决策支持系统

合集下载

决策支持系统概述

决策支持系统概述

决策支持系统概述决策支持系统(DSS)是一种帮助管理者做出决策的信息系统。

它集成了数据收集、数据分析、模型构建和解决方案评估等技术工具,以提供定性和定量的决策支持。

DSS的目标是通过使管理者能够更好地评估和选择各种决策方案来提高决策质量和效率。

决策支持系统的基本构成包括数据仓库、模型和分析工具以及用户接口。

数据仓库用于存储和管理各种关键数据,包括历史数据、实时数据和外部数据等。

模型和分析工具提供了各种算法和方法,如统计分析、优化模型、模拟和决策树等,用于分析数据并生成决策结果。

用户接口是管理者与DSS交互的方式,可以是图形用户界面、自然语言处理或者其他形式。

1.数据分析:决策支持系统能够从数据仓库中提取数据,并通过各种分析工具对数据进行定性和定量的分析。

这些分析可以帮助管理者了解当前的业务情况和趋势,从而作出合适的决策。

2.模型构建:决策支持系统能够根据具体的问题和需求构建各种模型。

这些模型可以是统计模型、优化模型、模拟模型等,通过运行模型可以产生各种方案,并对不同方案进行评估。

3.解决方案评估:决策支持系统能够对各种决策方案进行评估和比较。

它可以根据不同的指标和权重对方案进行综合评估,并为管理者提供决策参考。

4.知识管理:决策支持系统可以帮助管理者收集和管理各种关键知识和信息。

它可以通过知识库、专家系统和数据挖掘等技术,将知识和经验转化为可用的决策支持。

5.沟通和协作:决策支持系统可以提供各种协作工具,帮助多个决策者之间进行沟通和协作。

这些工具可以包括电子邮件、在线会议和共享文档等,以促进团队决策的效率和准确性。

使用决策支持系统可以带来许多好处。

首先,它可以提高决策的质量和效率,通过提供准确和全面的信息,帮助管理者做出明智的决策。

其次,它可以降低决策的风险,通过模拟和评估不同的方案,管理者可以更好地估计每个方案的风险和回报。

最后,它可以提高组织的竞争力,通过加强决策者之间的沟通和协作,决策支持系统可以促进团队决策的效率和准确性,从而提高组织的整体竞争力。

第八章 决策支持系统 (《决策理论与方法》PPT课件)

第八章  决策支持系统  (《决策理论与方法》PPT课件)
(三)存储
决策者用来进行决策的规则、模型和数据是要存储的,所以DSS必须提供快速而使用方便的存储手段, 以支持描述和操作的实现。
(四)控制机构
控制机构是为了帮助决策者使用表述、操作及存储功能,根据自己的技术、经验、知识及风格来实 现决策,所以控制机构的作用在于指导决策者使用DSS。
第三节 决策支持系统的设计
第二节 决策支持系统的基本框架结构
一、决策支持系统的基本框架结构
(一)DSS的二库框架结构
这种框架是施普拉葛(Sprague)1980 年提出的。它包含人机界面、数据库子系统和模型库子系统 三个部分,如图8-1所示。
数据库子系统一般包含数据库和数据库管理系统。模型库子系统一般包含模型库和模型库管理系统。 而人机界面子系统是由对话生成和管理软件所组成,因此图8-1可以细分为图8-2所示的“两库一体化” 框架结构。
三、决策支持系统的发展
自计算机诞生之日起,计算机在经济管理领域中的应用经历了三个阶段: (一)电子数据处理阶段; (二)管理信息系统阶段; (三) 决策支持系统阶段。
第一节 决策支持系统概述
四、决策支持系统的特点
决策支持系统具有如下特点: (1)帮助管理者解决半结构化和非结构化的决策问题; (2)主要用于辅助和支持管理者进行决策,而不是代替管理者进行判断; (3)它是一个人机交互式系统,它通过人机交互接口为决策者提供辅助功能; (4)目标是辅助管理者的决策过程,以改进组织决策制定的效能; (5)决策支持系统能够把模型或分析技术的利用与传统的数据存取和检索功能结合起来,提供较大 的灵活性和适应性,从而使DSS满足不同的问题和技术要求; (6)支持所有管理层次的决策,并能进行不同层次间的通信和协调。
人—机会话管理系统

决策支持系统名词解释

决策支持系统名词解释

决策支持系统名词解释决策支持系统(Decision Support System,简称DSS)是一种通过信息技术提供决策制定者有效信息和工具来支持决策制定过程的系统。

DSS结合了数据分析、模型建立、信息管理和决策方法等技术,帮助管理者进行决策。

决策支持系统通常包含以下几个主要组成部分:数据库管理系统(Database Management System,DBMS):用于存储和管理决策所需的数据。

DBMS可以根据用户的需要提供数据查询、更新和删除等功能,为决策者提供数据支持。

模型管理系统(Model Management System,MMS):用于管理和执行决策所需的数学模型。

MMS可以帮助决策制定者构建和分析决策模型,以便在决策过程中提供科学依据。

决策分析系统(Decision Analysis System,DAS):用于分析和评估不同决策方案的潜在风险和机会。

DAS可以根据已有的数据和模型,对不同的决策选项进行详细的分析和比较,以帮助决策者做出合理的决策。

用户接口(User Interface):用于决策制定者与决策支持系统进行交互的界面。

用户接口通常提供数据输入、模型选择、结果展示等功能,以便用户能够方便地使用系统进行决策。

决策支持系统的主要特点包括以下几点:1. 及时性:决策支持系统能够实时获取和处理数据,为决策者提供及时的信息,以便快速做出决策。

2. 灵活性:决策支持系统具有较强的灵活性,可以根据不同决策的需求进行定制和扩展,以满足用户的特定需求。

3. 多功能性:决策支持系统不仅能够提供数据查询和展示功能,还能够进行数据分析、模型建立和决策评估等多种功能,为决策者提供全面的决策支持。

4. 用户友好:决策支持系统通常具有友好的用户界面和操作方式,便于用户学习和使用,提高工作效率。

5. 决策辅助:决策支持系统并非直接代替决策制定者进行决策,而是通过提供信息和工具来辅助决策制定者进行决策,提高决策的科学性和准确性。

决策支持系统名词解释管理学

决策支持系统名词解释管理学

决策支持系统名词解释管理学决策支持系统(Decision Support System,简称DSS)是管理学领域中的一个重要概念,指的是一种基于计算机技术的系统,旨在辅助管理者在复杂的决策环境中进行决策制定和分析。

本文将详细解释决策支持系统的概念、特点、构成以及在管理学中的应用。

一、决策支持系统的概念决策支持系统是一种集成了数据仓库、数学模型、人工智能等技术手段的信息系统。

其核心目标是为决策者提供必要的信息和分析工具,支持其在信息不完整、不确定的决策环境中,实现决策的科学化、合理化和高效化。

二、决策支持系统的特点1.针对性:决策支持系统针对特定的决策问题,提供定制化的信息支持。

2.交互性:系统允许决策者与系统进行交互,调整参数、假设,观察决策结果的变化。

3.集成性:系统集成了多种数据来源和分析工具,为决策者提供全面的决策支持。

4.智能性:利用人工智能等技术,实现对数据的自动分析和处理,减轻决策者的工作负担。

三、决策支持系统的构成决策支持系统主要由以下几个部分构成:1.数据仓库:存储和管理大量数据,为决策提供数据基础。

2.模型库:集成了多种数学模型,用于对数据进行分析和预测。

3.知识库:存储了专家的知识和经验,为决策提供智力支持。

4.人机交互界面:决策者与系统进行交互的界面,允许决策者输入指令、查看结果等。

四、决策支持系统在管理学中的应用在管理学中,决策支持系统被广泛应用于企业的战略决策、市场营销、生产管理等领域。

例如,企业战略决策者可以利用决策支持系统分析市场环境、竞争对手情况,制定合适的战略方向。

市场营销人员可以通过系统分析消费者行为、市场需求,制定精准的市场营销策略。

生产管理人员可以利用系统优化生产流程,提高生产效率和质量。

五、总结综上所述,决策支持系统是一种基于计算机技术的信息系统,具有针对性、交互性、集成性和智能性等特点。

它主要由数据仓库、模型库、知识库和人机交互界面等部分构成,在管理学中被广泛应用于企业的各个领域,为企业决策提供科学有效的支持。

决策支持系统(DDS)

决策支持系统(DDS)

综述: 综述:决策支持系统的基本特征
1、对准上层管理人员经常面临的结构化程 、 度不高、说明不充分的问题; 度不高、说明不充分的问题; 2、把模型或分析技术与传统的数据存取技 、 术检索技术结合起来; 术检索技术结合起来; 3、易于为非计算机专业人员以交互会话的 、 方式使用; 方式使用; 4、强调对用户决策方法改变的灵活性及适 、 应性; 应性; 5、支持但不是代替高层决策者制定决策。 、支持但不是代替高层决策者制定决策。
决策支持系统的分类
(1)结构化决策,是指对某一决策过程的环境及规 结构化决策, 结构化决策 能用确定的模型或语言描述, 则,能用确定的模型或语言描述,以适当的算法产 决策按其性质可分 生决策方案,并能从多种方案中选择最优解的决策; 生决策方案,并能从多种方案中选择最优解的决策; (2)非结构化决策,是指决策过程复杂,不可能 非结构化决策,是指决策过程复杂, 非结构化决策 用确定的模型和语言来描述其决策过程, 用确定的模型和语言来描述其决策过程,更无所谓 最优解的决策; 最优解的决策; (3)半结构化决策,是介于以上二者之间的决策, 半结构化决策,是介于以上二者之间的决策, 半结构化决策 这类决策可以建立适当的算法产生决策方案, 这类决策可以建立适当的算法产生决策方案,使决 策方案中得到较优的解。 策方案中得到较优的解。
• 核心数据库主要任务 在于支持银行交易处 理系统、 理系统、保证银行的 日常运行、 日常运行、正确记录 客户数据信息、 客户数据信息、追求 数据的绝对精确和可 靠,数据来自银行联 机交易处理系统
银行数据仓库与核心数据库的 区别
• 数据仓库重在收集具 有一定含义的信息及 数据, 数据,对具体数据源 抽象和概括, 抽象和概括,目的是 向银行管理决策提供 支持, 支持,为银行决策服 务。

决策支持系统

决策支持系统

1.6 群体决策支持系统
群体决策支持系统
DSS与计算机网络技术结合构成了新型的能 供异地决策者共同参与决策的群体决策支持系 统GDSS,GDSS利用便捷的网络通信技术在多 位决策者之间沟通信息,提供良好的协商与综 合决策环境,以支持需要集体作出决定的重要 决策。
1.6 群体决策支持系统
群体决策支持系统的特点
1.2 决策支持系统的概念与功能
决策支持系统
DSS是以管理科学、运筹学、控制论和行为 科学为基础,以计算机技术、仿真技术和信息 技术为手段,面向半结构化决策问题,支持决 策活动的具有智能作用的人机系统。
1.2 决策支持系统的概念与功能
决策支持系统的功能
① 管理并随时提供与决策问题有关的组织内部信息 ② 收集、管理并提供与决策问题有关的组织外部信息 ③ 收集、管理并提供各项决策方案执行情况的反馈信息 ④ 能以一定的方式存储和管理与决策问题有关的各种数
推理机
专家系统与决策支持系统的区别
1.7 专家系统
目标 决策方 询问类型 问题域 数据库 发展演化
决策支持系统
专家系统
辅助人 人
人向机器提问 复杂、广泛 包括事实性的知识 适应于变化的环境
提供“专家”查询 系统
机器向人提问 狭窄
包括过程和数据 适应于同定的问题域
管理信息系统
专家系统的一般结 构
知识库
知识获取子系统 专家
1.7 专家系统
解释子系统 推理 机
用户界面 用户
1.6 管理信息系统的发展历程
4. 专家系统(Expert Systems,ES)
解决需要经验、专门知识和缺乏结构的问题的系统,
是人工智能的分支。
专家
用户

决策支持系统

决策支持系统

智能管理系统
第 13页
7.2 决策支持建模技术
离散事件模拟 它的代表性语言是GPSS和SIMSCRIPT。这种方法将系统的 运动变化看作是一连串离散发生的事件。在事件之间,系统 的状态是保持不变的。这种思路有利于模拟具体的、微观的 管理工作过程,如车间的生产调度、交通的指挥管理等等。 这种方法也常用于各种管理决策问题的分析研究。例如军事 上的电子对抗模拟就是一个明显的例子。 有的情况需要将上述两种模拟方法结合起来,构成既包含连 续模拟又包含离散事件模拟的复合型模拟模型,以解决大型 的、综合型决策问题。这时可选用的模拟语言有SLAM和 SIMAN。
智能管理系统
第 17页
3 最终用户开发方法
除了上述两种主要方法外,最终用户开发方法 (End-User development)也是近年来常见的决 策支持系统开发方法。最终用户开发是指决策者直 接负责决策支持系统的开发,在专业人士的支持和 帮助下,开发更为复杂的最终用户系统。与其他方 法相比,最终用户开发更好地反映了决策者的意图 ,并且减少开发过程中决策者(用户)、程序员、 系统分析员之间的沟通时间和费用。
智能管理系统
第 4页
智能管理系统
第 5页
7.2 决策支持建模技术
相关概念 模型(Model)是指人们在认识与改造客 观世界的过程中为了整理资料、形成思路、 交流认识、组织行动而形成的关于客观存在 的领域、问题、范围的认识框架。 构筑、形成、发展模型的过程,称为建 模(Modeling)。 建模是人们认识过程的基本方法之一, 它贯穿认识的各个阶段,发挥着十分重要的 作用。
智能管理系统
第 21页
4)用ROMC方法确定的多种形式的记忆辅助可以帮助决策者保 存操作的结果,为再次利用这些结果、减少决策者的记忆负 担、减少重复利用表述和操作带来的复杂性提供有效手段。 5)ROMC方法需要并鼓励用户自始至终参与DSS的设计、开发和 应用的全过程。 6)ROMC方法和DSS的主要构成部分(数据库系统、模型库系统 与对话生成管理系统)直接有关,这三者向ROMC提供技术和 技巧。 7)ROMC方法是过程独立的,不受决策者和决策过程的限制和 影响。 8)ROMC方法为DSS的分析与设计提供了一个实用的框架,但并 不提供实现DSS的具体技术,为使ROMC方法更加有效运用, 需要DSS生成软件的支持。

决策支持系统(Decision

决策支持系统(Decision

决策⽀持系统(Decision Support System ,简称DSS) DSS是辅助决策者通过数据、模型和知识,以⼈机交互⽅式进⾏半结构化或⾮结构化决策的计算机应⽤系统。

DSS的概念是在20世纪70年代提出的,并在80年代获得发展。

它的产⽣原因有:传统的MIS没有给企业带来巨⼤的效益,⼈在管理中的积极作⽤要得到发挥;⼈们对信息处理规律认识提⾼,⾯对不断变化的环境,要求更⾼层次的系统来直接⽀持决策;计算机应⽤技术的发展为DSS的发展提供了物质基础。

20世纪80年代初,R。

H。

Sprague提出决策⽀持系统应⽤具有以下主要特征:1.数据和模型是DSS的主要资源;2.DSS主要是解决半结构化及⾮结构化问题;3.DSS是⽤来辅助⽤户作决策,但不是代替⽤户;4.DSS的⽬的在于提⾼决策的有效性⽽不是提⾼决策的效率决策分类1.按⽀持层次分类⽀持系统可以⽀持组织中的各个管理层次。

根据各层次决策任务之不同,决策⽀持系统可以划分为:1战略规划决策⽀持系统,这是⽤于⾼层管理决策的;2战略决策⽀持系统,这是⽤于操纵管理决策的。

2.按⽀持的决策类型分类1个⼈决策⽀持系统;2组织机构决策⽀持系统,⼜称为分布式决策⽀持系统;3群体决策⽀持系统。

3.按⽀持的数据与模型操纵能⼒分类数据检索和模型计算是决策⽀持系统的两种重要功能,所以决策⽀持系统可分为:1数据检索决策⽀持系统,包括⽂件检索系统、数据分析系统、信息分析系统;2模型计算决策⽀持系统,包括统计模型系统、模拟模型系统、优化模型系统、建议模型系统等。

4.按决策⽀持系统的适⽤范围分类按决策⽀持系统适⽤范围的狭窄与宽⼴,可分为专⽤的决策⽀持系统和通⽤的决策⽀持系统。

前者通常针对特定的决策环境和需求所开发,⽽后者往往是根据⼀类问题开发⼀种决策⽀持系统的⽣成系统器,对同类问题的不同具体案例,只要更换⼀些参数和要求并进⾏适当的调整,即⽣成新的决策⽀持系统。

决策的进程⼀般分为4个步骤:(1)发现问题并形成决策⽬标,包括建⽴决策模型、拟定⽅案和确定效决策⽀持系统果度量,这是决策活动的起点;(2)⽤概率定量地描述每个⽅案所产⽣的各种结局的可能性;(3)决策⼈员对各种结局进⾏定量评价,⼀般⽤效⽤值来定量表⽰。

决策支持系统的基本概念

决策支持系统的基本概念

大数据处理技术
大数据处理技术是指处理大规模数据 集的技术,包括分布式计算、流处理、 批处理等技术。
VS
大数据处理技术在决策支持系统中能 够高效地处理大规模数据集,提供及 时、准确的决策支持,满足实时性要 求。
云计算技术
云计算技术是一种基于互联网的计算方式, 通过虚拟化资源、按需付费等方式提供服务 。
资源调度
合理调度军事资源,保障作战需求, 降低资源浪费。
03
02
战场指挥
实时获取战场信息,快速做出指挥 决策,提高作战效率。
风险评估
评估作战风险,制定风险应对策略, 降低作战风险。
04
科研决策
研究选题
基于文献综述和数据分析,确定具有研究价 值和可行性的科研课题。
数据采集与分析
合理设计实验方案,采集实验数据,进行数 据分析,为科研结论提供支持。
数据挖掘技术在决策支持系统中发挥 着重要作用,能够从海量数据中提取 出有价值的信息,帮助决策者更好地 理解和分析问题。
人工智能技术
人工智能技术包括机器学习、自然语言处理、专家系统等,能够模拟人类的智能行为,为决策提供智 能化支持。
人工智能技术在决策支持系统中能够自动化处理大量数据和信息,提供智能化的决策建议,提高决策 效率和准确性。
语言,更好地满足用户需求。
智能决策算法
03
开发和应用更先进的智能决策算法,以适应复杂多变的决策环
境。
大数据驱动的决策支持系统
数据采集与整合
利用大数据技术,实现多源数据的采集和整合,为决策提供更全 面的信息。
数据挖掘与分析
通过数据挖掘和分析工具,深入挖掘数据中的潜在价值,为决策 提供有力支持。
数据可视化

决策支持系统

决策支持系统

决策支持系统一、DSS的概念决策支持系统(DSS,Decision Supporting System),是以管理科学、运筹学、控制论和行为科学为基础,以计算机技术、仿真技术和信息技术为手段,针对半结构化的决策问题,支持决策活动的具有智能作用的人机系统。

它为决策者提供分析问题、建立模型、模拟决策过程和方案的环境,提供各种备选方案,并且对各种方案进行评价和优选,通过人机交互功能进行分析、比较和判断,调用各种信息资源和分析工具,帮助决策者提高决策水平和质量。

根据定义,DSS的主要任务是:(1)分析和识别问题;(2)描述和表达决策问题及决策知识;(3)形成决策方案;(4)构造决策问题的求解模型;(5)建立评价决策问题的各种准则。

二、DSS软件介绍1.决策支持系统组成部件从计算机软件系统的角度来看,一个DSS中主要的成分是可以互相通信的、有机联系着的三个子系统(DSS的两库系统):数据管理子系统、模型管理子系统和会话管理子系统。

2.数据管理子系统主要成分包括数据库、数据字典和数据库管理系统,存储着与决策问题有关的数据,数据库中的数据通常可分为:(1)事务数据是组织或企业日常生产和管理中发生的数据。

根据数据的来源又可分为(是DSS的基础数据):内部数据:内部数据的大部分都是事务数据(库存数据,生产数据,销售数据等);外部数据:指来源于企业外部经营环境的数据,如企业所在行业的统计数据,市场调研的结果,税务状况,政府的政策规定等(对决策产生重大影响)。

(2)个人数据指特定的决策者所收集和使用的数据,对这类数据,DSS中应有严格的保密措施以保证其安全性(个人的用户分析资料数据,是决策者决策行为的重要依据——同一问题,不同的决策)。

3.模型管理子系统模型管理子系统包括模型库、模型库管理系统、该子系统与其他子系统的接口等。

模型库中一般应包含在特定领域中常用的数学模型,这些模型决定了系统可提供的分析能力(是DSS功能强大与否的重要指标)。

什么是决策支持系统

什么是决策支持系统

什么是决策支持系统决策支持系统是辅助决策者通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策的计算机应用系统。

它是管理信息系统(MIS)向更高一级发展而产生的先进信息管理系统。

它为决策者提供分析问题、建立模型、模拟决策过程和方案的环境,调用各种信息资源和分析工具,帮助决策者提高决策水平和质量。

DSS的概念是70年代提出的,并且在80年代获得发展。

它的产生基于以下原因:传统的管理信息系统(MIS)没有给企业带来巨大的效益,人在管理中的积极作用要得到发挥;人们对信息处理规律认识提高,面对不断变化的环境需求,要求更高层次的系统来直接支持决策;计算机应用技术的发展为DSS提供了物质基础。

决策的分类决策按其性质可分为如下3类:1)结构化决策,是指对某一决策过程的环境及规则,能用确定的模型或语言描述,以适当的算法产生决策方案,并能从多种方案中选择最优解的决策。

2)非结构化决策,是指决策过程复杂,不可能用确定的模型和语言来描述其决策过程,更无所谓最优解的决策。

3)半结构化决策,是介于以上二者之间的决策,这类决策可以建立适当的算法产生决策方案,使决策方案中得到较优的解。

非结构化和半结构化决策一般用于一个组织的中、高管理层,其决策者一方面需要根据经验进行分析判断,另一方面也需要借助计算机为决策提供各种辅助信息,及时做出正确有效的决策。

决策支持系统的功能1、管理并随时提供与决策问题有关的组织内部信息。

如:订单要求、库存状况、生产能力与财务报表等。

2、收集、管理并提供与决策问题有关的组织外部信息。

如:政策法规、经济统计、市场行情、同行动态与科技进展等。

3、收集、管理并提供各项决策方案执行情况的反馈信息。

如:订单或合同执行进程、物料供应计划落实情况、生产计划完成情况等。

4、能以一定的方式存储和管理与决策问题有关的各种数学模型。

如:定价模型、库存控制模型与生产调度模型等。

5、能够存储并提供常用的数学方法及算法。

决策支持系统

决策支持系统

决策支持系统决策支持系统(Decision Support System,DSS)是一种基于计算机技术和信息处理的系统,旨在为决策者在复杂的情境下提供决策支持和决策分析。

随着信息技术的不断发展和应用,决策支持系统在商业、管理、政府、医疗、科学等领域中得到了广泛的应用和推广。

本文将介绍决策支持系统的定义、组成、特点以及其在实际应用中的意义和价值。

一、定义决策支持系统是一种利用计算机技术和信息处理技术来帮助决策者进行决策的系统。

它通过收集、整理、分析和展示大量的数据和信息,以辅助决策者做出准确、明智的决策。

决策支持系统旨在提供决策过程中所需的各种类型的数据、分析工具和模型,以便决策者能够更好地理解问题、评估选择和预测结果。

二、组成决策支持系统主要由以下三个组成部分构成:1. 数据管理子系统:用于收集、存储和管理各种类型的数据和信息,包括内部数据和外部数据。

数据管理子系统通过数据库管理系统(DBMS)来管理和组织数据,以确保数据的完整性、可靠性和安全性。

2. 模型管理子系统:用于建立和管理各种决策模型和分析工具。

决策模型可以是数学模型、统计模型、优化模型等,用于对决策问题进行建模和分析。

模型管理子系统可以通过算法和模型库来提供各种分析工具和模型,以供决策者使用。

3. 用户界面子系统:用于与决策者进行交互,提供友好的用户界面和操作环境。

用户界面子系统通常采用图形化界面(GUI),以便决策者可以通过各种方式(如菜单、按钮、表格等)与系统进行交互,查询数据、运行模型和生成报表。

三、特点决策支持系统具有以下几个特点:1. 面向管理决策:决策支持系统主要用于管理决策,能够帮助管理者更好地理解和分析问题,从而做出有效的决策。

它可以提供各种分析工具和模型,以支持管理者对问题进行定量分析和预测。

2. 多功能性:决策支持系统具有多功能性,可以灵活应用于各种不同类型的决策问题。

它可以适应不同的决策场景和需求,提供多种方法和工具来支持决策者的决策过程。

第10章决策支持系统(DSS)介绍

第10章决策支持系统(DSS)介绍
ห้องสมุดไป่ตู้
第一节
决策支持系统( 决策支持系统(DSS)的概念 )
8、具有方便的人机对话和图像输出功能,能满足 随机的数据查询要求,回答“如果……则……..” (What ….if)之类的问题。 9、提供良好的数据通信功能,以保证及时收集所 需数据并将加工结果传送给使用者。 10、具有使用者能够忍受的加工速度与响应时间, 不影响使用者的情绪。
第二节 决策支持系统的组成
三、人机对话子系统 人机对话子系统是DSS中用户和计算机的接口, 在操作者、模型库、数据库和方法库之间起着传送 (包括转换)命令和数据的重要作用,其核心是人 机界面。 在实际工作中,由于系统经常是由那些从系统输 出中得到益处,且又对系统内部了解甚少的人直接 使用,所以用户接口设计的好坏对系统的成败有举 足轻重的意义。
第二节 决策支持系统的组成
维护
检验评价: 检验评价:
1、报告模型的使用情况(次数、结果、使用者 的评价及改进要求)。 2、利用统计分析工具,分析偏差的规律及趋势, 为找出症结提供参考。 3、临时性地、局部性地修改模型,运行模型,并 将结果与实际情况对比,以助于发现问题。 4、在模型与方法之间,安排不同的使用方式与组 合方式,以便进行比较分析。
第二节 决策支持系统的组成
对话接口的设计问题 使用: 使用: 1、能使用户了解系统所提供的数据、模型及方法的情 况,如数据模式与范围,模型种类、数量、用途及运行要 求等。 2、通过“如果…….则…….”(What…if…..)方式 提问。 3、对请求输入有足够的检验与容错能力,给用户某些 必须的提示与帮助。 4、通过运行模型使用户取得或选择某种分析结果或预 测结果。 5、在决策结束之后,能把反馈结果送入系统,对现有 模型提出评价及修正意见。 6、当需要的时候,可以按使用者要求的方式,很方便 地以图形及表格等丰富的表达方式输出信息、结论及依据 等。

决策支持系统

决策支持系统

1、决策支持系统:定义:决策支持系统是利用大量数据,有机组合各类模型,在计算机上建立多个决策方案,通过人机交互,辅助各级决策者实现科学决策的系统功能:既有数据处理的功能,又有模型的数值计算功能。

2、商业智能:定义:商业智能可以理解为从大量数据中获得信息的知识,针对商业中随机产生的决策问题,达到支持决策的效果。

组成部分:(1)提取、转换、加载(ETL)工具这是把商业应用系统的数据进行提取,按决策主题的要求进行转换,再加载到数据仓库中。

(2)数据仓库这是数据存储的场所,按数据仓库对数据的组织形式(如模型的多维数据组织)存储数据,数据仓库中现存大量的当前数据,也保留大量的历史数据,还要产生不同层次的综合数据。

数据仓库的数据既是共享数据,又可以为不同的决策需求提供所需数据。

(3)商业智能工具这些工具包括用户查询和报表工具,联机分析处理(OLAP)工具,数据挖掘(DM)工具3、决策体系的组成和运行:决策体系运行图4、决策支持系统的技术基础:(1)、数据库系统。

(技术核心)数据库系统是计算机的成熟技术,他是存储、管理、处理和维护数据的系统软件,他由数据库、数据库管理系统(DBMS)和数据管理员所组成。

(2)、数学模型。

数学模型是用字母、数字和其他数学符号构成的等式或不等式,或用数理逻辑来描述系统的特征及其内部联系或与外界联系的模型。

(3)、知识推理技术。

知识推理所解决问题的方式是定性分析,他在智能决策支持系统中,是定性分析的最重要的技术基础。

知识推理技术是人工智能的核心技术。

(4)、数据仓库系统。

数据仓库系统是直接利用数据辅助决策的决策支持系统新技术。

(5)Internet技术。

5、模型库的组成、模型库的管理系统:模型库由字典库和文件库组成。

模型库管理系统(MBMS)类似于数据库管理系统。

数据库管理系统是为了解决数据冗余和数据独立性的问题,用一个管理系统(即DBMS)来统一管理数据,从而实现了数据的共享。

同时,对于数据的完整性、安全性等问题,也得到了相应的解决。

决策支持系统

决策支持系统

决策支持系统1. 简介决策支持系统(Decision Support System,简称DSS)是一种帮助管理人员进行决策的信息系统。

它运用先进的技术和方法,将数据、模型和分析工具融合在一起,为管理人员提供决策所需的信息和支持。

决策支持系统可以根据特定的问题或任务,提供多个决策方案的评估和比较,帮助管理人员做出准确、科学和可靠的决策。

2. 架构决策支持系统通常由以下几个组件构成:2.1 数据库系统数据库系统是决策支持系统的基础,用于存储和管理各种数据、信息和知识。

它可以包括内部数据(如企业的历史数据)和外部数据(如市场数据、经济数据等)。

数据库系统提供了数据的查询、检索和更新功能,为其他组件提供必要的数据支持。

2.2 模型管理系统模型管理系统用于管理和维护各种数学模型,它可以包括线性规划模型、统计模型、决策树模型等。

模型管理系统提供模型的创建、修改、验证和应用功能,使得管理人员可以根据不同的决策问题选择合适的模型,并对模型进行参数调整和优化。

2.3 决策分析系统决策分析系统是决策支持系统的核心组件,它利用数据库系统中的数据和模型管理系统中的模型进行决策分析。

决策分析系统可以根据用户输入的决策参数,进行模型求解、模拟仿真和风险评估等分析,从而生成可行的决策方案。

2.4 用户界面用户界面是决策支持系统与管理人员进行交互的窗口。

它提供了友好的图形界面,使得管理人员可以轻松地输入问题的相关数据和参数,观察分析结果,并进行决策方案的选择和比较。

用户界面还可以支持多种可视化方式,如图表、报表等,方便管理人员对数据和结果的理解和分析。

3. 特点与优势决策支持系统具有以下几个特点与优势:3.1 实时性决策支持系统可以通过实时获取和处理数据,提供及时的决策支持。

管理人员可以随时查询和分析最新的数据,并根据需要进行决策。

3.2 准确性决策支持系统利用先进的分析工具和模型,可以对数据进行准确的分析和预测。

它能够帮助管理人员找到最佳的决策方案,并评估不同方案的风险和收益。

决策支持系统

决策支持系统

决策支持系统2003-12-29 16:33:00决策支持系统(Decision Support System,简称DSS)是信息系统应用概念的深化,是在信息系统的基础上发展起来的系统。

简单的说,决策支持系统是能参与、支持人的决策过程的一类信息系统。

它通过与决策者的一系列人机对话过程,为决策者提供各种可靠方案,检验决策者的要求和设想,从而达到支持决策的目的。

决策支持系统一般由交互语言系统、问题系统以及数据库、模型库、方法库、知识库管理系统组成。

在某些具体的决策支持系统中,也可以没有单独的知识库及其管理系统,但模型库和方法库通常则是必须的。

由于应用领域和研究方法不同,导致决策支持系统的结构有多种形式。

决策支持系统强调的是对管理决策的支持,而不是决策的自动化,它所支持的决策可以是任何管理层次上的,如战略级、战术级或执行极的决策。

1.决策支持系统的基本特征和组成时至今日,人们对什么是决策支持系统没有一个公认的定义。

一般说来,所谓决策支持系统就是能帮助决策者利用数据和模型去解决非结构化问题的交互式计算机信息系统,它是充分运用可供利用且合适的计算机技术,针对半结构化或非结构化问题,通过人机交互方式帮助和改善管理决策的有效性系统。

决策支持系统的基本特征可归纳为五个方面:①主要针对管理人员经常面临的结构化程度不高、说明不够充分的问题。

②把模型或分析技术与传统的数据存取及检索技术结合起来;③易于为非计算机专业人员以交互会话的方式使用。

④强调对环境及用户决策方法改变的灵活性和适应性。

⑤支持但不是代替高层管理者制定决策。

对上述五个方面进行展开,我们可以从以下几方面进一步理解决策支持系统的概念:①系统只是支持用户而不是代替他判断。

因此,系统并不提供所谓“最优”的解,而是给出一类满意解,让用户自行决断。

同时,系统并不要求用户给出一个预先定义好的决策过程。

②系统所支持的主要对象是半结构化和非结构化的决策(即不能完全用数学模型、数学公式来求解)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决策支持系统一、决策支持系统(DDS)的概述1、问题的提出随着办公自动化系统(OA系统)、,MIS、MRPⅡ、ERPCRM等具有鲜明信息时代特征的技术、方法的不断开发与应用,标志着企业信息化的不断发展。

目前,尽管有些企业开发了决策支持系统并在应用上取得了一定的效果,但还面临着开发与应用上的许多问题。

随着Intemet 技术的迅速发展,为世界经济带来了大的变化。

特别是先进的数据仓库和Web技术,逐渐渗透到企业网络的建设中,从而对DSS在组织中使用产生相当大的影响。

2、DDS的组成决策支持系统基本结构主要由四个部分组成,即数据部分、模型部分、推理部分决策支持系统和人机交互部分:(1)数据部分是一个数据库系统;(2)模型部分包括模型库(mb)及其管理系统(mbms);(3)推理部分由知识库(kb)、知识库管理系统(kbms)和推理机组成;(4)人机交互部分是决策支持系统的人机交互界面,用以接收和检验用户请求,调用系统内部功能软件为决策服务,使模型运行、数据调用和知识推理达到有机地统一,有效地解决决策问题。

3、DDS的基本特征(1)对准上层管理人员经常面临的结构化程度不高、说明不充分的问题;(2)把模型或分析技术与传统的数据存取技术检索技术结合起来;(3)易于为非计算机专业人员以交互会话的方式使用;(4)强调对用户决策方法改变的灵活性及适应性;(5)支持但不是代替高层决策者制定决策。

4、DDS的结构特征(1)数据库及其管理系统;(2)模型库及其管理系统;(3)交互式计算机硬件及软件;(4)图形及其他高级显示装置;(5)对用户友好的建模语言。

二、DDS相关技术系统1、智能决策支持系统在早期DSS两库结构的基础上,随着DSS向非结构化问题领域的拓展,引入人工智能的手段和技术,增加知识部件,即将DSS与专家系统(Es)相结合。

这种DSS与Es结合的思想在80年代初提出,构成了智能决策支持系统(IDSS)的初期模型。

IDSS作为数值分知识处理的集成体,综合了传统DSS的定量分析技术和Es的符号处理优势,从而能比DSS更有效地处理半结构化与非结构化问题。

2、分布决策支持系统分布决策支持系统(DDSS)是对传统集中式DSS扩展,是分布决策、分布系统、分布支持三位一体。

DDSS的主要优势在于:①比集中式系统更可靠;②系统效率更高,更接近大型组织决策活动的实际情况;③易于扩展;④能够实现平行操作,资源共享。

3、群体决策支持系统80年代末以来,DSS研究与应用的重要方向之一就是群体决策支持系统(GDSS)。

GDSS与DDsS既又有联系,前者是对个体(individual)决策支扩展,后者则是相对于集中式DSS而言的,两者研究的重点和关注的焦点有所不同。

如果说DDSS是以技术为导向的话,GDSS则是面向群体活动的,它可为群体活动提供3个层次的支持,即沟通支持、模型支持及机器诱导的沟通模式。

GDSS大多采用分布式和分散式结构:系统支持“水平方向”的分布式处理,即支持对数据对象的远距离操作;系统还支持“垂直方向”的分散式处理,即通过在用户和各应用层之间的接口,来实现各个应用领域的功能。

4、高层决策的支持高层决策的特点包括:①高层平衡形式多,低层平衡形式少;②协商平衡作出的决策多,个人单独作出的决策少;③决策结果定性成分多,定量成分少。

面向高层决策的支持系统有战略决策支持系统(SDSS)和决策支持中心(DSC)。

SDSS是支持战略管理的,这里的战是指全局性、长远性、根本性决策。

而DSC是在高层管理部位,配备熟悉决策环境和事务的信息系统人员,支持应急和重要决策的计算机信息系统。

5、高新技术的引入DSS作为计算机信息系统,随着可视化技术的引入使得决策支持的手段借助形象化的图形表达。

更加灵活有效。

虽然国内这方面工作不多见,但国外已有一些基于图形DSS研究与实践。

三、DDS案例分析在市场经济体制下,销售管理已成为企业最为重要的经营活动之一。

企业销售是企业经营的起点,也是实现企业效益的焦点。

销售活动不仅与企业内各部门有密切关系,还与外界有着广泛的交往。

销售活动涉及的许多问题具有相当的不确定性,这些问题的决策是半结构化或非结构化的。

因此用于支持企业销售决策的DSS是一种较典型的专用DSS,本节将以中国纺织大学宋福根教授主持开发的一个企业销售决策支持系统 (ESDSS)为案例,介绍实际DSS的构造及其具体的应用,以便直观地帮助我们学习和认识DSS。

1、ESDSS的功能研制ESDSS是为处在竞争日趋激烈的环境中的企业提供一种分析销售因素关系及其变化规律,抉择最优或满意营销策略的科学手段。

ESDSS的功能有销售预测和销售决策两大类,另外还有若干辅助功能,见图1。

图1 EDSS的功能结构销售预测是销售决策的前期工作,预测结果是决策的依据。

ESDSS的销售预测功能比较齐全,既有宏观的,也有微观的。

销售决策是销售管理的核心,贯穿于销售管理的各个方面和全过程。

ESDSS的销售决策功能是一些常用的,也是较为重要的功能。

2、ESDSS的结构与组成ESDSS的结构设计采用数据库、模型库、方案库 "三库一体",以"方案驱动"运行,以数据库管理模式进行模型管理的设计思想。

ESDSS在结构上是新颖的三角式的三库系统,其。

特色是提出了方案库的概念和方案驱动的构思并予以实现。

系统的逻辑结构见图2ESDSS的数据库存储各种从MIS中析取的销售预测与销售决策依据数据、公用的数据字典与数据表字典,以及运行过程中使用的临时表等。

模型库中的单元模型用程序方式储存,以两级模型字典描述和管理。

单元模型的组合根据它们的依赖关系,通过建立临时空间来实现,模型的运行通过指南式的人机逐步对话触发。

较特别的是各种销售预测与销售决策的方法也存储于模型库中。

销售预测与销售决策所采用的方法与模型分别列于表1与表2。

表1 销售预测采用的方法与模型表2 销售决策采用的方法与模型ESDSS引入方案库的概念,方案库存储各种完整的预测与决策方案,包括预测与决策过程中使用的数据、模型、方法的描述以及运行步骤。

方案能反映决策者的决策风格与经验,可以事先建立,也可在模型求解时生成。

方案库通过方案字典管理方案,并可作为一种预测与决策的知识不断积累。

人机会话系统采用用户界面十分友好的Widow格式的菜单驱动和控制,以多任务方式展开。

系统提供用户界面十分友好的多种会话方式和操作功能,提供备种获取数据的渠道和各种形式的输出信息等,它在整个决策过程中起到控制机制的作用。

ESDSS的人机会话系统设有出错提示、重要操作提供确认、无效数据处理及互斥性校验等容纠错功能,以及多媒体形式的教学与帮助功能。

DSS建立在Windows平台上,采用Visual Basic作为系统主程序的语言,数据库管理系统选用Access,并用Office软件作系统的辅助工具。

3、ESDSS的应用(1) 应用企业简介某集团公司下属千斤顶厂是研究、开发与制造各类液压千斤顶的专业企业,拥有各种千斤顶装配线20条,年生产能力超过280万台。

工厂的销售工作主要由集团的销售公司负责,销售公司设有四个业务科以及计划、储运和财务等职能科室,在国内设有天泽、武汉、广州和华东分公司,并在欧美设有分部。

公司销售"决策的主要参与人员由集团总裁、销售公司经理和财会人员组成。

(2) 问题的提出随着市场经济的进一步发展,千斤顶行业的竞争日趋激烈。

该厂的市场占有率较大,指定的价格通常处于一个领导价格的地位,因此如何及时地把握市场机会,准确地预测市场需求,如何根据市场需求及时调整自己的营销策略等问题对公司高层决策层提出了更高的要求。

但长期以来,管理部门在决策时往往采用经验估计、定性分析等方法,一般决策者的经验和水平无法满足要求,也难以借鉴他人的经验和获得有效的决策数据,常局限于一种决策方案而缺乏多方案的制定与比较。

鉴于此,公司领导希望能够有一套使用方便、切实有效的计算机系统来支持公司进行决策。

(3) 市场需求预测影响该厂销售情况的主要因素是价格、广告支出以及汽车产量,1988一1997年各年的数据见表3。

根据表中数据,应用ESDSS的销售量预测功能,由回归分析建立企业的需求预测模型:模型运行后的统计量表明模型的拟合良好(R2=0.99903),误差较小(标准差=1.92287)。

根据预测模型对1997年市场需求进行验算,价格=41.26383,广告支出=114.18541,汽车产量=157,计算得1997年需求约为270.4,与实际情况265.32130基本符合。

作"如来……则"方式的灵敏度分析,回答若干问题:销售量增长10%,其他不变,广告费支出必须达到多少?当价格下降到多少元时,销售量增长10%?经分析可知,当广告支出为126.2486万元时或价格下降到38.42元时,可以达到销售童增长大约10%的目标。

(4) 广告媒体选择决策由于千斤顶属于工业品,工厂在广告费用的预算上一般根据一定的利润比提取,并由主观判断安排广告宣传,而如何优化分配,用好这笔资金一直未作过认真的考虑。

工厂主要使用的广告媒体为户外广告、专业杂志和其他形式。

根据工厂的经验,各种媒体的加权展露数为:户外广告192、专业杂志36、其他形式12。

现要应用ESDSS促销手段决策功能,由线性规划模型作广告费优化分配方案,以得到最大的展开效果。

1)建立决策变量X1 ----- 分配给户外广告的设置次数X2 ----- 分配给专业杂志的刊登次数X3 ----- 分配给其他广告形式的次数2)建立目标函数Max E(X)=192 X1+36 X2+12 X33)确定约束条件户外广告每次的设置费用为150000元/年,专业杂志上刊登广告的费用为24000元/年,其他广告形式平均为120000元/年。

其中户外广告的投入不得少于650000元,次数不得少于2次,专业杂志的刊登不得少于3次,其他广告形式尽可能少于2次,由此确定模型的约束条件如下:150000 X1+24000 X2+12 0000X3≤1000000150000 X1≥650000X1≥2X2≥3X3≤24)规划求解的结果X1=4.33,X2=14.83,X3=0,E=1357,取整得: X1=4,X2=15,X3=0,E=1357根据求解结果,工厂为获得最大的展露效果,应该在户外广告上投入4×150000=600000元,专业杂志的投入为l5×24000=360000元,而尽可能不在其他广告形式上投入。

相关文档
最新文档