Calibration Analyses for Sounding Channels of MWHS Onboard FY-3A
无损检测中英文对照
无损检测常用词汇中英文对照表English 中文释义中文释义 A.C magnetic saturation 交流磁饱和交流磁饱和 Absorbed dose 吸收剂量吸收剂量 Absorbed dose rate 吸收剂量率吸收剂量率Acceptance criteria 验收准则验收准则 Acceptanc limits 验收范围验收范围Acceptable quality level 可验收质量等级可验收质量等级可验收质量等级 Acceptance level 验收水平(验收等级)验收水平(验收等级) Acceptance standard 验收标准验收标准 Accumulation test 累积检测累积检测 Acoustic emission count (emission count ) 声发射计数(发射计数)声发射计数(发射计数) Acoustic emission transducer 声发射换能器(声发射传感器)声发射换能器(声发射传感器) Acoustic emission(AE) 声发射声发射 Acoustic holography 声全息术声全息术 Acoustic impedance 声阻抗声阻抗 Acoustic impedance matching 声阻抗匹配声阻抗匹配 Acoustic impedance method 声阻法声阻法 Acoustic wave 声波声波 Acoustical lens 声透镜声透镜 Acoustic —ultrasonic 声-超声(AU ) Activation 活化活化 Activity 活度活度 Adequate shielding 安全屏蔽安全屏蔽 Ampere turns 安匝数安匝数 Amplitude 幅度幅度 Angle beam method 斜射法斜射法 Angle of incidence 入射角入射角 Angle of reflection 反射角反射角 Angle of spread 指向角指向角 Angle of squint 偏向角偏向角 Angle probe 斜探头斜探头 Angstrom unit 埃(A) Area amplitude response curve 面积幅度曲线面积幅度曲线 Area of interest 评定区评定区 Artificial discontinuity 人工不连续性人工不连续性 Artifact 假缺陷假缺陷 Artificial defect 人工缺陷人工缺陷 Artificial discontinuity 标准人工缺陷标准人工缺陷 A-scan A 型扫描型扫描 A-scope; A-scan A 型显示型显示 Attenuation coefficient 衰减系数衰减系数 Attenuator 衰减器衰减器 Audible leak indicator 音响泄漏指示器音响泄漏指示器 Automatic testing 自动检测自动检测 Autoradiography 自射线照片自射线照片 Avaluation 评定评定Background 背景背景 Barium concrete 钡混凝土钡混凝土 Barn 靶 Base fog 片基灰雾片基灰雾 Bath 槽液(浸湿)槽液(浸湿) Bayard- Alpert ionization gage B- A 型电离计型电离计 Beam 声束声束 Beam ratio 光束比光束比 Beam angle 束张角束张角 Beam axis 声束轴线声束轴线 Beam index 声束入射点声束入射点 Beam path location 声程定位声程定位 Beam path; path length 声程声程 Beam spread 声束扩散声束扩散 Betatron 电子感应加速器电子感应加速器 Bimetallic strip gage 双金属片计双金属片计 Bipolar field 双极磁场双极磁场 Black light filter 黑光滤波器黑光滤波器 Black light; ultraviolet radiation 黑光黑光 Blackbody 黑体黑体 Blackbody equivalent temperature 黑体等效温度黑体等效温度 Bleakney mass spectrometer 波利克尼质谱仪波利克尼质谱仪 Bleedout 渗出渗出 Bottom echo 底面回波底面回波 Bottom surface 底面底面 Boundary echo(first) 边界一次回波边界一次回波 Bremsstrahlung 轫致辐射轫致辐射 Broad-beam condition 宽射束宽射束 Brush application 刷涂刷涂 B-scan presenfation B 型扫描显示型扫描显示 B-scope; B-scan B 型显示型显示 C- scan C 型扫描型扫描 Calibration, instrument 设备校准设备校准 Capillary action 毛细管作用毛细管作用 Carrier fluid 载液载液 Carry over of penetrate 渗透剂移转渗透剂移转 Cassette 暗合暗合 Cathode 阴极阴极 Central conductor method 中心导体法中心导体法 Characteristic curve 特性曲线特性曲线 Characteristic curve of film 胶片特性曲线胶片特性曲线 Characteristic radiation 特征辐射特征辐射 Chemical fog 化学灰雾化学灰雾 Cine-radiography 射线(活动)电影摄影术电影摄影术 Cintact pads 接触垫接触垫 Circumferential coils 圆环线圈圆环线圈 Circumferential field 周向磁场周向磁场 Circumferential magnetization method 周向磁化法周向磁化法 Clean 清理清理 Clean- up 清除清除 Clearing time 定透时间定透时间 Coercive force 矫顽力矫顽力 Coherence 相干性相干性 Coherence length 相干长度(谐波列长度)相干长度(谐波列长度) Coi1,test 测试线圈测试线圈 Coil size 线圈大小线圈大小 Coil spacing 线圈间距线圈间距 Coil technique 线圈技术线圈技术 Coil method 线圈法线圈法 Coilreference 线圈参考线圈参考 Coincidence discrimination 符合鉴别符合鉴别 Cold-cathode ionization gage 冷阴极电离计冷阴极电离计 Collimator 准直器准直器 Collimation 准直准直 Collimator 准直器准直器Colour contrast penetrant 着色渗透剂着色渗透剂 Combined colour comtrast and fluorescent penetrant 着色荧光渗透剂着色荧光渗透剂 Compressed air drying 压缩空气干燥压缩空气干燥 Compressional wave 压缩波压缩波 Compton scatter 康普顿散射康普顿散射 Continuous emission 连续发射连续发射 Continuous linear array 连续线阵连续线阵 Continuous method 连续法连续法 Continuous spectrum 连续谱连续谱 Continuous wave 连续波连续波 Contract stretch 对比度宽限对比度宽限 Contrast 对比度对比度 Contrast agent 对比剂对比剂 Contrast aid 反差剂反差剂 Contrast sensitivity 对比灵敏度对比灵敏度 Control echo 监视回波监视回波 Control echo 参考回波参考回波 Couplant 耦合剂耦合剂 Coupling 耦合耦合 Coupling losses 耦合损失耦合损失 Cracking 裂解裂解 Creeping wave 爬波爬波 Critical angle 临界角临界角 Cross section 横截面横截面 Cross talk 串音串音 Cross-drilled hole 横孔横孔 Crystal 晶片晶片 C-scope; C-scan C 型显示型显示 Curie point 居里点居里点 Curie temperature 居里温度居里温度 Curie(Ci) 居里居里 Current flow method 通电法通电法 Current induction method 电流感应法电流感应法 Current magnetization method 电流磁化法电流磁化法 Cut -off level 截止电平截止电平截止电平 Dead zone 盲区盲区 Decay curve 衰变曲线衰变曲线 Decibel(dB) 分贝分贝 Defect 缺陷缺陷 Defect resolution 缺陷分辨力缺陷分辨力 Defect detection sensitivity 缺陷检出灵敏度缺陷检出灵敏度Detection sensitivity 检测灵敏度检测灵敏度Detection threshold 检测门槛检测门槛 Defect resolution 缺陷分辨力缺陷分辨力 Definition 清晰度清晰度 Definition , image definition 清晰度,图像清晰度清晰度,图像清晰度 Demagnetization 退磁退磁 Demagnetization factor 退磁因子退磁因子 Demagnetizer 退磁装置退磁装置 Densitometer 黑度计黑度计 Density 黑度(底片)黑度(底片) Density comparison strip 黑度比较片黑度比较片 Detecting medium 检验介质检验介质 Detergent remover 洗净液洗净液 Developer 显像剂显像剂 Developer , agueons 水性显象剂水性显象剂水性显象剂 Developer , dry 干显象剂干显象剂干显象剂 Developer , liquid film 液膜显象剂液膜显象剂 Developer , nonaqueous (sus- pendible ) 非水(可悬浮)显象剂非水(可悬浮)显象剂 Developing time 显像时间显像时间 Development 显影显影 Diffraction mottle 衍射斑衍射斑 Diffuse indications 松散指示松散指示 Diffusion 扩散扩散 Digital image acquisition system 数字图像识别系统数字图像识别系统 Dilatational wave 膨胀波膨胀波 Dip and drain station 浸渍和流滴工位浸渍和流滴工位Dip rinse 浸洗浸洗 Direct contact magnetization 直接接触磁化直接接触磁化 Direct exposure imaging 直接曝光成像直接曝光成像 Direct contact method 直接接触法直接接触法 Directivity 指向性指向性 Discontinuity 不连续性不连续性 Distance- gain- size-German A VG 距离- 增益- 尺寸(DGS 德文为A VG ) Distance marker; time marker 距离刻度距离刻度 Dose equivalent 剂量当量剂量当量 Dose rate meter 剂量率计剂量率计 Dosemeter 剂量计剂量计 Double crystal probe 双晶片探头双晶片探头 Double probe technique 双探头法双探头法 Double transceiver technique 双发双收法双发双收法 Double traverse technique 二次波法二次波法 Dragout 带出带出 Drain time 滴落时间滴落时间 Drain time 流滴时间流滴时间 Drift 漂移漂移 Dry method 干法干法 Dry powder 干粉干粉 Dry technique 干粉技术干粉技术 Dry developer 干显显像剂干显显像剂 Dry developing cabinet 干显像柜干显像柜 Dry method 干粉法干粉法 Drying oven 干燥箱干燥箱 Drying station 干燥工位干燥工位 Drying time 干燥时间干燥时间 D-scope; D-scan D 型显示型显示 Dual-focus tube 双焦点管双焦点管 Dual purpose penetrant 两用渗透剂 Dual search unit 双探头双探头 Duplex-wire image quality indicator 双线像质指示器双线像质指示器 Duration 持续时间持续时间 Dwell time 停留时间停留时间 Dye penetrant 着色渗透剂着色渗透剂 Dynamic leak test 动态泄漏检测动态泄漏检测 Dynamic leakage measurement 动态泄漏测量动态泄漏测量 Dynamic range 动态范围动态范围 Dynamic radiography 动态射线透照术动态射线透照术 Echo 回波回波 Echo frequency 回波频率回波频率 Echo height 回波高度回波高度 Echo indication 回波指示回波指示 Echo transmittance of sound pressure 往复透过率往复透过率 Echo width 回波宽度回波宽度 Eddy current 涡流涡流 Eddy current flaw detector 涡流探伤仪涡流探伤仪 Eddy current testiog 涡流检测涡流检测 Edge 端面端面 Edge effect 边缘效应边缘效应 Edge echo 棱边回波棱边回波 Edge effect 边缘效应边缘效应 Effective depth penetration (EDP ) 有效穿透深度有效穿透深度 Effective focus size 有效焦点尺寸有效焦点尺寸 Effective magnetic permeability 有效磁导率有效磁导率 Effective permeability 有效磁导率有效磁导率 Effective reflection surface of flaw 缺陷有效反射面缺陷有效反射面 Effective resistance 有效电阻有效电阻 Elastic medium 弹性介质弹性介质 Electric displacement 电位移电位移Electrostatic spraying 静电喷射静电喷射静电喷射 Electrical center 电中心电中心 Electrode 电极电极 Electromagnet 电磁铁电磁铁 Electro-magnetic acoustic transducer 电磁声换能器电磁声换能器 Electromagnetic induction 电磁感应电磁感应 Electromagnetic radiation 电磁辐射电磁辐射 Electromagnetic testing 电磁检测电磁检测 Electro-mechanical coupling factor 机电耦合系数机电耦合系数 Electron radiography 电子辐射照相术电子辐射照相术 Electron volt 电子伏恃电子伏恃 Electronic noise 电子噪声电子噪声 Electrostatic spraying 静电喷涂静电喷涂 Emulsification 乳化乳化Emulsification of penetrant 渗透剂的乳化渗透剂的乳化 Emulsification time 乳化时间乳化时间 Emulsifier 乳化剂乳化剂 Encircling coils 环绕式线圈环绕式线圈 End effect 端部效应端部效应 Energizing cycle 激励周期 Equalizing filter 均衡滤波器均衡滤波器 Equivalent 当量当量 Equivalent I .Q. I. Sensitivity 象质指示器当量灵敏度象质指示器当量灵敏度 Equivalent nitrogen pressure 等效氮压等效氮压 Equivalent penetrameter sensifivty 透度计当量灵敏度透度计当量灵敏度 Equivalent method 当量法当量法 Erasabl optical medium 可探光学介质可探光学介质 Etching 浸蚀浸蚀 Evaluation 评定评定 Evaluation threshold 评价阈值评价阈值 Event count 事件计数事件计数 Event count rate 事件计数率 Examination area 检测范围检测范围 Examination region 检验区域检验区域Excess penetrant removal 多余渗透剂的去除多余渗透剂的去除 Exhaust pressure/discharge pressure 排气压力排气压力 Exhaust tubulation 排气管道排气管道 Expanded time-base sweep 时基线展宽时基线展宽 Exposure 曝光曝光 Exposure table 曝光表格曝光表格 Exposure chart 曝光曲线曝光曲线 Exposure fog 曝光灰雾曝光灰雾 Exposure ,radiographic exposure 曝光,射线照相曝光曝光,射线照相曝光曝光,射线照相曝光 Extended source 扩展源扩展源 Facility scattered neutrons 条件散射中子条件散射中子 False indication 假指示(伪显示)假指示(伪显示) Family 族 Far field 远场远场 Feed-through coil 穿过式线圈穿过式线圈 Field , resultant magnetic 复合磁场复合磁场 Fill factor 填充系数 Film speed 胶片速度胶片速度 Film badge 胶片襟章剂量计胶片襟章剂量计 Film base 片基片基 Film contrast 胶片对比度胶片对比度 Film gamma 胶片γ值 Film processing 胶片冲洗加工胶片冲洗加工 Film speed 胶片感光度胶片感光度 Film unsharpness 胶片不清晰度胶片不清晰度 Film viewing screen 观察屏观察屏 Filter 滤波器/滤光板滤光板 Final test 复探复探 Flat-bottomed hole 平底孔平底孔 Flat-bottomed hole equivalent 平底孔当量平底孔当量 Flaw 伤 Flaw characterization 伤特性伤特性 Flaw echo 缺陷回波缺陷回波 Flexural wave 弯曲波弯曲波 Floating threshold 浮动阀值浮动阀值 Fluorescence 荧光荧光 Fluorescent examination method 荧光检验法荧光检验法 Fluorescent intensity 荧光强度荧光强度Fluorescent penetrant 荧光渗透剂荧光渗透剂 Fluorescent magnetic particle inspection 荧光磁粉检验荧光磁粉检验 Fluorescent dry deposit penetrant 干沉积荧光渗透剂干沉积荧光渗透剂 Fluorescent light 荧光荧光 Fluorescent magnetic powder 荧光磁粉荧光磁粉 Fluorescent penetrant 荧光渗透剂荧光渗透剂 Fluorescent screen 荧光屏荧光屏 Fluoroscopy 荧光检查法荧光检查法 Flux leakage field 磁通泄漏场磁通泄漏场 Flux lines 磁通线磁通线 Focal spot 焦点焦点 Focal distance 焦距焦距 Focus length 焦点长度焦点长度 Focus size 焦点尺寸焦点尺寸 Focus width 焦点宽度焦点宽度 Focus(electron) 电子焦点电子焦点 Focused beam 聚焦声束聚焦声束 Focusing probe 聚焦探头聚焦探头 Focus-to-film distance(f.f.d) 焦点-胶片距离(焦距)胶片距离(焦距) Fog 底片灰雾底片灰雾 Fog density 灰雾密度灰雾密度 Footcandle 英尺烛光英尺烛光 Freguency 频率频率 Frequency constant 频率常数频率常数 Fringe 干涉带干涉带 Front distance 前沿距离前沿距离 Front distance of flaw 缺陷前沿距离缺陷前沿距离 Full- wave direct current (FWDC ) 全波直流全波直流 Fundamental frequency 基频基频 Furring 毛状迹痕毛状迹痕 Gage pressure 表压表压 Gain 增益增益 Gamma radiography γ射线透照术射线透照术 Gamma ray source γ射线源射线源 Gamma ray source container γ射线源容器射线源容器 Gamma rays γ射线射线 Gamma-ray radiographic equipment γ射线透照装置射线透照装置 Gap scanning 间隙扫查间隙扫查 Gas 气体气体 Gate 闸门闸门 Gating technique 选通技术选通技术 Gauss 高斯高斯 Geiger-Muller counter 盖革弥勒计数器弥勒计数器 Geometric unsharpness 几何不清晰度几何不清晰度 Gray(Gy) 戈瑞戈瑞 Grazing incidence 掠入射掠入射 Grazing angle 掠射角掠射角 Group velocity 群速度群速度 Half life 半衰期半衰期 Half- wave current (HW ) 半波电流半波电流 Half-value layer(HVL) 半值层半值层 Half-value method 半波高度法半波高度法 Halogen 卤素卤素 Halogen leak detector 卤素检漏仪卤素检漏仪 Hard X-rays 硬X 射线射线 Hard-faced probe 硬膜探头硬膜探头 Harmonic analysis 谐波分析谐波分析 Harmonic distortion 谐波畸变谐波畸变 Harmonics 谐频谐频 Head wave 头波头波 Helium bombing 氦轰击法氦轰击法 Helium drift 氦漂移氦漂移 Helium leak detector 氦检漏仪氦检漏仪 Hermetically tight seal 气密密封气密密封 High vacuum 高真空高真空 High energy X-rays 高能X 射线射线 Holography (optical) 光全息照相光全息照相 Holography , acoustic 声全息声全息声全息 Hydrophilic emulsifier 亲水性乳化剂亲水性乳化剂 Hydrophilic remover 亲水性洗净剂亲水性洗净剂 Lipophilic emulsifier 亲油性乳化剂亲油性乳化剂 Hydrostatic text 流体静力检测流体静力检测 Hysteresis 磁滞磁滞 Hysteresis 磁滞磁滞 IACS IACS ID coil ID 线圈线圈 Image definition 图像清晰度图像清晰度 Image contrast 图像对比度图像对比度 Image enhancement 图像增强图像增强 Image magnification 图像放大图像放大 Image quality 图像质量图像质量 Image quality indicator sensitivity 像质指示器灵敏度像质指示器灵敏度 Image quality indicator(IQI)/image quality indication 像质指示器像质指示器 Imaging line scanner 图像线扫描器图像线扫描器 Immersion probe 液浸探头液浸探头 Immersion rinse 浸没清洗浸没清洗 Immersion testing 液浸法液浸法 Immersion time 浸没时间浸没时间 Impedance 阻抗阻抗 Impedance plane diagram 阻抗平面图阻抗平面图 Imperfection 不完整性(缺欠)不完整性(缺欠) Impulse eddy current testing 脉冲涡流检测脉冲涡流检测 Incremental permeability 增量磁导率增量磁导率 Indicated defect area 缺陷指示面积缺陷指示面积 Indicated defect length 缺陷指示长度缺陷指示长度 Indication 指示(显示)指示(显示) Indirect exposure 间接曝光间接曝光 Indirect magnetization 间接磁化间接磁化 Indirect magnetization method 间接磁化法间接磁化法 Indirect scan 间接扫查间接扫查 Induced field 感应磁场感应磁场 Induced current method 感应电流法感应电流法 Infrared imaging system 红外成象系统红外成象系统 Infrared sensing device 红外扫描器红外扫描器 Inherent fluorescence 固有荧光固有荧光 Inherent filtration 固有滤波固有滤波 Initial permeability 起始磁导率起始磁导率 Initial pulse 始脉冲始脉冲 Initial pulse width 始波宽度始波宽度 Inserted coil 插入式线圈插入式线圈 Inside coil 内部线圈内部线圈 Inside- out testing 外泄检测外泄检测 Inspection 检查检查 Inspection medium 检查介质检查介质 Inspection frequency/ test frequency 检测频率检测频率 Intensifying factor 增感系数增感系数 Intensifying screen 增感屏增感屏 Interal,arrival time (Δtij)/arrival Δtij)/arrival time interval time interval (Δtij ) 到达时间差(Δtij) Interface boundary 界面界面 Interface echo 界面回波界面回波 Interface trigger 界面触发界面触发 Interference 干涉干涉 Interpretation 解释解释 Ion pump 离子泵离子泵 Ion source 离子源离子源 Ionization chamber 电离室电离室 Ionization potential 电离电位电离电位 Ionization vacuum gage 电离真空计电离真空计 Ionography 电离射线透照术电离射线透照术 Irradiance , E 辐射通量密度,辐射通量密度, E Isolation 隔离检测隔离检测 Isotope 同位素同位素 Kaiser effect 凯塞(Kaiser)效应效应 Kilo volt kv 千伏特千伏特 Kiloelectron volt keV 千电子伏特千电子伏特 Krypton 85 氪85 L /D ratio L/D 比 Lamb wave 兰姆波兰姆波 Latent image 潜象潜象 Lateral scan 左右扫查左右扫查 Lateral scan with oblique angle 斜平行扫查斜平行扫查 Latitude (of an emulsion) 胶片宽容度胶片宽容度 Lead screen 铅屏铅屏 Leak 泄漏孔泄漏孔 Leak artifact 泄漏器泄漏器 Leak detector 检漏仪检漏仪 Leak testtion 泄漏检测泄漏检测 Leakage field 泄漏磁场泄漏磁场 Leakage rate 泄漏率泄漏率 Leechs 磁吸盘磁吸盘 Lift-off effect 提离效应提离效应 Light intensity 光强度光强度 Limiting resolution 极限分辨率极限分辨率 Line scanner 线扫描器线扫描器 Line focus 线焦点线焦点 Line pair pattern 线对检测图线对检测图 Line pairs per millimetre 每毫米线对数每毫米线对数 Linear (electron) accelerator(LINAC) 电子直线加速器电子直线加速器 Linear attenuation coefficient 线衰减系数线衰减系数 Linear scan 线扫查线扫查 Linearity (time or distance ) 线性(时间或距离)线性(时间或距离) Linearity , anplitude 幅度线性幅度线性幅度线性 Lines of force 磁力线磁力线 Lipophilic emulsifier 亲油性乳化剂亲油性乳化剂 Lipophilic remover 亲油性洗净剂亲油性洗净剂 Liquid penetrant examination 液体渗透检验液体渗透检验 Liquid film developer 液膜显像剂液膜显像剂 Local magnetization 局部磁化局部磁化 Local magnetization method 局部磁化法局部磁化法 Local scan 局部扫查局部扫查 Localizing cone 定域喇叭筒定域喇叭筒 Location 定位定位 Location accuracy 定位精度定位精度 Location computed 定位,计算定位,计算 Location marker 定位标记定位标记 Location upon delta-T 时差定位时差定位 Location , clusfer 定位,群集定位,群集定位,群集 Location ,continuous AE signal 定位,连续AE 信号信号 Longitudinal field 纵向磁场纵向磁场 Longitudinal magnetization method 纵向磁化法纵向磁化法 Longitudinal resolution 纵向分辨率纵向分辨率 Longitudinal wave 纵波纵波 Longitudinal wave probe 纵波探头纵波探头 Longitudinal wave technique 纵波法纵波法 Loss of back reflection 背面反射损失背面反射损失 Loss of back reflection 底面反射损失底面反射损失 Love wave 乐甫波乐甫波 Low energy gamma radiation 低能γ辐射辐射 Low -enerugy photon radiation 低能光子辐射低能光子辐射 Luminance 亮度亮度 Luminosity 流明流明 Lusec 流西克流西克 Maga or million electron volts MeV 兆电子伏特兆电子伏特 Magnetic history 磁化史磁化史 Magnetic hysteresis 磁性滞后磁性滞后 Magnetic particle field indication 磁粉磁场指示器磁粉磁场指示器 Magnetic particle inspection flaw indications 磁粉检验的伤显示磁粉检验的伤显示 Magnetic circuit 磁路磁路 Magnetic domain 磁畴磁畴 Magnetic field distribution 磁场分布磁场分布 Magnetic field indicator 磁场指示器磁场指示器 Magnetic field meter 磁场计磁场计 Magnetic field strength 磁场强度(H) Magnetic field/field ,magnetic 磁场磁场 Magnetic flux 磁通磁通 Magnetic flux density 磁通密度磁通密度 Magnetic force 磁化力磁化力 Magnetic leakage field 漏磁场漏磁场 Magnetic leakage flux 漏磁通漏磁通 Magnetic moment 磁矩磁矩 Magnetic particle 磁粉磁粉 Magnetic particle indication 磁痕磁痕 Magnetic particle testing/magnetic particle examination 磁粉检测磁粉检测 Magnetic permeability 磁导率磁导率 Magnetic permeability 磁导率磁导率 Magnetic pole 磁极磁极 Magnetic saturataion 磁饱和磁饱和 Magnetic saturation 磁饱和磁饱和 Magnetic writing 磁写磁写 Magnetizing 磁化磁化 Magnetizing current 磁化电流磁化电流 Magnetizing coil 磁化线圈磁化线圈 Magnetostrictive effect 磁致伸缩效应磁致伸缩效应 Magnetostrictive transducer 磁致伸缩换能器磁致伸缩换能器 Main beam 主声束主声束 Manual testing 手动检测手动检测 Markers 时标时标 MA-scope; MA-scan MA 型显示型显示 Masking 遮蔽遮蔽 Mass attcnuation coefficient 质量吸收系数质量吸收系数 Mass number 质量数质量数 Mass spectrometer (M.S.) 质谱仪质谱仪 Mass spectrometer leak detector 质谱检漏仪质谱检漏仪 Mass spectrum 质谱质谱 Master/slave discrimination 主从鉴别主从鉴别 MDTD 最小可测温度差最小可测温度差 Mean free path 平均自由程平均自由程 Medium vacuum 中真空中真空 Mega or million volt MV 兆伏特兆伏特 Micro focus X - ray tube 微焦点X 光管光管 Microfocus radiography 微焦点射线透照术微焦点射线透照术 Micrometre 微米微米 Micron of mercury 微米汞柱微米汞柱 Microtron 电子回旋加速器电子回旋加速器 Milliampere 毫安(mA ) Millimetre of mercury 毫米汞柱毫米汞柱 Minifocus x- ray tube 小焦点调射线管小焦点调射线管 Minimum detectable leakage rate 最小可探泄漏率最小可探泄漏率 Minimum resolvable temperature difference (MRTD ) 最小可分辨温度差(MRDT ) Mode 波型波型 Mode conversion 波型转换波型转换 Mode transformation 波型转换波型转换 Moderator 慢化器慢化器 Modulation transfer function (MTF ) 调制转换功能(MTF ) Modulation analysis 调制分析调制分析 Molecular flow 分子流分子流 Molecular leak 分子泄漏分子泄漏 Monitor 监控器监控器 Monochromatic 单色波单色波 Movement unsharpness 移动不清晰度移动不清晰度 Moving beam radiography 可动射束射线透照术可动射束射线透照术 Multiaspect magnetization method 多向磁化法多向磁化法 Multidirectional magnetization 多向磁化多向磁化 Multifrequency eddy current testiog 多频涡流检测多频涡流检测 Multiple back reflections 多次背面反射多次背面反射 Multiple reflections 多次反射多次反射 Multiple back reflections 多次底面反射多次底面反射 Multiple echo method 多次反射法多次反射法 Multiple probe technique 多探头法多探头法 Multiple triangular array 多三角形阵列多三角形阵列 Narrow beam condition 窄射束窄射束 NC NC Near field 近场近场 Near field length 近场长度近场长度 Near surface defect 近表面缺陷近表面缺陷 Net density 净黑度净黑度 Net density 净(光学)密度密度 Neutron 中子中子 Neutron radiograhy 中子射线透照中子射线透照 Neutron radiography 中子射线透照术中子射线透照术 Newton (N ) 牛顿牛顿 Nier mass spectrometer 尼尔质谱仪尼尔质谱仪 Noise 噪声噪声 Noise equivalent temperature difference (NETD ) 噪声当量温度差(NETD ) Nominal angle 标称角度标称角度 Nominal frequency 标称频率标称频率 Non-aqueous liquid developer 非水性液体显像剂非水性液体显像剂 Non-condensable gas 非冷凝气体非冷凝气体 Non destructive Examination (NDE ) 无损试验无损试验 Non-destructive Examination 损检查损检查 Nondestructive Evaluation (NDE ) 无损评价无损评价 Nondestructive Inspection (NDI ) 无损检验无损检验 Nondestructive Testing (NDT ) 无损检测无损检测 Nonerasble optical data 可固定光学数据可固定光学数据 Nonferromugnetic material 非铁磁性材料非铁磁性材料 Non-relevant indication 非相关指示(显示)非相关指示(显示) Non-screen-type film 非增感型胶片非增感型胶片 Normal incidence 垂直入射(亦见直射声束)垂直入射(亦见直射声束) Normal permeability 标准磁导率标准磁导率 Normal beam method; straight beam method 垂直法垂直法 Normal probe 直探头直探头 Normalized reactance 归一化电抗归一化电抗 Normalized resistance 归一化电阻归一化电阻 Nuclear activity 核活性核活性 Nuclide 核素核素 Object plane resolution 物体平面分辨率物体平面分辨率 Object scattered neutrons 物体散射中子物体散射中子 Object beam 物体光束物体光束 Object beam angle 物体光束角物体光束角 Object-film distance 被检体-胶片距离胶片距离 Object 一film distance 物体物体- 胶片距离胶片距离 Over development 显影过度显影过度 Over emulsfication 过乳化过乳化 Overall magnetization 整体磁化整体磁化 Overload recovery time 过载恢复时间过载恢复时间 Overwashing 过洗过洗 Oxidation fog 氧化灰雾氧化灰雾 P P Pair production 偶生成偶生成 Pair production 电子对产生电子对产生 Pair production 电子偶的产生电子偶的产生 Palladium barrier leak detector 钯屏检漏仪钯屏检漏仪 Panoramic exposure 全景曝光全景曝光 Parallel scan 平行扫查平行扫查 Paramagnetic material 顺磁性材料顺磁性材料 Parasitic echo 干扰回波干扰回波 Partial pressure 分压分压 Particle content 磁悬液浓度磁悬液浓度 Particle velocity 质点(振动)速度速度 Pascal (Pa ) 帕斯卡(帕)帕斯卡(帕) Pascal cubic metres per second 帕立方米每秒(Pa?m3/s ) Path length 光程长光程长 Path length difference 光程长度差光程长度差 Pattern 探伤图形探伤图形 Peak current 峰值电流峰值电流Peelable developer 可剥离显像剂可剥离显像剂 Penetrameter 透度计透度计 Penetrant 渗透剂渗透剂渗透剂 Penetrameter sensitivity 透度计灵敏度透度计灵敏度 Penetrant 渗透剂渗透剂 Penetrant comparator 渗透对比试块渗透对比试块 Penetrant flaw detection 渗透探伤渗透探伤 Penetrant removal 渗透剂去除渗透剂去除 Penetrant station 渗透工位渗透工位 Penetrant , water- washable 水洗型渗透剂水洗型渗透剂 Penetration 穿透深度穿透深度Penetrant testing 渗透检测渗透检测 Penetration time 渗透时间渗透时间Penetrant materials 渗透材料渗透材料 Permanent magnet 永久磁铁永久磁铁 Permeability coefficient 透气系数透气系数 Permeability ,a-c 交流磁导率交流磁导率 Permeability ,d -c 直流磁导率直流磁导率 Phantom echo 幻象回波幻象回波 Phase analysis 相位分析相位分析 Phase angle 相位角相位角 Phase controlled circuit breaker 断电相位控制器断电相位控制器 Phase detection 相位检测相位检测 Phase hologram 相位全息相位全息 Phase sensitive detector 相敏检波器相敏检波器 Phase shift 相位移相位移 Phase velocity 相速度相速度 Phase-sensitive system 相敏系统相敏系统 Phillips ionization gage 菲利浦电离计菲利浦电离计 Phosphor 荧光物质荧光物质 Photo fluorography 荧光照相术荧光照相术 Photoelectric absorption 光电吸收光电吸收 Photographic emulsion 照相乳剂照相乳剂 Photographic fog 照相灰雾照相灰雾 Photostimulable luminescence 光敏发光光敏发光 Piezoelectric effect 压电效应压电效应 Piezoelectric material 压电材料压电材料 Piezoelectric stiffness constant 压电劲度常数压电劲度常数 Piezoelectric stress constant 压电应力常数压电应力常数 Piezoelectric transducer 压电换能器压电换能器 Piezoelectric voltage constant 压电电压常数压电电压常数 Pirani gage 皮拉尼计皮拉尼计 Pirani gage 皮拉尼计皮拉尼计 Pitch and catch technique 一发一收法一发一收法 Pixel 象素象素 Pixel size 象素尺寸象素尺寸 Pixel , disply size 象素显示尺寸象素显示尺寸 Planar array 平面阵(列) Plane wave 平面波平面波 Plate wave 板波板波 Plate wave technique 板波法板波法 Point source 点源点源 Post emulsification 后乳化后乳化 Post emulsifiable penetrant 后乳化渗透剂后乳化渗透剂 Post-cleaning 后清洗后清洗 Powder 粉未粉未 Powder blower 喷粉器喷粉器 Powder blower 磁粉喷枪磁粉喷枪 Pre-cleaning 预清理预清理 Pressure difference 压力差压力差 Pressure dye test 压力着色检测压力着色检测 Pressure probe 压力探头压力探头 Pressure testing 压力检测压力检测 Pressure- evacuation test 压力抽空检测压力抽空检测 Pressure mark 压痕压痕 Pressure,design 设计压力设计压力 Pre-test 初探初探 Primary coil 一次线圈一次线圈 Primary radiation 初级辐射初级辐射 Probe gas 探头气体探头气体 Probe test 探头检测探头检测 Probe backing 探头背衬探头背衬。
中英文超声无损检测名词术语
中英文超声无损检测名词术语Acceptance limits 验收范围Acceptance level 验收水平Acceptance standard 验收标准Accumulation test 累积检测Acoustic emission transducer 声发射换能器(声发射传感器)Acoustic impedance 声阻抗Acoustic impedance matching 声阻抗匹配Acoustic impedance method 声阻法Acoustic wave 声波Acoustical lens 声透镜Acoustic —ultrasonic 声-超声(AU )Adequate shielding 安全屏蔽Amplitude 幅度Angle beam method 斜射法Angle of incidence 入射角Angle of reflection 反射角Angle of spread 指向角Angle of squint 偏向角Angle probe 斜探头Area amplitude response curve 面积幅度曲线Area of interest 评定区Artificial discontinuity 人工不连续性Artifact 假缺陷Artificial defect 人工缺陷Artificial discontinuity 标准人工缺陷A-scan A 型扫描A-scope; A-scan A 型显示Attenuation coefficient 衰减系数Attenuator 衰减器Automatic testing 自动检测Evaluation 评定Beam 声束Beam ratio 光束比Beam angle 束张角Beam axis 声束轴线Beam index 声束入射点Beam path location 声程定位Beam path; path length 声程Beam spread 声束扩散Bottom echo 底面回波Bottom surface 底面Boundary echo(first)边界一次回波Broad-beam condition 宽射束B-scan presentation B 型扫描显示B-scope; B-scan B 型显示C- scan C 型扫描Calibration, instrument 设备校准Compressional wave 压缩波Continuous emission 连续发射microstructure Continuous linear array 连续线阵Continuous method 连续法Continuous spectrum 连续谱Continuous wave 连续波Contract stretch 对比度宽限Contrast 对比度Contrast sensitivity 对比灵敏度Control echo 监视回波Control echo 参考回波Couplant 耦合剂Coupling 耦合Coupling losses 耦合损失Creeping wave 爬波Critical angle 临界角Cross section 横截面Cross talk 串音Cross-drilled hole 横孔Crystal 晶片C-scope; C-scan C 型显示Curie point 居里点Curie temperature 居里温度Curie(Ci) 居里Dead zone 盲区Decibel(dB) 分贝Defect 缺陷Defect resolution 缺陷分辨力Defect detection sensitivity 缺陷检出灵敏度Definition 清晰度Definition ,image definition 清晰度,图像清晰度Direct contact method 直接接触法Directivity 指向性Discontinuity 不连续性Distance- gain- size -German AVG 距离- 增益- 尺寸( DGS 德文为AVG) Distance marker; time marker 距离刻度Double crystal probe 双晶片探头Double probe technique 双探头法Double transceiver technique 双发双收法Double traverse technique 二次波法D-scope; D-scan D 型显示Dual search unit 双探头Dynamic range 动态范围Echo 回波Echo frequency 回波频率Echo height 回波高度Echo indication 回波指示Echo transmittance of sound pressure 往复透过率Echo width 回波宽度Equivalent 当量Equivalent method 当量法Evaluation 评定Examination area 检测范围Examination region 检验区域Final test 复探Flat-bottomed hole 平底孔Flat-bottomed hole equivalent 平底孔当量Flaw 伤Flaw characterization 伤特性Flaw echo 缺陷回波Flexural wave 弯曲波Focal spot 焦点Focal distance 焦距Focus length 焦点长度Focus size 焦点尺寸Focus width 焦点宽度Focused beam 聚焦声束Focusing probe 聚焦探头Focus-to-film distance(f.f.d) 焦点- 胶片距离(焦距) Frequency 频率Frequency constant 频率常数Fringe 干涉带Front distance 前沿距离Front distance of flaw 缺陷前沿距离Fundamental frequency 基频Gain 增益Gap scanning 间隙扫查Gate 闸门Gating technique 选通技术Gauss 高斯Grazing incidence 掠入射Grazing angle 掠射角Group velocity 群速度Half life 半衰期Half-value method 半波高度法Harmonic analysis 谐波分析Harmonics 谐频Head wave 头波Image definition 图像清晰度Image contrast 图像对比度Image enhancement 图像增强Image magnification 图像放大Image quality 图像质量Imaging line scanner 图像线扫描器Immersion probe 液浸探头Immersion rinse 浸没清洗Immersion testing 液浸法Impedance 阻抗Impedance plane diagram 阻抗平面图Imperfection 不完整性Indicated defect area 缺陷指示面积Indicated defect length 缺陷指示长度Indication 指示Initial pulse 始脉冲Initial pulse width 始波宽度Inspection 检查Inspection medium 检查介质Inspection frequency/ test frequency 检测频率Interface boundary 界面Interface echo 界面回波Interface trigger 界面触发Interference 干涉Interpretation 解释Lamb wave 兰姆波Lateral scan 左右扫查Lateral scan with oblique angle 斜平行扫查Limiting resolution 极限分辨率Line scanner 线扫描器Linear scan 线扫查Location 定位Location accuracy 定位精度Location computed 定位,计算Location marker 定位标记Longitudinal wave 纵波Longitudinal wave probe 纵波探头Longitudinal wave technique 纵波法Loss of back reflection 背面反射损失Loss of back reflection 底面反射损失Magnetostrictive effect 磁致伸缩效应Magnetostrictive transducer 磁致伸缩换能器Main beam 主声束Manual testing 手动检测MA-scope; MA-scan MA 型显示Micrometre 微米Micron of mercury 微米汞柱Mode 波型Mode conversion 波型转换Mode transformation 波型转换Multiple back reflections 多次背面反射Multiple reflections 多次反射Multiple back reflections 多次底面反射Multiple echo method 多次反射法Multiple probe technique 多探头法Multiple triangular array 多三角形阵列Narrow beam condition 窄射束Near field 近场Near field length 近场长度Near surface defect 近表面缺陷Noise 噪声Nominal angle 标称角度Nominal frequency 标称频率Nondestructive Examination (NDE )无损试验Nondestructive Evaluation (NDE )无损评价Nondestructive Inspection (NDI )无损检验Nondestructive Testing (NDT )无损检测Normal incidence 垂直入射(亦见直射声束)Normal beam method; straight beam method 垂直法Normal probe 直探头Parallel scan 平行扫查Parasitic echo 干扰回波Pattern 探伤图形Penetrant flaw detection 渗透探伤Phantom echo 幻象回波Phase detection 相位检测Plane wave 平面波Plate wave 板波Plate wave technique 板波法Point source 点源Probe test 探头检测Probe index 探头入射点Probe to weld distance 探头-焊缝距离Probe/ search unit 探头Pulse 脉冲波Pulse 脉冲Pulse echo method 脉冲回波法Pulse repetition rate 脉冲重复率Pulse amplitude 脉冲幅度Pulse echo method 脉冲反射法Pulse energy 脉冲能量Pulse envelope 脉冲包络Pulse length 脉冲长度Pulse repetition frequency 脉冲重复频率Pulse tuning 脉冲调谐Quadruple traverse technique 四次波法Range 量程Rayleigh wave 瑞利波Rayleigh scattering 瑞利散射Reference block 参考试块Reference block 对比试块Reference block method 对比试块法Reference standard 参考标准Reflection 反射Reflection coefficient 反射系数Reflector 反射体Refraction 折射Refractive index 折射率Reject; suppression 抑制Rejection level 拒收水平Resolution 分辨力Sampling probe 取样探头Saturation 饱和Saturation,magnetic 磁饱和Scan on grid lines 格子线扫查Scan pitch 扫查间距Scanning 扫查Scanning index 扫查标记Scanning directly on the weld 焊缝上扫查Scanning path 扫查轨迹Scanning sensitivity 扫查灵敏度Scanning speed 扫查速度Scanning zone 扫查区域SE probe SE 探头Second critical angle 第二临界角Sensitivity va1ue 灵敏度值Sensitivity 灵敏度Sensitivity of leak test 泄漏检测灵敏度Sensitivity control 灵敏度控制Shear wave 切变波Shear wave probe 横波探头Shear wave technique 横波法Signal to noise ratio 信噪比Single crystal probe 单晶片探头Single probe technique 单探头法Single traverse technique 一次波法Sizing technique 定量法Sound diffraction 声绕射Sound insulating layer 隔声层Sound intensity 声强Sound intensity level 声强级Sound pressure 声压Sound scattering 声散射Sound transparent layer 透声层Sound velocity 声速Source 源Specified sensitivity 规定灵敏度Standard 标准Standard 标准试样Standard test block 标准试块Standardization instrument 设备标准化Standing wave; stationary wave 驻波Subsurface discontinuity 近表面不连续性Suppression 抑制Surface echo 表面回波Surface wave 表面波Surface wave probe 表面波探头Surface wave technique 表面波法Surplus sensitivity 灵敏度余量Sweep 扫描Sweep range 扫描范围Sweep speed 扫描速度Swept gain 扫描增益Swivel scan 环绕扫查System exanlillatien threshold 系统检验阈值System noise 系统噪声Tandem scan 串列扫查Test block 试块Test frequency 试验频率Test range 探测范围Test surface 探测面Testing,ultrasonic 超声检测Third critical angle 第三临界角Through transmission technique 穿透技术Through penetration technique 贯穿渗透法Through transmission technique; transmission technique 穿透法Transducer 换能器/ 传感器Transmission 透射Transverse wave 横波Traveling echo 游动回波Travering scan; depth scan 前后扫查Triangular array 正三角形阵列Trigger/alarm condition 触发/ 报警状态Trigger/alarm level 触发/ 报警标准Triple traverse technique 三次波法True continuous technique 准确连续法技术Ultrasonic noise level 超声噪声电平Ultrasonic field 超声场Ultrasonic flaw detection 超声探伤Ultrasonic flaw detector 超声探伤仪Variable angle probe 可变角探头Vertical linearity 垂直线性Vertical location 垂直定位Visible light 可见光Wave 波Wave train 波列Wave from 波形Wave front 波前Wave length 波长Wave node 波节Wave train 波列Wedge 斜楔Wheel type probe; wheel search unit 轮式探头Working sensitivity 探伤灵敏度Zigzag scan 锯齿扫查。
calibration 翻译
calibration 翻译calibration 在中文中可以翻译为“校准”或“标定”,是指通过调整或校验仪器、设备或系统的精确性和准确性,以确保其测量结果符合预期标准的过程。
以下是一些常见的用法和中英文对照例句:1. Calibration of instruments:- 仪器的校准:- The laboratory technician performed the calibration of the weighing scale. (实验室技术人员对称重秤进行了校准。
)- The temperature gauge needs to undergo calibration before it can be used for accurate measurements. (温度计在进行准确测量之前需要进行校准。
)2. Calibration of equipment:- 设备的校准:- The mechanic carried out the calibration of the machine to ensure its precise functioning. (机械师对机器进行了校准,以确保其精确运行。
)- The laser leveler requires regular calibration to maintain its accuracy. (激光水平仪需要定期校准以保持准确性。
)3. Calibration of systems:- 系统的校准:- The satellite navigation system underwent calibration to improve its positioning accuracy. (卫星导航系统进行了校准,以提高其定位精度。
)- The sound system in the concert hall was meticulously calibrated to ensure optimal audio quality. (音响系统在音乐厅中经过精心校准,以确保最佳音质。
药物分析专业英语
(dissolution) vessel 溶出杯(FTIR) 傅里叶变换红外光谱仪13C-NMR spectrum,13MR 碳-13核磁共振谱1ength basis 长度基准1H-NMR 氢谱2D-NMR 二维核磁共振谱:2D-NMR3D-spectrochromatogram 三维光谱-波谱图Aa stream of nitrogen 氮气流a wide temperature range 宽的温度围absolute detector response 检测器绝对响应(值)absolute entropy 绝对熵absolute error 绝对误差absolute reaction rate theory 绝对反应速率理论absolute temperature scale 绝对温标absorbance 吸光度,而不是吸收率(absorptance)。
当我们忽略反射光强时,透射率(T)与吸光度(A)满足如下关系式:A=lg(1/T)。
absorbance noise, absorbing noise 吸光度噪音。
也称光谱的稳定性,是指在确定的波长围对样品进行多次扫描,得到光谱的均方差。
吸光度噪音是体现仪器稳定性的重要指标。
将样品信号强度与吸光度噪音相比可计算出信噪比。
absorbed water 吸附水absorptance 吸收率absorptant 吸收剂absorption band 吸收带absorption cell 吸收池absorption curve 吸收光谱曲线/光吸收曲线absorption tube 吸收管abundance 丰度。
即具有某质荷比离子的数量accelerated solvent extraction(ASE) 加速溶剂萃取accelerated testing 加速试验accelerating deposition 加速破坏acceptance limit,acceptance criterion 验收限度,合格标准accidental error 随机误差accuracy 准确度。
最新声学常用术语(含英语)
噪音常用术语一、声学常用术语1. absorption coefficient吸音系数:材料吸收的省能与入射声能之比值。
2. acoustical calibrator声学校准器:用來校准麦克风、噪音计的仪器。
3. ambient noise环境噪音:在环境中所有声源产生噪音的总和。
4. anechoic room无响室或称无回音室:边界能几乎吸收所有的入射波而形成室内是自由声场的封闭空间。
5. antinode波腹:驻波内振幅最大的点、线或面。
6. A-Weighting A加权:模拟人耳对各种不同频率的声音感觉不一样的加权方法。
7. background noise背景噪音:在测量系统中,和量测信号无关的一切噪音。
8.band pressure level频带声压位准:在某一特定频带(如八音度频带)从下限频率至上限频率的声压位准。
9. CPB固定百分比带宽:CPB是Constant Percentage Bandwidth的简写,它表示每一个相邻频带的宽度比是固定的百分比。
10. decibel分贝:声音的物理量与參考物理量的比值取对數后乘以10或20。
11. diffuse sound field扩散场:在各传播方向呈无规则分布且能量密度均匀的声场。
12. diffraction绕射:因为空间形狀的改变使得声波传播方向改变的现象。
13. dispersion频散:声音的速度随频率而变化的现象。
14. Leq(equivalent continuous noise level)等效連续声压位准:A加权声压位准在某一特定时间内平均值。
15. equal loudness contours等响曲线:在声压位准频率图上各种不同频率但听起來同样响之点所連成的曲线。
16. far field远场:自由场中離声源距離加倍,则声压位准减少6分贝的声场。
17. free field自由场:边界对声波的影响可以忽略不计的声场。
USP 干燥失重法中英文对照
<731>LOSS ON DRYINGThe procedure set forth in this chapter determines the amount of volatile matter of any kind that is driven off under the conditions specified.For substances appearing to contain water as the only volatile constituent, the procedure given in the chapter,Water Determination921,is appropriate,and is specified in the individual monograph.Mix and accurately weigh the substance to be tested,and,unless otherwise directed in the individual monograph,conduct the determination on1to 2g.If the test specimen is in the form of large crystals,reduce the particle size to about2mm by quickly crushing.Tare a glass-stoppered, shallow weighing bottle that has been dried for30minutes under the same conditions to be employed in the determination.Put the test specimen in the bottle,replace the cover,and accurately weigh the bottle and the contents.By gentle,sidewise shaking,distribute the test specimen as evenly as practicable to a depth of about5mm generally,and not more than10mm in the case of bulky materials.Place the loaded bottle in the drying chamber,removing the stopper and leaving it also in the chamber. Dry the test specimen at the temperature and for the time specified in the monograph.[NOTE—The temperature specified in the monograph is to be regarded as being within the range of±2of the stated figure.]Upon opening the chamber,close the bottle promptly,and allow it to come to room temperature in a desiccator before weighing.If the substance melts at a lower temperature than that specified for the determination of Loss on drying,maintain the bottle with its contents for1to2hours at a temperature5to10below the melting temperature, then dry at the specified temperature.Where the specimen under test is Capsules,use a portion of the mixed contents of not fewer than4capsules.Where the specimen under test is Tablets,use powder from not fewer than 4tablets ground to a fine powder.Where the individual monograph directs that loss on drying be determined by thermogravimetric analysis,a sensitive electrobalance is to be used.Where drying in vacuum over a desiccant is directed in the individual monograph,a vacuum desiccator or a vacuum drying pistol,or other suitable vacuum drying apparatus,is to be used.Where drying in a desiccator is specified,exercise particular care to ensure that the desiccant is kept fully effective by frequent replacement.Where drying in a capillary-stoppered bottle*in vacuum is directed in the individual monograph,use a bottle or tube fitted with a stopper having a225±25µm diameter capillary,and maintain the heating chamber at a pressure of5mm or less of mercury.At the end of the heating period, admit dry air to the heating chamber,remove the bottle,and with the capillary stopper still in place allow it to cool in a desiccator before weighing.本章中给出的方法阐述了在特定的条件下物质中的挥发性成分的测定。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
Calibration method for acoustic scattering measure
专利名称:Calibration method for acoustic scattering measurements using a spherical target发明人:Louis R. Dragonette,Laurence J. Frank,Susan K. Numrich申请号:US06/364098申请日:19820331公开号:US04476549A公开日:19841009专利内容由知识产权出版社提供摘要:A method for calibrating acoustic backscattering instrumentation utilizing a spherical body as a standard target. A spherical body made of high specific acoustic impedance material, such as tungsten carbide, is positioned a given distance from a source/receiver transducer which is energized to produce a short acoustic pulse directed toward the sphere. Acoustic signals reflected from the sphere are detected by the transducer and processed in the time domain to separate the rigid portion of the return from the elastic portions. The rigid portion is corrected for the transducer to sphere distance, the reflectivity of the sphere, and for the radius of the sphere. The resultant corrected signal represents the incident acoustic pulse produced by the transducer.申请人:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY代理人:Robert F. Beers,William T. Ellis,John L. Forrest更多信息请下载全文后查看。
calibration
calibrationCalibration: A Guide to Accurate MeasurementIntroductionCalibration plays a crucial role in ensuring accurate measurements across various fields and industries. Whether it is in laboratories, manufacturing facilities, or even home appliances, calibration is essential for reliable and precise readings. In this document, we will delve into the importance of calibration, its various applications, and the different methods and techniques employed to achieve accurate measurements.What is Calibration?Calibration is the process of comparing measurements or readings obtained from an instrument or device with a known reference or standard. It aims to minimize measurement errors and ensure that the instrument is providing reliable and accurate results. By calibrating an instrument, we can establish its traceability to a recognized national orinternational standard, ensuring that the measurements are accepted universally.The Importance of CalibrationThe significance of calibration cannot be overstated, as it affects various aspects of our lives. Let's explore some of the key reasons why calibration is crucial:1. Accuracy and Reliability: Calibration ensures that instruments provide accurate and reliable measurements. This is particularly critical in scientific research, healthcare, manufacturing processes, and environmental monitoring.2. Compliance: Many industries are subject to regulatory standards and requirements. Calibration helps organizations comply with these standards, ensuring that they meet legal obligations and avoid penalties or legal issues.3. Quality Control: Calibration ensures that products and services meet predetermined quality standards. By calibrating measuring instruments regularly, manufacturing companies can maintain consistent quality, minimize defects, and enhance customer satisfaction.4. Safety: In sectors like healthcare, aviation, and automotive, accurate measurements are vital to ensuring safety. Calibration helps identify and rectify any inaccuracies in instruments, ensuring reliable and safe operations.Methods of CalibrationThere are various methods employed for calibration, depending on the instrument or device being calibrated. Let's explore some common calibration techniques:1. Comparative Calibration: This method involves comparing the measurements of the instrument under calibration with a reference instrument that is known to be accurate. The two instruments are subjected to the same input, and the differences in readings are adjusted to minimize errors.2. Direct or Primary Calibration: In this method, the instrument is calibrated directly against a known and traceable standard. The standard may be a physical artifact, like a weight or length, or it may be an electronic standard, such as a voltage or current.3. Interpolation Calibration: This method is employed when the instrument cannot be calibrated directly against a standard. Instead, measurements are obtained at a few specific points, and the values in between are estimated using mathematical interpolation techniques.4. Recalibration: Over time, instruments may drift or deviate from their original calibration. Recalibration involves adjusting the instrument back to its original calibration standard. Regular recalibration helps maintain accuracy and prolong the life of the instrument.Applications of CalibrationCalibration finds applications across various fields and industries. Some notable examples include:1. Laboratory Testing: Calibration is fundamental in laboratories where accurate and reliable measurements are crucial for research, experiments, and data analysis. Instruments such as balances, pipettes, spectrometers, and thermometers are regularly calibrated to ensure precise results.2. Manufacturing: Calibration is essential in manufacturing processes to maintain consistent quality, avoid defects, and comply with industry standards. Instruments used for measuring dimensions, pressures, temperatures, and electrical parameters are calibrated to ensure accuracy.3. Healthcare: In the healthcare sector, calibration is critical for medical devices such as blood pressure monitors, thermometers, infusion pumps, and diagnostic instruments. Accurate measurements are vital for patient safety and effective treatment.4. Environmental Monitoring: Instruments used for monitoring air quality, water quality, radiation levels, and weather conditions must be calibrated to provide accurate data. This ensures informed decision-making and timely actions for environmental preservation.ConclusionCalibration is a fundamental process that ensures accurate measurements and reliable results in various fields. Whether it is in laboratories, manufacturing facilities, healthcare, or environmental monitoring, the importance of calibration cannot be overstated. By adhering to calibration practicesand using appropriate techniques, we can enhance the accuracy, safety, and quality of measurements, ultimately benefiting society as a whole.。
envi的radiometric calibration工具原理 -回复
envi的radiometric calibration工具原理-回复Radiometric calibration is a crucial step in the field of remote sensing, as it ensures the accuracy and comparability of the data collected by different sensors and platforms. The radiometric calibration tool used by the ENVI software package employs a set of algorithms and mathematical transformations to convert raw image data into radiometrically calibrated imagery. In this article, we will explore the principles behind the radiometric calibration process and understand how it works in the context of ENVI.Step 1: Understanding Radiometric CalibrationRadiometric calibration involves converting the raw digital numbers (DN) recorded by the sensor into physical units of radiance or reflectance. The calibration process compensates for sensor variations, atmospheric effects, and other factors that affect the radiometric values of the captured data. It essentially establishes a quantitative relationship between the recorded DN values and the corresponding physical measurements.Step 2: Sensor Calibration ParametersTo perform radiometric calibration in ENVI, accurate knowledge of the sensor calibration parameters is essential. These parametersinclude gain, offset, saturation values, and wavelength-dependent response functions. The calibration process utilizes these parameters to transform DN values into radiometric values.The gain factor represents the conversion factor from DN to radiance units, while the offset compensates for any potential bias in the sensor's measurements. Saturation values indicate the maximum DN value that can be recorded by the sensor without saturating. Lastly, the wavelength-dependent response functions describe the sensor's sensitivity to different wavelengths.Step 3: Dark Current and Read Noise CorrectionsDark current and read noise are two common sources of noise in remote sensing data that can affect the accuracy of radiometric calibration. Dark current refers to the electrical signal generated by the sensor even in the absence of incident light. Read noise arises during the process of converting analog signals to digital values.ENVI's radiometric calibration tool applies dark current and read noise corrections to remove these sources of noise. By subtracting the dark current signal from the raw data and reducing the read noise, the tool enhances the accuracy of the radiometric calibrationprocess.Step 4: Atmospheric CorrectionsThe radiometric values collected by satellite sensors are often affected by atmospheric interference. Atmospheric gases and particles scatter and absorb solar radiation, leading to errors in the measured radiance or reflectance values. ENVI's radiometric calibration tool employs atmospheric correction techniques to account for these atmospheric effects.Atmospheric corrections utilize radiative transfer models and atmospheric parameters to estimate and remove the atmospheric interference. By estimating the atmospheric path radiance and transmittance, the tool can accurately reconstruct the true radiance or reflectance values at the sensor level.Step 5: Spectral Response Function CorrectionsDifferent sensors have varying spectral response functions, which define their sensitivity to different wavelengths. ENVI's radiometric calibration tool accounts for these spectral response function variations by applying corrections to ensure consistency among different sensors.The tool utilizes the known spectral response function of the sensor to correct the radiometric values accordingly. This correction aligns the measurements from different sensors to a common radiometric scale, facilitating comparison and analysis of imagery collected by multiple platforms.Step 6: Validation and VerificationThe radiometric calibration process is not complete without validation and verification steps. ENVI's radiometric calibration tool provides the capability to compare the calibrated data against ground-truth measurements or reference data. This step allows users to evaluate the accuracy and reliability of the radiometric calibration results.By comparing the calibrated imagery with field measurements or reference datasets, users can quantify the uncertainties associated with the radiometric calibration and assess the suitability of the calibrated data for various applications.ConclusionENVI's radiometric calibration tool plays a vital role in ensuring theaccuracy and comparability of remote sensing data. By applying a series of corrections for sensor variations, atmospheric effects, and spectral response function variations, the tool transforms raw digital numbers into radiometrically calibrated imagery. This calibrated imagery provides researchers and analysts with reliable and accurate data for a wide range of applications, including land cover mapping, agriculture monitoring, and environmental modeling.。
斯波索宾和声学教程
斯波索宾和声学教程声学是一门广博的学科,它涉及到音频信号的传输、控制、处理和反馈。
声学技术可用于制作高品质的音频设备。
声学学习可以帮助人们更好地掌握声音的产生、传递和控制,使人们能够制作出更优秀的音频设备。
斯波索宾(Spezialon)是一种具有重要影响力的声学测量仪器,能够提供准确的声学测量结果。
它使用一种特殊的声学技术,能够精确地测量和控制声音学参数。
这种声学测量技术有助于评估音频质量,并有助于优化音频系统的设计。
本文的目的是介绍斯波索宾和声学测量技术。
本文将介绍斯波索宾的基本原理、工作原理以及它的使用方法,以及它如何通过测量声学参数来改善音频质量。
首先,本文将介绍斯波索宾的基本原理。
斯波索宾使用非常精确的原理来测量声学参数,其实现原理是将声音信号发送到一系列测量电路,并将其转换为电信号进行分析。
这些电信号会被设备扫描,并将它们组合成有效的信号来测量指定的参数。
采用这种方法,斯波索宾可以精确地测量出声学参数,从而提高音频质量。
接下来,本文将介绍斯波索宾的工作原理。
斯波索宾有一个内置的微处理器,可以实现快速响应,并能够以高精度来测量和控制声学参数。
本文将介绍斯波索宾的四大模块,分别是:数据采集模块、数据分析模块、数据显示模块以及运行控制模块。
这些模块共同为用户提供准确的声学测量结果。
最后,本文将介绍斯波索宾的使用方法以及它如何改善音频质量。
斯波索宾可以使用USB连接到电脑,它可以支持多种声音信号的输入和输出,例如,音频文件、音频流等。
它能够让用户通过数据比较、分析、记录等方式,来测量和改善声音学参数。
斯波索宾可以通过不同的指标,比如频率响度、音调和声压级,来检测声学参数,使用户可以更好地控制声音学参数,从而改善音频质量。
综上所述,斯波索宾是一种高精度的声学测量仪器,它使用一种精确的声学技术,能够精确测量和控制声学参数,使人们能够更好地控制声音,从而改善音质。
它的使用方法比较简单,能够帮助用户更好地理解声学,并有效提高音频质量。
关于JJG 820-1993《手持糖量(含量)计及手持折射仪》的探讨
化学分析计量CHEMICAL ANALYSIS AND METERAGE第30卷,第6期2021年6月V ol. 30,No. 6Jun. 202167doi :10.3969/j.issn.1008–6145.2021.06.015关于JJG 820—1993 《手持糖量(含量)计及手持折射仪》的探讨顾玲玲(上海市计量测试技术研究院,上海 200233)摘要 对JJG 820—1993 《手持糖量(含量)计及手持折射仪》中存在的问题进行探讨。
对JJG 820—1993中手持含量计的校准方法中的“量程”、“准确度”表述提出了修改意见。
分析了现有的蔗糖类标准物质及折射率标准物质不能解决手持糖量计及手持折射仪溯源问题的原因。
用分析纯蔗糖配制校准用蔗糖标准工作溶液,以V 棱镜折射仪及测量用表线性插值法对溶液定值。
采用标准溶液对手持糖量(含量)计进行了校准,对示值误差校准结果进行不确定度评定且对被测量仪器的示值误差作了符合性评定。
该方法解决了手持糖量计及手持折射仪的溯源问题,可作为高精度台式数字折光仪校准方法的参考。
关键词 手持糖量计;标准物质;V 棱镜折射仪;不确定度;示值误差中图分类号:O657 文献标识码:A 文章编号:1008–6145(2021)06–0067–05Discussion on JJG 820–1993 Hand Saccharimeter (Content-Meter) and Hand RefractometerGu Lingling(Shanghai Institute of Measurement and Testing Technology, Shanghai 200233, China)Abstract A discussion was made on the problems existing in JJG 820–1993 Hand Saccharimeter (Content-Meter) and Hand Refractometer. An amendment to the calibration method, measuring range and accuracy of hand-held content meter in JJG 820–1993 was proposed. The reasons why the existing sucrose and refractive index reference materials can ’t be used to solve the traceability problems of hand saccharimeter and hand refractometer are analyzed. A standard working solution of sucrose for calibration was prepared by analyzing pure sucrose, and the solution was determined by V prism refractometer and linear interpolation method. The standard solution was used to calibrate the sugar content (content)meter, the uncertainty of the calibration result of the indication error was evaluated, and the conformity of the indication error of the measured instrument was evaluated. This method solves the problem of traceability of handheld sugar meter and handheld refractometer, and can also be used as a reference for calibration method of high precision desktop digital refractometer.Keywords hand saccharimeter; standard material; V prism refractometer; uncertainty; indication error手持糖量(含量)计及手持折射仪是利用折射原理测量临界角的仪器。
与仪器有关的英语单词
与仪器有关的英语单词## Instrument-Related Vocabulary.Calibration: The process of adjusting an instrument to ensure that it provides accurate measurements.Accuracy: The degree to which an instrument's measurements agree with the true value being measured.Precision: The degree to which an instrument's measurements are consistent with each other.Resolution: The smallest change in the measurand that can be detected by an instrument.Range: The limits within which an instrument can make measurements.Sensitivity: The ability of an instrument to detect small changes in the measurand.Selectivity: The ability of an instrument todistinguish between different measurands.Stability: The ability of an instrument to maintain its calibration over time.Reliability: The ability of an instrument to provide consistent measurements under different conditions.Linearity: The degree to which an instrument's response to the measurand is linear.Drift: A gradual change in an instrument's calibration over time.Offset: A constant error in an instrument's measurements.Hysteresis: A difference between an instrument's measurements when the measurand is increasing compared to when it is decreasing.Noise: Unwanted random fluctuations in an instrument's measurements.Bandwidth: The range of frequencies over which an instrument can make measurements.Gain: The ratio of the instrument's output signal toits input signal.Phase: The time delay between an instrument's input and output signals.Impedance: A measure of the resistance to the flow of alternating current.Capacitance: The ability of a device to storeelectrical charge.Inductance: The ability of a device to store magnetic energy.## 仪器相关单词。
美国加州一名音响工程师的哲思(2)
美国加州一名音响工程师的哲思(2)武夷山摘译Rick Delmonico是美国加州的一名音响工程师,自称是思想采集者。
下面是他的一些零星哲思(Philosophical Observations)。
原文来自Academia网站。
这是我编译的第二部分。
Stasis→process→chaos.静止→过程→混沌Sameness→perception→otherness.同一→感知→他者Symmetry→motion→difference.对称→运动→差异Truth→communication→randomness.真相→传播→随机这里的想法是,对称不包含运动,不包含过程,是完全静止的。
一个无维度、无尺度的点,但从信息角度说,它富含多种可能性。
科学中的高度奇异性来自不确定性。
科学这个行当就是要对事物做出解释,而这个不确定性是解释的拦路虎。
物质具有一种从信息场涌现出来的物质性。
信息具有一种从奇点涌现出来的有变异的精神性。
这一变异是创造的回响,不可能回到当初的出发地。
真理是现实的中心内核,虽说人们自以为能发现真理,但他们逐渐意识到,他们只能在一定分辨率上给真理以一瞥,超出这个分辨率,主观推理就总要上场。
真相是系统的最高能态。
真相更像一个名词,而欺骗更像一个动词。
并不是说我觉得真理是相对的,真理肯定是存在的,然而,我们与真理的唯一联系在于创造的回响。
真理具有纯粹性和对称性,像一个完美的金刚石。
不存在没有变异的现实,因此,真理从中心分岔出去,表现为概率之涨落,进入不确定性的外围暗区。
如果现实既包含无限又包含单一,那么现实就要么是多面的宝石,要么是奇点在舞蹈。
小提琴手是自参照的噪音。
光并不经历时间,只有系统才经历时间。
真理具有最大的潜势,不确定性具有最大的变异。
当我们谈论信息时,想象力具有能势的形态,包含着真相程度之涨落。
如果我们说到有意义信息的话,则应当说,简单比复杂包含了更多的潜力。
简单更接近真理。
没有什么比简单流畅的表达式更美了。
英国clavis声学式皮带张力计原理
Clavis声学式皮带张力计是一种用于测量机械传动系统中皮带的张力的设备。
它基于声学原理,通过将皮带作为振动弦线来测量其张力。
下面将介绍Clavis声学式皮带张力计的原理和相关参考内容。
1.原理介绍: Clavis声学式皮带张力计通过识别皮带的自然频率来测量其张力。
当皮带张紧时,其自然频率较高;而当张力减小时,自然频率也相应减小。
Clavis声学式皮带张力计使用了两个传感器,将其中一个传感器固定在皮带上,另一个传感器则作为参照物固定在机架上。
当皮带振动时,两个传感器会同时捕捉到振动信号,但信号相位可能存在差异。
通过分析信号的相位差异,可以计算出皮带的张力。
2.参考内容:a.声学计算方法:Clavis声学式皮带张力计使用了声学计算方法来计算皮带的张力。
声学计算方法是通过测量振动频率和振动模态来评估材料的力学性质和结构特征。
可以参考相关的声学计算方法和公式来理解Clavis声学式皮带张力计的原理。
b.振动力学理论:了解振动力学理论对于理解Clavis声学式皮带张力计的原理非常重要。
可以参考振动力学理论的相关书籍或资料,了解振动信号在不同物体中的传播和变化规律,以及振动信号的参数如频率、相位等如何影响物体的力学性质。
c.皮带张力计算公式:Clavis声学式皮带张力计使用了一系列公式来计算皮带的张力。
这些公式通常基于皮带的振动频率、模态和材料的力学性质等参数。
可以参考相关的文献或资料,了解不同公式的推导和计算方法,进一步掌握Clavis声学式皮带张力计的原理。
d.应用案例:了解Clavis声学式皮带张力计的实际应用案例对于理解其原理也很有帮助。
可以阅读相关的应用案例,了解不同行业中使用Clavis 声学式皮带张力计的经验和效果,从而深入理解其原理和工作原理。
总结:以上是关于Clavis声学式皮带张力计原理的相关参考内容。
通过了解声学计算方法、振动力学理论、皮带张力计算公式和应用案例等内容,可以更好地理解Clavis声学式皮带张力计的工作原理和原理。
music算法的角度分辨力公式
音乐算法是一种通过数学模型和计算机技术来分析和处理音乐的方法。
在音乐领域,算法可以帮助人们理解音乐的结构和特征,同时也可以用于音乐生成、音乐推荐和音乐分类等领域。
音乐算法的分辨力公式是指通过算法对音乐进行分析和识别的能力,它可以帮助我们评估某种算法在音乐领域的表现和效果。
音乐算法的分辨力公式包括以下几个要素:1. 频谱分析频谱分析是音乐信号处理中常用的方法,它可以将音频信号转换为频谱图,并通过分析频谱图来得到音乐的特征。
频谱分析可以帮助算法识别音乐中的音高、音色、节奏和音乐结构等信息,从而最终实现对音乐的分辨和识别。
2. 时间序列分析时间序列分析是指对音乐信号中的时间信息进行分析和处理。
通过时间序列分析,算法可以识别音乐中的节奏、速度和音乐片段之间的转换等特征,从而帮助算法在识别和分辨音乐时更加准确和可靠。
3. 模式识别模式识别是一种常用的技术,它可以帮助算法识别音乐中的重复模式、音乐类型、乐曲结构和旋律等特征。
通过模式识别,算法可以更好地分辨和识别音乐,从而提高音乐算法的分辨力和表现效果。
4. 特征提取特征提取是指从音乐信号中提取出具有代表性和区分性的特征,以帮助算法更好地进行音乐识别和分辨。
常用的音乐特征包括音高、音色、节奏、谱型和频率等信息,通过特征提取,算法可以更准确地识别和分辨音乐。
5. 机器学习机器学习是一种人工智能领域的重要技术,它可以帮助算法从大量的音乐数据中学习和提取规律,从而提高算法在音乐识别和分辨上的表现。
通过机器学习,音乐算法可以不断优化自身的分辨力和性能,从而实现更准确和可靠的音乐识别和分辨。
音乐算法的分辨力公式是一个包括频谱分析、时间序列分析、模式识别、特征提取和机器学习等多个要素的综合指标。
通过对这些要素的分析和评估,我们可以客观地评价和比较不同音乐算法在音乐识别和分辨上的表现和效果,从而为音乐算法的研究和应用提供指导和参考。
这也有助于推动音乐人工智能技术的发展,为音乐产业的数字化转型和智能化创新注入新的活力和动力。
中英文无损检测名词
中英文无损检测名词A.C magnetic saturation 交流磁饱和Absorbed dose 吸收剂量Absorbed dose rate 吸收剂量率Acceptanc limits 验收范围Acceptance level 验收水平Acceptance standard 验收标准Accumulation test 累积检测Acoustic emission count(emission count)声发射计数(发射计数)Acoustic emission transducer 声发射换能器(声发射传感器)Acoustic emission(AE) 声发射Acoustic holography 声全息术Acoustic impedance 声阻抗Acoustic impedance matching 声阻抗匹配Acoustic impedance method 声阻法Acoustic wave 声波Acoustical lens 声透镜Acoustic—ultrasonic 声-超声(AU)Activation 活化Activity 活度Adequate shielding 安全屏蔽Ampere turns 安匝数Amplitude 幅度Angle beam method 斜射法Angle of incidence 入射角Angle of reflection 反射角Angle of spread 指向角Angle of squint 偏向角Angle probe 斜探头Angstrom unit 埃(A)Area amplitude response curve 面积幅度曲线Area of interest 评定区Arliflcial disconlinuity 人工不连续性Artifact 假缺陷Artificial defect 人工缺陷Artificial discontinuity 标准人工缺陷A-scan A型扫描A-scope; A-scan A型显示Attenuation coefficient 衰减系数Attenuator 衰减器Audible leak indicator 音响泄漏指示器Automatic testing 自动检测Autoradiography 自射线照片Avaluation 评定Barium concrete 钡混凝土Barn 靶Base fog 片基灰雾Bath 槽液Bayard- Alpert ionization gage B- A型电离计Beam 声束Beam ratio 光束比Beam angle 束张角Beam axis 声束轴线Beam index 声束入射点Beam path location 声程定位Beam path; path length 声程Beam spread 声束扩散Betatron 电子感应加速器Bimetallic strip gage 双金属片计Bipolar field 双极磁场Black light filter 黑光滤波器Black light; ultraviolet radiation 黑光Blackbody 黑体Blackbody equivalent temperature 黑体等效温度Bleakney mass spectrometer 波利克尼质谱仪Bleedout 渗出Bottom echo 底面回波Bottom surface 底面Boundary echo(first) 边界一次回波Bremsstrahlung 轫致辐射Broad-beam condition 宽射束Brush application 刷涂B-scan presenfation B型扫描显示B-scope; B-scan B型显示C- scan C型扫描Calibration,instrument 设备校准Capillary action 毛细管作用Carrier fluid 载液Carry over of penetrate 渗透剂移转Cassette 暗合Cathode 阴极Central conductor 中心导体Central conductor method 中心导体法Characteristic curve 特性曲线Characteristic curve of film 胶片特性曲线Characteristic radiation 特征辐射Chemical fog 化学灰雾Cine-radiography 射线(活动)电影摄影术Cintact pads 接触垫Circumferential coils 圆环线圈Circumferential field 周向磁场Circumferential magnetization method 周向磁化法Clean 清理Clean- up 清除Clearing time 定透时间Coercive force 矫顽力Coherence 相干性Coherence length 相干长度(谐波列长度)Coi1,test 测试线圈Coil size 线圈大小Coil spacing 线圈间距Coil technique 线圈技术Coil method 线圈法Coilreference 线圈参考Coincidence discrimination 符合鉴别Cold-cathode ionization gage 冷阴极电离计Collimator 准直器Collimation 准直Collimator 准直器Combined colour comtrast and fluorescent penetrant 着色荧光渗透剂Compressed air drying 压缩空气干燥Compressional wave 压缩波Compton scatter 康普顿散射Continuous emission 连续发射Continuous linear array 连续线阵Continuous method 连续法Continuous spectrum 连续谱Continuous wave 连续波Contract stretch 对比度宽限Contrast 对比度Contrast agent 对比剂Contrast aid 反差剂Contrast sensitivity 对比灵敏度Control echo 监视回波Control echo 参考回波Couplant 耦合剂Coupling 耦合Coupling losses 耦合损失Cracking 裂解Creeping wave 爬波Critical angle 临界角Cross section 横截面Cross talk 串音Cross-drilled hole 横孔Crystal 晶片C-scope; C-scan C型显示Curie point 居里点Curie temperature 居里温度Curie(Ci) 居里Current flow method 通电法Current induction method 电流感应法Current magnetization method 电流磁化法Cut-off level 截止电平Dead zone 盲区Decay curve 衰变曲线Decibel(dB) 分贝Defect 缺陷Defect resolution 缺陷分辨力Defect detection sensitivity 缺陷检出灵敏度Defect resolution 缺陷分辨力Definition 清晰度Definition, image definition 清晰度,图像清晰度Demagnetization 退磁Demagnetization factor 退磁因子Demagnetizer 退磁装置Densitometer 黑度计Density 黑度(底片)Density comparison strip 黑度比较片Detecting medium 检验介质Detergent remover 洗净液Developer 显像剂Developer station 显像工位Developer, agueons 水性显象剂Developer, dry 干显象剂Developer, liquid film 液膜显象剂Developer, nonaqueous (sus- pendible)非水(可悬浮)显象剂Developing time 显像时间Development 显影Diffraction mottle 衍射斑Diffuse indications 松散指示Diffusion 扩散Digital image acquisition system 数字图像识别系统Dilatational wave 膨胀波Dip and drain station 浸渍和流滴工位Direct contact magnetization 直接接触磁化Direct exposure imaging 直接曝光成像Direct contact method 直接接触法Directivity 指向性Discontinuity 不连续性Distance- gain- size-German AVG 距离- 增益- 尺寸(DGS德文为AVG)Distance marker; time marker 距离刻度Dose equivalent 剂量当量Dose rate meter 剂量率计Dosemeter 剂量计Double crystal probe 双晶片探头Double probe technique 双探头法Double transceiver technique 双发双收法Double traverse technique 二次波法Dragout 带出Drain time 滴落时间Drain time 流滴时间Drift 漂移Dry method 干法Dry powder 干粉Dry technique 干粉技术Dry developer 干显像剂Dry developing cabinet 干显像柜Dry method 干粉法Drying oven 干燥箱Drying station 干燥工位Drying time 干燥时间D-scope; D-scan D型显示Dual search unit 双探头Dual-focus tube 双焦点管Duplex-wire image quality indicator 双线像质指示器Duration 持续时间Dwell time 停留时间Dye penetrant 着色渗透剂Dynamic leak test 动态泄漏检测Dynamic leakage measurement 动态泄漏测量Dynamic range 动态范围Dynamic radiography 动态射线透照术Echo 回波Echo frequency 回波频率Echo height 回波高度Echo indication 回波指示Echo transmittance of sound pressure 往复透过率Echo width 回波宽度Eddy current 涡流Eddy current flaw detector 涡流探伤仪Eddy current testiog 涡流检测Edge 端面Edge effect 边缘效应Edge echo 棱边回波Edge effect 边缘效应Effective depth penetration (EDP)有效穿透深度Effective focus size 有效焦点尺寸Effective magnetic permeability 有效磁导率Effective permeability 有效磁导率Effective reflection surface of flaw 缺陷有效反射面Effective resistance 有效电阻Elastic medium 弹性介质Electric displacement 电位移Electrical center 电中心Electrode 电极Electromagnet 电磁铁Electro-magnetic acoustic transducer 电磁声换能器Electromagnetic induction 电磁感应Electromagnetic radiation 电磁辐射Electromagnetic testing 电磁检测Electro-mechanical coupling factor 机电耦合系数Electron radiography 电子辐射照相术Electron volt 电子伏恃Electronic noise 电子噪声Electrostatic spraying 静电喷涂Emulsification 乳化Emulsification time 乳化时间Emulsifier 乳化剂Encircling coils 环绕式线圈End effect 端部效应Energizing cycle 激励周期Equalizing filter 均衡滤波器Equivalent 当量Equivalent I.Q. I. Sensitivity 象质指示器当量灵敏度Equivalent nitrogen pressure 等效氮压Equivalent penetrameter sensifivty 透度计当量灵敏度Equivalent method 当量法Erasabl optical medium 可探光学介质Etching 浸蚀Evaluation 评定Evaluation threshold 评价阈值Event count 事件计数Event count rate 事件计数率Examination area 检测范围Examination region 检验区域Exhaust pressure/discharge pressure 排气压力Exhaust tubulation 排气管道Expanded time-base sweep 时基线展宽Exposure 曝光Exposure table 曝光表格Exposure chart 曝光曲线Exposure fog 曝光灰雾Exposure,radiographic exposure 曝光,射线照相曝光Extended source 扩展源Facility scattered neutrons 条件散射中子False indication 假指示Family 族Far field 远场Feed-through coil 穿过式线圈Field, resultant magnetic 复合磁场Fill factor 填充系数Film speed 胶片速度Film badge 胶片襟章剂量计Film base 片基Film contrast 胶片对比度Film gamma 胶片γ值Film processing 胶片冲洗加工Film speed 胶片感光度Film unsharpness 胶片不清晰度Film viewing screen 观察屏Filter 滤波器/滤光板Final test 复探Flat-bottomed hole 平底孔Flat-bottomed hole equivalent 平底孔当量Flaw 伤Flaw characterization 伤特性Flaw echo 缺陷回波Flexural wave 弯曲波Floating threshold 浮动阀值Fluorescence 荧光Fluorescent examination method 荧光检验法Fluorescent magnetic particle inspection 荧光磁粉检验Fluorescent dry deposit penetrant 干沉积荧光渗透剂Fluorescent light 荧光Fluorescent magnetic powder 荧光磁粉Fluorescent penetrant 荧光渗透剂Fluorescent screen 荧光屏Fluoroscopy 荧光检查法Flux leakage field 磁通泄漏场Flux lines 磁通线Focal spot 焦点Focal distance 焦距Focus length 焦点长度Focus size 焦点尺寸Focus width 焦点宽度Focus(electron) 电子焦点Focused beam 聚焦声束Focusing probe 聚焦探头Focus-to-film distance(f.f.d) 焦点-胶片距离(焦距)Fog 底片灰雾Fog density 灰雾密度Footcandle 英尺烛光Freguency 频率Frequency constant 频率常数Fringe 干涉带Front distance 前沿距离Front distance of flaw 缺陷前沿距离Full- wave direct current(FWDC)全波直流Fundamental frequency 基频Furring 毛状迹痕Gage pressure 表压Gain 增益Gamma radiography γ射线透照术Gamma ray source γ射线源Gamma ray source container γ射线源容器Gamma rays γ射线Gamma-ray radiographic equipment γ射线透照装置Gap scanning 间隙扫查Gas 气体Gate 闸门Gating technique 选通技术Gauss 高斯Geiger-Muller counter 盖革.弥勒计数器Geometric unsharpness 几何不清晰度Gray(Gy) 戈瑞Grazing incidence 掠入射Grazing angle 掠射角Group velocity 群速度Half life 半衰期Half- wave current (HW)半波电流Half-value layer(HVL) 半值层Half-value method 半波高度法Halogen 卤素Halogen leak detector 卤素检漏仪Hard X-rays 硬X射线Hard-faced probe 硬膜探头Harmonic analysis 谐波分析Harmonic distortion 谐波畸变Harmonics 谐频Head wave 头波Helium bombing 氦轰击法Helium drift 氦漂移Helium leak detector 氦检漏仪Hermetically tight seal 气密密封High vacuum 高真空High energy X-rays 高能X射线Holography (optical) 光全息照相Holography, acoustic 声全息Hydrophilic emulsifier 亲水性乳化剂Hydrophilic remover 亲水性洗净剂Hydrostatic text 流体静力检测Hysteresis 磁滞Hysteresis 磁滞IACS IACSID coil ID线圈Image definition 图像清晰度Image contrast 图像对比度Image enhancement 图像增强Image magnification 图像放大Image quality 图像质量Image quality indicator sensitivity 像质指示器灵敏度Image quality indicator(IQI)/image quality indication 像质指示器Imaging line scanner 图像线扫描器Immersion probe 液浸探头Immersion rinse 浸没清洗Immersion testing 液浸法Immersion time 浸没时间Impedance 阻抗Impedance plane diagram 阻抗平面图Imperfection 不完整性Impulse eddy current testing 脉冲涡流检测Incremental permeability 增量磁导率Indicated defect area 缺陷指示面积Indicated defect length 缺陷指示长度Indication 指示Indirect exposure 间接曝光Indirect magnetization 间接磁化Indirect magnetization method 间接磁化法Indirect scan 间接扫查Induced field 感应磁场Induced current method 感应电流法Infrared imaging system 红外成象系统Infrared sensing device 红外扫描器Inherent fluorescence 固有荧光Inherent filtration 固有滤波Initial permeability 起始磁导率Initial pulse 始脉冲Initial pulse width 始波宽度Inserted coil 插入式线圈Inside coil 内部线圈Inside- out testing 外泄检测Inspection 检查Inspection medium 检查介质Inspection frequency/ test frequency 检测频率Intensifying factor 增感系数Intensifying screen 增感屏Interal,arrival time (Δtij)/arrival time interval(Δtij)到达时间差(Δtij) Interface boundary 界面Interface echo 界面回波Interface trigger 界面触发Interference 干涉Interpretation 解释Ion pump 离子泵Ion source 离子源Ionization chamber 电离室Ionization potential 电离电位Ionization vacuum gage 电离真空计Ionography 电离射线透照术Irradiance, E 辐射通量密度, EIsolation 隔离检测Isotope 同位素K value K值Kaiser effect 凯塞(Kaiser)效应Kilo volt kv 千伏特Kiloelectron volt keV千电子伏特Krypton 85 氪85L/D ratio L/D比Lamb wave 兰姆波Latent image 潜象Lateral scan 左右扫查Lateral scan with oblique angle 斜平行扫查Latitude (of an emulsion) 胶片宽容度Lead screen 铅屏Leak 泄漏孔Leak artifact 泄漏器Leak detector 检漏仪Leak testtion 泄漏检测Leakage field 泄漏磁场Leakage rate 泄漏率Leechs 磁吸盘Lift-off effect 提离效应Light intensity 光强度Limiting resolution 极限分辨率Line scanner 线扫描器Line focus 线焦点Line pair pattern 线对检测图Line pairs per millimetre 每毫米线对数Linear (electron) accelerator(LINAC) 电子直线加速器Linear attenuation coefficient 线衰减系数Linear scan 线扫查Linearity (time or distance)线性(时间或距离)Linearity, anplitude 幅度线性Lines of force 磁力线Lipophilic emulsifier 亲油性乳化剂Lipophilic remover 亲油性洗净剂Liquid penetrant examination 液体渗透检验Liquid film developer 液膜显像剂Local magnetization 局部磁化Local magnetization method 局部磁化法Local scan 局部扫查Localizing cone 定域喇叭筒Location 定位Location accuracy 定位精度Location computed 定位,计算Location marker 定位标记Location upon delta-T 时差定位Location, clusfer 定位,群集Location,continuous AE signal 定位,连续AE信号Longitudinal field 纵向磁场Longitudinal magnetization method 纵向磁化法Longitudinal resolution 纵向分辨率Longitudinal wave 纵波Longitudinal wave probe 纵波探头Longitudinal wave technique 纵波法Loss of back reflection 背面反射损失Loss of back reflection 底面反射损失Love wave 乐甫波Low energy gamma radiation 低能γ辐射Low-enerugy photon radiation 低能光子辐射Luminance 亮度Luminosity 流明Lusec 流西克Maga or million electron volts MeV兆电子伏特Magnetic history 磁化史Magnetic hysteresis 磁性滞后Magnetic particle field indication 磁粉磁场指示器Magnetic particle inspection flaw indications 磁粉检验的伤显示Magnetic circuit 磁路Magnetic domain 磁畴Magnetic field distribution 磁场分布Magnetic field indicator 磁场指示器Magnetic field meter 磁场计Magnetic field strength 磁场强度(H)Magnetic field/field,magnetic 磁场Magnetic flux 磁通Magnetic flux density 磁通密度Magnetic force 磁化力Magnetic leakage field 漏磁场Magnetic leakage flux 漏磁通Magnetic moment 磁矩Magnetic particle 磁粉Magnetic particle indication 磁痕Magnetic particle testing/magnetic particle examination 磁粉检测Magnetic permeability 磁导率Magnetic permeability 磁导率Magnetic pole 磁极Magnetic saturataion 磁饱和Magnetic saturation 磁饱和Magnetic slorage meclium 磁储介质Magnetic writing 磁写Magnetizing 磁化Magnetizing current 磁化电流Magnetizing coil 磁化线圈Magnetostrictive effect 磁致伸缩效应Magnetostrictive transducer 磁致伸缩换能器Main beam 主声束Manual testing 手动检测Markers 时标MA-scope; MA-scan MA型显示Masking 遮蔽Mass attcnuation coefficient 质量吸收系数Mass number 质量数Mass spectrometer (M.S.)质谱仪Mass spectrometer leak detector 质谱检漏仪Mass spectrum 质谱Master/slave discrimination 主从鉴别MDTD 最小可测温度差Mean free path 平均自由程Medium vacuum 中真空Mega or million volt MV兆伏特Micro focus X - ray tube 微焦点X 光管Microfocus radiography 微焦点射线透照术Micrometre 微米Micron of mercury 微米汞柱Microtron 电子回旋加速器Milliampere 毫安(mA)Millimetre of mercury 毫米汞柱Minifocus x- ray tube 小焦点调射线管Minimum detectable leakage rate 最小可探泄漏率Minimum resolvable temperature difference (MRTD)最小可分辨温度差(MRDT)Mode 波型Mode conversion 波型转换Mode transformation 波型转换Moderator 慢化器Modulation transfer function (MTF)调制转换功能(MTF)Modulation analysis 调制分析Molecular flow 分子流Molecular leak 分子泄漏Monitor 监控器Monochromatic 单色波Movement unsharpness 移动不清晰度Moving beam radiography 可动射束射线透照术Multiaspect magnetization method 多向磁化法Multidirectional magnetization 多向磁化Multifrequency eddy current testiog 多频涡流检测Multiple back reflections 多次背面反射Multiple reflections 多次反射Multiple back reflections 多次底面反射Multiple echo method 多次反射法Multiple probe technique 多探头法Multiple triangular array 多三角形阵列Narrow beam condition 窄射束NC NCNear field 近场Near field length 近场长度Near surface defect 近表面缺陷Net density 净黑度Net density 净(光学)密度Neutron 中子Neutron radiograhy 中子射线透照Neutron radiography 中子射线透照术Newton (N)牛顿Nier mass spectrometer 尼尔质谱仪Noise 噪声Noise 噪声Noise equivalent temperature difference (NETD)噪声当量温度差(NETD)Nominal angle 标称角度Nominal frequency 标称频率Non-aqueous liquid developer 非水性液体显像剂Noncondensable gas 非冷凝气体Nondcstructivc Examination(NDE)无损试验Nondestructive Evaluation(NDE)无损评价Nondestructive Inspection(NDI)无损检验Nondestructive Testing(NDT)无损检测Nonerasble optical data 可固定光学数据Nonferromugnetic material 非铁磁性材料Nonrelevant indication 非相关指示Non-screen-type film 非增感型胶片Normal incidence 垂直入射(亦见直射声束)Normal permeability 标准磁导率Normal beam method; straight beam method 垂直法Normal probe 直探头Normalized reactance 归一化电抗Normalized resistance 归一化电阻Nuclear activity 核活性Nuclide 核素Object plane resolution 物体平面分辨率Object scattered neutrons 物体散射中子Object beam 物体光束Object beam angle 物体光束角Object-film distance 被检体-胶片距离Object一film distance 物体- 胶片距离Over development 显影过度Over emulsfication 过乳化Overall magnetization 整体磁化Overload recovery time 过载恢复时间Overwashing 过洗Oxidation fog 氧化灰雾P PPair production 偶生成Pair production 电子对产生Pair production 电子偶的产生Palladium barrier leak detector 钯屏检漏仪Panoramic exposure 全景曝光Parallel scan 平行扫查Paramagnetic material 顺磁性材料Parasitic echo 干扰回波Partial pressure 分压Particle content 磁悬液浓度Particle velocity 质点(振动)速度Pascal (Pa)帕斯卡(帕)Pascal cubic metres per second 帕立方米每秒(Pa•m3/s )Path length 光程长Path length difference 光程长度差Pattern 探伤图形Peak current 峰值电流Penetrameter 透度计Penetrameter sensitivity 透度计灵敏度Penetrant 渗透剂Penetrant comparator 渗透对比试块Penetrant flaw detection 渗透探伤Penetrant removal 渗透剂去除Penetrant station 渗透工位Penetrant, water- washable 水洗型渗透剂Penetration 穿透深度Penetration time 渗透时间Permanent magnet 永久磁铁Permeability coefficient 透气系数Permeability,a-c 交流磁导率Permeability,d-c 直流磁导率Phantom echo 幻象回波Phase analysis 相位分析Phase angle 相位角Phase controlled circuit breaker 断电相位控制器Phase detection 相位检测Phase hologram 相位全息Phase sensitive detector 相敏检波器Phase shift 相位移Phase velocity 相速度Phase-sensitive system 相敏系统Phillips ionization gage 菲利浦电离计Phosphor 荧光物质Photo fluorography 荧光照相术Photoelectric absorption 光电吸收Photographic emulsion 照相乳剂Photographic fog 照相灰雾Photostimulable luminescence 光敏发光Piezoelectric effect 压电效应Piezoelectric material 压电材料Piezoelectric stiffness constant 压电劲度常数Piezoelectric stress constant 压电应力常数Piezoelectric transducer 压电换能器Piezoelectric voltage constant 压电电压常数Pirani gage 皮拉尼计Pirani gage 皮拉尼计Pitch and catch technique 一发一收法Pixel 象素Pixel size 象素尺寸Pixel, disply size 象素显示尺寸Planar array 平面阵(列)Plane wave 平面波Plate wave 板波Plate wave technique 板波法Point source 点源Post emulsification 后乳化Post emulsifiable penetrant 后乳化渗透剂Post-cleaning 后清除Post-cleaning 后清洗Powder 粉未Powder blower 喷粉器Powder blower 磁粉喷枪Pre-cleaning 预清理Pressure difference 压力差Pressure dye test 压力着色检测Pressure probe 压力探头Pressure testing 压力检测Pressure- evacuation test 压力抽空检测Pressure mark 压痕Pressure,design 设计压力Pre-test 初探Primary coil 一次线圈Primary radiation 初级辐射Probe gas 探头气体Probe test 探头检测Probe backing 探头背衬Probe coil 点式线圈Probe coil 探头式线圈Probe coil clearance 探头线圈间隙Probe index 探头入射点Probe to weld distance 探头-焊缝距离Probe/ search unit 探头Process control radiograph 工艺过程控制的射线照相Processing capacity 处理能力Processing speed 处理速度Prods 触头Projective radiography 投影射线透照术Proportioning probe 比例探头Protective material 防护材料Proton radiography 质子射线透照Pulse 脉冲波Pulse 脉冲Pulse echo method 脉冲回波法Pulse repetition rate 脉冲重复率Pulse amplitude 脉冲幅度Pulse echo method 脉冲反射法Pulse energy 脉冲能量Pulse envelope 脉冲包络Pulse length 脉冲长度Pulse repetition frequency 脉冲重复频率Pulse tuning 脉冲调谐Pump- out tubulation 抽气管道Pump-down time 抽气时间Q factor Q值Quadruple traverse technique 四次波法Quality (of a beam of radiation) 射线束的质Quality factor 品质因数Quenching 阻塞Quenching of fluorescence 荧光的猝灭Quick break 快速断间Rad(rad) 拉德Radiance, L 面辐射率,LRadiant existence, M 幅射照度MRadiant flux; radiant power,ψe 辐射通量、辐射功率、ψe Radiation 辐射Radiation does 辐射剂量Radio frequency (r- f) display 射频显示Radio- frequency mass spectrometer 射频质谱仪Radio frequency(r-f) display 射频显示Radiograph 射线底片Radiographic contrast 射线照片对比度Radiographic equivalence factor 射线照相等效系数Radiographic exposure 射线照相曝光量Radiographic inspection 射线检测Radiographic inspection 射线照相检验Radiographic quality 射线照相质量Radiographic sensitivity 射线照相灵敏度Radiographic contrast 射线底片对比度Radiographic equivalence factor 射线透照等效因子Radiographic inspection 射线透照检查Radiographic quality 射线透照质量Radiographic sensitivity 射线透照灵敏度Radiography 射线照相术Radiological examination 射线检验Radiology 射线学Radiometer 辐射计Radiometry 辐射测量术Radioscopy 射线检查法Range 量程Rayleigh wave 瑞利波Rayleigh scattering 瑞利散射Real image 实时图像Real-time radioscopy 实时射线检查法Rearm delay time 重新准备延时时间Rearm delay time 重新进入工作状态延迟时间Reciprocity failure 倒易律失效Reciprocity law 倒易律Recording medium 记录介质Recovery time 恢复时间Rectified alternating current 脉动直流电Reference block 参考试块Reference beam 参考光束Reference block 对比试块Reference block method 对比试块法Reference coil 参考线圈Reference line method 基准线法Reference standard 参考标准Reflection 反射Reflection coefficient 反射系数Reflection density 反射密度Reflector 反射体Refraction 折射Refractive index 折射率Refrence beam angle 参考光束角Reicnlbation 网纹Reject; suppression 抑制Rejection level 拒收水平Relative permeability 相对磁导率Relevant indication 相关指示Reluctance 磁阻Rem(rem) 雷姆Remote controlled testing 机械化检测Replenisers 补充剂Representative quality indicator 代表性质量指示器Residual magnetic field/field, residual magnetic 剩磁场Residual technique 剩磁技术Residual magnetic method 剩磁法Residual magnetism 剩磁Resistance (to flow)气阻Resolution 分辨力Resonance method 共振法Response factor 响应系数Response time 响应时间Resultant field 复合磁场Resultant magnetic field 合成磁场Resultant magnetization method 组合磁化法Retentivity 顽磁性Reversal 反转现象Ring-down count 振铃计数Ring-down count rate 振铃计数率Rinse 清洗Rise time 上升时间Rise-time discrimination 上升时间鉴别Rod-anode tube 棒阳极管Roentgen(R) 伦琴Roof angle 屋顶角Rotational magnetic field 旋转磁场Rotational magnetic field method 旋转磁场法Rotational scan 转动扫查Roughing 低真空Roughing line 低真空管道Roughing pump 低真空泵S SSafelight 安全灯Sampling probe 取样探头Saturation 饱和Saturation,magnetic 磁饱和Saturation level 饱和电平Scan on grid lines 格子线扫查Scan pitch 扫查间距Scanning 扫查Scanning index 扫查标记Scanning directly on the weld 焊缝上扫查Scanning path 扫查轨迹Scanning sensitivity 扫查灵敏度Scanning speed 扫查速度Scanning zone 扫查区域Scattared energy 散射能量Scatter unsharpness 散射不清晰度Scattered neutrons 散射中子Scattered radiation 散射辐射Scattering 散射Schlieren system 施利伦系统Scintillation counter 闪烁计数器Scintillator and scintillating crystals 闪烁器和闪烁晶体Screen 屏Screen unsharpness 荧光增感屏不清晰度Screen-type film 荧光增感型胶片SE probe SE探头Search-gas 探测气体Second critical angle 第二临界角Secondary radiation 二次射线Secondary coil 二次线圈Secondary radiation 次级辐射Selectivity 选择性Semi-conductor detector 半导体探测器Sensitirity va1ue 灵敏度值Sensitivity 灵敏度Sensitivity of leak test 泄漏检测灵敏度Sensitivity control 灵敏度控制Shear wave 切变波Shear wave probe 横波探头Shear wave technique 横波法Shim 薄垫片Shot 冲击通电Side lobe 副瓣Side wall 侧面Sievert(Sv) 希(沃特)Signal 信号Signal gradient 信号梯度Signal over load point 信号过载点Signal overload level 信号过载电平Signal to noise ratio 信噪比Single crystal probe 单晶片探头Single probe technique 单探头法Single traverse technique 一次波法Sizing technique 定量法Skin depth 集肤深度Skin effect 集肤效应Skip distance 跨距Skip point 跨距点Sky shine(air scatter) 空中散射效应Sniffing probe 嗅吸探头Soft X-rays 软X射线Soft-faced probe 软膜探头Solarization 负感作用Solenoid 螺线管Soluble developer 可溶显像剂Solvent remover 溶剂去除剂Solvent cleaners 溶剂清除剂Solvent developer 溶剂显像剂Solvent remover 溶剂洗净剂Solvent-removal penetrant 溶剂去除型渗透剂Sorption 吸着Sound diffraction 声绕射Sound insulating layer 隔声层Sound intensity 声强Sound intensity level 声强级Sound pressure 声压Sound scattering 声散射Sound transparent layer 透声层Sound velocity 声速Source 源Source data label 放射源数据标签Source location 源定位Source size 源尺寸Source-film distance 射线源-胶片距离Spacial frequency 空间频率Spark coil leak detector 电火花线圈检漏仪Specific activity 放射性比度Specified sensitivity 规定灵敏度Standard 标准Standard 标准试样Standard leak rate 标准泄漏率Standard leak 标准泄漏孔Standard tast block 标准试块Standardization instrument 设备标准化Standing wave; stationary wave 驻波Step wedge 阶梯楔块Step- wadge calibration film 阶梯楔块校准底片Step- wadge comparison film 阶梯楔块比较底片Step wedge 阶梯楔块Step-wedge calibration film 阶梯-楔块校准片Step-wedge comparison film 阶梯-楔块比较片Stereo-radiography 立体射线透照术Subject contrast 被检体对比度Subsurface discontinuity 近表面不连续性Suppression 抑制Surface echo 表面回波Surface field 表面磁场Surface noise 表面噪声Surface wave 表面波Surface wave probe 表面波探头Surface wave technique 表面波法Surge magnetization 脉动磁化Surplus sensitivity 灵敏度余量Suspension 磁悬液Sweep 扫描Sweep range 扫描范围Sweep speed 扫描速度Swept gain 扫描增益Swivel scan 环绕扫查System exanlillatien threshold 系统检验阈值System inclacel artifacts 系统感生物System noise 系统噪声Tackground, target 目标本底Tandem scan 串列扫查Target 耙Target 靶Television fluoroscopy 电视X射线荧光检查Temperature envelope 温度范围Tenth-value-layer(TVL) 十分之一值层Test coil 检测线圈Test quality level 检测质量水平Test ring 试环Test block 试块Test frequency 试验频率Test piece 试片Test range 探测范围Test surface 探测面Testing,ulrasonic 超声检测Thermal neutrons 热中子Thermocouple gage 热电偶计Thermogram 热谱图Thermography, infrared 红外热成象Thermoluminescent dosemeter(TLD) 热释光剂量计Thickness sensitivity 厚度灵敏度Third critiical angle 第三临界角Thixotropic penetrant 摇溶渗透剂Thormal resolution 热分辨率Threading bar 穿棒Three way sort 三档分选Threshold setting 门限设置Threshold fog 阈值灰雾Threshold level 阀值Threshotd tcnet 门限电平Throttling 节流Through transmission technique 穿透技术Through penetration technique 贯穿渗透法Through transmission technique; transmission technique 穿透法Through-coil technique 穿过式线圈技术Throughput 通气量Tight 密封Total reflection 全反射Totel image unsharpness 总的图像不清晰度Tracer probe leak location 示踪探头泄漏定位Tracer gas 示踪气体Transducer 换能器/传感器Transition flow 过渡流Translucent base media 半透明载体介质Transmission 透射Transmission densitomefer 发射密度计Transmission coefficient 透射系数Transmission point 透射点Transmission technique 透射技术Transmittance,τ透射率τTransmitted film density 检测底片黑度Transmitted pulse 发射脉冲Transverse resolution 横向分辨率Transverse wave 横波Traveling echo 游动回波Travering scan; depth scan 前后扫查Triangular array 正三角形阵列Trigger/alarm condition 触发/报警状态Trigger/alarm level 触发/报警标准Triple traverse technique 三次波法True continuous technique 准确连续法技术Trueattenuation 真实衰减Tube current 管电流Tube head 管头Tube shield 管罩Tube shutter 管子光闸Tube window 管窗Tube-shift radiography 管子移位射线透照术Two-way sort 两档分选Ultra- high vacuum 超高真空Ultrasonic leak detector 超声波检漏仪Ultrasonic noise level 超声噪声电平Ultrasonic cleaning 超声波清洗Ultrasonic field 超声场Ultrasonic flaw detection 超声探伤Ultrasonic flaw detector 超声探伤仪Ultrasonic microscope 超声显微镜Ultrasonic spectroscopy 超声频谱Ultrasonic testing system 超声检测系统Ultrasonic thickness gauge 超声测厚仪Ultraviolet radiation 紫外辐射Under development 显影不足Unsharpness 不清晰Useful density range 有效光学密度范围UV-A A类紫外辐射UV-A filter A类紫外辐射滤片Vacuum 真空Vacuum cassette 真空暗盒Vacuum testing 真空检测Vacuum cassette 真空暗合Van de Graaff generator 范德格喇夫起电机Vapor pressure 蒸汽压Vapour degreasing 蒸汽除油Variable angle probe 可变角探头Vee path V型行程Vehicle 载体Vertical linearity 垂直线性Vertical location 垂直定位Visible light 可见光Vitua limage 虚假图像Voltage threshold 电压阈值Voltage threshold 阈值电压Wash station 水洗工位Water break test 水膜破坏试验Water column coupling method 水柱耦合法Water column probe 水柱耦合探头Water path; water distance 水程Water tolerance 水容限Water-washable penetrant 可水洗型渗透剂Wave 波Wave guide acoustic emission 声发射波导杆Wave train 波列Wave from 波形Wave front 波前Wave length 波长Wave node 波节Wave train 波列Wedge 斜楔Wet slurry technique 湿软磁膏技术Wet technique 湿法技术Wet method 湿粉法Wetting action 润湿作用Wetting action 润湿作用Wetting agents 润湿剂Wheel type probe; wheel search unit 轮式探头White light 白光White X-rays 连续X射线Wobble 摆动Wobble effect 抖动效应Working sensitivity 探伤灵敏度Wrap around 残响波干扰Xeroradiography 静电射线透照术X-radiation X射线X-ray controller X射线控制器X-ray detection apparatus X射线探伤装置X-ray film 射线胶片X-ray paper X射线感光纸X-ray tube X射线管X-ray tube diaphragm X射线管光阑Yoke 磁轭Yoke magnetization method 磁轭磁化法Zigzag scan 锯齿扫查。
超声造影剂对生物壁面的声孔效应研究
超声造影剂对生物壁面的声孔效应研究近年来,超声介质的使用在医学影像中越来越普遍,而超声造影剂(USP)在超声诊断中也受到越来越多的关注,它被认为是改善超声成像的有效策略。
然而,对于USP对生物壁面的声孔效应的研究尚不清楚。
本文主要讨论USP对生物壁面的声孔效应。
首先,USP可以使生物壁面有效地反射超声波,并且其反射能量可以显著增加,从而提高图像质量。
这是因为USP具有高屈折率,当超声波穿过USP时,其能量会得到增强,从而使壁面更为有效地反射超声波。
此外,USP可以减少声孔现象。
声孔是超声波照射到生物壁面时发生的一种现象,它可以降低图像质量,并且可能会引起误判。
USP可以有效地抑制声孔现象,因此可以改善图像质量。
其次,不同的USP有不同的声孔效应。
USP的结构、尺寸和化学成分等因素会影响其声孔效应。
例如,某些USP的结构更加复杂,尺寸更小,可以使反射超声波的能量更大,从而减少声孔现象。
同时,USP的化学成分也会影响其反射能量,不同的化学成分可以产生不同的反射能量。
因此,USP不同的结构、尺寸和化学成分会产生不同的声孔效应。
最后,可以利用模拟实验来确定USP对生物壁面的声孔效应。
对USP与壁面的超声波的反射进行实验,可以测量USP的反射能量,评估USP反射能量与声孔之间的关系,并评估其声孔效应。
此外,也可以关注USP在不同结构、尺寸和化学成分下对声孔现象的影响,从而了解这些因素对声孔效应的影响。
综上所述,USP是超声诊断中使用比较多的一种介质,对生物壁面的声孔效应有很大的影响。
USP可以通过增强反射超声波的能量或抑制声孔现象来改善超声成像的质量。
不同的USP结构、尺寸和化学成分会产生不同的声孔效应。
最后,可以利用模拟实验来确定USP对生物壁面的声孔效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Calibration Analyses for Sounding Channels of MWHS Onboard FY-3ASongyan Gu,Yang Guo,Zhenzhan Wang,and Naimeng LuAbstract—The Microwave Humidity Sounder(MWHS)is a five-channel microwave radiometer in the range of150–191GHz onboard FengYun3(FY-3).Before the launch of FY-3A,the inten-sive thermal vacuum(TV AC)tests for MWHS had been carried out in a2-m TV AC chamber,and the basic parameters such as re-ceiver nonlinearity were obtained.Four-year operation shows that the performance of FY-3A MWHS remains stabile.The variations among space views and warm target views in the interval of scan lines were generally within20counts.In addition,the temperature fluctuation of the warm target in a single pass is within0.5K.Pri-marily,due to the nonlinearity correction obtained from the TV AC test,radiance measurements of MWHS agree well with NOAA-17 AMSU-B and NOAA-18Microwave Humidity Sounder(MHS) data.Averaged brightness temperature differences between FY-3 MWHS and NOAA-17AMSU-B,at simultaneous cross-overpass points,are less than1.08K for the channels at183±1GHz. In the observation-minus-background comparison,the observed and simulated brightness temperature biases of FY-3MWHS and NOAA-18MHS exhibit similar performance in the183.31±1GHz channel;but in the183.31±7GHz channel,MWHS agrees better with background.It is anticipated that FY-3MWHS data will contribute to numerical weather prediction.Index Terms—Calibration,cross comparison,FY-3A MWHS.I.I NTRODUCTIONF ENGYUN3(FY-3)is the second generation of sun-synchronous satellites in China.Thefirst two satellites, i.e.,FY-3A and FY-3B,in its series were successfully launched on May27,2008and November9,2011,respectively.FY-3’s vertical sounding package is composed of Microwave Humidity Sounder(MWHS),InfraRed Atmosphere Sounder(IRAS),and Microwave Temperature Sounder(MWTS),in which MWHS was designed for global atmospheric humidity observation in all-weather conditions and for the monitoring of severe weather systems such as typhoon and rainstorm[1].Assimilation of MWHS will improve the analysis of atmospheric humidity fields required for numerical weather prediction(NWP)[2],[3].Manuscript received November29,2011;revised April12,2012and July6,2012;accepted August4,2012.Date of publication November9,2012; date of current version November22,2012.This work was supported in part by the Chinese Ministry of Science and Technology under the973Project “Assessment,Assimilation,Recompilation and Applications of Fundamental and Thematic Climate Data Records”under Grant2010CB951600and in part by the Chinese863Program under Grant ID2007AA12Z115.S.Gu,Y.Guo,and N.Lu are with the Key Laboratory of Radiometric Cal-ibration and Validation for Environmental Satellites and the National Satellite Meteorological Center,China Meteorological Administration,Beijing100081, China(e-mail:gusy@).Z.Wang is with the Center for Space Science and Applied Research,Chinese Academy of Sciences,Beijing100864,China.Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/TGRS.2012.2214391Fig.1.MWHS onboard the FY-3satellite.The Center for Space Science and Applied Research(CSSAR)of Chinese Academy of Sciences provided twoflightmodels for FY-3,i.e.,A and B.To determine MWHS’s radio-metric characteristics,the engineering model thermal vacuum(TV AC)tests were completed before the launch of the satellite.This paperfirst introduces the MWHS instrument,particu-larly its channels’characteristics and its on-orbit calibrationprocess.The observations from FY-3MWHS are comparedwith those from NOAA-17AMSU-B equivalent channels.Fur-thermore,the observed and simulated brightness temperaturebiases of FY-3A MWHS and NOAA-18Microwave HumiditySounder(MHS)are derived and compared.II.G ENERAL D ESCRIPTION OF MWHSMWHS is a total-power microwave radiometer,which hasfive channels in the range of150–191GHz.Three soundingchannels have a center frequency at the183.31-GHz watervapor absorption line(183.31±1,183.31±3,and183.31±7GHz),each with two passbands and only sensitive to verticalpolarization at nadir.Two window channels are at150GHz,with different polarizations(e.g.,vertical and horizontal)[4].The instrument photo is shown in Fig.1,and the functionalblock diagram is shown in Fig.2[16].More details of thespectral characteristics of MWHS are described in[5].In the normal working mode for MWHS on orbit,twooffset-fed parabolic antennas are perpendicular to theflighttrack.MWHS performs cross-track scanning with a swath of2700km and a local equatorial crossing time of10:20A.M.The incident microwave radiation is fed to a corrugated feedhorn via reflectors;then,polarization is segregated for150-GHzchannels,and the beam is split by a quasi-optical system intothree required frequency bands for183GHz to obtain theobservation expressed in the form of counts.Each receiver isoperated in double-sideband mode to improve the sensitivity.The signals are amplified and integrated for12.75ms and then 0196-2892/$31.00©2012IEEET b,i=mj=1w i,j T i,jmj=1w i,j+ΔT b(2)GU et al.:CALIBRATION ANALYSES FOR SOUNDING CHANNELS OF MWHS4887 Fig.3.Basic calibration data distribution during an orbit observing.The black,red,and blue lines represent channels3,4,and5,respectively.(a)Averaged space view of channels3,4,and5.(b)Averaged internal blackbody view of channels3,4,and5.(c)Instrument temperature.(d)Averaged PRT temperature.The average calibration data of FY-3MWHS are very consistent among the three views.Thefluctuations of averaged calibration data between scan lines are generally within20counts.In addition,the warm target temperature justfluctuated at0.5K during an orbit observing.All those make a good radiance calibration of MWHS.where T b,i is for the average temperature of the internal warm target in a scan,w i,j is for the average weight coefficient.In the FY-3MWHS processing system,w i,j=1,i.e.,a constant for all the PRTs;and m is the number of PRTs after the quality control.Each of thefive PRTs is represented as T i,j.If the temperature difference of the PRT is over0.1K,the data are considered abnormal and are not used in the temperature aver-age.Because of that,m is equal or less than5.If the difference between the current scan T b,i and previous scan T b,i−1is over 0.1K,T b,i is also considered abnormal,and T b,i−1is used for the warm target mean temperature of the current scan.The correction factorΔT b for internal target temperature is based on the ground vacuum test data analysis.In the calibration procession,three samples of space views and internal warm target views are made for each channel during a scan period.After the instrument got thermal balance, three samples should be consistent in count.Each count from each channel is checked against the specific gross limits.The measurement spread is examined against a channel-specific limit between the scans.If the basic calibration data for a channel failed in the checking,then the channel will beflagged as bad data.The calibration cycle isflagged as a bad line for any channel that failed in this checking.Then,we use the supplementary calibration results,which came from the TV AC test for the bad line.The average counts for the current calibration cycle will be computed for each channel that has not beenflagged as bad. The average counts equal to an average of good data of this calibration cycle.There is one value for each channel,except for those channels that areflagged as bad.During calibration procession,the calibration cycle is with seven scans,which are also used for all the other two sounding payloads,i.e.,MWTS and IRAS.The seven scans’calibration cycle can make the basic calibration data stable enough,and that which comes from the TV AC test.In the TV AC test,the variation of noise equivalent temperature(NEΔT)with the number of scan lines included in the average of the space view and internal target view counts could almost disappear after the number up to7[7]. In order to further reduce the measurement noise,the av-eraged calibration data will be smoothed over a number of calibration cycles.This is done by computing a normalized smoothing weight function,i.e.,W j,by(3).It is a triangular weight function.The average count is calculated by(4)[8]. ThusW j=1−|j|n+1(n+1)(3)where j=−n,...,+n is the number of scan lines,which is separated with a pending calibrated scan line in a scan period. j=0is the pending calibrated scan line.The weight coefficient W j and a constant n(n=3)are also included in(3).ThusC p(i,l)=mk=1W k×C p(i,k)mk=1W k(4)where p=c or p=w is the observed counts of space(p=c: cosmic view)or blackbody(p=w:warm blackbody view), respectively;i is the channel number of MWHS from1to5; l is the scan line number;k is the number of data,which pass through the quality control of the l scan line in the calibration cycle;m is the total number of calibration observed counts,4888IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.50,NO.12,DECEMBER2012which pass the quality inspection in the calibration cycle;and W k is the weight coefficient determined by(3). Occasionally,the moon also passes through the MWHS space view and affects the calibration if not corrected.The length for affecting the calibration is about10min per orbit for ten consecutive orbits.The moon radiation can increase to 30K,in the brightness temperature associated with MWHS space view counts,and can result in an8-K bias for the Earth view brightness temperature if not corrected.Various strategies have been developed to correct the jumps in the space view counts.The position of the moon is calculated using a standard astronomical formula,which allows for calculating the angle between the moon and the MWHS space view.Space view data will be rejected if the angle is less than0.5◦.If the space views were contaminated,the count is identified as abnormal,and then,only the samples with the lowest space view counts are used.If all three samples are contaminated by the moon,the contaminated data are all removed,and the cold count is derived from an extrapolation[17].Fig.3shows the calibration data distribution during an orbit period for the average counts of space and blackbody views, the instrument temperature,and the averaged PRT temperature. Overall,the difference of average calibration data between scan lines is less than20counts.In addition,the warm target temperature varies less than0.5K during an orbit observing. This calibration cycle and the average techniques make on-orbit MWHS calibration robust.B.Calibration ProcessionThe MWHS Earth scene counts are converted to brightness temperatures through three steps,including linear calibration, nonlinear correction,and correction of antenna spillover ef-fects.First,the linearity calibration[see(5)]is used to calculate the radiance R0(ic,ip).Then,the Earth observed brightness temperature T0(ic,ip)is obtained by inverse Planck’s law,i.e., R0(ic,ip)=a(ic)×C(ic,ip)+b(ic)(5) where R0(ic,ip)is for the microwave radiation for the Earth views,C(ic,ip)is for the original count,ic is for the chan-nel number(ic=1,...,5),and ip is for the scan position from1to98.a(ic)and b(ic)are the linearity calibration coefficients.The statistical analysis during the MWHS prelaunch test in-dicates that the nonlinearity is a function of the instrument tem-perature and the Earth scene temperatures.It can be corrected by a nonlinearity correcting function with three parameters,as shown in(7)in the Appendix;and we got T na(ic,ip).The instrument temperature(T inst)data are obtained in MWHS housekeeping data.Fig.3(c)shows the instrument temper-ature change during one MWHS orbit cycle.e2(ic,T inst), e1(ic,T inst),and e0(ic,T inst)are the nonlinearity brightness temperature bias correction coefficients at the reference tem-perature,as shown in Table III.There are some variations for the instrument temperature on orbit.In fact,the coefficients for other instrument temperatures on orbit may be determined by the interpolation according to the instrument temperature.For a conversion from the antenna temperature to the sen-sor brightness temperature,the antenna gain must be derived. However,the radiation energy from the other target can be also leaked into the system through the antenna sidelobes and result in a bias,which must be also removed during the calibration process.When the antenna scans through98positions of the Earth scene,the radiation entering through the sidelobes may come from deep space,satellite platform,or adjacent pixels of the Earth-atmosphere system.We get a linearity correction equation from the MWHS antenna test on the ground before launch to remove the antenna spillover effect.The antenna temperature T na(ic,ip)is further corrected by(6).Then,we get the brightness temperature of Earth views T b(ic,ip),i.e., T b(ic,ip)=r(ic,ip)×T na(ic,ip)+s(ic,ip)(6) where r(ic,ip)and s(ic,ip)are the MWHS antenna correction coefficients,which are provided by instrument vender through a lookup table.Fig.4shows the mosaic of MWHS183-GHz channels from MWHS L1data on November16,2010,which is generated by the MWHS preprocessing operational system.IV.A SSESSMENTS OF C ALIBRATION R ESULTSA.Cross-Comparison Between MWHS and AMSU-BFor the water vapor sounding system at microwave fre-quencies,all the sensors deployed today have the same water vapor absorption band at183GHz.When the sensors observe the same target at the same time,the observed brightness temperature difference should be the small and constant bias [10].NOAA17AMSU-B and FY-3A MWHS have the same characteristics such as center frequency,bandwidth,etc.In this paper,FY-3A MWHS calibration results are compared with NOAA17AMSU-B by using the data from July1to31, 2008.The time gap for matched data is less than30min. Within such a time interval,temperature of the Earth-atmosphere system remains stable over a homogeneous target area,if there is no strong weather system passing.The Visible and InfraRed Radiometer(VIRR),onboard FY-3A,operational cloud detection productions were included for MWHS pixel cloud screening.Then,we use a5×5analysis box for homogeneity checking;if the brightness temperature standard deviation is more than the threshold of1.0K[15],then that means that the analysis box is not homogeneous enough.Such 5×5box checking can also avoid the geolocation effect of one pixel bias,which will produce the mismatching for two sensors. After the homogeneity test,we also make scanning position checking.For the cross-track microwave radiometer,every pixel has a different scan angle.The brightness temperature will change with the pixel position.The data,only when they have almost the same position on the scan line,can be matched together without a limb effect.Then,the data will be averaged within a5×5box for two sensors.After matching the data for NOAA17AMSU-B and FY-3A MWHS in time,space,and homogeneity checking in the analy-sis area,more than2500data are derived all over the world.The brightness temperature of matched targets is cross-compared to get the relative bias of calibration results for FY3A MWHS. Statistical comparisons are performed by calculating the mean and the standard deviation of the brightness temperature dif-ference between MWHS and AMSU-B.It can be seen that the standard error tends to be a little bit larger(2.56K)for channels with weighting functions that peak lower in the atmosphereGU et al.:CALIBRATION ANALYSES FOR SOUNDING CHANNELS OF MWHS4889Fig.4.Globe image mosaic of FY-3A MWHS 183.31-GHz channels on November 16,2010.(a)183.31±1GHz.(b)183.31±3GHz.(c)183±7GHz.(channel at 183±7GHz);this is probably due to the channels were more susceptible to the time and location differences,although they are carefully controlled in the data matching method,and due to some noise for the MWHS channel at 183±7GHz.Overall,the observation brightness temperatures of MWHS and AMSU-B are very consistent,and the RMSE for channels is between 1.08and 3.07K (see Table II)parison Between the Theoretical Simulation and the Observation of BrightnessThe MWHS three channels at 183GHz have the same center frequency as channels at 183GHz of MHS.The quality of theTABLE IIC ROSS -C OMPARISON R ESULTS AT S IMULTANEOUSC ROSS O VERPASSES (SCO)POINTS4890IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.50,NO.12,DECEMBER2012GU et al.:CALIBRATION ANALYSES FOR SOUNDING CHANNELS OF MWHS4891where e2(ic,T inst),e1(ic,T inst),and e0(ic,T inst)are the re-gression coefficients shown in Table III for the nonlinearity correction equation corresponding to the instrument temper-ature T inst and channel ic;ΔT(ic)is the nonlinearity bias correction amount;T0(ic)is the Earth target temperature, which is obtained by R,which is a linear calibration result and reconverted into temperature by Planck’s law;and T na(ic) is the corrected antenna nonlinearity temperature.Through a nonlinearity correction,the maximum temperature deviation of three sounding channels is not more than0.37K,as shown in Table III.The nonlinearity correction of a quadratic equation with three parameters has been used in the FY-3A MWHS operational preprocessing system.A CKNOWLEDGMENTThe authors would like to thank Dr.J.Li and Dr.S.Zhang of CSSAR for providing the MWHS TV AC test data.They would also like to thank the reviewers and editors for all valuable suggestions that helped improve this paper.R EFERENCES[1]C.Dong,J.Yang,Z.Yang,N.Lu,J.Shi,P.Zhang,Y.Liu,B.Cai,andW.Zhang,“An overview of a new Chinese weather satellite FY-3A,”Bull.Amer.Meteorol.Soc.,vol.90,no.10,pp.1531–1544,Oct.2009.[2]L.Guan,X.Zou,F.Weng,and G.Li,“Assessments of FY-3A MicrowaveHumidity Sounder(MWHS)measurements using NOAA-18Microwave Humidity Sounder(MHS),”J.Geophys.Res.,vol.116,no.10,p.D10106, May2011.[3]Q.F.Lu,“Initial evaluation and assimilation of FY-3A atmosphericsounding data in the ECMWF system,”Sci.Chin.Earth Sci.,vol.54, no.10,pp.1453–1457,Oct.2011.[4]J.Li,S.W.Zhang,J.S.Jiang,and X.L.Dong,“In-orbit performanceof Microwave Humidity Sounder(MWHS)of the Chinese FY-3meteoro-logical satellite,”in Proc.IEEE IGARSS,Honolulu,HI,Jul.25–30,2010, pp.574–577.[5]Z.Z.Wang,J.Li,S.W.Zhang,and Y.Li,“Prelaunch calibrationof Microwave Humidity Sounder on China’s FY-3A meteorological satellite,”IEEE Geosci.Remote Sens.Lett.,vol.8,no.1,pp.29–33, Jan.2011.[6]S.Y.Gu,Z.Z.Wang,J.Li,and S.W.Zhang,“The radiometric char-acteristics of sounding channels for FY-3A/MWHS,”J.Appl.Meteorol., vol.21,no.3,pp.335–342,2010,(in Chinese).[7]W.Saunders and T.J.Hewison,“The radiometric characterization ofAMSU-B,”IEEE Trans.Microw.Theory Tech.,vol.43,no.4,pp.760–771,Apr.1995.[8]“AIRS project algorithm theoretical basis document—Part3:Microwaveinstruments,”California Inst.Technol.,Pasadena,CA,JPL D-17005, Version2.1,2000.[9]R.W.Raunders,“Results of AMSU-B radiometric characterization tests,”Met O(RSI)Branch Memorandum No.18,1995.[10]NOAA KLM User’s Guide(Satellite and data description of NOAA’s Polarorbiting satellites from NOAA-15and later),NOAA NCDC,Asheville, NC,Feb.2009.[11]T.Mo,“Calibration of the advanced microwave sounding unit-A radiome-ters for NOAA-N and NOAA-N,”NOAA,NESDIS,Washington,DC, NOAA Tech.Rep.NESDIS106,2002.[12]T.Mo,“Calibration of the advanced microwave sounding unit-A forNOAA-K,”NOAA,NESDIS,Washington,DC,NOAA Tech.Rep.NESDIS85,1995.[13]T.Mo,“NOAA-L and NOAA-M AMSU-A antenna pattern corrections,”NOAA,NESDIS,Washington,DC,NOAA Tech.Rep.NESDIS98,2000.[14]brot,vanant,and K.Whyte,AAPP Documentation ScientificDescription(AAPP-1).Darmstadt,Germany:EUMETSAT,2002. [15]B.H.Yan and F.Z.Weng,“Intercalibration between special sensor mi-crowave imager/sounder and special sensor microwave imager,”IEEE Trans.Geosci.Remote Sens.,vol.46,no.4,pp.984–995,Apr.2008. [16]mbrigtsen,“Calibration of the AIRS microwave instruments,”IEEETrans.Geosci.Remote Sens.,vol.41,no.2,pp.369–378,Feb.2003.[17]T.Mo,“Postlaunch calibration of the NOAA-18Advanced MicrowaveSounding Unit-A,”IEEE Trans.Geosci.Remote Sens.,vol.45,no.7, pp.1928–1937,Jul.2007.[18]F.Z.Weng,“Advances in radiative transfer modeling in support of satel-lite data assimilation,”J.Atmos.Sci.,vol.64,no.11,pp.3799–3807, Nov.2007.[19]G.Z.Cao,C.L.Qi,M.Gang,F.Y.Zhang,and X.B.Wu,“Mapping cloudmask of FY-3A VIRR to IRAS,”Remote Sens.Technol.Appl.,vol.23, no.1,pp.89–92,2008,(inChinese).Songyan Gu received the B.S.degree in atmosphericphysics and the M.S.degree in radar meteorologyfrom Nanjing Institute of Meteorology,Nanjing,China,in1985and1992,respectively,and the Ph.D.degree in atmospheric physics and environment fromPeking University,Beijing,China,in2003.She is currently with the Key Laboratory of Radio-metric Calibration and Validation for EnvironmentalSatellites and the National Satellite Meteorologi-cal Center,China Meteorological Administration,Beijing,where she leads a group that is responsible for the FengYun3(FY-3)satellite ground segment data preprocessing system. Her research interests include microwave remote sensing application and radiance calibration of new microwave sounder board on FYsatellites.Yang Guo received the M.S.degree in atmosphericphysics from Chinese Academy of MeteorologicalScience,Beijing,China,in2009.Since2009,she has been working with the Na-tional Satellite Meteorological Center,China Me-teorological Administration,Beijing,where she iscurrently an Assistant Scientist.Her research fo-cuses on the microwave line-by-line atmospheremodel and the channel design of microwave satelliteinstruments.Zhenzhan Wang received the Ph.D.degree from theChinese Academy of Sciences in2005.He is currently with the Center for Space Sci-ence and Applied Research,Chinese Academy ofSciences,Beijing,China.His research is mainlyengaged in microwave remotesensing.Naimeng Lu received the B.A.degree from theNanjing Institute of Meteorology,Nanjing,China,in1985.He is currently with the Key Laboratory of Radio-metric Calibration and Validation for EnvironmentalSatellites and the National Satellite Meteorologi-cal Center,China Meteorological Administration,Beijing,China.His main research interest is in mi-crowave remote sensing and precipitation retrieval.。