
b a
2 4
;
3
x2
y 8x 8
.
解析: 最简分式: x2 y2 ; x2 2x 1 .
y2 2x2 8x 8
不是最简分式:
m2 2m 1 m2
1
;
a b
b a
2 4
.
m2 2m 1 m 12 m 1;
1 m2
m 1m 1 m 1
分式的特点 分式的特征是: ①分子、分母 都是 整式 ;
②分母中含有 字母 .
二 分式有(无)意义及分式值为0
观察与思考
探究 求下列分式的值:
x … -2 -1
0
1
2…
x x-2 …
1 2
1 3
名师课堂湘教版八年级数学上册课件1.1第1课时分式
=
v-v0
t
整数 整数 分数
整式(A) 整式(B) 分式(AB )
判断:下面的式子哪些是分式?
2 bs
4 5b c
3000 2 300 a 7
5 5x 7
VS S 32
x2 xy y2 2x 1
2x2 1 5
3x2 1
分式:
A思考:
B1、分式 的分母有什么条件限制?
当B=0时,分式 A 无意义.
A
当B≠0时B,分式
BA B
有意义.
2、当
A B
=0时分子和分母应满足什
么条件?
当A=0而 B≠0时,分式 B A的值为零.
例1
当x取何值时,分式
x2 2x 3Leabharlann 的值(1)不存在;
(2)等于0?
解:(1)当分母2x-3=0,即x= 3 时,分子的值
为
3
2
0
,因此当x=
1.1 分式
第1课时 分式
问题 :一艘轮船在静水中的最大航速是20千米/ 时,它沿江以最大船速顺流航行100千米所用时 间,与以最大航速逆流航行60千米所用的时间 相等.江水的流速是多少?
如果设江水的流速为u千米/时.
最大船速顺流航行100千米所用时间=以最大 航速逆流航行60千米所用的时间
100
20 u
60 20 u
阅读课本2页到3页,回答下面的问题
10 1.长方形的面积为10cm²,长为7cm.宽应为___7___cm;长方
S 形的面积为S,长为a,宽应为__a____;
S
?
a
2.把体积为200cm³的水倒入底面积为
新湘教版八年级数学上第1章分式小结与复习ppt公开课优质教学课件
队铺设350米所用的天数与乙工程队铺设250米所用的天数相 同.问甲、乙两个工程队每天各能铺设多少米?
解:设乙工程队每天能铺设x米;
则甲工程队每天能铺设(x+20)米, 依题意,得 350 250 , 解得x=50,
x 20 x
经检验,x=50是原方程的解,且符合题意.
分
式
分式的运算及化简求值
分式方程的定义 分 式
分式方程
分式方程的解法 及增根求值问题 步 骤
分式方程 的 应 用 类 型
一审二设三列四 解五检六写,尤 其不要忘了验根
行程问题、工程问 题、销售问题等
课后作业
见本章小结与复习
2 2 2
解: 由
x 2 ,得 x 2 y , y 3 3
把x2y 3
x2 y 2 xy y 2 2 2 2 x 2 xy y 2 x 2 xy ( x y )( x y ) 2 x( x y ) 2 ( x y) y( x y) 2x . 4 y y
分式值为 0 的条件:
f=0且 g ≠0
3.分式的基本性质
分式的分子与分母都乘同一个非零整式,所得分式与原分 式相等.
f f f ·h 即对于分式 ,有 g g ·h g
( h 0 ).
分式的符号法则:
f f f f f , . g g g g g
二、分式的运算 1.分式的乘除法法则 分式的乘法
1 1 2 2 又因为 x 4 ( x 2 ) 2 x x 1 2 [( x ) 2]2 2 x (25 2) 2 2 527.
考点三 分式方程的解法
例3 解下列分式方程:
初中数学人教版八年级上册《15.分式方程》课件(1)
谢谢大家
解:方程两边同时乘以(x-m)(x-n),
可得(x+m)(x-m)+(x+n)(x-n)=2(x-m)(x-n),
即是 x2 - m2 x2 - n2 2x2 - 2(m n)x 2m,n 整理得:2(m n)x (m n)2 ,
因为 m ≠n,所以m+n≠0,解得:x m n ,
5k
解得k≠-3.
②x存在,则 3 k 有意义,即k≠-5. 5k
所以k的取值范围是k≠-3且k≠-5.
3 k ≠,1 5k
含字母的 分式方程
含字母的分式方程的概念
解含字母的分式方程的 一般步骤
若关于x的分式方程 2 - 1- kx 1 无解,求k的值. x-2 2-x
解析:分式方程无解分为两种情况: ①分式方程化为整式方程后,求出整式方程的解使得最简公分母为0; ②分式方程化为的整式方程无解. 根据两种情况分类讨论,确定 k 的值即可.
分式方程
解关于x的分式方程: x m x n 2(m n.) x-n x-m
解析:原方程是关于x的分式方程,则x表示未知数,m、n表示已 知数,将字母m、n看作是常数,按照解一般分式方程的步骤即可. 注意:原分式方程含有常数项,在去分母的时候要将常数项也乘 以最简公分母.
解关于x的分式方程: x m x n 2(m n.) x-n x-m
x
2
3
.
解:方程两边同时乘以2x(x+3),得x+3=4x, 解得:x=1. 检验:当x=1时,2x(x+3)=8≠0, 所以原分式方程的解是 x=1.
解分式方程: 2 x -1
4 x2 -1
.
解:方程两边同时乘以(x+1)(x-1),得2(x+1)=4, 解得:x=1. 检验:当x=1时,(x+1)(x-1)=0, 所以x=1不是原分式方程的解, 则原分式方程无解.
人教版八年级数学上册15.分式的加减(第1课时)
_____s_3__s_2___s2___s1.
s2
s1
从上面的问题可知,为讨论数量关系, 有时需要进行分式的加减运算.这就是 我们这节课将要学习的内容。
速度比拼:计算: (1) 2 1 55
(2) 1 2 55
类比分(数3)的12加减法13,分式的加减法法(则4是) 12:
1 3
同分母分式相加减,分母不变,分子相加减;
问题1:甲工程队完成一项工程需n天, 乙工程队要比甲队多用3天才能完成这 项工程,两队共同工作一天完成这项工 程的几分之几?
1
答乙:工甲程工队程一队天一完天成完这成项这工项程工的程_的______n______1____________,, 两队共同工作一天完成这项工程的 n 3
_________(_1_____1__.) n n3
例 4 计算:
先找出最简公分 母,再正确通分,
5 6a2b
2 3ab2
3 4abc
转化为同分母的 分式相加减。
解:原式=
10bc 12a2b2c
8ac 12a2b2c
9ab 12a2b2c
10bc 8ac 12a2b2c
9ab
例5、先化简,再求值:其中x=3
x2 1 x 1
,
x2 2x 2x x2
3
3a2b ab2
5
8
a2b ab2
一个整体, 先用括号括
起来!
解:原式= (5a2b 3) (3a2b 5) (8 a2b) ab2
5a2b 3 3a2b 5 8 a2b
=
a 2b = ab2
ab2
注意:结果要 化为最简分式!
a
=b
例 3 计算: 解:
北师版初中数学八年级下册精品教学课件 第五章 分式与分式方程 1认识分式 第1课时
1
认识分式
第1课时
快乐预习·感知
1.一般地,用A,B表示两个整式,A÷B就可以表示成
含有
的
字母 ,那么称 为分式,其中A称为分式的
分母 .对于任意一个分式,分母都不能为 零
分式必须具备4个条件:①A,B为
有 字母 ;④B≠ 0
整式 ;②形式:
的形式,如果B中
分子
,B称为分式
A.1
B.-1
C.±1
D.不为1的数
).
答案:B
返回首页
-2
3.若分式
的值等于0,则x的值是(
+3
).
答案:A
1
4.若分式 3- 有意义,则x的取值范围是
.
答案:x≠3
返回首页
返回首页
本
课
结
束
.
Байду номын сангаас
;③B中含
.
返回首页
2.对于分式 ,分式有无意义的条件:当B ≠0 时,分式有意义;当B =0
分式无意义;分式的值为0的条件:当B
≠0 ,且A =0
时,
时,分式的值为0.
返回首页
轻松尝试·应用
1.下列式子是分式的是(
A.
2
B.
+1
).
C. +y
2
D.
π
答案:B
||-1
2.若分式 -1 的值等于0,则x的值是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习题一
A 组 x3 当x取什么数时,分式 4 x 5 的值 (1)不存在?(2)等于0? 习题1.1
5 解(1)当4x-5=0时,即 x= ,分式的值不存在. 4
(2)当x+3=0时,即x=-3 ,分式的值为0.
复习题二
(1)当x (2)当x (3)当b
2 时,容 1.1
1.1 分式
分式概念 分式的值 分式的简单应用
第1章
分式
分式 1.1
分式的值
返回
说一说
分式的值等于0的条件是什么?
结论
分式
f g
f 0 =0的条件为 g 0
小知识
x 1 当 x= 时,分式 值为0. x 1 f 0 f 分析: = 0 的条件 g g 0
x -5 3-5 2 = =解(1)当x=3时, x + 6 3+ 6 9
x - 5 - 0.4 - 5 - 5.4 27 = = =(2)当x=-0.4时, x + 6 - 0.4 + 6 5.6 28
小结与复习
1. 分式
f g
g≠0 的值存在的条件:
2. 分式
f g
f 0 的值为零的条件: g 0
时,分式 时,分式
(4)当x、y满足关系
x- y
x x -1 1 5 - 3b
的值不存在; 的值不存在 ; 时,
分式 x + y 的值不存在.
依次填:
5 x 0; x 1; b ; x y 3
结
束
单位:北京第一七一中学
姓名:王茜
答: x=-1
2 x 1 的值 例1当x取什么数时,分式 3 x 5
(1)不存在? (2)等于0?
5 解(1)当3x-5=0时,即 x= 3 ,分式的值不存在. 1 (2)当2x+1=0时,即x= - ,分式的值为0. 2
例2 求下列条件分式
(1)x=3
x -5 x6
的值:
(2) x=-0.4