2015深圳一模数学理答案

合集下载

2015 年深圳市高三年级第一次调研考试 数学理科答案-精简修改版

2015 年深圳市高三年级第一次调研考试 数学理科答案-精简修改版
解得 x1 0, x2
y kx m , ……………………………………5 分 联立直线 l 和椭圆 E 的方程,得 x 2 2 1 y 2
消去 y 并整理,得 2k 1 x 4kmx 2m 2 0 ,
2 2 2


…………………………6 分
5π 7π π π ) 2sin 2sin( π) 2sin 1 . 12 6 6 6
………………………………5 分
(2)由 sin x0
1 3 2 得 cos 2 x0 1 2sin x0 , ………………………………7 分 3 3 π 又 x0 (0, ) , 2 x0 (0, π) , ……………………………………………8 分 2
…………………………………2 分
12 6 4 个, ………………………………… 3 分 12 6 6 6 2 个, 从“轻度污染”类城市中抽取 n2 ……………………………4 分 12 6 所以抽出的“良好”类城市为 4 个,抽出的“轻度污染”类城市为 2 个.
根据题意 的所有可能取值为: 1, 2, 3 .
………………………………14 分
a 2 b2 2 2 2 2 ,所以 ,解得 a 2b , a 2 2
x2 y 2 故椭圆 E 的方程可设为 2 2 1 ,则椭圆 E 的右焦点坐标为 b, 0 , 过右焦点倾 2b b
斜角为 45 的直线方程为 l : y x b .

……………………… 9 分
b1 1, b2 , b3
1 , 2
………………………………………10 分
若数列 bn } 为等比数列,则有 b2 2 b1b3 ,即 2 (1)(

2015年深圳市高三年级第一次调研考试理科数学试题

2015年深圳市高三年级第一次调研考试理科数学试题
C2 : 2 cos 2 1 相交于 A 、 B 两点,则 AB

2与 曲 线
15. (几何证明选讲选做题)如图 4,在 RtABC 中, A 30 , C 90 ,
D 是 AB 边上一点,以 BD 为直径的 O 与 AC 相切于点 E .
若 BC 6 ,则 DE 的长为 .
1 是函数 F ( x) g ( f ( x)) 的一个零点时,相应的常数 a 记为 ak , k 7 . , n .证明: a1 a2 an ( n N* ) 6
2015 年深圳市高三年级第一次调研考试数学(理科)试题
第6页 共6页

3
3
( x 2 2sin x)dx
1 x
11.已知向量 a ( 1, 1) , b (1 , 值为
2
1 ,若 a b ,则 x 4 y 的最小 )( x 0 , y 0) y

2 2
12.已知圆 C : x y 8x ay 5 0 经过抛物线 E : x 4 y 的焦点,则抛物线 E 的 准线与圆 C 相交所得的弦长为 . .
13.设 P 是函数 y ln x 图象上的动点,则点 P 到直线 y x 的距离的最小值为
(二)选做题:第 14、15 题为选做题,考生只能选做一题,两题全答的,只计算前一题 的得分.
14 . ( 坐 标 系 与 参 数 方 程 选 做 题 ) 在 极 坐 标 系 中 , 曲 线 C1 : c o s
U
A
D. {2 , 0 , 1 , 5}
C. {1 , 5}
2.已知复数 z 满足 z (1 i) 1 (其中 i 为虚数单位) ,则 z A.

广东省2015年高考一模数学(理)试题分类汇编:解析几何(含答案)

广东省2015年高考一模数学(理)试题分类汇编:解析几何(含答案)

广东省各市2015年高考一模数学理试题分类汇编解析几何一、选择题1、(2015届广州市)直线10x ay ++=与圆()2214x y +-=的位置关系是A. 相交B. 相切C. 相离D. 不能确定2、(2015届江门市)双曲线C :1422=-y x 的两条渐近线夹角(锐角)为θ,则=θta n A .158 B .815 C .43 D .343、(2015届揭阳市)已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线的斜率为12,则该双曲线的离心率为B.C.2D.24、(2015届茂名市)以点(3,-1)为圆心且与直线34x y +=9相切的圆的方程是( ) A 、22(3)(1)x y -++=1 B 、22(3)(1)x y ++-=1 C 、22(3)(1)x y ++-=2 D 、22(3)(1)x y -++=25、(2015届梅州市)动圆M 经过双曲线2213y x -=的左焦点且与直线x =2相切,则圆心M 的轨迹方程是A 、2y =8x B 、2y =-8x C 、2y =4x D 、2y =-4x6、(2015届汕头市)若双曲线的标准方程为22184x y -=,则它的渐近线方程为( )A .0x =B .0y ±=C .20x y ±=D .20x y ±=7、(2015届湛江市)抛物线280y x -=的焦点F 到直线:l 10x y --=的距离是( )A .2 B C .2D .2 8、(2015届中山市)设抛物线的顶点在原点,准线方程为-2,x =则抛物线的方程是( ) A.28y x = B. 28y x =- C. 24y x =- D.24y x =选择题参考答案1、B2、D3、D4、A5、B6、A7、B8、A 二、填空题1、(2015届江门市)已知抛物线C :x y 82=的焦点为F ,P 是C 上一点,若P 在第一象限,8||=PF ,则点P 的坐标为2、(2015届茂名市)已知A ,B 为椭圆22221(0)x y a b a b+=>>学科网长轴的两个顶点,M ,N是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为12,k k ,且120k k ≠,若12||||k k +的最小值为1,则椭圆的离心率为____3、(2015届梅州市)以F 1(-1,0)、F 2(1,0)为焦点,且经过点M (1,-32)的椭圆的标准方程为___4、(2015届深圳市)已知圆C :05822=-+++ay x y x 经过抛物线E :y x 42=的焦点,则抛物线E 的准线与圆C 相交所得弦长为5、(2015届佛山市)已知点()2,0A -、()0,4B 到直线l :10x my +-=的距离相等,则实数m 的值为________填空题参考答案1、)34 , 6( 23、13422=+y x 4、 5、112-或 三、解答题1、(2015届广州市)已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A 的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1) 求椭圆1C 的方程; (2) 求点Q 的轨迹方程;(3) 求ABQ ∆面积的最大值及此时点Q 的坐标.2、(2015届江门市)平面直角坐标系xOy 中,椭圆∑:12222=+by a x (0>>b a )的离心率为36,焦点为1F 、2F ,直线l :02=-+y x 经过焦点2F ,并与∑相交于A 、B 两点. ⑴求∑的方程;⑵在∑上是否存在C 、D 两点,满足AB CD //,D F C F 11=?若存在,求直线CD 的方程;若不存在,说明理由.3、(2015届揭阳市)在平面直角坐标系xoy 中,已知点(01)A ,,点B 在直线1:1l y =-上,点M 满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,点M 的轨迹为曲线C .(1)求C 的方程;(2)设直线2:l y kx m =+与曲线C 有唯一公共点P ,且与直线1:1l y =-相交于点Q ,试探究,在坐标平面内是否存在点N ,使得以PQ 为直径的圆恒过点N ?若存在,求出点N 的坐标,若不存在,说明理由.4、(2015届茂名市)已知F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且(1)求动点P 的轨迹C 的方程。

【名师解析】广东省深圳市2015届高三上学期第一次五校联考数学理试题 Word版含解析

【名师解析】广东省深圳市2015届高三上学期第一次五校联考数学理试题 Word版含解析

2015届高三年级第一次五校联考理科数学试卷【试卷综析】试题比较平稳,基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,考查的知识涉及到函数、三角函数、数列、导数等几章知识,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移。

试卷的整体水准应该说可以看出编写者花费了一定的心血。

但是综合知识、创新题目的题考的有点少,试题以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能。

试题起到了引导高中数学向全面培养学生数学素质的方向发展的作用.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1. 已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( ) A .54i - B .54i + C .34i - D .34i + 【知识点】复数.L4【答案解析】D 解析: 解:由题可知2,1a b ==()()22234a bi i i ∴+=+=+,所以D 正确.【思路点拨】根据复数的概念与运算法则可求出结果.2. 设集合{} 12A x R x =∈-<,{}2,x B y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 【知识点】集合.A1 【答案解析】C解析:解:由题意可求出集合()(){}|13,|0|0x 3A x x B y y A B x =-<<=>∴⋂=<<,所以正确选项为C.【思路点拨】根据集合的概念先求出集合A,B.再求它们的交集. 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1,B .()1 2,C .()2 3,D .()3 4, 【知识点】函数的性质.B10【答案解析】C 解析:解:因为()()32ln 210,3ln 302f f =-<=->,函数为连续函数,所以函数的零点在()2,3之间.【思路点拨】可过特殊值验证函数值的正负来判定零点的区间.4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 【知识点】向量,充要条件.A2,G9【答案解析】B 解析: 解:由共线的条件可知()//12021m n a a a a ⇒-+=∴==-或,所以“a =2”是“m //n ”的充分而不必要条件,所以B 正确.【思路点拨】根据向量共线的条件求出a 的值,然后再根据题意判定逻辑关系. 5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 7 【知识点】三视图.G2【答案解析】A 解析:解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:11232=2222111323V V -⨯⨯-⨯⨯⨯⨯⨯=正方体三棱锥.故选:A .【思路点拨】本题考查三视图求解几何体的体积,解题的关键是判断几何体的形状. 6. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。

2015年深圳市高三年级第一次调研考试.docx

2015年深圳市高三年级第一次调研考试.docx

2015年深圳市高三年级第一次调研考试数学理科)答案及评分标准说明: 一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的 主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容 和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后 续部分的解答有较严重的错误,就不再给分.三、 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、 只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分40分.123 45678cD A C BCDA二、填空题:本大题每小题分,满分分.三、解答题16.(本小题满分12分)JT函数/(x ) = 2sin (^x + -) (Q >0)的最小正周期是兀・二。

=±2 ,TT由0>0,得0 = 2,即/(x) = 2sin(2x + -).八/5兀、小• 7ye r • /兀 、 r •兀 ?••• f (—) = 2 sin — = 2 sin(— + 兀)=一2 sin — = — 1 • 12 6 6 6(2)由sinx 010. 18;14. 211. 9; 15. 4.12. 4亦;解: (1)(2) (1)求/(詈)的值;若 sin X 。

二半,且砖(0冷),求心)的值.2兀v/(X )的周期T = n,即厂=兀,—得cos2x 0 = l-2sin 2 x 0Tl又 X ()G (0,—),・•・ 2x 0 G (0, 71),•・• 2 sin(2x 0 + —) = 2 sin 2x 0 cos y+ 2 cos 2x 0 sin —r 2V2 1 1 V3 2V2+V3= 2x —x- + 2x-x —= --------------------.3 2 3 2 3・• JOo) = 2 sin(2x 0 +y)= ?忑;卡【说明】木小题主要考查了三角函数/(兀)二Asin (饭+ 0)的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17.(本小题满分12分)空气质量指数(简称AQ1)是泄量描述空气质量状况的指数,其数值越人说明空气污染 越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站•下表是某网站公布 的广东省内21个城市在2014年12月份某时刻实时监测到的数据:城市 AQI 数值 城市 AQI 数值 城市 AQI数值 城市 AQI数值 城市 AQI数值 城市 AQI数值 城市AQI 数值 广州 118 东莞 137 中山 95 江门 78 云浮 76 茂名 107 揭阳 80 深圳94珠海95湛江75 潮州 94 河源 124 肇庆 48 清远 47 佛山 160 惠州 113 汕头88汕尾74阳江112韶关68梅州84(1)请根据上表屮的数据,完成下列表格:空气质量 优质 良好 轻度污染 中度污染AQT 值范|韦|[0, 50)[50, 100)[100, 150)[150, 200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市屮采用分层抽样的方式抽取6个城市,省环保部门再从屮随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为§”,求纟的分布列和数学期望. 解:(1)根据数据,完成表格如下:空气质量优质良好轻度污染屮度污染AQI 值范围[0, 50) [50, 100) [100, 150)[150, 200)城市频数2 12 6 1(2)按分层抽样的方法,12分12从“良好”类城市屮抽取卩二 ---- x6 = 4个,............................. 3分12 + 6从“轻度污染”类城市屮抽取仏x6 = 2个,................................ 4分-12 + 6所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题的所有可能取值为:1, 2, 3 .C l C2 1 C2C' 3 c3C° 1•・・p(§=i)=恃p(§=2)=许二斗P(§=3)=符二* .............. ...... 8 分123P131555咖心叫+ “答:§的数学期望为2个. ..................................... 12分【说明】木题主要考察读图表、分层抽样、概率、随机变星分布列以及数学期望等基础知识, 考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18・(本小题满分14分)在三棱锥P —ABC中,己知平面PBC丄平\hi ABC , AB是底Lfn"A ABC最长的边.三梭锥P-ABC的三视图如图5所示,其屮侧视图和俯视图均为育角三角形.(1)请在图6屮,用斜二测画法,把三棱锥P — ABC的直观图补充完桀(其屮点P 在xOz平面内),并指出三棱锥P-ABC的哪些面是直角三角形;(2)求二血角B-PA-C的正切值;(3)求点C到面PAB的距离.侧视图— 2 —► |<—2 —->| 俯视图解:(1)三棱锥P-ABCK 观图如图1所示; 由三视图知\ABC 和△PCA 是直角三角形. (2)(法一):如图2,过P 作PH 丄BC 交BC 于点H, 由三视图知NPBC 为等腰三角形,vBC = 4, PH = 2*,:.PB = PC = BC = 4,取PC 的屮点E,过E 作EF 丄Q4且交PA 于点F,连接BE, BF,因为BE 丄PC,由三视图知AC 丄面PBC ,且B Eu 面PBC ,所以AC 丄BE , 又由ACP\PC = C ,所以BE 丄面PAC , 由 PA C W J PAC ,所以 BE 丄 PA, BEHEF^E ,所以 PA 丄面 BEF, 由BF u 面BEF ,所以P4丄BF , 所以ZBFE 是二面角B-PA-C的平面角.•••△PEF 〜MAC,・••竺=竺PA AC•・・PE = 2,AC = 4,PA = 47L ・・・EF=JLBE /-•••在直角ACFE 中,有tan ZBFE = ——=冷6 •EF所以,二血角B-PA-C 的正切值为舲.(法二):如图3,过P 作PH 丄BC 交BC 于点H,由三视图知APBC 为等腰三角形,BC = 4, PH = 2屈,由图3所示的坐标系,及三视图屮的数据得:8(0,0,0), C(4,0,0), P(2,0,2^3), A(4,4,0),则 BA = (4,4,0), 丽= (2,0,2馆),C4 = (0,4,0),CP = (-2,0,2A /3),设平面PAB 、平面PAC 的法向量分别为加、n.(图3 —, __ 4%)+4y } = 0设加=(兀),zj,由/w ・BA = 0, m • BP = 0 ,得彳,图2........................ 8分P图1令Z]=l,得X严-观,即m = (-V3,V3,1).【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角, 三梭锥的体积,空间坐标系等基础知识,考查空间想彖能力、运算能力和推理论证能力,考 查用向量方法解决数学问题的能力.19.(本小题满分14分)已知首项大于0的等差数列{%}的公差〃 =1,且丄 + —1— = Z . a }a 2 a 2a }3(1) 求数列{色}的通项公式;(2) 若数列{化}满足:勺=一1,人=久,bn+]=——其屮n >2・① 求数列{化}的通项仇;② 是否存在实数2,使得数列{仇}为等比数列?若存在,求出久的值;若不存在,请 说明理由.解:(1)(法一):・.・数列{%}的首项q>0,公差d=l,设=由w-G4 = 0, n PA = O f 得『儿一° ・ -2 兀2+2V^=0令乞2=1,得x 2 = V3 , y 2 = 0 ,即ii = (V3,0,l).-2 V7~~ —_ 2A /7 ~ 7tan <m,n >=_品• 而二面角B-PA-C 的大小为锐角,所以二面角B — PA — C 的正切值为亦.・・・9分(3)(法一):记C 到面的距离为力,由(1)、(2) ^PA = AB = 4^2, PB = 4,S 、PAB= 4^7 ' y c-PAB =|SgB • h =h ,三棱锥P-ABC 的体积V P _^C=L S~ 3 MBCA / C [由匕—ABC = V —AB ,可得:h = -y12分13分14分(法二):由(2)矢口,平面PAB 的法向量m=(-V3,V3,l ), C4 = (0,4,0) 记C 到\hi PAB 的距离为力,4V21 714分4巧W整理得^+2^-3 = 0解得坷=1或角=—3 (舍去). .................... 4分因此,数列{%}的通项色=〃・ ............................ 5分(法二):由题意得丄+ 丄=幺也 =2,.............................................. 1分a }a^ a x a^a y 3・・・数列{色}是等差数列,・・・勺+偽=2偽,.................... 2分又 T a 】 >0,6/ = 1 ,.・.舛(务+2) = 3 ,解得°[=1或a x = -3 (舍去). ........................ 4分 因此,数列{%}的通项a” = n ...................................................... 5分nb u (Z2-1) b ,••• ―= ----- -------- +1 • ..................................................................................... 6 : (-1 严(-1)"令C“ =W二:半,则有 C 2=A, C Z ,+1 = c… +1 (/z > 2).(T)・••当 n> 2 时,c tl = c 0 + (77 - 2) = zz - 2 + A , b n =—~. .......... 8 分n-1i,n = 1,因此,数列{$}的通项仇=s_2 + Q)(-1)” ( f ・ (9)-------- : ---- ,(〃 n 2).n-1••• a n =a { + (n -1),1 1 ------ 1 -----a^ci=(丄—丄)+(丄—丄) | dr 61° Cl 31 1 _ 1 1 _2 -- — -- ----- — ----- ---% a. a x d]+2 3② T b] = —1, b2 = A , b.10分・•・若数列{仇}为等比数列,则有bf = b\S ,即A 2=(-l )( ), 解得2 = 1或A=-~............................................................................... 11分2当A = --时,b” =(2"7)_(T )]s2 2), 乩不是常数,数列{仇}不是等比数列, 2 2C/7-1) b n 当2 = 1时,6l=-l, 6n =(-l )w (n>2),数列{仇}为等比数列.所以,存在实数久=1使得数列{亿}为等比数列. ......................... 14分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、 等比数列的定义,考杳了学生的运算能力,以及化归与转化的思想.20.(木小题满分14分)22斤己知椭圆E:罕+ \ = 1 (a>b>0)的离心率为―,过左焦点倾斜角为45。

2015年广东省深圳市十校联考中考一模数学试卷(解析版)

2015年广东省深圳市十校联考中考一模数学试卷(解析版)

2015年广东省深圳市十校联考中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)一个正方形的对称轴共有()A.1条B.2条C.4条D.无数条2.(4分)2cos45°的值等于()A.B.C.D.3.(4分)小明从正面观察如图所示的物体,看到的是()A.B.C.D.4.(4分)在同一平面直角坐标系中,函数y=﹣与函数y=x的图象交点个数是()A.0个B.1个C.2个D.3个5.(4分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°6.(4分)一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或12C.13D.11和13 7.(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和48.(4分)如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()A.S>1B.S>2C.1<S<2D.1≤S≤2 9.(4分)如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是()A.B.C.D.10.(4分)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定点(2,1);②对称轴可以是x=1;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是()A.0B.1C.2D.3二、填空题(共6小题,每小题5分,满分30分)11.(5分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.12.(5分)在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为.13.(5分)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第象限.14.(5分)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为米.15.(5分)关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是.16.(5分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.三、解答题(共7小题,满分0分)17.计算:.18.小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.19.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.20.在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.21.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ 上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)22.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.23.如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.2015年广东省深圳市十校联考中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)一个正方形的对称轴共有()A.1条B.2条C.4条D.无数条【考点】LE:正方形的性质;P3:轴对称图形.【解答】解:一个正方形的对称轴共有4条,故选C.2.(4分)2cos45°的值等于()A.B.C.D.【考点】T5:特殊角的三角函数值.【解答】解:∵cos45°=,∴2cos45°=.故选:B.3.(4分)小明从正面观察如图所示的物体,看到的是()A.B.C.D.【考点】U2:简单组合体的三视图.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选:C.4.(4分)在同一平面直角坐标系中,函数y=﹣与函数y=x的图象交点个数是()A.0个B.1个C.2个D.3个【考点】G8:反比例函数与一次函数的交点问题.【解答】解:∵y=x的图象是过原点经过一、三象限,的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交.故选:A.5.(4分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【解答】解:已知AB=AC,∠A=30°可得∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD所以∠A=∠ACD=30°所以∠BCD=∠ACB﹣∠ACD=45°.故选:D.6.(4分)一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或12C.13D.11和13【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【解答】解:由(x﹣2)(x﹣4)=0解得x=2或4,由三角形三边关系定理得6﹣3<x<6+3,即3<x<9,因此,本题的第三边应满足3<x<9,所以x=4,即周长为3+4+6=13.故选C.7.(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和4【考点】L5:平行四边形的性质.【解答】解:∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD﹣BE=2故选:B.8.(4分)如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()A.S>1B.S>2C.1<S<2D.1≤S≤2【考点】G5:反比例函数系数k的几何意义.【解答】解:根据题意可得:k=2,故可知S△ACO=1,∵S△OPC <S△ACO=1,故△ACP的面积1≤S≤2.故选:D.9.(4分)如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是()A.B.C.D.【考点】LE:正方形的性质;S9:相似三角形的判定与性质.【解答】解:设AC与DM的交点为G,∵△AMG∽△CDG,AM=AB=CD.∴AG=CG.∵△AMC的面积为.∴S△AMG=∵S阴影=S△ADM+S△ACM﹣2S△AMG∴S阴影=+﹣=因此图中的阴影部分的面积是;故选:B.10.(4分)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定点(2,1);②对称轴可以是x=1;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是()A.0B.1C.2D.3【考点】H3:二次函数的性质.【解答】解:由y=ax+b过(﹣2,1),可得﹣2a+b=1,即2a﹣b=﹣1.①当x=2时,代入抛物线的右边得到4a﹣2b+3=2(2a﹣b)+3=﹣2+3=1,故①正确;②由题意得b=2a+1,由对称轴x=﹣,对称轴为x=﹣≠1,故②错误.③由2a﹣b=﹣1得到:b=2a+1.抛物线的顶点坐标公式可知纵坐标===3﹣,因此当a<0时,即顶点的纵坐标的最小值是3,故③正确.故选:C.二、填空题(共6小题,每小题5分,满分30分)11.(5分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【考点】G7:待定系数法求反比例函数解析式.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.12.(5分)在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为12.【考点】L8:菱形的性质.【解答】解:读图可知,AC=4,BD=6,则该菱形的面积为4×6×=12.故答案为12.13.(5分)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第一象限.【考点】D1:点的坐标;H4:二次函数图象与系数的关系.【解答】解:从图象得出,二次函数的对称轴在一,四象限,且开口向上,∴a>0,>0,因此b<0,∵二次函数的图象与y轴交于y轴的负半轴,∴c<0,∴a>0,bc>0,则点P(a,bc)在第一象限.故答案为:一.14.(5分)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为12米.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【解答】解:因为tan∠BAE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:AB2=BE2+AE2,即:132=(12x)2+(5x)2,169=169x2,解得:x=1或﹣1(负值舍去);所以BE=12x=12(米).故答案为:12.15.(5分)关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是m≠2且m≠1.【考点】AA:根的判别式.【解答】解:∵方程为一元二次方程,∴(m﹣1)≠0,即m≠1,∵方程有两个不相等实数根,∴△=(﹣m)2﹣4(m﹣1)=(m﹣2)2>0,∴m≠2,综合得m≠1且m≠2.故答案为:m≠1且m≠2.16.(5分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.【考点】L6:平行四边形的判定;X4:概率公式.【解答】解:从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,其中只有①②、①③和③④可以判断ABCD是平行四边形,所以其概率为=.故答案为:.三、解答题(共7小题,满分0分)17.计算:.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【解答】解:原式=1﹣4××+2×=1﹣+2=1+.18.小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.【考点】X6:列表法与树状图法.【解答】解:(1)树状图为:(答对一组得1分);(4分)(2)由(1)中的树状图可知:P(一个回合能确定两人先上场)==.(8分)19.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.【考点】LA:菱形的判定与性质.【解答】解:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.20.在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.【考点】AD:一元二次方程的应用.【解答】解:设花边的宽度为x米,依题意得:(2﹣2x)(1.4﹣2x)=1.6解得:x1=1.5(舍去),x2=0.2.答:花边的宽度为0.2米.21.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ 上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)【考点】TB:解直角三角形的应用﹣方向角问题.【解答】解:作AS⊥PQ,CT⊥MN,垂足分别为S,T.由题意知,四边形ATCS为矩形,∴AS=CT,SC=AT.设这条河的宽度为x米.在Rt△ADS中,因为,∴.(3分)在Rt△BCT中,∵∠CBT=45°,∴BT=CT=x.(5分)∵SD+DC=AB+BT,∴,(8分)解得x=75,即这条河的宽度为75米.(10分)(其它方法相应给分)22.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.【考点】KI:等腰三角形的判定;KX:三角形中位线定理.【解答】证明:(1)∵M为AB边的中点,AD⊥BC,BE⊥AC,∴ME=AB,MD=AB,∴ME=MD,∴△MED为等腰三角形;(2)∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC.23.如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.【考点】HF:二次函数综合题.【解答】解:∵抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,∴解得:,∴此抛物线的解析式为:y=﹣x2+2x+2;(2)∵A(3,3.5)、B(4,2)、C(0,2),∴AC=,AB=,①若PC∥AB,则过点B作BE∥x轴,过点A作AE∥y轴,交点为E,∴AE=1.5,BE=1,当时,AB∥PC,∴,∴OP=,∴点P的坐标为:(,0),∴BP=,∴AP≠BC,∴此点不符合要求,舍去;②若BP∥AC,则过点A作AE∥y轴,过点C作CE∥x轴,相交于点E,过点B作BF∥y轴,当时,BP∥AC,∴,解得:PF=4,∴点P与点O重合,∴PC=2≠AB.∴此点不符合要求,舍去;(3)过A作对称轴的对称点A′,过B作x轴对称点B′,连接A′B′,分别交对称轴与x轴于H点、P点,则这两点即为所求.∴AH=A′H,PB=PB′,∴AB+AH+PH+PB=AB+A′H+HP+PB′=AB+A′B′,∵抛物线的y=﹣x2+2x+2的对称轴为:x=2,∵A(3,3.5),B(4,2),∴A′(1,3.5),B′(4,﹣2),∴AB=,A′B′=,∴四边形AHPB周长的最小值为:+.。

广东省2015年高考一模数学(理)试题分类汇编:导数及其应用(含答案)

广东省2015年高考一模数学(理)试题分类汇编:导数及其应用(含答案)

广东省各市2015年高考一模数学理试题分类汇编导数及其应用一、选择题1、(2015届深圳市)在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(πB 。

]3,0(πC 。

],3[ππD 。

),3(ππ选择题参考答案1、D 二、填空题1、(2015届揭阳市)已知函数3()f x x =对应的曲线在点(,())()k k a f a k N *∈处的切线与x 轴的交点为1(,0)k a +,若11a =31010(1()3f a ++=-2、(2015届深圳市)设P 是函数x y ln =图象上的动点,则点P 到直线x y =的距离的最小值为填空题参考答案1、由2'()3f x x =得曲线的切线的斜率23k k a =,故切线方程为323()k k k y a a x a -=-,令0y =得123k k a a +=123k ka a +⇒=,故数列{}n a 是首项11a =,公比23q =的等比数列,又 310(f f f a +++101011210(1)3(1)1a q a a a q q-=+++==--,所以31010(31()3f a ++=-.2、2三、解答题1、(2015届广州市)已知函数()()2ln 12a f x x x x =++-()0a ≥. (1)若()0f x >对()0,x ∈+∞都成立,求a 的取值范围; (2)已知e 为自然对数的底数,证明:∀n ∈N *22212111n n n n ⎛⎫⎛⎫⎛⎫<++⋅⋅⋅+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.2、(2015届江门市)设函数)(ln )(a x e x f x -=,e 是自然对数的底数,718.2≈e ,R a ∈为常数.⑴若)(x f y =在1=x 处的切线 l 的斜率为e 2,求a 的值;⑵在⑴的条件下,证明切线 l 与曲线)(x f y =在区间)21 , 0(至少有1个公共点; ⑶若]3ln , 2[ln 是)(x f y =的一个单调区间,求a 的取值范围.3、(2015届揭阳市)已知函数()f x ax =,()ln g x x =,其中a R ∈,(e ≈2.718). (1)若函数()()()F x f x g x =-有极值1,求a 的值;(2)若函数()(sin(1))()G x f x g x =--在区间(0,1)上为减函数,求a 的取值范围;(3)证明:211sinln 2(1)nk k =<+∑.4、(2015届茂名市)设函数2()ln ||f x x x ax =-+。

广东省2015年高考一模数学(理)试题分类汇编:数列(含答案)

广东省2015年高考一模数学(理)试题分类汇编:数列(含答案)

广东省各市2015年高考一模数学理试题分类汇编数列一、选择题 1、(2015届江门市){}n a 是等差数列,1a 与2a 的等差中项为1,2a 与3a 的等差中项为2,则公差=dA .2B .23 C .1 D .212、(2015届汕头市)已知等差数列{}n a 的前n 项和为n S ,又知()ln ln 1x x x '=+,且101ln eS xdx =⎰,2017S =,则30S 为( )A .33B .46C .48D .503、(2015届湛江市)已知等比数列{}n a 的各项均为正数,且公比1q ≠,若2a 、312a 、1a 成等差数列,则公比q =( )A B C D选择题参考答案1、C2、C3、D二、填空题1、(2015届梅州市)已知等比数列{n a }的公比为正数,且239522,1a a a a ==,则1a =___填空题参考答案1、22三、解答题1、(2015届广州市)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足111,1n a a +==,n ∈N *.(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数k , 使k a , 21k S -, 4k a 成等比数列? 若存在, 求k 的值; 若不存在, 请说明理由.2、(2015届江门市)设数列{}n a 的前n 项和6)14)(1(-+=n n n S n ,*N n ∈.⑴求1a 的值;⑵求数列{}n a 的通项公式; ⑶证明:对一切正整数n ,有4541222221<+++na n a a .3、(2015届揭阳市)已知n S 为数列{}n a 的前n 项和,3(1)n n S na n n =--(*n N ∈),且211a =.(1)求1a 的值;(2)求数列{}n a 的前n 项和n S ; (3)设数列{}n b满足n b =123n b b b +++<4、(2015届茂名市)已知数列{n a }的前n 项和为Sn ,1a =1,且122(1)(1)(*)n n nS n S n n n N +-+=+∈,数列{n b }满足2120(*)n n n b b b n N ++-+=∈,3b =5,其前9项和为63。

深圳市2015年高三年级第一次调研考试数学理科试卷(扫描版,有答案)

深圳市2015年高三年级第一次调研考试数学理科试卷(扫描版,有答案)

2015年深圳市高三年级第一次调研考试数学(理科)答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数.二、填空题:本大题每小题5分,满分30分.9.23; 10. 18; 11.9; 12.13.2; 14.2; 15. 4. 三、解答题 16.(本小题满分12分)函数π()2sin()3f x x ω=+(0ω>)的最小正周期是π. (1)求5π()12f 的值;(2)若0sin 3x =,且0π(0,)2x ∈,求0()f x 的值. 解:(1)()f x Q 的周期πT =,即2ππω=, …………………………………………1分2ω∴=±,由0ω>,得2ω=,即π()2sin(2)3f x x =+. ……………………………………3分5π7πππ()2sin 2sin(π)2sin 112666f ∴==+=-=-. ………………………………5分(2)由0sin x =得2001cos 212sin 3x x =-=, ………………………………7分又0π(0,)2x ∈,∴02(0,π)x ∈, ……………………………………………8分 ∴0sin 23x ==, …………………………………………9分 000πππ2sin(2)2sin 2cos 2cos 2sin 333x x x +=+Q1122323=⨯⨯+⨯=.00π()2sin(2)3f x x ∴=+= …………………………………………12分【说明】 本小题主要考查了三角函数)sin()(ϕω+=x A x f 的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17.(本小题满分12分)空气质量指数(简称AQI )是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:(1)请根据上表中的数据,完成下列表格: (2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望. 解:(1)根据数据,完成表格如下:…………………………………2分 (2)按分层抽样的方法,从“良好”类城市中抽取11264126n =⨯=+个, ………………………………… 3分 从“轻度污染”类城市中抽取2662126n =⨯=+个, ……………………………4分所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.1242361(1)5C C P C ξ===Q , 2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===.………8分ξ∴的分布列为:所以1232555E ξ=⨯+⨯+⨯=. ………………………………………………11分 答:ξ的数学期望为2个. …………………………………………………12分 【说明】本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18.(本小题满分14分)在三棱锥P ABC -中,已知平面PBC ⊥平面ABC ,AB 是底面△ABC 最长的边.三棱锥P ABC -的三视图如图5所示,其中侧视图和俯视图均为直角三角形.(1)请在图6中,用斜二测画法,把三棱锥P ABC-的直观图补充完整(其中点P 在 xOz 平面内),并指出三棱锥P ABC -的哪些面是直角三角形; (2)求二面角B PA C --的正切值;(3)求点C 到面PAB 的距离.正视图解:(1)三棱锥P ABC -直观图如图1所示;由三视图知ABC ∆和PCA ∆是直角三角形. (2)(法一):如图2,过P 作PH BC ⊥交BC 于点H 由三视图知PBC ∆为等腰三角形,4BC =Q ,PH =4PB PC BC ∴===,取PC 的中点E ,过E 作EF PA ⊥且交PA 于点F ,连接BE ,BF ,因为BE PC ⊥,由三视图知AC ⊥面PBC , 且BE ⊂面PBC ,所以AC BE ⊥,又由AC PC C =I ,所以BE ⊥面PAC , 由PA ⊂面PAC ,所以BE PA ⊥, BE EF E =I ,所以PA ⊥面BEF ,由BF ⊂面BEF ,所以PA BF ⊥,所以BFE ∠是二面角B PA C --的平面角.………~PEF PAC ∆∆Q ,PE EFPA AC∴=, 2,4,PE AC PA ===Q EF ∴=, ∴在直角CFE ∆中,有tan BEBFE EF∠== 所以,二面角B PA C --. ………………………………………9分 (法二):如图3,过P 作PH BC ⊥交BC 于点H ,由三视图知PBC ∆为等腰三角形,4BC =,PH =由图3所示的坐标系,及三视图中的数据得:(0,0,0)B ,(4,0,0)C ,(2,0,P ,(4,4,0)A , 则(4,4,0)BA =u u u r ,(2,0,BP =u u u r ,(0,4,0)CA =u u u r, (2,0,CP =-u u u r,设平面PAB 、平面PAC 的法向量分别为m 、n .设111(,,)x y z =m ,由0BA ⋅=u u u r m ,0BP ⋅=u u u r m ,得11420x ⎧⎪⎨+=⎪⎩,令11z =, 得1x =1y =(=m . …………………6分设222(,,)x y z =n ,由0CA ⋅=u u u r n ,0PA ⋅=u u u r n,得2224020y x =⎧⎪⎨-+=⎪⎩,令21=z ,得2x =,20y =,即=n . ………………………7分cos ,7⋅∴<>===-m n m n m n,tan ,m n <>=8分 而二面角B PA C --的大小为锐角,所以二面角B PA C --.…9分 (3)(法一):记C 到面PAB 的距离为h ,由(1)、(2)知4PA AB PB ===,PAB S ∆∴=,13C PAB PAB V S h -∆=⋅=, ………………………………12分 三棱锥-P ABC的体积13-∆=⋅=P ABC ABC V S PH , ……………………13分 由P ABC C PAB V V --=,可得:7=h . ………………………………………14分 (法二):由(2)知,平面PAB的法向量(=m ,(0,4,0)CA =u u u r记C 到面PAB 的距离为h ,CA h ⋅∴=u u u rmm== ………………………………………………14分 【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角,三棱锥的体积,空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19. (本小题满分14分)已知首项大于0的等差数列{}n a 的公差1d =,且12231123a a a a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:11b =-,2b λ=,111(1)n n n nn b b n a -+--=+,其中2n ≥. ①求数列{}n b 的通项n b ;②是否存在实数λ,使得数列}{n b 为等比数列?若存在,求出λ的值;若不存在,请说明理由.解:(1)(法一):Q 数列{}n a 的首项10a >,公差1d =,∴1(1)n a a n =+-,11111n n n n a a a a ++=-, ………………………………………2分 12231223111111()()a a a a a a a a ∴+=-+-131********a a a a =-=-=+, ……………3分 整理得211230a a +-=解得11a =或13a =-(舍去). ……………………………4分 因此,数列{}n a 的通项n a n =. ………………………………………5分 (法二):由题意得1312231231123a a a a a a a a a ++==, …………………………………1分 Q 数列{}n a 是等差数列,∴1322a a a +=, ……………………………2分∴2123223a a a a =,即133a a =. ………………………………………………………3分又10,1a d >=Q ,∴11(2)3a a +=,解得11a =或13a =-(舍去). …………………………………4分因此,数列{}n a 的通项n a n =. ………………………………………5分(2)①111(1)n n n n b b n n-+--=+Q , 11(11(1)(1)n nn nnb n b ++-∴=+--). ……………………………………………………6分 令(1(1)nn nn b c -=-),则有2c λ=,11n n c c +=+(2)n ≥.∴当2n ≥时,2(2)2n c c n n λ=+-=-+,(21nn n b n λ-+=-)(-1). ………8分因此,数列{}n b 的通项1, 1,(2,(2).1n n n b n n n λ-=⎧⎪=⎨-+≥⎪-⎩)(-1). (9)分②11b =-Q ,2b λ=,312b λ+=-, ………………………………………10分∴若数列{}n b 为等比数列,则有2213b b b =,即21(1)()2λλ+=--, 解得1λ=或12λ=-. …………………………………………………………11分 当12λ=-时,(252)21n n n b n n -=≥-)(-1)((),+1n n b b 不是常数,数列{}n b 不是等比数列,当1λ=时,11b =-,(1)(2)n n b n =-≥,数列{}n b 为等比数列.所以,存在实数1λ=使得数列{}n b 为等比数列. ………………………………14分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、等比数列的定义,考查了学生的运算能力,以及化归与转化的思想. 20.(本小题满分14分)已知椭圆:E 22221(0)+=>>x y a b a b,过左焦点倾斜角为45︒的直线被椭圆截得的弦长为3. (1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点()1,0M 作l 的垂线垂足为Q ,求点Q 的轨迹方程.解:(1)因为椭圆E2=,解得222a b =, 故椭圆E 的方程可设为222212x y b b+=,则椭圆E 的右焦点坐标为(),0b , 过右焦点倾斜角为45︒的直线方程为:l y x b '=-. ………………………………………2分设直线l '与椭圆E 的交点记为,A B ,由22221,2,x y b b y x b ⎧+=⎪⎨⎪=-⎩消去y ,得2340x bx -=,解得1240,3b x x ==,因为1233AB x =-==,解得1b =. 故椭圆E 的方程为2212+=x y . ……………………………………………………4分 (2)(法一)(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,联立直线l 和椭圆E 的方程,得2212y kx m x y =+⎧⎪⎨+=⎪⎩, ……………………………………5分消去y 并整理,得()222214220k x kmx m +++-=, …………………………6分 因为直线l 和椭圆E 有且仅有一个交点,()()222216421220k m k m ∴∆=-+-=, ………………………………………7分化简并整理,得2221m k =+. …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x ky kx m ⎧=--⎪⎨⎪=+⎩ 解得221,1,1km x k k m y k -⎧=⎪⎪+⎨+⎪=⎪+⎩ ………………………9分 222222222222222222(1)()1(1)(1)1(1)(1)(1)1km k m k m k m k m m x y k k k k -++++++++∴+====++++,把2221m k =+代入上式得222x y +=. ① …………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合①式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合①式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法二):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,同解法一,得22210k m -+=, ① …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x k y kx m ⎧=--⎪⎨⎪=+⎩解得002200001,,x k y x x y m y -⎧=⎪⎪⎨-+⎪=⎪⎩② …………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分即()()2222000002210+-+-+=y x yx x ,由点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③ ……………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合③式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法三):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为00()-=-y y k x x ,整理,得l 的方程为00=-+y kx kx y , ……………………………………………………………5分联立直线l 和椭圆E 的方程,得002212=-+⎧⎪⎨+=⎪⎩y kx kx y x y , 消去y 并整理,得()()()2220000214220++-+--=k x k y kx x y kx , ……………………6分因为直线l 和椭圆E 有且仅有一个交点,()()()222200001682110⎡⎤∴∆=--+--=⎣⎦k y kx k y kx , ………………………7分化简并整理,得22200002210--+++=y x kx y k , ① ………………………8分因为MQ 与直线l 垂直,有01-=x k y , ②……………………………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分 即()()2222000002210+-+-+=y x yx x ,Q 点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③………………………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合③式. ………13分综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 【说明】本题主要考查轨迹方程和椭圆的定义、直线方程、直线与椭圆相切的位置关系,弦长问题,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21.(本小题满分14分)已知定义在]2,2[-上的奇函数)(x f 满足:当]2,0(∈x 时,)2()(-=x x x f . (1)求)(x f 的解析式和值域;(2)设a ax x x g 2)2ln()(--+=,其中常数0>a . ①试指出函数))(()(x f g x F =的零点个数;②若当11k+是函数))(()(x f g x F =的一个零点时,相应的常数a 记为k a ,其中 1,2,,k n =L .证明:1276n a a a +++<L (*N ∈n ). 解:(1)()f x Q 为奇函数,(0)0f ∴=.当[)2,0x ∈-时,(]0,2x -∈,则()()()(2)(2)f x f x x x x x =--=----=-+,∴[][)(2)0,2,()(2)2,0,x x x f x x x x ⎧-∈⎪=⎨-+∈-⎪⎩ ………………………………………2分[0,2]x ∈Q 时,[]()1,0f x ∈-,[)2,0x ∈-,[]()0,1f x ∈,()f x ∴的值域为[]1,1-. …………………………………………………3分(2)①函数()f x 的图象如图a 所示,当0t =时,方程()f x t = 有三个实根;当1t =或1t =-时,方程()f x t =只有一个实 根;当(0,1)t ∈或(1,0)t ∈-时,方程()f x t =有两个实根.(法一):由()0g x =,解得ln(2)2x a x +=+,()f x Q 的值域为[]1,1-,∴只需研究函数ln(2)2x y x +=+在[]1,1-上的图象特征.设ln(2)()([1,1])2x h x x x +=∈-+,(1)0h -=,21ln(2)()(2)x h x x -+'=+, 令()0h x '=,得e 2(0,1)x =-∈,1(e 2)eh -=. Q 当1e 2x -<<-时,()0h x '>,当e 21x -<<时,()0h x '<,又32ln 2ln 3<Q ,即ln 2ln 323<,由ln 2(0)2h =,ln 3(1)3h =,得(0)(1)h h <, ()h x ∴的大致图象如图b 所示.根据图象b 可知,当ln 2ln 2ln 310223a a a e<<<<=、、直线y a =与函数()y h x =的图像仅有一个交点,则函数()g x 在[1,1]-上仅有一个零点,记零点为t ,则t 分别在区间(1,0)-(0,1)、(0,1)上,根据图像a ,方程()f x t =有两个交点,因此函数()(())F x g f x =有两个零点. …………………………………………5分类似地,当ln 22a =时,函数()g x 在[1,1]-上仅有零点0,因此函数()F x 有1-、0、1这三个零点. ………………………………………………………………6分当ln 33a =时,函数()g x 在[1,1]-上有两个零点,一个零点是1,另一个零点在(0,1)内,因此函数()F x 有三个零点. …………………………………………………………7分当ln 313ea <<时,函数()g x 在[1,1]-上有两个零点,且这两个零点均在(0,1)内,因此函数()F x 有四个零点. ……………………………………………………………8分当1ea >时,函数()g x 在[]1,1-上没有零点,因此函数()F x 没有零点. ………9分 (法二):1()2g x a x '=-+ ,令0()0g x '=,得012x a=-,0a >Q ,()02,x ∴∈-+∞.当1(1,2)x a ∈--时,()0g x '>,当1(2,)x a∈-+∞时,()0g x '<, ∴当0x x =时,()g x 取得极大值01()ln 1g x a=-.(Ⅰ)当()g x 的极大值1ln10a -<,即1e a >时,函数()g x 在区间1,1-上无零点,因此函数()(())F x g f x =无零点.(Ⅱ)当()g x 的极大值1ln10a -=,即1ea =时, 02(0,1)x e =-∈,函数()g x 的图像如图c 所示,函数g由图a 可知方程()e 2f x =-有两不等的实根,因此函数()(())F x g f x =有两个零点.(Ⅲ)当()g x 的极大值1ln 10a ->且0121x a=->,即103a <≤时,()g x 在[1,1]-上单调递增,因为()10g a -=-<,222(0)ln 22ln 2ln ln1033e 3g a =->-=>=,函数()g x 的图像如图d 所示,函数()g x 在[]1,1-存在唯一零点1t ,其中1(1,0)t ∈-.由图a 可知方程1()f x t =有两不等的实根,因此函数()(())F x g f x =有两个零点. (Ⅳ)当()g x 的极大值1ln10a ->且0121x a =-<,即113ea <<时: 由(0)ln 220g a =-=,得ln 22a =,由(1)ln 330g a =-=,得ln 33a =, 根据法一中的证明有1ln 2ln 31323e<<<.(ⅰ)当1ln 232a <<时,(0)ln 220g a =->,(1)ln 330g a =->,函数()g x 的图像如图e 所示,函数()g x 在区间[1,1]-有唯一零点2t ,其中2(1,0)t ∈-.由图a 可知方程2()f x t =有两不等的实根,因此 函数()(())F x g f x =有两个零点. (ⅱ)当ln 22a =时,(0)ln 220g a =-=, (1)ln 330g a =->,函数()g x 的图像如图f 所示,函数()g x 在区间[1,1]-有唯一零点0.由图a 可知方程()0f x =有三个不等的实根,因此函数()(())F x g f x =有三个零点. (ⅲ)当ln 2ln 323a <<时,(0)ln 220g a =-<,(1)ln 330g a =->,函数()g x 的 图像如图g 所示,函数()g x 在区间[1,1]-有唯一零点3t ,其中3(0,1)t ∈.由图a 可知方程3()f x t =()(())F x g f x =有两个零点.(ⅳ)当ln 33a =时,(0)0g <,(1)ln 330g a =-=,函数()g x 的图像如图h 所示,函数()g x 在区间[1,1]-有 两个零点,分别是1和4t ,其中4(0,1)t ∈.由图a 可知方程()1f x =有一个实根1-,方程4()f x t =有两个非1-的不等实根,因此函数()(())F x g f x =(ⅴ)当ln 313ea <<时,(0)0g <,(1)ln 33g a =-<函数()g x 的图像如图i 所示,函数()g x 在区间[1,1]-有两个零点5t 、6t ,其中56,(0,1)t t ∈.由图a 可知方程5()f x t =、6()f x t =且这四个根互不相等,因此函数()(())F x g f x =综上可得:当ln 2ln 2ln 310223a a a e <<<<=、、时,函数()F x 有两个零点;………………5分 当ln 22a =、ln 33a =时,函数()F x 有三个零点; ………………………………7分当ln 313e a <<时,函数()F x 有四个零点; ……………………………………8分当1e a >时,函数()F x 无零点. ………………………………………………9分②因为k11+是函数))(()(x f g x F =的一个零点,所以有1((1))0g f k +=,(]110,2k +∈Q ,211(1)1f k k∴+=-,2221111((1))(1)ln(1)(1)0k g f g a k k k k ∴+=-=+-+=,221ln(1)11k k a k+∴=+,1,2,,k n =L . …………………………………………10分记()ln(1)m x x x =+-,1()111xm x x x -'=-=++, Q 当(]0,1x ∈时,()0m x '<,∴当(]0,1x ∈时,()(0)0m x m <=,即ln(1)x x +<.故有2211ln(1)k k+<,则2222211ln(1)111111k k k a k k k +=<=+++()1,2,,k n =⋅⋅⋅. …11分当1n =时,11726a <<; 当2n ≥时, (法一):2211221121214k k k k <=-+-+-Q, ………………………………13分 123a a a ∴+++…++++++<+131121111222n a …112++n 1222222()()()235572121n n <+-+-+⋅⋅⋅+--+ 12272723216216n n =+-=-<++. 综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分(法二):当2n =时,12117725106a a +<+=<;当3n ≥时,2211111()11211k k k k <=-+--+Q , ………………………13分123a a a ∴+++…++++++<+131121111222n a …112++n 111111111[()()()]252243511n n <++-+-+⋅⋅⋅+--+ 111111167111677[]()2522316021606n n n n =+++--=-+<<++.综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分 【说明】本题主要考查函数的性质、分段函数、导数应用、一元二次方程的求解、连续函数的零点存在性定理,放缩法证明数列不等式,考查学生数形结合、分类讨论的数学思想,以及计算推理能力及分析问题、解决问题的能力及创新意识.。

广东省深圳市高考数学一模试卷 理(含解析)

广东省深圳市高考数学一模试卷 理(含解析)

广东省深圳市2015届高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合U={2,0,1,5},集合A={0,2},则∁U A=()A.φB.{0,2} C.{1,5} D.{2,0,1,5} 2.(5分)已知复数z满足z(1+i)=1(其中i为虚数单位),则z=()A.B.C.D.3.(5分)若函数y=a x+b的部分图象如图所示,则()A.0<a<1,﹣1<b<0 B.0<a<1,0<b<1 C.a>1,﹣1<b<0 D.a>1,0<b<14.(5分)已知实数x,y满足不等式组,则2x+y的最大值为()A.3 B.4 C.6 D.95.(5分)已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)执行如图所示的程序框图,则输出S的值为()A.16 B.25 C.36 D.497.(5分)在△ABC中,a,b,c分为为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A.(0,)B.(0,] C.[,π)D.[,π]8.(5分)如果自然数a的各位数字之和等于8,我们称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3…,若a n=2015,则n=()A.83 B.82 C.39 D.37二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.本大题分为必做题和选做题两部分(一)必做题:第9、10、11、12、13题为必做题,每道试题考生必须作答.9.(5分)(x﹣)4的展开式中常数项为.(用数字表示)10.(5分)(x2﹣2sinx)dx=.11.(5分)已知向量=(﹣1,1),=(1,)(x>0,y>0),若⊥,则x+4y的最小值为.12.(5分)已知圆C:x2+y2+8x+ay﹣5=0经过抛物线E:x2=4y的焦点,则抛物线E的准线与圆C相交所得的弦长为.13.(5分)设P是函数y=lnx图象上的动点,则点P到直线y=x的距离的最小值为.三、【坐标系与参数方程选做题】(共1小题,每小题5分,满分5分)14.(5分)在极坐标系中,曲线C1:ρcosθ=与曲线C2:ρ2cos2θ=1相交于A,B两点,则|AB|=.四、【几何证明选讲选做题】(共1小题,每小题0分,满分0分)15.如图,在Rt△ABC中,∠A=30°,∠C=90°,D是AB边上的一点,以BD为直径的⊙O与AC相切于点E.若BC=6,则DE的长为.三、解答题16.(12分)函数f(x)=2sin(ωx+)(w>0)的最小正周期是π.(1)求f()的值;(2)若sinx0=,且x0∈(0,),求f(x0)的值.17.(12分)空气质量指数(简称AQI)是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值广州118 东莞137 中山95 江门78 云浮76 茂名107 揭阳80深圳94 珠海95 湛江75 潮州94 河源124 肇庆48 清远47佛山160 惠州113 汕头88 汕尾74 阳江112 韶关68 梅州84 (1)请根据上表中的数据,完成下列表格:空气质量优质良好轻度污染中度污染AQI值范围[0,50)[50,100)[100,150)[150,200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望.18.(14分)在三棱锥P﹣ABC中,已知平面PBC⊥平面ABC,AB是底面△ABC最长的边.三棱锥P﹣ABC的三视图如图1所示,其中侧视图和俯视图均为直角三角形.(1)请在图2中,用斜二测画法,把三棱锥P﹣ABC的直观图补充完整(其中点P在xOz平面内),并指出三棱锥P﹣ABC的哪些面是直角三角形;(2)求二面角B﹣PA﹣C的正切值;(3)求点C到面PAB的距离.19.(14分)已知数列{a n}的首项大于0,公差d=1,且+=.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b1=﹣1,b2=λ,b n+1=b n+,其中n≥2.①求数列{b n}的通项b n;②是否存在实数λ,使得数列{b n}为等比数列?若存在,求出λ的值;若不存在,请说明理由.20.(14分)已知椭圆E:+=1(a>b>0)的离心率为,过左焦点倾斜角为45°的直线被椭圆截得的弦长为.(1)求椭圆E的方程;(2)若动直线l与椭圆E有且只有一个公共点,过点M(1,0)作l的垂线垂足为Q,求点Q 的轨迹方程.21.(14分)已知定义在[﹣2,2]上的奇函数f(x)满足:当x∈(0,2]时,f(x)=x(x﹣2).(1)求f(x)的解析式和值域;(2)设g(x)=ln(x+2)﹣ax﹣2a,其中常数a>0.①试指出函数F(x)=g(f(x))的零点个数;②若当1+是函数F(x)=g(f(x))的一个零点时,相应的常数a记为a k,其中k=1,2,…,n.证明:a1+a2+…+a n<(n∈N*).广东省深圳市2015届高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合U={2,0,1,5},集合A={0,2},则∁U A=()A.φB.{0,2} C.{1,5} D.{2,0,1,5}考点:交、并、补集的混合运算.专题:集合.分析:根据集合的补集的定义求出A的补集即可.解答:解:∵集合U={2,0,1,5},集合A={0,2},∴∁U A={1,5},故选:C.点评:本题考查了集合的运算,是一道基础题.2.(5分)已知复数z满足z(1+i)=1(其中i为虚数单位),则z=()A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:∵z(1+i)=1,∴=.故选:D.点评:本题考查了复数的运算法则,属于基础题.3.(5分)若函数y=a x+b的部分图象如图所示,则()A.0<a<1,﹣1<b<0 B.0<a<1,0<b<1 C.a>1,﹣1<b<0 D.a>1,0<b<1考点:指数函数的图像与性质.专题:函数的性质及应用.分析:根据指数函数的图象和性质即可判断解答:解:由图象可以看出,函数为减函数,故0<a<1,因为函数y=a x的图象过定点(0,1),函数y=a x+b的图象过定点(0,b),∴﹣1<b<0,故选:A点评:本题主要考查函数图象的应用,利用函数过定点是解决本题的关键.4.(5分)已知实数x,y满足不等式组,则2x+y的最大值为()A.3 B.4 C.6 D.9考点:简单线性规划.专题:不等式的解法及应用.分析:作出可行域,平行直线可得直线过点A(3,0)时,z取最大值,代值计算可得.解答:解:作出不等式组所对应的可行域(如图阴影),变形目标函数z=2x+y可得y=﹣2x+z,平移直线y=﹣2x可知,当直线经过点A(3,0)时,z取最大值,代值计算可得z=2x+y的最大值为6故选:C点评:本题考查简单线性规划,准确作图是解决问题的关键,属中档题.5.(5分)已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据题意,分两步来判断:①分析当α∥β时,a⊥b是否成立,有线面垂直的性质,可得其是真命题,②分析当a⊥b时,α∥β是否成立,举出反例可得其是假命题,综合①②可得答案.解答:解:根据题意,分两步来判断:①当α∥β时,∵a⊥α,且α∥β,∴a⊥β,又∵b⊂β,∴a⊥b,则a⊥b是α∥β的必要条件,②若a⊥b,不一定α∥β,当α∩β=a时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则a⊥b是α∥β的必要不充分条件,故选B.点评:本题考查充分必要条件的判断,涉及线面垂直的性质的运用,解题的关键要掌握线面垂直的性质.6.(5分)执行如图所示的程序框图,则输出S的值为()A.16 B.25 C.36 D.49考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的i,n,S的值,当i=6时,满足条件i>5,退出循环,输出S的值为36.解答:解:执行程序框图,可得S=0,n=1,i=1S=1,不满足条件i>5,i=2,n=3,S=4不满足条件i>5,i=3,n=5,S=9不满足条件i>5,i=4,n=7,S=16不满足条件i>5,i=5,n=9,S=25不满足条件i>5,i=6,n=11,S=36满足条件i>5,退出循环,输出S的值为36.故选:C.点评:本题主要考察了程序框图和算法,正确判断退出循环时S的值是解题的关键,属于基础题.7.(5分)在△ABC中,a,b,c分为为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A.(0,)B.(0,] C.[,π)D.[,π]考点:利用导数研究函数的极值.专题:计算题;导数的综合应用;解三角形.分析:先求导f′(x)=x2+2bx+(a2+c2﹣ac),从而化函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点为x2+2bx+(a2+c2﹣ac)=0有两个不同的根,从而再利用余弦定理求解.解答:解:∵f(x)=x3+bx2+(a2+c2﹣ac)x+1,∴f′(x)=x2+2bx+(a2+c2﹣ac),又∵函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,∴x2+2bx+(a2+c2﹣ac)=0有两个不同的根,∴△=(2b)2﹣4(a2+c2﹣ac)>0,即ac>a2+c2﹣b2,即ac>2accosB;即cosB<;故∠B的范围是(,π);故选:D.点评:本题考查了导数的综合应用及余弦定理的应用,属于中档题.8.(5分)如果自然数a的各位数字之和等于8,我们称a为“吉祥数”.将所有“吉祥数”从小到大排成一列a1,a2,a3…,若a n=2015,则n=()A.83 B.82 C.39 D.37考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用“吉祥数”的定义,分类列举出“吉祥数”,推理可得到结论.解答:解:由题意,一位数时只有8一个;二位数时,有17,26,35,44,53,62,71,80共8个三位数时:(0,0,8)有1个,(0,1,7)有4个,(0,2,6)有4个,(0,3,5)有4个,(0,4,4)有2个,(1,1,6)有3个,(1,2,5)有6个,(1,3,4)有6个,(2,2,4),有3个,(2,3,3)有3个,共1+4×3+2+3×3+6×2=36个,四位数小于等于2015:(0,0,1,7)有3个,(0,0,2,6)有1个,(0,1,1,6)有6个,(0,1,2,5)有7个,(0,1,3,4)有6个,(1,1,1,5)有3个,(1,1,2,4)有6个,(1,1,3,3)有3个,(1,2,2,3)有3个,共有3×4+6×3+1+7=38个数,∴小于等于2015的一共有1+8+36+38=83个,即a83=2015故选:A点评:本题考查新定义,涉及简单计数原理和排列组合的知识,属中档题.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.本大题分为必做题和选做题两部分(一)必做题:第9、10、11、12、13题为必做题,每道试题考生必须作答.9.(5分)(x﹣)4的展开式中常数项为.(用数字表示)考点:二项式定理.专题:计算题;二项式定理.分析:利用二项展开式的通项公式T r+1=(﹣)r••x4﹣2r,令4﹣2r=0得r=2,即可求出(x﹣)4的展开式中常数项.解答:解:设(x﹣)4展开式的通项为T r+1,则T r+1=(﹣)r••x4﹣2r,令4﹣2r=0得r=2.∴展开式中常数项为:(﹣)2•=.故答案为:.点评:本题考查二项式系数的性质,利用通项公式化简是关键,属于中档题.10.(5分)(x2﹣2sinx)dx=18.考点:微积分基本定理.专题:导数的概念及应用.分析:根据微积分基本定理计算即可.解答:解:(x2﹣2sinx)dx=(x3+2cosx)|=×33+2cos3﹣×(﹣3)3﹣2cos (﹣3)=9+9=18故答案为:18点评:本题考查了微积分基本定理,关键是求出原函数,属于基础题11.(5分)已知向量=(﹣1,1),=(1,)(x>0,y>0),若⊥,则x+4y的最小值为9.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据⊥,得到x+y=xy,由x+4y≥4结合“=”成立的条件,求出此时x,y 的值,从而得到答案.解答:解:∵⊥,(x>0,y>0),∴•=﹣1+=0,∴+=1,∴x+4y=(x+4y)(+)=1+++4≥5+2=9,当且仅当=即x2=4y2时“=”成立,故答案为:9点评:本题考查了平面向量数量积的运算,考查了基本不等式的性质,是一道基础题.12.(5分)已知圆C:x2+y2+8x+ay﹣5=0经过抛物线E:x2=4y的焦点,则抛物线E的准线与圆C相交所得的弦长为4.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出抛物线E:x2=4y的焦点为(0,1),准线为y=﹣1,确定圆的方程,即可求出抛物线E的准线与圆C相交所得的弦长.解答:解:抛物线E:x2=4y的焦点为(0,1),准线为y=﹣1.(0,1)代入圆C:x2+y2+8x+ay﹣5=0,可得1+a﹣5=0,∴a=4∴圆C:x2+y2+8x+4y﹣5=0,即(x+4)2+(y+2)2=25,∴圆心到直线的距离为d=1,∴抛物线E的准线与圆C相交所得的弦长为2=4.故答案为:4.点评:本题考查圆的方程,考查抛物线的性质,考查直线与圆的位置关系,考查学生的计算能力,比较基础.13.(5分)设P是函数y=lnx图象上的动点,则点P到直线y=x的距离的最小值为.考点:利用导数研究曲线上某点切线方程.专题:计算题;作图题;导数的综合应用.分析:由题意作图,从而可得点P(1,0)时,点P到直线y=x的距离的有最小值;从而求解.解答:解:由题意作图如下,令y′==1得,x=1,y=0;故点P(1,0)时,点P到直线y=x的距离的有最小值;故d==;故答案为:.点评:本题考查了导数的综合应用及数形结合的思想应用,属于中档题.三、【坐标系与参数方程选做题】(共1小题,每小题5分,满分5分)14.(5分)在极坐标系中,曲线C1:ρcosθ=与曲线C2:ρ2cos2θ=1相交于A,B两点,则|AB|=2.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:曲线C1:ρcosθ=化为x=.曲线C2:ρ2cos2θ=1化为ρ2(cos2θ﹣sin2θ)=1,可得x2﹣y2=1,联立解得即可.解答:解:曲线C1:ρcosθ=化为x=.曲线C2:ρ2cos2θ=1化为ρ2(cos2θ﹣sin2θ)=1,∴x2﹣y2=1,联立,解得.∴|AB|=2.故答案为:2.点评:本题考查了极坐标方程化为直角坐标方程、弦长问题,考查了计算能力,属于基础题.四、【几何证明选讲选做题】(共1小题,每小题0分,满分0分)15.如图,在Rt△ABC中,∠A=30°,∠C=90°,D是AB边上的一点,以BD为直径的⊙O与AC相切于点E.若BC=6,则DE的长为4.考点:与圆有关的比例线段.专题:立体几何.分析:连接OE,由已知得∠AEO=90°,OA=2OE,OD=AD,由直角三角形斜边中线等于斜边的一半,得DE=OD,由此能求出DE的长.解答:解:连接OE,∵AC是⊙O的切线,∴∠AEO=90°,∵∠A=30°,∴OA=2OE,∵OA=OD+AD,OD=OE,∴OD=AD,∴DE=OD(直角三角形斜边中线等于斜边的一半),∵∠C=90°,∠A=30°,BC=6,∴AB=2BC=12,∵AB=OB+OD+AD=3OD=12,∴OD=4,∴DE=OD=4.故答案为:4.点评:本题考查线段长的求法,是中档题,解题时要认真审题,注意圆的简单性质的合理运用.三、解答题16.(12分)函数f(x)=2sin(ωx+)(w>0)的最小正周期是π.(1)求f()的值;(2)若sinx0=,且x0∈(0,),求f(x0)的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的求值.分析:(1)由已知可求ω的值,从而可得解析式,即可根据诱导公式求值.(2)由已知可求得cos2x0的值,即可求sin2x0的值,由两角和的正弦公式展开所求代入即可求值.解答:解:(1)∵f(x)的周期是π,即T=π,…(1分)∴ω==2,即.…(3分)∴.…(5分)(2)由得,…(7分)又,∴2x0∈(0,π),…(8分)∴,…(9分)∵=.∴.…(12分)点评:本小题主要考查了三角函数f(x)=Asin(ωx+ϕ)的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力,属于基础题.17.(12分)空气质量指数(简称AQI)是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值城市 AQI数值广州118 东莞137 中山95 江门78 云浮76 茂名107 揭阳80深圳94 珠海95 湛江75 潮州94 河源124 肇庆48 清远47佛山160 惠州113 汕头88 汕尾74 阳江112 韶关68 梅州84 (1)请根据上表中的数据,完成下列表格:空气质量优质良好轻度污染中度污染AQI值范围[0,50)[50,100)[100,150)[150,200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望.考点:离散型随机变量的期望与方差;分层抽样方法.专题:概率与统计.分析:(1)根据已知数据,能完成表格.(2)按分层抽样的方法,抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.分别求出相应的概率,由此能求出ξ的分布列和数学期望.解答:解:(1)根据数据,完成表格如下:空气质量优质良好轻度污染中度污染AQI值范围[0,50)[50,100)[100,150)[150,200)城市频数 2 12 6 1…(2分)(2)按分层抽样的方法,从“良好”类城市中抽取个,…(3分)从“轻度污染”类城市中抽取个,…(4分)所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.∵,,.…(8分)∴ξ的分布列为:ξ 1 2 3p所以.…(11分)答:ξ的数学期望为2个.…(12分)点评:本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18.(14分)在三棱锥P﹣ABC中,已知平面PBC⊥平面ABC,AB是底面△ABC最长的边.三棱锥P﹣ABC的三视图如图1所示,其中侧视图和俯视图均为直角三角形.(1)请在图2中,用斜二测画法,把三棱锥P﹣ABC的直观图补充完整(其中点P在xOz平面内),并指出三棱锥P﹣ABC的哪些面是直角三角形;(2)求二面角B﹣PA﹣C的正切值;(3)求点C到面PAB的距离.考点:二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(1)由已知条件能用出三棱锥P﹣ABC直观图,由三视图知△ABC和△PCA是直角三角形.(2)过P作PH⊥BC交BC于点H,由三视图知△PBC为等腰三角形,取PC的中点E,过E作EF⊥PA且交PA于点F,连接BE,BF,∠BFE是二面角B﹣PA﹣C的平面角,由此能求出二面角B﹣PA﹣C的正切值.(3)记C到面PAB的距离为h,由V P﹣ABC=V C﹣PAB,能求出C到面PAB的距离.解答:解:(1)三棱锥P﹣ABC直观图如图1所示;由三视图知△ABC和△PCA是直角三角形.…(3分)(2)如图2,过P作PH⊥BC交BC于点H,由三视图知△PBC为等腰三角形,∵BC=4,,∴PB=PC=BC=4,取PC的中点E,过E作EF⊥PA且交PA于点F,连接BE,BF,因为BE⊥PC,由三视图知AC⊥面PBC,且BE⊂面PBC,∴AC⊥BE,又由AC∩PC=C,∴BE⊥面PAC,由PA⊂面PAC,∴BE⊥PA,BE∩EF=E,∴PA⊥面BEF,由BF⊂面BEF,∴PA⊥BF,所以∠BFE是二面角B﹣PA﹣C的平面角.…(6分)∵△PEF∽△PAC,∴,∵,∴,…(8分),∴在直角△BFE中,有.所以,二面角B﹣PA﹣C的正切值为.…(9分)(3)记C到面PAB的距离为h,由(1)、(2)知,∴,PB=4,V C﹣PAB==,…(12分)三棱锥P﹣ABC的体积,…(13分)由V P﹣ABC=V C﹣PAB,得C到面PAB的距离.…(14分)点评:本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角,三棱锥的体积,空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19.(14分)已知数列{a n}的首项大于0,公差d=1,且+=.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b1=﹣1,b2=λ,b n+1=b n+,其中n≥2.①求数列{b n}的通项b n;②是否存在实数λ,使得数列{b n}为等比数列?若存在,求出λ的值;若不存在,请说明理由.考点:数列与不等式的综合.专题:等差数列与等比数列.分析:(1)由已知得=,从而,由此能求出数列{a n}的通项公式.(2)①由已知得=+1,令c n=,则c2=λ,c n+1=c n+1,由此能求出数列{b n}的通项公式.②若数列{b n}为等比数列,则有,由此能求出存在实数λ=1,使得数列{b n}为等比数列.解答:解:(1)∵数列{a n}的首项大于0,公差d=1,且+=,…(2分)∴=,…(3分)整理得,解得a1=1或a1=﹣3(舍去).…(4分)因此数列{a n}的通项a n=n.…(5分)(2)①∵b n+,∴=+1.…(6分)令c n=,则有c2=λ,c n+1=c n+1,(n≥2).∴当n≥2时,c n=c2+(n﹣2)=n﹣2+λ,.…(8分)∴数列{b n}的通项b n=.…(9分)②∵b1=﹣1,b2=λ,,…(10分)∴若数列{b n}为等比数列,则有=b1b3,即,解得λ=1或.…(11分)当时,(n≥2),不是常数,数列{b n}不是等比数列,当λ=1时,b1=﹣1,,(n≥2),数列{b n}为等比数列.所以,存在实数λ=1,使得数列{b n}为等比数列.…(14分)点评:本题考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、等比数列的定义,考查了学生的运算能力,以及化归与转化的思想.20.(14分)已知椭圆E:+=1(a>b>0)的离心率为,过左焦点倾斜角为45°的直线被椭圆截得的弦长为.(1)求椭圆E的方程;(2)若动直线l与椭圆E有且只有一个公共点,过点M(1,0)作l的垂线垂足为Q,求点Q 的轨迹方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由椭圆E的离心率为,可得=,解得a2=2b2,可得c=b.故椭圆E的方程可设为x2+2y2=2b2,则椭圆E的左焦点坐标为(﹣b,0),过左焦点倾斜角为45°的直线方程为l′:y=x+b.与椭圆方程联立可得交点坐标,利用弦长公式|AB|===,解得b即可得出.(2)当切线l的斜率存在且不为0时,设l的方程为y=kx+m,与椭圆方程联立得(1+2k2)x2+4kmx+2m2﹣2=0,根据直线l和椭圆E有且仅有一个交点,可得△=0,m2=2k2+1.由于直线MQ与l垂直,可得直线MQ的方程为:y=﹣,联立,解得,消去m,k即可得出.解答:解:(1)∵椭圆E的离心率为,∴=,解得a2=2b2,∴c2=a2﹣b2=b2,即c=b.故椭圆E的方程可设为x2+2y2=2b2,则椭圆E的左焦点坐标为(﹣b,0),过左焦点倾斜角为45°的直线方程为l′:y=x+b.设直线l′与椭圆E的交点记为A,B,联立,消去y,得3x2+4bx=0,解得x1=0,x2=﹣,∴|AB|===,解得b=1.故椭圆E的方程为.(2)( i)当切线l的斜率存在且不为0时,设l的方程为y=kx+m,联立,消去y并整理,得(1+2k2)x2+4kmx+2m2﹣2=0,∵直线l和椭圆E有且仅有一个交点,∴△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,化简并整理,得m2=2k2+1.∵直线MQ与l垂直,∴直线MQ的方程为:y=﹣,联立,解得,∴x2+y2====2.(*)( ii)当切线l的斜率为0时,此时Q(1,±1),符合(*)式.( iii)当切线l的斜率不存在时,此时Q或,符合(*)式.综上所述,点Q的轨迹方程为x2+y2=2.点评:本题主要考查轨迹方程和椭圆的定义、直线方程、直线与椭圆相切的位置关系,弦长问题,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想,属于难题.21.(14分)已知定义在[﹣2,2]上的奇函数f(x)满足:当x∈(0,2]时,f(x)=x(x﹣2).(1)求f(x)的解析式和值域;(2)设g(x)=ln(x+2)﹣ax﹣2a,其中常数a>0.①试指出函数F(x)=g(f(x))的零点个数;②若当1+是函数F(x)=g(f(x))的一个零点时,相应的常数a记为a k,其中k=1,2,…,n.证明:a1+a2+…+a n<(n∈N*).考点:数列与函数的综合.专题:导数的综合应用;等差数列与等比数列.分析:(1)由奇函数性质得f(0)=0,当x∈[﹣2,0)时,f(x)=﹣f(﹣x)=﹣(﹣x)(﹣x﹣2)=﹣x(x+2),由此能求出f(x)的解析式和值域.(2)①当t=0时,方程f(x)=t有三个实根,当t=1或t=﹣1时,方程f(x)=t只有一个实根,当t∈(0,1)或t∈(﹣1,0)时,方程f(x)=t有两个实根.设h(x)=,x∈[﹣1,1],h(﹣1)=0,,由此利用导数性质能求出函数F(x)=g(f(x))的零点个数.②由已知得g(f(1+))=0,g(f(1+))=g()=ln(﹣a k()=0,从而,记m(x)=ln(x+1)﹣x,﹣1=,由此利用导数性质能证明a1+a2+…+a n<(n∈N*).解答:(1)解:∵f(x)为奇函数,∴f(0)=0.当x∈[﹣2,0)时,﹣x∈(0,2],则f(x)=﹣f(﹣x)=﹣(﹣x)(﹣x﹣2)=﹣x(x+2),∴f(x)=.∵x∈[0,2]时,f(x)∈[﹣1,0],x∈[﹣2,0),f(x)∈[0,1],∴f(x)的值域为[﹣1,1].(2)①解:函数f(x)的图象如图a所示,当t=0时,方程f(x)=t有三个实根,当t=1或t=﹣1时,方程f(x)=t只有一个实根,当t∈(0,1)或t∈(﹣1,0)时,方程f(x)=t有两个实根.由g(x)=0,解得a=,∵f(x)的值域为[﹣1,1],∴只需研究函数y=在[﹣1,1]上的图象特征.设h(x)=,x∈[﹣1,1],h(﹣1)=0,,令h′(x)=0,得x=e﹣2∈(0,1),h(e﹣2)=.∵当﹣1<x<e﹣2时,h′(x)>0,当e﹣2<x<1时,h′(x)<0,又∵ln23<ln32,即,由h(0)=,h(1)=,得h(0)<h(1),∴h(x)的大致图象如图b所示.根据图象b可知,当0<a<、、a=时,直线y=a与函数y=h(x)的图象仅有一个交点,则函数g(x)在[﹣1,1]上仅有一个零点,记零点为t,则t分别在区间(﹣1,0)、(0,1)上,根据图象a,方程f(x)=t有两个交点,因此函数F(x)=g(f(x))有两个零点.类似地,当a=时,函数g(x)在[﹣1,1]上仅有零点0,因此函数F(x)有﹣1、0、1这三个零点.当a=时,函数g(x)在[﹣1,1]上有两个零点,一个零点是1,另一个零点在(0,1)内,因此函数Y(x)有三个零点.当时,函数g(x)在[﹣1,1]上有两个零点,且这两个零点均在(0,1)内,因此函数F(x)有四个零点.当a>时,函数g(x)在[﹣1,1]上没有零点,因此函数F(x)没有零点.②证明:∵1+是函数F(x)=g(f(x))的一个零点,∴有g(f(1+))=0,∵1+∈(0,2),∴f(1+)=,∴g(f(1+))=g()=ln()﹣a k()=0,∴,k=1,2,…,n.记m(x)=ln(x+1)﹣x,﹣1=,∵当x∈(0,1]时,m′(x)<0,∴当x∈(0,1]时,m(x)<m(0)=0,即ln(x+1)<x.故有ln()<,则<=,k=1,2,…,n.当n=1时,a1.当n≥2时,∵<=﹣,∴a1+a2+a3+…+a n<+…+<==<.综上,有a1+a2+…+a n<(n∈N*).点评:本题主要考查函数的性质、分段函数、导数应用、一元二次方程的求解、连续函数的零点存在性定理,放缩法证明数列不等式,考查学生数形结合、分类讨论的数学思想,以及计算推理能力及分析问题、解决问题的能力及创新意识.。

广东省深圳市2015届高三上学期第一次五校联考数学(理)

广东省深圳市2015届高三上学期第一次五校联考数学(理)

第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i + 【答案】D考点:复数的概念及运算.2.设集合{}12A x R x =∈-<,{}2,xB y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 【答案】C考点:集合的运算. 3.函数()2ln =-f x xx的零点所在的区间为( ) A .()0 1, B .()1 2, C .()2 3, D .()3 4, 【答案】C 【解析】试题分析:对于函数()2ln =-f x x x 在(0,+∞)上是连续函数,由于f (2)=ln2-22<0,f (3)=ln3-32>0,故f (2)f (3)<0, 故函数()2ln =-f x x x的零点所在的大致区间是(2,3),故选C.考点:函数零点的定义以及函数零点判定定理.4.已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件 【答案】B考点:1.向量平行的条件;2.充要条件.5.一个多面体的三视图如右图所示,则该多面体的体积为( ) A .233 B .223C .6D . 7【答案】A考点:三视图求解几何体的体积.6.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.则不同的搜寻方案有( ) A .40种 B .70种 C .80种 D .100种 【答案】A 【解析】(第5题图)试题分析:按Grace 参与和不参与分两类:第一类Grace 不参与,则参与搜寻任务的小孩只有4人,均分考点:排列与组合.7.已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12nn n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( )A .201421- B .20142+1 C .201521- D .201521+【答案】A……20122012201423⨯≥-a a将上2013个同向不等式相加得:-⨯=+++⨯+≥-+20132012222013201423)222(31 a a a ,再注考点:1.等比数列的前n 项和;2.数列通项公式的求法. 8.已知函数()3sin f x x x x =--+,当02πθ⎛⎫∈ ⎪⎝⎭,时,恒有()()2cos 2sin 220f m f m θθ++-->成立,则实数m 的取值范围( )A .1,2⎛⎫-∞ ⎪⎝⎭ B .1,2⎛⎤-∞ ⎥⎝⎦ C .1,2⎛⎫-+∞ ⎪⎝⎭ D .1,2⎡⎫-+∞⎪⎢⎣⎭【答案】D考点:1.函数的奇偶性与单调性;2.不等式的恒成立.第Ⅱ卷(共110分)二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9.右图是一个算法的程序框图,若输出的结果是31,则判断框中的正整数...M 的值是___________.【答案】4.考点:程序框图.10.若二项式()*1(n n N x+∈的展开式中的第5项是常数项, 则n =___________.【答案】6.考点:二项式定理.11.若实数x y 、满足约束条件⎪⎩⎪⎨⎧≥++≥+-≤022022y x y x x ,则目标函数y x z +=2的最大值为___________.【答案】8.考点:线性规划.12.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题,其中所有正确命题的序号是___________.①若m ∥β,n ∥β,m 、n ⊂α,则α∥β . ②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m ⊥n . ③若m ⊥α,α⊥β,m ∥n ,则n ∥β . ④若n ∥α,n ∥β,α∩β=m ,那么m ∥n . 【答案】②④.考点:空间线面的位置关系的判断与推理.13.若不等式21x x a <-+的解集是区间()33-,的子集,则实数a 的范围为__________.【答案】(]5-∞,.考点:不等式的解法及应用.14.(参数方程与极坐标)已知在直角坐标系中曲线1C 的参数方程为2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数且0t ≠),在以原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中曲线2C 的极坐标方程为()4R πθρ=∈,则曲线1C 与2C 交点的直角坐标为__________.【答案】(2,2)考点:1.参数方程与普通方程的互化;2.极坐方程与直角坐标方程的互化;3.曲线的交点.15.(几何证明选讲)如图,PT 切圆O 于点T ,PA 交圆O 于A B 、两点,且与直径CT 交于点D ,若236CD AD BD ===,,,则PB =___________.【答案】15.(第15题图)考点:1.相交弦定理;2.切割线定理;3.勾股定理.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分12分)已知()()()23sin cos 02f x x x x ππωωωω⎛⎫=+-->⎪⎝⎭的最小正周期为T π=. (1)求23f π⎛⎫⎪⎝⎭的值; (2)在ABC ∆中,角A B C 、、所对应的边分别为a b c 、、,若有()2cos cos a c B b C -=,则求角B 的大小以及()f A 的取值范围. 【答案】(1)-1;(2)3π=B ,]21,1(-.()()2sin cos sin cos cos sin sin sin sin A B B C B C B C A A π⇒=+=+=-= ……8分1sin 0 cos 2A B >∴=()0 3B B ππ∈∴=, ……9分 22 033A C B A πππ⎛⎫+=-=∴∈ ⎪⎝⎭, ……10分72666A πππ⎛⎫∴-∈- ⎪⎝⎭, 1sin 2,162A π⎛⎫⎛⎤∴-∈- ⎪ ⎥⎝⎭⎝⎦ ……11分 ()11sin 21,622f A A π⎛⎫⎛⎤∴=--∈- ⎪ ⎥⎝⎭⎝⎦ ……12分考点:1.三角恒等变形公式;2.三角函数的图象与性质;3.正弦定理. 17.(本小题满分12分)已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球.(1)若每次取球后都放回..袋中,求事件“连续取球四次,至少取得两次白球”的概率; (2)若每次取球后都不.放回..袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望【答案】(1)11;(2)随机变量X 的分布列为:……11分 随机变量X 的期望为:12121023451515553EX =⨯+⨯+⨯+⨯= .的概率公式k n kk n p p C k P --==)1()(ξ进行计算;(2)首先得到随机变量X 的所有取值分别为2,3,4,5,然后利用古典概率公式计算出随机变量X 取每一个值时所对应的概率,从而可得随机变量X 的分布列与期望,注意:每次取球后都不.放回..袋中. 试题解析:(1)记事件i A 表示“第i 次取到白球”(*i N ∈),事件B 表示“连续取球四次,至少取得两次白球”,则:1234123412341=++++B AA A A AA A AAAAA. ……2分 ()()()()()()12341234123412341234P B P A A A A P A A A A P A A A A P A A A A P A A A A =++++4342416466627⎛⎫⎛⎫=+⨯⨯= ⎪ ⎪⎝⎭⎝⎭……4分考点:1.相互独立事件同时发生的概率积公式;2.古典概型.3.分布列与数学期望. 18.(本小题满分14分)如图,三棱柱111C B A ABC -侧棱与底面垂直,且所有棱长都为4,D 为CC 1中点. (1)求证:BD A AB 11平面⊥; (2)求二面角B D A A --1的余弦值.【答案】(1)祥见解析;(2A-A 1D-B 的余弦值大小.也可用传统几何方法解决.(第18题图)()()()32,4,2,0,2,4,32,4,211-=-=-=∴BA BD AB ……4分 0,0111=⋅=⋅BA AB BD AB ,111,BA AB BD AB ⊥⊥∴. ……6分 1BD BA B = ⊥∴1AB 平面1A BD . ……7分(2)设平面AD A 1的法向量为()z y x ,,=.()()12,2,230,4,0AD AA =--=,. ,,1⊥⊥ ⎩⎨⎧==-+-∴0403222y z y x(1)取BC 中点O ,连结AO 和O B 1,由正方形性质知:BD O B ⊥1, ……4分111 BD AOB AO B O O AB BD =∴⊥∴⊥面………5分又在正方形11ABB A 中,11AB A B ⊥, ………6分1A B BD B =⊥∴1AB 平面1A BD . ……7分(2)设AB 1与A 1B 交于点G ,在平面A 1BD 中,作D A GF 1⊥于F ,连结AF ,考点:1.二面角的平面角及求法;2.直线与平面垂直的判定. 19.(本小题满分14分) 已知数列{}n a 满足13=2a ,()11=22n n a n a --≥,n S 是数列{}n b 的前n 项和,且有1=12n n S n b n-+. (1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列{}n b 的通项公式; (3)设nn na cb =,记数列{}n c 的前n 项和n T ,求证:1n T <. 【答案】(1)祥见解析;(2)2n n b n =⋅;(3)祥见解析.项和n T ,即可证得所要证明的不等式式. 试题解析:(1)证明:()1121=2n n n a a n a ---≥ 111121111n n n n n a a a a a ------∴-=-= ……1分 ()()111111111121111n n n n n n a a n a a a a------+∴===+≥----考点:1.等差数列;2.数列通项公式的求法;3.数列前n 项和的求法. 20.(本小题满分14分)已知双曲线()2222:10,0x y C a b a b -=>>, 12F F ,分别是它的左、右焦点,A ()1,0-是其左顶点,且双曲线的离心率为2e =. 设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内. (1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12=x 交于M N 、两点,求证:22MF NF ⊥;(3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由.【答案】(1)2213y x -=;(2)祥见解析;(3)存在,=2λ,理由祥见解析.(3)先取直线的斜率不存在的特列情形,研究出对应的λ的值,然后再对斜率存在的情形给予一般性的证明:不难获得=2λ,从而假设存在=2λ使得22PF A PAF λ∠=∠恒成立,然后证明222tan tan PAF A PF ∠=∠即可.试题解析:(1)由题可知:1a = ……1分2222999993109124444393131⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭t t t t t t22∴⊥MF NF ……9分(3)当直线l 的方程为2=x 时,解得()23,P . 易知此时2∆AF P 为等腰直角三角形,其中2224ππ∠=∠=,AF P PAF ,即222∠=∠AF P PAF ,也即:=2λ. ……10分下证:222∠=∠AF P PAF 对直线l 存在斜率的情形也成立.考点:1.双曲线的标准方程;2.直线与双曲线的位置关系;3.探索性问题. 21.(本小题满分14分)已知函数()()2ln 0f x x a x x a =--≠.(1)求函数()f x 的单调区间;(2)若0a >,设()11A x y ,,()22B x y ,是函数()f x 图像上的任意两点(12x x <),记直线AB 的斜率为k ,求证: '1223x x f k +⎛⎫>⎪⎝⎭. 【答案】(1)(i )当18a ≤-时,()f x 的单增区间为()0+∞,,无单减区间.(ii )当108a -<<时,()f x 的单增区间为0⎛ ⎝⎭,+⎫∞⎪⎪⎝⎭,单减区间为⎝⎭.(iii )当0a >时,()f x 的单增区间为+⎫∞⎪⎪⎝⎭,单减区间为0⎛ ⎝⎭. (2)祥见解析. 【解析】()11122211112122122231ln33ln ln +2+2+2x x x x x x x x x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⇔<⇔<-,令()120,1x t x =∈,构造函数2)1(3ln )(+--=t t t t g ,再利用导数证明)(t g 在)1,0(上是增函数,从而可得0)1()(=<g t g ,进而得所证不等式成立.单减区间为⎝⎭. (iii )当0a >时,()f x的单增区间为+⎫∞⎪⎪⎝⎭,单减区间为0⎛ ⎝⎭.…7分 (2)证明:()'21a f x x x =-- ()12'12122+2+23133+2x x x x a f x x ⎛⎫∴=-- ⎪⎝⎭考点:1.利用函数的导数研究函数的单调性;2.利用导数证明不等式.。

广东省深圳市2015年高三第一次调研考试数学理试卷

广东省深圳市2015年高三第一次调研考试数学理试卷

2015年深圳市高三年级第一次调研考试数学(理科)试题一、选择题:本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合}5,1,0,2{=U ,集合}2,0{=A ,则A C U =( ) A.φ B 。

}2,0{ C 。

}5,1{ D 。

}5,1,0,2{ 2、已知复数z 满足1)1(=+i z (其中i 为虚数单位),则=z ( ) A.21i +- B 。

21i -- C 。

21i + D 。

21i- 3、若函数b a y x+=的部分图象如图1所示,则A.01,10<<-<<b a B 。

10,10<<<<b a C.01,1<<->b a D 。

10,1<<>b a4、已知实数y x ,满足不等式组300≤⎪⎩⎪⎨⎧≥≥+y x y x ,则y x +2的最大值为( )A.3 B 。

4 C 。

6 D 。

95、已知直线b a ,,平面βα,,且α⊥a ,β⊂b ,则“b a ⊥”是“βα//”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6、执行如图2所示的程序框图,则输出S 的值为( ) A. 16 B 。

25 C 。

36 D 。

497、在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(π B 。

]3,0(π C 。

],3[ππ D 。

),3(ππ8、如果自然数a 的各位数字之和等于8,我们称a 为“吉祥数”。

将所有“吉祥数”从小到大排成一列321,,a a a …,若2015=n a ,则=n ( )A. 83 B 。

82 C 。

39 D 。

37二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年深圳市高三年级第一次调研考试数学(理科)答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分40分.1 2 3 4 5 6 7 8 CDACBCDA二、填空题:本大题每小题5分,满分30分. 9.23; 10. 18; 11.9; 12.46; 13.22; 14.2; 15. 4. 三、解答题 16.(本小题满分12分)函数π()2sin()3f x x ω=+(0ω>)的最小正周期是π. (1)求5π()12f 的值; (2)若03sin 3x =,且0π(0,)2x ∈,求0()f x 的值.解:(1)()f x 的周期πT =,即2ππω=, …………………………………………1分2ω∴=±,由0ω>,得2ω=,即π()2sin(2)3f x x =+. ……………………………………3分5π7πππ()2sin 2sin(π)2sin 112666f ∴==+=-=-. ………………………………5分 (2)由03s i n 3x =得2001cos 212sin 3x x =-=, ………………………………7分又0π(0,)2x ∈,∴02(0,π)x ∈, ……………………………………………8分 ∴ 20022sin 21cos 23x x =-=, …………………………………………9分 000πππ2sin(2)2sin 2cos 2cos 2sin 333x x x +=+221132232232323+=⨯⨯+⨯⨯=. 00π223()2sin(2)33f x x +∴=+=. …………………………………………12分 【说明】 本小题主要考查了三角函数)sin()(ϕω+=x A x f 的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17.(本小题满分12分)空气质量指数(简称AQI )是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:城市 AQI 数值 城市 AQI 数值 城市 AQI 数值 城市 AQI 数值 城市 AQI 数值 城市 AQI 数值 城市 AQI 数值 广州 118 东莞 137 中山 95 江门 78 云浮 76 茂名 107 揭阳 80 深圳 94 珠海 95 湛江 75 潮州 94 河源 124 肇庆 48 清远 47 佛山160惠州113汕头88汕尾74阳江112韶关68梅州84(1)请根据上表中的数据,完成下列表格: 空气质量 优质 良好 轻度污染 中度污染 AQI 值范围 [0,50) [50,100)[100,150)[150,200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望. 解:(1)根据数据,完成表格如下:…………………………………2分 (2)按分层抽样的方法,空气质量 优质 良好 轻度污染 中度污染 AQI 值范围 [0,50) [50,100)[100,150)[150,200)城市频数21261从“良好”类城市中抽取11264126n =⨯=+个, ………………………………… 3分 从“轻度污染”类城市中抽取2662126n =⨯=+个, ……………………………4分 所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.1242361(1)5C C P C ξ===, 2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===.………8分 ξ∴的分布列为:ξ1 2 3 P15 3515所以1311232555E ξ=⨯+⨯+⨯=. ………………………………………………11分 答:ξ的数学期望为2个. …………………………………………………12分 【说明】本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18.(本小题满分14分)在三棱锥P ABC -中,已知平面PBC ⊥平面ABC ,AB 是底面△ABC 最长的边.三棱锥P ABC -的三视图如图5所示,其中侧视图和俯视图均为直角三角形.(1)请在图6中,用斜二测画法,把三棱锥P ABC -的直观图补充完整(其中点P 在xOz 平面内),并指出三棱锥P ABC -的哪些面是直角三角形;(2)求二面角B PA C --的正切值; (3)求点C 到面PAB 的距离.侧视图正视图 42322z图6OPyxEF H Az图2O (B )P y CxH Az图3O (B )PyCx解:(1)三棱锥P ABC -直观图如图1所示;由三视图知ABC ∆和PCA ∆是直角三角形. ……………………3分 (2)(法一):如图2,过P 作PH BC ⊥交BC 于点H , 由三视图知PBC ∆为等腰三角形,4BC =,23PH =,4PB PC BC ∴===,取PC 的中点E ,过E 作EF PA ⊥且交PA 于点F ,连接BE ,BF ,因为BE PC ⊥,由三视图知AC ⊥面PBC , 且BE ⊂面PBC ,所以AC BE ⊥,又由AC PC C =,所以BE ⊥面PAC , 由PA ⊂面PAC ,所以BE PA ⊥, BE EF E =,所以PA ⊥面BEF ,由BF ⊂面BEF ,所以PA BF ⊥,所以BFE ∠是二面角B PA C --的平面角.………6分~PEF PAC ∆∆,PE EFPA AC∴=, 2,4,42PE AC PA ===,2EF ∴=, ……………………………………8分∴在直角CFE ∆中,有tan 6BEBFE EF∠==. 所以,二面角B PA C --的正切值为6. ………………………………………9分 (法二):如图3,过P 作PH BC ⊥交BC 于点H ,由三视图知PBC ∆为等腰三角形,4BC =,23PH =,由图3所示的坐标系,及三视图中的数据得:(0,0,0)B ,(4,0,0)C ,(2,0,23)P ,(4,4,0)A ,则(4,4,0)BA =,(2,0,23)BP =,(0,4,0)CA =,(2,0,23)CP =-,设平面PAB 、平面PAC 的法向量分别为m 、n . 设111(,,)x y z =m ,由0BA ⋅=m ,0BP ⋅=m ,得11114402230x y x z +=⎧⎪⎨+=⎪⎩,令11z =, 得13x =-,13y =,即(3,3,1)=-m . …………………6分Az图1 O (B )Py Cx设222(,,)x y z =n ,由0CA ⋅=n ,0PA ⋅=n ,得222402230y x z =⎧⎪⎨-+=⎪⎩,令21=z , 得23x =,20y =,即(3,0,1)=n . ………………………7分27cos ,727⋅-∴<>===-m n m n m n ,tan ,6m n <>=-.…………………8分 而二面角B PA C --的大小为锐角,所以二面角B PA C --的正切值为6.…9分 (3)(法一):记C 到面PAB 的距离为h ,由(1)、(2)知42,4PA AB PB ===,47PAB S ∆∴=,14733C PAB PAB V S h h -∆=⋅=, ………………………………12分 三棱锥-P ABC 的体积116333-∆=⋅=P ABC ABC V S PH , ……………………13分 由P ABC C PAB V V --=,可得:4217=h . ………………………………………14分 (法二):由(2)知,平面PAB 的法向量(3,3,1)=-m ,(0,4,0)CA = 记C 到面PAB 的距离为h ,CA h ⋅∴=m m 437=4217=. ………………………………………………14分【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角,三棱锥的体积,空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19. (本小题满分14分)已知首项大于0的等差数列{}n a 的公差1d =,且12231123a a a a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:11b =-,2b λ=,111(1)n n n nn b b n a -+--=+,其中2n ≥. ①求数列{}n b 的通项n b ;②是否存在实数λ,使得数列}{n b 为等比数列?若存在,求出λ的值;若不存在,请说明理由.解:(1)(法一):数列{}n a 的首项10a >,公差1d =,∴1(1)n a a n =+-,11111n n n n a a a a ++=-, ………………………………………2分 12231223111111()()a a a a a a a a ∴+=-+-131********a a a a =-=-=+, ……………3分 整理得211230a a +-=解得11a =或13a =-(舍去). ……………………………4分 因此,数列{}n a 的通项n a n =. ………………………………………5分 (法二):由题意得1312231231123a a a a a a a a a ++==, …………………………………1分 数列{}n a 是等差数列,∴1322a a a +=, ……………………………2分∴2123223a a a a =,即133a a =. ………………………………………………………3分又10,1a d >=,∴11(2)3a a +=,解得11a =或13a =-(舍去). …………………………………4分 因此,数列{}n a 的通项n a n =. ………………………………………5分(2)①111(1)n n n n b b n n-+--=+, 11(11(1)(1)n nn nnb n b ++-∴=+--). ……………………………………………………6分 令(1(1)nn nn b c -=-),则有2c λ=,11n n c c +=+(2)n ≥.∴当2n ≥时,2(2)2n c c n n λ=+-=-+,(21nn n b n λ-+=-)(-1). ………8分 因此,数列{}n b 的通项1, 1,(2,(2).1n n n b n n n λ-=⎧⎪=⎨-+≥⎪-⎩)(-1). (9)分 ②11b =-,2b λ=,312b λ+=-, ………………………………………10分∴若数列{}n b 为等比数列,则有2213b b b =,即21(1)()2λλ+=--, 解得1λ=或12λ=-. …………………………………………………………11分 当12λ=-时,(252)21n n n b n n -=≥-)(-1)((),+1n nbb 不是常数,数列{}n b 不是等比数列,当1λ=时,11b =-,(1)(2)n n b n =-≥,数列{}n b 为等比数列.所以,存在实数1λ=使得数列{}n b 为等比数列. ………………………………14分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、等比数列的定义,考查了学生的运算能力,以及化归与转化的思想. 20.(本小题满分14分)已知椭圆:E 22221(0)+=>>x y a b a b 的离心率为22,过左焦点倾斜角为45︒的直线被椭圆截得的弦长为423. (1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点()1,0M 作l 的垂线垂足为Q ,求点Q 的轨迹方程.解:(1)因为椭圆E 的离心率为22,所以2222-=a b a ,解得222a b =,故椭圆E 的方程可设为222212x y b b+=,则椭圆E 的右焦点坐标为(),0b , 过右焦点倾斜角为45︒的直线方程为:l y x b '=-. ………………………………………2分设直线l '与椭圆E 的交点记为,A B ,由22221,2,x y b b y x b ⎧+=⎪⎨⎪=-⎩消去y ,得2340x bx -=,解得1240,3b x x ==, 因为21242421133b AB x x =+-==,解得1b =. 故椭圆E 的方程为2212+=x y . ……………………………………………………4分 (2)(法一)(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,联立直线l 和椭圆E 的方程,得2212y kx m x y =+⎧⎪⎨+=⎪⎩, ……………………………………5分消去y 并整理,得()222214220k x kmx m +++-=, …………………………6分 因为直线l 和椭圆E 有且仅有一个交点,()()222216421220k m k m ∴∆=-+-=, ………………………………………7分化简并整理,得2221m k =+. …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x ky kx m ⎧=--⎪⎨⎪=+⎩ 解得221,1,1km x k k m y k -⎧=⎪⎪+⎨+⎪=⎪+⎩………………………9分 222222222222222222(1)()1(1)(1)1(1)(1)(1)1km k m k m k m k m m x y k k k k -++++++++∴+====++++,把2221m k =+代入上式得222x y +=. ① …………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合①式. …………………………12分 (iii )当切线l 的斜率不存在时,此时(2,0)Q 或(2,0)-,符合①式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法二):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,同解法一,得22210k m -+=, ① …………………………………………8分因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x k y kx m ⎧=--⎪⎨⎪=+⎩ 解得002200001,,x k y x x y m y -⎧=⎪⎪⎨-+⎪=⎪⎩② …………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分即()()2222000002210+-+-+=y x yx x ,由点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③ ……………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l 的斜率不存在时,此时(2,0)Q 或(2,0)-,符合③式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法三):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为00()-=-y y k x x ,整理,得l 的方程为00=-+y kx kx y , ……………………………………………………………5分联立直线l 和椭圆E 的方程,得002212=-+⎧⎪⎨+=⎪⎩y kx kx y x y , 消去y 并整理,得()()()2220000214220++-+--=k x k y kx x y kx , ……………………6分因为直线l 和椭圆E 有且仅有一个交点,()()()222200001682110⎡⎤∴∆=--+--=⎣⎦k y kx k y kx , ………………………7分化简并整理,得22200002210--+++=y x kx y k , ① ………………………8分 因为MQ 与直线l 垂直,有01-=x k y , ②……………………………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分 即()()2222000002210+-+-+=y x yx x ,点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③………………………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l 的斜率不存在时,此时(2,0)Q 或(2,0)-,符合③式. ………13分2-xyo21-11-1图a综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 【说明】本题主要考查轨迹方程和椭圆的定义、直线方程、直线与椭圆相切的位置关系,弦长问题,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21.(本小题满分14分)已知定义在]2,2[-上的奇函数)(x f 满足:当]2,0(∈x 时,)2()(-=x x x f . (1)求)(x f 的解析式和值域;(2)设a ax x x g 2)2ln()(--+=,其中常数0>a . ①试指出函数))(()(x f g x F =的零点个数; ②若当11k+是函数))(()(x f g x F =的一个零点时,相应的常数a 记为k a ,其中 1,2,,k n =.证明:1276n a a a +++<(*N ∈n ). 解:(1)()f x 为奇函数,(0)0f ∴=.当[)2,0x ∈-时,(]0,2x -∈,则()()()(2)(2)f x f x x x x x =--=----=-+,∴[][)(2)0,2,()(2)2,0,x x x f x x x x ⎧-∈⎪=⎨-+∈-⎪⎩ ………………………………………2分 [0,2]x ∈时,[]()1,0f x ∈-,[)2,0x ∈-,[]()0,1f x ∈,()f x ∴的值域为[]1,1-. …………………………………………………3分(2)①函数()f x 的图象如图a 所示,当0t =时,方程()f x t = 有三个实根;当1t =或1t =-时,方程()f x t =只有一个实 根;当(0,1)t ∈或(1,0)t ∈-时,方程()f x t =有两个实根.(法一):由()0g x =,解得ln(2)2x a x +=+,()f x 的值域为[]1,1-,∴只需研究函数ln(2)2x y x +=+在[]1,1-上的图象特征.设ln(2)()([1,1])2x h x x x +=∈-+,(1)0h -=,21ln(2)()(2)x h x x -+'=+,令()0h x '=,得e 2(0,1)x =-∈,1(e 2)eh -=. 当1e 2x -<<-时,()0h x '>,当e 21x -<<时,()0h x '<,图bxyoln 221-11e又32ln 2ln 3<,即ln 2ln 323<,由ln 2(0)2h =,ln 3(1)3h =,得(0)(1)h h <, ()h x ∴的大致图象如图b 所示.根据图象b 可知,当ln 2ln 2ln 310223a a a e<<<<=、、时, 直线y a =与函数()y h x =的图像仅有一个交点,则函数()g x 在[1,1]-上仅有一个零点,记零点为t ,则t 分别在区间(1,0)-、(0,1)、(0,1)上,根据图像a ,方程()f x t =有两个交点,因此函数()(())F x g f x =有两个零点. …………………………………………5分类似地,当ln 22a =时,函数()g x 在[1,1]-上仅有零点0,因此函数()F x 有1-、0、1这三个零点. ………………………………………………………………6分当ln 33a =时,函数()g x 在[1,1]-上有两个零点,一个零点是1,另一个零点在(0,1)内,因此函数()F x 有三个零点. …………………………………………………………7分当ln 313ea <<时,函数()g x 在[1,1]-上有两个零点,且这两个零点均在(0,1)内,因此函数()F x 有四个零点. ……………………………………………………………8分当1ea >时,函数()g x 在[]1,1-上没有零点,因此函数()F x 没有零点. ………9分 (法二):1()2g x a x '=-+ ,令0()0g x '=,得012x a=-, 0a >,()02,x ∴∈-+∞.当1(1,2)x a ∈--时,()0g x '>,当1(2,)x a∈-+∞时,()0g x '<, ∴当0x x =时,()g x 取得极大值01()ln 1g x a=-.(Ⅰ)当()g x 的极大值1ln10a -<,即1e a >时,函数()g x 在区间[]1,1-上无零点,因此函数()(())F x gf x =无零点.(Ⅱ)当()g x 的极大值1ln10a -=,即1ea =时, 02(0,1)x e =-∈,函数()g x 的图像如图c 所示,函数()g x 有零点2e -. 2-xyo 21-11-1图c 0x由图a 可知方程()e 2f x =-有两不等的实根,因此函数()(())F x g f x =有两个零点.(Ⅲ)当()g x 的极大值1ln 10a ->且0121x a=->,即103a <≤时,()g x 在[1,1]-上单调递增,因为()10g a -=-<,22222(0)ln 22ln 2lnln1033e 3g a =->-=>=,函数()g x 的图像如图d 所示,函数()g x 在[]1,1-存在唯一零点1t ,其中1(1,0)t ∈-.由图a 可知方程1()f x t =有两不等的实根,因此函数()(())F x g f x =有两个零点. (Ⅳ)当()g x 的极大值1ln10a ->且0121x a =-<,即113ea <<时: 由(0)ln 220g a =-=,得ln 22a =,由(1)ln 330g a =-=,得ln 33a =, 根据法一中的证明有1ln 2ln 31323e<<<. (ⅰ)当1ln 232a <<时,(0)ln 220g a =->,(1)ln 330g a =->,函数()g x 的图像如图e 所示,函数()g x 在区间[1,1]-有唯一零点2t ,其中2(1,0)t ∈-.由图a 可知方程2()f x t =有两不等的实根,因此 函数()(())F x g f x =有两个零点. (ⅱ)当ln 22a =时,(0)ln 220g a =-=, (1)ln 330g a =->,函数()g x 的图像如图f 所示,函数()g x 在区间[1,1]-有唯一零点0.由图a 可知方程()0f x =有三个不等的实根,因此函数()(())F x g f x =有三个零点. (ⅲ)当ln 2ln 323a <<时,(0)ln 220g a =-<,(1)ln 330g a =->,函数()g x 的 图e2-xy o 1-11-10x 图d2-xyo21-11-10x 图f2-xyo 1-11-10x图像如图g 所示,函数()g x 在区间[1,1]-有唯一零点3t ,其中3(0,1)t ∈.由图a 可知方程3()f x t =有两个不等的实根,因此函数()(())F x g f x =有两个零点.(ⅳ)当ln 33a =时,(0)0g <,(1)ln 330g a =-=,函数()g x 的图像如图h 所示,函数()g x 在区间[1,1]-有 两个零点,分别是1和4t ,其中4(0,1)t ∈.由图a 可知方程()1f x =有一个实根1-,方程4()f x t =有两个非1-的不等实根,因此函数()(())F x g f x =有三个零点. (ⅴ)当ln 313ea <<时,(0)0g <,(1)ln 330g a =-<, 函数()g x 的图像如图i 所示,函数()g x 在区间[1,1]-有两个 零点5t 、6t ,其中56,(0,1)t t ∈.由图a 可知方程5()f x t =、6()f x t =都有两个不等的实根, 且这四个根互不相等,因此函数()(())F x g f x =有四个零点.综上可得:当ln 2ln 2ln 310223a a a e <<<<=、、时,函数()F x 有两个零点;………………5分 当ln 22a =、ln 33a =时,函数()F x 有三个零点; ………………………………7分当ln 313e a <<时,函数()F x 有四个零点; ……………………………………8分 当1e a >时,函数()F x 无零点. ………………………………………………9分②因为k11+是函数))(()(x f g x F =的一个零点,所以有1((1))0g f k +=,(]110,2k +∈,211(1)1f k k∴+=-,2221111((1))(1)ln(1)(1)0k g f g a k k k k∴+=-=+-+=,图g2-xyo 1-11-10x 0x 图h2-xy o 1-11-10x 图i2-xy o 1-11-1221ln(1)11k k a k +∴=+,1,2,,k n =. …………………………………………10分 记()ln(1)m x x x =+-,1()111x m x x x -'=-=++, 当(]0,1x ∈时,()0m x '<,∴当(]0,1x ∈时,()(0)0m x m <=,即ln(1)x x +<.故有2211ln(1)k k +<,则2222211ln(1)111111k k k a k k k +=<=+++()1,2,,k n =⋅⋅⋅. …11分 当1n =时,11726a <<; 当2n ≥时, (法一):2211221121214k k k k <=-+-+-, ………………………………13分 123a a a ∴+++…++++++<+131121111222n a (11)2++n1222222()()()235572121n n <+-+-+⋅⋅⋅+--+ 12272723216216n n =+-=-<++. 综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分(法二):当2n =时,12117725106a a +<+=<; 当3n ≥时,2211111()11211k k k k <=-+--+, ………………………13分 123a a a ∴+++…++++++<+131121111222n a (11)2++n111111111[()()()]252243511n n <++-+-+⋅⋅⋅+--+ 111111167111677[]()2522316021606n n n n =+++--=-+<<++.综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分 【说明】本题主要考查函数的性质、分段函数、导数应用、一元二次方程的求解、连续函数的零点存在性定理,放缩法证明数列不等式,考查学生数形结合、分类讨论的数学思想,以及计算推理能力及分析问题、解决问题的能力及创新意识.命题:喻秋生黄文辉袁作生审题:魏显锋。

相关文档
最新文档