2019年全国卷Ⅲ理数高考试题
2019年高考理科数学全国卷3含答案
数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B = ()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则=z ()A .1i--B .1+i-C .1i-D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.84.()()42121++x x 的展开式中3x 的系数为()A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134=+a a a ,则3=a ()A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点1(,)ae 处的切线方程为2=+y x b ,则()A.–1==,a e bB.1==,a e b C.–11==,a e b D.–11==-a e b ,7.函数3222xxx y -=+在[]6,6-的图象大致为()A.B.C .D.8.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,⊥平面平面ECD ABCD ,M 是线段ED 的中点,则()A.=BM EN ,且直线,BM EN 是相交直线B.≠BM EN ,且直线,BM EN 是相交直线C.=BM EN ,且直线,BM EN 是异面直线D.≠BM EN ,且直线,BM EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于()毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则PFO△的面积为()A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则()A .23323log 1224ff f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>B .23323124l 2og f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭>>C .23332124log 2f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>D .23323lo 122g 4f f f--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>12.设函数()si 5n f x x ωπ+⎛⎫= ⎪⎝⎭()0ω>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b 为单位向量,且·0=a b,若2=-c a ,则cos ,=a c .14.记n S 为等差数列{}n a 的前n 项和,12103a a a =≠,,则105S S =.15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥-O EFGH 后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为30.9 g/cm ,不考虑打印损耗,制作该模型所需原料的质量为g.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2019年全国卷Ⅲ理数高考试题文档版(有答案)
2019年普通高等学校招生全国统一考试理科数学&参考答案注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,0,1,2A =-,{}2|1B x x =≤,则A B =()A.{1,0,1}-B.{}0,1C.{1,1}-D.{}0,1,2 2.若(1)2z i i +=,则z =() A.1i -- B.1i -+ C.1i - D.1i +3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A.0.5B.0.6C.0.7D.0.84.24(12)(1)x x ++的展开式中3x 的系数为() A.12B.16C.20D.245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =() A.16B.8C.4D.26.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为2y x b =+,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==-7.函数3222x xx y -=+在[6,6]-的图像大致为()8.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值等于() A.4122-B.5122- C.6122-D.7122- 10.双曲线22142x y C -=:的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若PO PF =,则PFO △的面积为()A.4 B.2C.11.设()f x 是定义域为R 的偶函数,且在0,+∞()单调递减,则()A.233231(log )(2)(2)4f f f -->>B.233231(log )(2)(2)4f f f -->>C.233231(2)(2)(log )4f f f -->> D.233231(2)(2)(log )4f f f -->>12.设函数()sin()(0)5f x x πωω=+>,已知()f x 在0,2π[]有且仅有5个零点,下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点; ②()f x 在(0,2)π有且仅有2个极小值点; ③()f x 在(0,)10π单调递增;④ω的取值范围是1229[,)510. 其中所有正确结论的编号是() A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分.13.已知,a b 为单位向量,且0a b ⋅=,若25c a b =-,则cos ,a c <>=_____________. 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S =_____________. 15.设12F F ,为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若12MF F △为等腰三角形,则M 的坐标为______________.16.学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O E F G H -后所得的几何体,其中O 为长方体的中心,E F G H ,,,分别为所在棱的中点,6AB BC cm ==,14AA cm =.3D 打印所用的材料密度为30.9/gcm ,不考虑打印损耗,制作该模型所需原料的质量为__________g .三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2019年高考全国卷Ⅲ理科数学及答案
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i3. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84. 24(12)(1)x x ++的展开式中3x 的系数为A .12B .16C .20D .245. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,7. 函数3222x xx y -=+在[6,6]-的图象大致为8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-10.双曲线C :22142x y -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若||||PO PF =,则△PFO 的面积为A .324 B .322 C .22D .3211.设()f x 是定义域为R 的偶函数,且在(0+)∞,单调递减,则A .233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->> D .233231(2)(2)(log )4f f f -->>12.设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[02]π,有且仅有5个零点,下列四个结论:① ()f x 在(02)π,有且仅有3个极大值点 ② ()f x 在(02)π,有且仅有2个极小值点③ ()f x 在(0)10π,单调递增④ ω在取值范围是1229[)510,其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分。
【全国卷Ⅲ】2019年普通高等学校全国统一考试理数试题(Word版,含答案)
状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
2019年高考理数全国卷3含答案解析
()
A.
f
log3
1 4
>f
3 2 2
>f
2 2 3
B.
f
log3
1 4
>f
2 2 3
>f
3 2 2
C.
f
3 2 2
>f
2 2 3
>f
log3
1 4
D.
f
2 2 3
>f
3 2 2
>f
log3
1 4
12.设函数
f
x
sin
x
D.0,1, 2
2.若 z(1 i) 2i ,则 z
()
A. 1 i
B. 1+i
C.1 i
D.1+i
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为
中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查
了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过
2
22
7
.得
BM 7 ,所以 BM EN .连接 BD , BE ,因为四边形 ABCD 为正方形,所
以 N 为 BD 的中点,即 EN , MB 均在平面 BDE 内,所以直线 BM , EN 是相交 直线,故选B.
第9页
【考点】空间线线位置关系
【考查能力】空间想象
9.【答案】C
【解析】执行程序框图 x 1, s 0 , s 0 1 1, x 1 ,不满足 x< 1 ,
坐标.
23.[选修 4–5:不等式选讲](10 分) 设 x, y, z R ,且 x y z 1 . (1)求 (x 1)2 ( y 1)2 (z 1)2 的最小值; (2)若 (x 2)2 ( y 1)2 (z a)2≥ 1 成立,证明: a≤ 3 或 a≥1. 3
2019年高考全国三卷数学试题及答案
2019年全国卷Ⅲ高考理数试题1.已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,22.若(1i)2i z +=,则z =A.1i--B.1+i-C.1i-D.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.84.(1+2x 2)(1+x )4的展开式中x 3的系数为A.12B.16C.20D.245.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=A.16B.8C.4D.26.已知曲线e ln x y a x x =+在点(1,a e)处的切线方程为y =2x +b ,则A.e 1a b ==-,B.a=e,b =1C.1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图像大致为A.B.C.D.11.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A.f (log 314)>f (322-)>f (232-)B.f (log 314)>f (232-)>f (322-)C.f (322-)>f (232-)>f (log 314)D.f (232-)>f (322-)>f (log 314)12.设函数()f x =sin(5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④13.已知a ,b 为单位向量,且a ·b=0,若2=-c a ,则cos ,=a c ___________.14.记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________.15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.17.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.19.(12分)图1是由矩形ADEB ,Rt△ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B −CG −A 的大小.20.(12分)已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.21.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(二)选考题:共10分。
2019年高考全国卷Ⅲ理综理数真题及解析
A. 电阻定律
B. 库仑定律
C. 欧姆定律
D. 能量守恒定律
【答案】D
【解析】
【详解】楞次定律指感应电流的磁场阻碍引起感应电流的原磁场的磁通量的变化,这种阻碍作用做功将其他
形式的能转变为感应电流的电能,所以楞次定律的阻碍过程实质上就是能量转化的过程.
2.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为 a金 、a地 、a火 ,它
数均为 u=0.20。重力加速度取 g=10m/s²。A、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。 (1)求弹簧释放后瞬间 A、B 速度的大小; (2)物块 A、B 中的哪一个先停止?该物块刚停止时 A 与 B 之间的距离是多少? (3)A 和 B 都停止后,A 与 B 之间的距离是多少?
7.如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细 绳水平。t=0 时,木板开始受到水平外力 F 的作用,在 t=4s 时撤去外力。细绳对物块的拉力 f 随时间 t 变化 的关系如图(b)所示,木板的速度 v 与时间 t 的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。 重力加速度取 g=10m/s2。由题给数据可以得出
1 4
Ig
=
r
+
R0
E +R+
Rxa
,解得
Rxa=45kΩ;
在
b 处,则
3 4
Ig
=
r
+
R0
E +R
+
Rxb
,解得
Rxb=5kΩ;
(3)校准:红黑表笔短接,调节滑动变阻器,使欧姆表指针指到 0 kΩ 处;由图可知,电阻箱接入的 电阻为:R=35000.0Ω。
2019年全国卷Ⅲ理数高考试题
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =IA .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 2.若(1i)2i z +=,则z =A .1i --B .1+i -C .1i -D .1+i 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3=A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x x x y -=+在[]6,6-的图象大致为A.B.C.D.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的 为0.01,则输出s的值等于A.4122-B.5122-C.6122-D.7122- 10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年高考真题全国3卷理科数学(附答案解析)
绝密★启用前2019年普通高等学校招生统一考试理科数学试题卷一、单选题1.已知集合{}{}21,0,1,21A B x x ,=−=≤,则A B ⋂=( )A .{}1,0,1−B .{}0,1C .{}1,1−D .{}0,1,22.若(1i)2i z +=,则z =( ) A .1i −−B .1+i −C .1i −D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−7.函数3222x xx y −=+在[]6,6−的图像大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线9.执行如图所示的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A .4122−B .5122−C .6122−D .7122−10.双曲线C :2242x y −=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229,)其中所有正确结论的编号是 A .①④ B .②③C .①②③D .①③④二、填空题13.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________.14.记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 15.设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D −挖去四棱锥O EFGH −后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .三、解答题17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.19.图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.20.已知函数32()2f x x ax b =−+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1−且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.21.已知曲线C :y =22x ,D 为直线y =12−上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC,曲线3M 是弧»CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标. 23.设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z −++++的最小值; (2)若2221(2)(1)()3x y z a −+−+−≥成立,证明:3a −≤或1a ≥−.参考答案1.A 【解析】 【分析】先求出集合B 再求出交集. 【详解】21,x ≤∴Q 11x −≤≤,∴{}11B x x =−≤≤,则{}1,0,1A B ⋂=−, 故选A . 【点睛】本题考查了集合交集的求法,是基础题. 2.D 【解析】 【分析】根据复数运算法则求解即可. 【详解】()(2i 2i 1i 1i 1i 1i 1i )()z −===+++−.故选D . 【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题. 3.C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解. 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归4.A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数. 5.C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 6.D 【解析】 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e −∴=将(1,1)代入2y x b =+得21,1b b +==−,故选D .本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 7.B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x xx y f x −==+,则332()2()()2222x x x x x x f x f x −−−−==−=−++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f −⨯=>+排除选项D ;36626(6)722f −⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 8.B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCE , MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性. 9.C 【解析】 【分析】根据程序框图,结合循环关系进行运算,可得结果. 【详解】输入的ε为0.01,1.01,0.50.01?x S x ==+=<不满足条件; 1101,0.01?24S x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<L 满足条件 输出676111112122222S ⎛⎫=++⋯+=−=− ⎪⎝⎭,故选C .【点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 10.A 【解析】 【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题. 【详解】由2,,,a b c ====.,P PO PF x =∴=Q ,又P 在C 的一条渐近线上,不妨设为在2y x =上,112224PFO P S OF y ∴=⋅==△,故选A . 【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积. 11.C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f −−⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422−−−−>==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f −−⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f −−⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值. 12.D 【解析】【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得5265πππωπ≤+<,结合正弦函数的图像分析得出答案. 【详解】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案, 当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选D . 【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题. 13.23. 【解析】 【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果. 【详解】因为2c a =v v,0a b ⋅=vv ,所以22a c a b vv v v⋅=⋅2=,222||4||5||9c a b b =−⋅+=vv v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案. 14.4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 15.( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【详解】由已知可得2222236,20,16,4a b c a b c ==∴=−=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =−舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 16.118.8 【解析】 【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量. 【详解】由题意得, 2146423122EFGH S cm =⨯−⨯⨯⨯=, 四棱锥O −EFG 的高3cm , ∴31123123O EFGH V cm −=⨯⨯=.又长方体1111ABCD A B C D −的体积为32466144V cm =⨯⨯=, 所以该模型体积为22114412132V V V cm =−=−=,其质量为0.9132118.8g ⨯=. 【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.17.(1) 0.35a =,0.10b =;(2) 4.05,6. 【解析】 【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数. 【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=−=−,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【点睛】本题考查频率分布直方图和平均数,属于基础题.18.(1) 3B π=;(2)()82. 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅V ,又根据正弦定理和1c =得到ABC S V 关于C 的函数,由于ABC V 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C V 的值域. 【详解】 (1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sinsin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. 0<B π<,02AC π+<<因为故2A CB +=或者2AC B π++=,而根据题意A B C π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC V 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<−<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ−=⋅=⋅=⋅=⋅V 22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ−==⋅−=+.又因,tan 623C C ππ<<>,故3188tan 82C <+<,故82ABC S <<V . 故ABC S V的取值范围是 【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查ABC V 是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.19.(1)见详解;(2) 30o . 【解析】 【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC V 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2)在图中找到B CG A −−对应的平面角,再求此平面角即可.于是考虑B 关于GC 的垂线,发现此垂足与A 的连线也垂直于CG .按照此思路即证. 【详解】(1)证:Q //AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥Q .AB ∴⊥平面BCGE ,AB ⊂Q 平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)过B 作BH GC ⊥延长线于H ,连结AH ,因为AB ⊥平面BCGE ,所以AB GC ⊥ 而又BH GC ⊥,故GC ⊥平面HAB ,所以AH GC ⊥.又因为BH GC ⊥所以BHA ∠是二面角B CG A −−的平面角,而在BHC △中90BHC ∠=o ,又因为60FBC ∠=o 故60BCH ∠=o ,所以sin 60BH BC ==o而在ABH V 中90ABH ∠=o ,tanAB BHA BH ∠===B CG A −−的度数为30o .【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.20.(1)见详解;(2) 01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【解析】 【分析】(1)先求()f x 的导数,再根据a 的范围分情况讨论函数单调性;(2) 根据a 的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出a ,b 的值. 【详解】(1)对32()2f x x ax b =−+求导得2'()626()3af x x ax x x =−=−.所以有当0a <时,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 当0a =时,(,)−∞+∞区间上单调递增;当0a >时,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以若0a <,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 此时在区间[0,1]上单调递增,所以(0)1f =−,(1)1f =代入解得1b =−,0a =,与0a <矛盾,所以0a <不成立.若0a =,(,)−∞+∞区间上单调递增;在区间[0,1].所以(0)1f =−,(1)1f =代入解得1a b =⎧⎨=−⎩. 若02a <≤,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≥,故所以区间[0,1]上最大值为(1)f .即322()()13321a a ab a b ⎧−+=−⎪⎨⎪−+=⎩相减得32227a a −+=,即(0a a a −+=,又因为02a <≤,所以无解.若23a <≤,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≤,故所以区间[0,1]上最大值为(0)f .即322()()1331a a ab b ⎧−+=−⎪⎨⎪=⎩相减得3227a =,解得x =23a <≤,所以无解.若3a >,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =⎧⎨−+=−⎩解得41a b =⎧⎨=⎩.综上得01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.21.(1)见详解;(2) 3或【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t −然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=−,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥u u u u v u u u v得出t 的值,从而求出M 坐标和EM u u u u u v 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t −,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=−,整理得112210tx y −+=. 设22(,)B x y ,同理得222210tx y −+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y −+=.于是直线2210tx y −+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y −+=.即2(21)0tx y +−+=,当20,210x y =−+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx −−=, 于是2121212122,1,()121x x t x x y y t x x t +==−+=++=+212|||2(1)AB x x t =−==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =−u u u u r ,AB u u u r 与向量(1,)t 平行,所以()220t t t +−=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.22.(1) 2cos ([0,])4πρθθ=∈,32sin ([,])44ππρθθ=∈,32cos ([,])4πρθθπ=−∈,(2) )6π,)3π,2)3π,5)6π. 【解析】 【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围. (2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,])4M πρθθ=∈, 23:2cos()2sin ([,])244M πππρθθθ=−=∈,33:2cos()2cos ([,])4M πρθπθθπ=−=−∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3π=θ或23πθ=,此时P 的极坐标为)3π或2)3π解方程32cos [,])4πθθπ−=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π. 【点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.(1) 43;(2)见详解. 【解析】【分析】(1)根据条件1x y z ++=,和柯西不等式得到2224(1)(1)(1)3x y z −++++≥,再讨论,,x y z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的,,x y z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z −++++++≥−++++=+++=故2224(1)(1)(1)3x y z −++++≥等号成立当且仅当111x y z −=+=+而又因1x y z ++=,解得531313x y z ⎧=⎪⎪⎪=−⎨⎪⎪=−⎪⎩时等号成立 所以222(1)(1)(1)x y z −++++的最小值为43. (2) 因为2221(2)(1)()3x y z a −+−+−≥,所以222222[(2)(1)()](111)1x y z a −+−+−++≥. 根据柯西不等式等号成立条件,当21x y z a −=−=−,即22321323a x a y a z a +⎧=−⎪⎪+⎪=−⎨⎪+⎪=−⎪⎩时有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a −+−+−++=−+−+−=+成立. 所以2(2)1a +≥成立,所以有3a −≤或1a ≥−.【点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型.。
2019年高考新课标(全国卷3)理数-真题(word版-含解析)(汇编)
2019年高考新课标全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A .B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于 A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A.4B.2C. D.11.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则 A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点;②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增;④ω的取值范围是[1229510,) 其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③ D .①③④ 二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2019年全国卷Ⅲ理数高考试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试(全国卷III )理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 31)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④ 二、填空题:本题共4小题,每小题5分,共20分。
2019年高考全国卷Ⅲ理科数学与答案
2019 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共60 分。
在每小题给出的四个选项要求的。
1 .已知集合A { x|1,0,1,2} ,B { x|x w 1},贝y A n B=A.{ -1 ,0,1}B.{0,1}C.{-1,1}D2 .若z(1 i)2i,则zA .-1-iB .-1+i C.1 -i D3 .《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称中学为了解本校学生阅读四大名著的情况,随机调查了100 位学生,其中梦》的学生共有90 位,阅读过《红楼梦》的学生有80 位,阅读过《西游-1 -1C. a e , b 1D. a e , b 132 x7.函数y x x在[6,6]的图象大致为2 28 . 如图,点N为正方形ABCD的中心,AECD为正三角形,平面ECD丄面ABCD,M是线段ED的中点,贝VA. BM = EN,且直线BM , EN是相交直线B . BM比N,且直线BM , EN是相交直线C. BM = EN,且直线BM , EN是异面直线D. BM 比N,且直线BM , EN是异面直线9 .执行右边的程序框图,如果输入的为0.01,则输出s的值为A. 21 24B. 21 25C. 2126D. 21272210 .双曲线XC :4y21的右焦点为F,点P在C的一条渐近线上,O为坐标原点. 若|P0 ||PF|,则△ PFO的面积为A. 3 2B.二、填空题:本题共 4小题,每小题 5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2019年普通高等学校招生全国统一考试
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要
求的。
1.已知集合2
{1,0,1,2}{1}A B x x =-=≤,,则A B =I
A .{}1,0,1-
B .{}0,1
C .{}1,1-
D .{}0,1,2 2.若(1i)2i z +=,则z =
A .1i --
B .1+i -
C .1i -
D .1+i 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为
A .0.5
B .0.6
C .0.7
D .0.8
4.(1+2x 2 )(1+x )4的展开式中x 3的系数为
A .12
B .16
C .20
D .24
5.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3=
A . 16
B . 8
C .4
D . 2
6.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则
A .e 1a b ==-,
B .a=e ,b =1
C .1e 1a b -==,
D .1e a -=,1b =-
7.函数3
222
x x x y -=+在[]6,6-的图象大致为
A.B.
C.D.
8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则
A.BM=EN,且直线BM、EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM、EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
9.执行下边的程序框图,如果输入的 为0.01,则输出s的值等于
A.4122-
B.5122-
C.6122-
D.7122
- 10.双曲线C :22
42
x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为
A .4
B .2
C .
D .11.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则
A .f (log 314
)>f (322-)>f (23
2-) B .f (log 314
)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314
) D .f (232-)>f (322-)>f (log 314) 12.设函数()f x =sin (5
x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点
②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,
10
π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是
A .①④
B .②③
C .①②③
D .①③④
二、填空题:本题共4小题,每小题5分,共20分。
13.已知a ,b 为单位向量,且a ·b =0
,若2=c a ,则cos ,<>=a c ___________.
14.记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105
S S =___________. 15.设12F F ,为椭圆C :22
+13620
x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.
16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱
锥O —EFGH 后所得几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________.
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生
都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每
组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、
摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 18.(12分)
△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin
sin 2
A C a b A +=. (1)求
B ;
(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.
19.(12分)
图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,
将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.
(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;
(2)求图2中的二面角B-CG-A 的大小.
20.(12分)
已知函数32()2f x x ax b =-+.
(1)讨论()f x 的单调性;
(2)是否存在 ,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;
若不存在,说明理由.
21.已知曲线C :y =2
2
x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点:
(2)若以E (0,52
)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. (二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4
C 3π,(2,)
D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC
,曲线3M 是弧»CD . (1)分别写出1M ,2M ,3M 的极坐标方程;
(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.
23.[选修4-5:不等式选讲](10分)
设,,x y z ∈R ,且1x y z ++=.
(1)求222(1)(1)(1)x y z -++++的最小值;
(2)若2221(2)(1)()3x y z a -+-+-≥
成立,证明:3a ≤-或1a ≥-.。