单片机矩阵式键盘连接方法及工作原理

合集下载

矩阵键盘的工作原理和扫描确认方式

矩阵键盘的工作原理和扫描确认方式
key_return = K1_1; break; case 0b00001101: key_return = K1_2; break; case 0b00001011: key_return = K1_3; break; case 0b00010110: key_return = K2_1; break; case 0b00010101: key_return = K2_2; break; case 0b00010011: key_return = K2_3; break; case 0b00100110: key_return = K3_1; break; case 0b00100101: key_return = K3_2; break; case 0b00100011: key_return = K3_3; break;
// 扫描键盘
{
PORTD = ~key_line; PORTD = ~key_line;
key_value = Key_mask & PIND; if (key_value == Key_mask)
key_line <<= 1; else {
key_state++; break; } } break; case 1: if (key_value == (Key_mask & PIND)) { switch (key_line | key_value) { case 0b00001110:
号码后,原 8 位 LED 数码管的显示内容向左移动一位,最右边一位则显示键盘
上刚按下的数字(“*”键用“A”表示,“#”键用“b”表示)。要求:对键盘按
键操作的反应迅速而且无误,同时按键操作过程中应保证 LED 的扫

51单片机矩阵键盘原理

51单片机矩阵键盘原理

51单片机矩阵键盘原理51单片机矩阵键盘原理矩阵键盘是一种常用的输入设备,可以通过少量的I/O口控制多个按键。

51单片机作为嵌入式系统中常用的控制器,也可以通过控制矩阵键盘来实现输入功能。

1. 矩阵键盘的结构矩阵键盘由多个按键组成,每个按键都有一个引脚与其他按键共用,形成了一个按键矩阵。

例如,4x4的矩阵键盘有16个按键,其中每行和每列各有4个引脚。

2. 矩阵键盘的工作原理当用户按下某一个按键时,该按键所在行和列之间会形成一个电路通路。

这时,51单片机可以通过扫描所有行和列的电路状态来检测到用户所按下的具体按键。

具体实现过程如下:(1)将每一行引脚设置为输出状态,并将其输出高电平;(2)将每一列引脚设置为输入状态,并开启上拉电阻;(3)逐一扫描每一行引脚,当发现某一行被拉低时,则表示该行对应的某一个按键被按下;(4)记录下该行号,并将该行引脚设置为输入状态,其余行引脚设置为输出状态;(5)逐一扫描每一列引脚,当发现某一列被拉低时,则表示该列对应的是刚才所记录下的行号及其对应的按键;(6)通过行号和列号确定具体按键,并进行相应的处理。

3. 代码实现下面是一个简单的51单片机矩阵键盘扫描程序:```c#include <reg52.h> //头文件sbit row1 = P1^0; //定义引脚sbit row2 = P1^1;sbit row3 = P1^2;sbit row4 = P1^3;sbit col1 = P1^4;sbit col2 = P1^5;sbit col3 = P1^6;sbit col4 = P1^7;unsigned char keyscan(void) //函数定义{unsigned char keyvalue; //定义变量while(1) //循环扫描{row1=0;row2=row3=row4=1; //设置行状态 if(col1==0){keyvalue='7';break;} //读取按键值 if(col2==0){keyvalue='8';break;}if(col3==0){keyvalue='9';break;}if(col4==0){keyvalue='/';break;}row2=0;row1=row3=row4=1;if(col1==0){keyvalue='4';break;}if(col2==0){keyvalue='5';break;}if(col3==0){keyvalue='6';break;} if(col4==0){keyvalue='*';break;}row3=0;row1=row2=row4=1; if(col1==0){keyvalue='1';break;} if(col2==0){keyvalue='2';break;} if(col3==0){keyvalue='3';break;} if(col4==0){keyvalue='-';break;}row4=0;row1=row2=row3=1; if(col1==0){keyvalue='C';break;} if(col2==0){keyvalue='0';break;} if(col3==0){keyvalue='=';break;} if(col4==0){keyvalue='+';break;}}return keyvalue; //返回按键值}void main() //主函数{unsigned char key;while(1) //循环读取{key = keyscan(); //调用函数}}```以上代码实现了一个简单的矩阵键盘扫描程序,可以通过调用`keyscan()`函数来获取用户所按下的具体按键值。

单片机按键连接方法

单片机按键连接方法

单片机按键连接方法总结(五种按键扩展方案详细介绍)单片机在各种领域运用相当广泛,而作为人机交流的按键设计也有很多种。

不同的设计方法,有着不同的优缺点。

而又由于单片机I/O资源有限,如何用最少的I/O口扩展更多的按键是我所研究的问题。

接下来我给大家展示几种自己觉得比较好的按键扩展方案,大家可以在以后的单片机电路设计中灵活运用。

1)、第一种是最为常见的,也就是一个I/O口对应一个按钮开关。

这种方案是一对一的,一个I/O口对应一个按键。

这里P00到P04,都外接了一个上拉电阻,在没有开关按下的时候,是高电平,一旦有按键按下,就被拉成低电平。

这种方案优点是电路简单可靠,程序设计也很简单。

缺点是占用I/O资源多。

如果单片机资源够多,不紧缺,推荐使用这种方案。

2)、第二种方案也比较常见,但是比第一种的资源利用率要高,硬件电路也不复杂。

这是一种矩阵式键盘,用8个I/O控制了16个按钮开关,优点显而易见。

当然这种电路的程序设计相对也还是很简单的。

由P00到P03循环输出低电平,然后检测P04到P07的状态。

比方说这里P00到P03口输出1000,然后检测P04到P07,如果P04为1则说明按下的键为s1,如果P05为1则说明按下的是s2等等。

为了电路的可靠,也可以和第一种方案一样加上上拉电阻。

3)、第三种是我自己搞的一种方案,可以使用4个I/O控制8个按键,电路多了一些二极管,稍微复杂了一点。

这个电路的原理很简单,就是利用二极管的单向导电性。

也是和上面的方案一样,程序需要采用轮训的方法。

比方说,先置P00到P03都为低电平,然后把P00置为高电平,接着查询P02和P03的状态,如果P02为高则说明按下的是s5,若P03为高则说明按下的是s6,然后再让P00为低,P01为高,同样检测P02和P03的状态。

接下来分别让P02和P03为高,其他为低,分别检测P00和P01的状态,然后再做判断。

这种方案的程序其实也不难。

单片机矩阵键盘原理

单片机矩阵键盘原理

单片机矩阵键盘原理单片机矩阵键盘是一种常见的输入装置,它可以实现对数字、字母、符号等不同类型的输入,是单片机控制系统中不可或缺的一部分。

下面详细介绍单片机矩阵键盘的原理。

1. 键盘的基本原理键盘是一种能够将人体按压的操作转换成电信号输出的输入设备。

它由按键、矩阵电路和接口电路等多个部分组成。

其中最关键的是矩阵电路,它起到了连接按键和接口电路的桥梁作用。

2. 矩阵电路的构成矩阵电路主要由行列式组成,其中行和列的数量决定了键盘能够输入的按键数量。

例如一个4行4列的矩阵电路可以连接16个按键。

3. 按键的工作原理按键的工作原理是利用按键触点的开闭状态来变换电路状态,进而实现输入信号的转换。

按键的触点现在主要分为二态和三态两种,二态触点只能够开闭两种状态,而三态触点则可以在按键未按下、按下瞬间和按下保持三个状态之间变换。

在设计矩阵电路时需要根据按键的触点类型进行对应的接线方式。

4. 矩阵键盘的工作流程单片机矩阵键盘的工作流程主要包括按键扫描、按键代码转换和按键响应处理三步。

按键扫描的原理是利用矩阵电路的行列结构来进行扫描,每次扫描只需要对一个行和一个列进行检测,判断当前按键是否被按下。

如果检测到按键被按下,则会对应生成相应的按键代码,并将其发送到单片机系统进行处理。

5. 按键的编程实现在单片机的程序中,实现矩阵键盘的输入需要用到外部中断和定时器两个功能模块。

其中定时器用于产生定时器中断,从而保证按键信号的稳定性和准确性;而外部中断则在扫描矩阵电路时检测按键是否被按下,用于触发中断并响应按键事件。

总的来说,单片机矩阵键盘的原理涉及到电路接线、按键触点类型、按键扫描算法以及编程实现等多个方面。

在设计和实现过程中需要考虑多种因素,才能确保键盘输入的可靠性和稳定性。

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称:矩阵式键盘实验一、实验目的和要求1.掌握矩阵式键盘结构2.掌握矩阵式键盘工作原理3.掌握矩阵式键盘的两种常用编程方法,即扫描法和反转法二、实验内容和原理实验1.矩阵式键盘实验功能:用数码管显示4*4矩阵式键盘的按键值,当K1按下后,数码管显示数字0,当K2按下后,显示为1,以此类推,当按下K16,显示F。

(1)硬件设计电路原理图如下仿真所需元器件(2)proteus仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

操作方完成矩阵式键盘实验。

具体包括绘制仿真电路图、编写c源程序(反转法和扫描法)、进行仿真并观察仿真结果,需要保存原理图截图,保存c源程序,总结观察的仿真结果。

完成思考题。

三、实验方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。

2.在keil上进行编译后生成“xxx.hex”文件。

3.编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

四、实验结果与分析void Scan_line()//扫描行{Delay(10);//消抖switch ( P1 ){case 0x0e: i=1;break;case 0x0d: i=2;break;case 0x0b: i=3;break;case 0x07: i=4;break;default: i=0;//未按下break;}}void Scan_list()//扫描列{Delay(10);//消抖switch ( P1 ){case 0x70: j=1;break;case 0xb0: j=2;break;case 0xd0: j=3;break;case 0xe0: j=4;break;default: j=0;//未按下break;}}void Show_Key(){if( i != 0 && j != 0 ) P0=table[ ( i - 1 ) * 4 + j - 1 ];else P0=0xff;}五、讨论和心得。

单片机4×4矩阵键盘设计方案

单片机4×4矩阵键盘设计方案

1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。

(2)键盘中对应按键的序号排列如图14.1所示。

2、参考电路图14.2 4×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。

(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。

4、程序设计内容(1)4×4矩阵键盘识别处理。

(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100HSTART: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHJZ SW1LCALL DELAY10MS JZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1 MOV COUNT,#0 LJMP DKK1: CJNE A,#0DH,K2 MOV COUNT,#4 LJMP DKK2: CJNE A,#0BH,K3 MOV COUNT,#8 LJMP DKK3: CJNE A,#07H,K4 MOV COUNT,#12K4: NOPLJMP DKSW1: MOV P3,#0FFH CLR P3.5MOV A,P3ANL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6 MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7 MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8 MOV COUNT,#13K8: NOPLJMP DKSW2: MOV P3,#0FFH CLR P3.6MOV A,P3ANL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KA MOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KB MOV COUNT,#10 LJMP DKKB: CJNE A,#07H,KC MOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFH CLR P3.7MOV A,P3ANL A,#0FHJZ SW4LCALL DELAY10MSJZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KDMOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KE MOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KF MOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KG MOV COUNT,#15KG: NOPLJMP DKSW4: LJMP PANDUAN DK: RET ;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI: MOV A,COUNTMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END7、C语言源程序#includeunsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:key=10;break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下//i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--) for(k=200;k>0;k--); i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。

单片机矩阵键盘接口设计

单片机矩阵键盘接口设计
引言
在单片机 应用系 统中通 常都要 有 人 —机 对话功能 。人—机 对话的 中间桥梁 是键盘 , 盘就 是一组按 键 的集 合 , 人 员可 以通过 键盘 输 键 操作 入数 据或 命令 , 现简单 的人机 通讯 。键 盘分 编码键 盘和非 编码键 盘 , 实 键盘上闭合键的识别由专用的硬件译码器实现并产生编号或键值的称 为编码 键 盘 , : S 码键 盘 、C 如 A CⅡ B D码键 盘 等 ; 靠软 r识 别的称 为非 编 牛 码键盘 。 本文侧 重讨论键 盘接 口处 理的 内容 、 三种控制方 式和— 个典 型 矩阵键 盘接 口程 序设计 。 1键 盘接 口处理 的内容 1 . 键扫描 1按 键盘 大都采 用按 行 、 列的矩 阵开 关结 构, 结构 可 以减少硬 列排 这种 件 和连线 。常 用按键 扫描识 别方 法有 行扫描 法 ( r cnig ̄ R - ann) S
0班 {
1畦 0 0HLeabharlann 1H 1 0 衄
1H 2
0I E' I
l 疆

lH 唾
0H D
1} 5I
娅H
1H 6
oH F
1l l 7
湃誊 薷丽
图 1
1 朗
1H 9
1H A
1H B
1H C
IH D
1H E
1H F
表 1
R1 R2 R3
向下的顺序编排的, 这样安排, 使键码可以根据行号列号 以查表求得 ,
也可 以通过计算得 到 。 按下表 所示 的键 码编排规律 , 行的首号依 次是 各 OH、8 IH、8 如列 号按 O O 0H、O 1H, 一 _ 顺 序 , 键码 的计 算公 式 为 : 7 则 键 码=亍 彳首号+ 列号 4键释放 计算 键码之后 , 以延时后进 行 扫描 的方法等待 释放 。 再 等待键 释放 是为 了保证键 的一 次闭合 仅进 行一次 处理 。 2键盘 工作 方式 键盘接 口。 一般采 用行列 式键盘 主 要有 编程 扫描 ' 定时扫 描和 中断 扫描方 式有三种 : 21编程 扫描方 式: C U空 闲时’ 键盘判 断有无 键按 下. 般 当 P 扫描 一 应具备 以下几个功 能 :1判断键 盘上有无键 按下 。() () 2去除键 抖动 的影 响。( ) 描键盘 。() 3扫 4别闭合 的键是 否十放 。

矩阵式键盘设计实训报告

矩阵式键盘设计实训报告

一、实验目的1. 掌握矩阵式键盘的工作原理及电路设计方法。

2. 熟悉单片机与矩阵键盘的接口连接及编程技巧。

3. 提高动手实践能力,培养创新意识。

二、实验设备1. 单片机实验平台2. 矩阵键盘模块3. 数字多用表4. 编译器(如Keil51)5. 连接线三、实验原理矩阵键盘是一种常用的键盘设计方式,通过行列交叉点连接按键,从而实现多个按键共用较少的I/O端口。

矩阵键盘通常采用逐行扫描的方式检测按键状态,当检测到按键按下时,根据行列线的电平状态确定按键位置。

四、实验内容1. 矩阵键盘电路设计2. 矩阵键盘编程3. 矩阵键盘测试与调试五、实验步骤1. 电路设计(1)根据矩阵键盘的规格,确定行线和列线的数量。

(2)将行线和列线分别连接到单片机的I/O端口。

(3)在行线上串联电阻,防止按键抖动。

(4)连接电源和地线。

2. 编程(1)初始化单片机的I/O端口,将行线设置为输出,列线设置为输入。

(2)编写逐行扫描程序,逐行拉低行线,读取列线状态。

(3)根据行列线状态判断按键位置,并执行相应的操作。

3. 测试与调试(1)将编写好的程序下载到单片机中。

(2)连接矩阵键盘,观察按键是否正常工作。

(3)使用数字多用表检测行列线电平,确保电路连接正确。

(4)根据测试结果,对程序进行调试,直到矩阵键盘正常工作。

六、实验结果与分析1. 电路连接正确,按键工作正常。

2. 逐行扫描程序能够正确检测按键位置。

3. 按键操作能够触发相应的程序功能。

七、实验总结1. 通过本次实训,掌握了矩阵式键盘的工作原理及电路设计方法。

2. 熟悉了单片机与矩阵键盘的接口连接及编程技巧。

3. 提高了动手实践能力,培养了创新意识。

八、心得体会1. 在实验过程中,遇到了电路连接错误和程序调试困难等问题,通过查阅资料、请教老师和同学,最终成功解决了问题。

2. 本次实训让我深刻体会到理论知识与实际操作相结合的重要性,同时也认识到团队合作的重要性。

九、改进建议1. 在电路设计过程中,可以考虑增加去抖动电路,提高按键稳定性。

单片机矩阵键盘

单片机矩阵键盘
单片机矩阵键盘
汇报人: 202X-01-04
contents
目录
• 单片机矩阵键盘概述 • 单片机矩阵键盘硬件设计 • 单片机矩阵键盘软件编程 • 单片机矩阵键盘调试与测试 • 单片机矩阵键盘优化与扩展
01 单片机矩阵键盘 概述
定义与特点
定义
单片机矩阵键盘是一种由行线和 列线组成的键盘,通过按键的行 和列交叉点来识别按键。
用于显示输入的信息或状态, 如数码管、液晶显示屏等。
电源模块
为整个系统提供稳定的电源, 保证系统的正常工作。
电路连接
01
矩阵键盘的行线和列线分别连接到单片机的输入/输出端口,通 过软件扫描方式检测按键状态。
02
单片机控制模块与显示模块连接,将需要显示的信息传输给显
示模块。
电源模块为整个系统提供稳定的电源,保证系统的正常工作。
在通讯设备领域,单片机矩阵键盘可以用 于手机、电话等设备的操作面板,实现拨 号、挂断等功能。
பைடு நூலகம்
02 单片机矩阵键盘 硬件设计
硬件组成
01
02
03
04
矩阵键盘模块
由行线和列线组成的键盘矩阵 ,按键被安排在行线和列线的
交叉点上。
单片机控制模块
用于接收和处理来自矩阵键盘 的信号,控制整个系统的运行

显示模块
软件编程
编写单片机程序,用于扫描矩阵键盘并识 别按键按下事件。
测试方法
按键响应时间测试
测试从按键按下到单片机响应 的时间,确保在合理范围内。
按键防抖测试
测试按键防抖功能是否正常, 即在按键按下和释放时是否能 够正确识别。
多键同时按下测试
测试在多个按键同时按下时, 单片机是否能够正确识别并处 理。

51单片机矩阵键盘设计

51单片机矩阵键盘设计

51单片机矩阵键盘设计
一、引言
AT89C51单片机矩阵键盘设计是嵌入式系统中一个重要的技术,它的
作用是以矩阵形式把外部按键与MCU相连,使得系统可以对外部的按键进
行检测和响应。

矩阵键盘设计在可编程嵌入式系统的设计中占有重要的地位,如智能交通系统、智能家居系统、航空电子系统等。

本文主要介绍了矩阵键盘设计中硬件电路的设计,包括按键、拉电阻、和矩阵编码等,同时给出系统的控制算法,使得系统可以实现有效的按键
检测和响应。

二、矩阵键盘概述
矩阵键盘是将多个按键排布成列行形式进行连接,一般来说,矩阵键
盘是由按键、拉电阻、矩阵编码器和控制器组成,按键是系统中重要的部件,其作用是将外部输入信号传递给控制器。

拉电阻起到的作用是防止按
键耦合,一般可以使用4.7KΩ拉电阻来防止按键耦合。

矩阵编码器用来
识别按键的状态,通常通过硬件把按键信号编码为数字信号,输入到处理
器或控制器。

控制器用来实现按键信号的检测,通过定义硬件定时器和软
件定时器,实现按键检测和处理。

1、硬件电路设计
应用AT89C51单片机矩阵键盘。

4×4矩阵键盘在单片机中的应用(Proteus)

4×4矩阵键盘在单片机中的应用(Proteus)

4×4矩阵键盘原理及其在单片机中的简单应用基于Proteus仿真1、4×4矩阵键盘的工作原理如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3.0-P3.3,列线接P3.4-P3.7,按键位于每条行线和列线的交叉点上。

按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。

第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。

当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。

第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。

第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。

当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为0111 0111,即0X77。

当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为1011 1011,即0XBB。

全部矩阵键盘的位置码如下:2、4×4矩阵键盘在单片机的简单应用举例(一)如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。

此处采用线反转法识别按键。

C程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit buzzer=P1^0;uchar code dis[]= //0~9,A~F的共阳显示代码{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0X88,0X83,0XC6,0XA1,0X86,0X8E};uchar code tab[]= //矩阵键盘按键位置码{0x77,0xb7,0xd7,0xe7,0x7b,0xbb,0xdb,0xeb,0x7d,0xbd,0xdd,0xed,0x7e,0xbe,0xde,0xee};void delay(uint x) //延时函数{uchar i;while(x--)for(i=0;i<120;i++);}uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;P3=0XF0; //P3口输出11110000a=P3; //读取列码delay(10); //防抖延时10msP3=0X0F; //P3口输出00001111b=P3; //读取行码c=a+b; //得到位置码for(i=0;i<16;i++)if(c==tab[i])return i; //查表得到按键序号并返回return -1; //无按键,则返回-1}void beep() //蜂鸣器发出声音,模拟按键的声音{ uchar i;for(i=0;i<100;i++){buzzer=~buzzer;delay(1);}buzzer=0;}void main(){uchar key;buzzer=0; //关闭蜂鸣器while(1){key=scan(); //得到按键号if(key!=-1) //有按键则显示,并且蜂鸣器发出声音{P0=dis[key];beep();delay(100);}}}Proteus仿真运行结果如下:3、4×4矩阵键盘在单片机的简单应用举例(二)如下图所示,运行程序时,按下的按键键值越大,点亮的LED灯越多,例如,按下1号键时,点亮一只LED灯,按下2号键时,点亮两只LED灯,按下16号键时,点亮全部LED 灯。

史上最详细矩阵键盘原理

史上最详细矩阵键盘原理

case(0Xd0): KeyValue=KeyValue+8;break;
case(0Xe0): KeyValue=KeyValue+12;break;
}
while((a<50)&&(GPIO_KEY!=0xf0)) //检测按键松手检测
{
delay(1000);
a++;
//a 的作用是用于去抖动,重复检测 50 次//
}
}
}
}
void main()
{
LSA=0; //给一个数码管提供位选//
LSB=0; //给一个数码管提供位选//
LSC=0; //给一个数码管提供位选//
while(1)
//无限循环//
{
KeyDown();
//调用按键判断函数//
GPIO_DIG=smgduan[KeyValue]; //将按键数值赋给 P0 口,控制锁存器//
当接收到的数据低四位不全为高电平时说明有按键按下然后通过接收的数据值判断是哪一列有按键按下然后再反过来高四位输出高电平低四位输出低电平然后根据接收到的高四位的值判断是那一行有按键按下这样就能够确定是哪一个按键按下了
史上最详细单片机矩阵键盘原理 广东阳西福达名苑梁智钧 20180131 一、矩阵按键扫描原理 方法一: 逐行扫描:我们可以通过高四位轮流输出低电平来对矩阵键盘进行逐行扫描,当低四位接收到的数据不全为 1 的 时候,说明有按键按下,然后通过接收到的数据是哪一位为 0 来判断是哪一个按键被按下。 方法二: 行列扫描:我们可以通过高四位全部输出低电平,低四位输出高电平。当接收到的数据,低四位不全为高电平时, 说明有按键按下,然后通过接收的数据值,判断是哪一列有按键按下,然后再反过来,高四位输出高电平,低四位输 出低电平,然后根据接收到的高四位的值判断是那一行有按键按下,这样就能够确定是哪一个按键按下了。 二、原理图:

44矩阵式按键的接法

44矩阵式按键的接法

在单片机按键使用过程中,当键盘中按键数量较多时为了减少端口的占用通常将按键排列成矩阵形式如下图所示,在矩阵式键盘中每条水平线和垂直线在交叉处不直接连通而是通过一个按键加以连接,到底这样做是出意何种目的呢?大家看下面电路图,单片机的整一个8位端口可以构成 4*4=16 个矩阵式按键,相比独立式按键接法多出了一倍,而且线数越多区别就越明显,假如再多加一条线就可以构成 20个按键的键盘,但是独立式按键接法只能多出1个按键。

由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的,矩阵式结构的键盘显然比独立式键盘复杂一些,单片机对其进行识别也要复杂一些。

确定矩阵式键盘上任何一个键被按下通常采用行扫描法。

行扫描法又称为逐行查询法它是一种最常用的多按键识别方法。

因此,我们就以行扫描法为例介绍矩阵式键盘的工作原理。

图5-4(4*4矩阵式按键的接法)首先,不断循环地给低四位独立的低电平,然后判断键盘中有无键按下。

将低位中其中一列线(P1.0~P1.3中其中一列)置低电平然后检测行线的状态(高4位,即P1.4~P1.7,由于线与关系,只要与低电平列线接通,即跳变成低电平),只要有一行的电平为低就延时一段时间以消除抖动,然后再次判断,假如依然为低电平,则表示键盘中真的有键被按下而且闭合的键位于低电平的4个按键之中任其一,若所有行线均为高电平则表示键盘中无键按下。

再其次,判断闭合键所在的具体位置。

在确认有键按下后 ,即可进入确定具体闭合键的过程。

其方法是: 依次将列线置为低电平,即在置某一根列线为低电平时,其它列线为高电平。

同时再逐行检测各行线的电平状态;若某行为低,则该行线与置为低电平的列线交叉处的按键就是闭合的按键。

下面图5-5是4*4矩阵式按键接法的软件算法操作流程。

下面程序按照上述算法流程去编写的,其电路如图5-6,只是在图5-5的基础上多加了P0端口的8只LED灯。

从键盘中检测到一个键值,然后将这个值写到LED数码管上显示。

矩阵式键盘工作原理

矩阵式键盘工作原理

矩阵式键盘工作原理
矩阵式键盘的工作原理是基于矩阵电路的设计。

该键盘由一组键开关组成,这些键开关呈现出行和列的网格状布局。

每个键开关都连接到一个行列交叉点。

在键盘上按下某个按键时,该按键对应的行列交叉点位置会发生变化。

这种变化可以通过键盘控制器或芯片中的扫描电路进行检测。

扫描电路会按顺序扫描每个行和列的交叉点,检测到键按下的时候会产生一个电信号。

当键盘的控制器检测到有按键按下时,它会将该按键的信息发送到计算机。

计算机接收到按键信息后,会根据键盘映射表将按键转换为对应的字符或功能。

这样,用户通过按下键盘上的按键,就能够输入字符或执行特定的功能。

整个矩阵式键盘的工作原理可以归纳为以下几个步骤:
1. 初始化:键盘控制器配置为扫描矩阵键盘。

2. 扫描:控制器按顺序扫描每个行和列的交叉点,检测到按键按下的时候产生一个电信号。

3. 检测:键盘控制器检测到按键按下的电信号后,将其转换为对应的按键信息。

4. 传输:键盘控制器将按键信息传输给计算机。

5. 转换:计算机根据键盘映射表将按键信息转换为对应的字符或功能。

6. 执行:计算机执行输入的字符或功能。

通过这样的工作原理,用户可以通过按下矩阵式键盘上的按键,实现对计算机的输入操作。

单片机控制的矩阵键盘

单片机控制的矩阵键盘

引言概述:
单片机控制的矩阵键盘已经成为现代电子设备中常见的输入方式之一。

该键盘具有结构简单、易于实现和使用方便等优点,广泛应用于各种电子产品中。

本文将对单片机控制的矩阵键盘的原理、设计和应用进行详细阐述。

正文内容:
一、矩阵键盘的原理
1.1矩阵键盘的基本结构
1.2矩阵键盘的电路连接方式
1.3矩阵键盘的工作原理
二、单片机控制的矩阵键盘的设计
2.1单片机的选择和配置
2.2键盘扫描算法的设计
2.3矩阵键盘的接口设计
2.4程序的编写和调试
2.5键盘输入的处理和应用
三、单片机控制的矩阵键盘的应用
3.1家电控制系统中的使用
3.2工控设备中的应用
3.3智能家居中的应用
3.4安防系统中的应用
3.5医疗设备中的应用
四、单片机控制的矩阵键盘的优缺点
4.1优点:
4.1.1结构简单,易于实现
4.1.2使用方便,操作灵活
4.1.3成本低廉,适合大规模生产
4.2缺点:
4.2.1键盘数量限制
4.2.2受到干扰可能导致误触发
五、单片机控制的矩阵键盘的发展趋势
5.1多功能键盘的设计
5.2无线键盘与蓝牙技术的结合
5.3舒适性与人机工程学的结合
5.4智能化与技术的应用
总结:
单片机控制的矩阵键盘是一种常见的输入方式,具有结构简单、易于实现和使用方便等优点。

本文对其原理、设计和应用进行
了详细阐述。

随着技术的不断发展,矩阵键盘在功能、无线化、舒适性和智能化方面也有了较大的进步和应用。

相信在未来,单片机控制的矩阵键盘将继续发挥重要作用,并与其他技术相结合,满足人们对输入设备的更高要求。

单片机矩阵按键原理

单片机矩阵按键原理

单片机矩阵按键原理
单片机矩阵按键的原理主要是通过行列结构来识别按键。

具体来说,它使用4条I/O线作为行线,4条I/O线作为列线,形成了一个4x4的矩阵。

在行线和列线的每个交叉点上,设置一个按键。

当某个按键被按下时,对应的行线和列线会被连通,导致行线和列线的电平发生变化。

单片机通过逐行扫描或逐列扫描的方式,读取I/O口的电平变化,从而确定哪个按键被按下。

具体来说,在行列扫描中,单片机先从P1口的高四位(四个行)输出高电平,低四位(四个列)输出低电平,如果有按键按下,从P1口的高四位读取键盘状态,判断高四位的四行哪一行变成了低电平,就知道是第几行。

然后从P1口的低四位(四个列)输出高电平,高四位(四个行)输出低电平,从P1口的低四位读取键盘状态,判断低四位的四列哪一行变成了低电平,就知道是第几列。

将两次读取结果组合起来就可以得到当前按键的特征编码。

使用这种行列结构能够有效地提高单片机系统中I/O口的利用率,节约单片机的资源。

以上内容仅供参考,建议查阅关于单片机矩阵按键的书籍或者咨询专业技术人员获取更准确的信息。

51单片机矩阵键盘

51单片机矩阵键盘
识别方法
行扫描法 行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,如上图所示键盘,介绍过程如下。 1、判断键盘中有无键按下 将全部行线Y0-Y3置低电平,然后检测列线的状态。只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。若所有列线均为高电平,则键盘中无键按下。 2、判断闭合键所在的位置 在确认有键按下后,即可进入确定具体闭合键的过程。其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。
SETB C RLC A JC NEXT2 NEXT3: MOV R0,#00H RET KCODE: MOV B,#0FBH NEXT4: RRC A INC B JC NEXT4 MOV A,R1 SWAP A NEXT5: RRC A INC B INC B INC B INC B 。
JC NEXT5 NEXT6: MOV A,P1 ANL A,#0FH CJNE A,#0FH,NEXT6 MOV R0,#0FFH RET <2>确定矩阵式键盘上何键被按下介绍一种“高低电平翻转法”。 首先让P1口高四位为1,低四位为0,。若有按键按下,则高四位中会有一个1翻转为0,低四位不会变,此时即可确定被按下的键的行位置。 然后让P1口高四位为0,低四位为1,。若有按键按下,则低四位中会有一个1翻转为0,高四位不会变,此时即可确定被按下的键的列位置。 最后将上述两者进行或运算即可确定被按下的键的位置。
会员免费下载
键盘处理程序就作这么一个简单的介绍,实际上,键盘、显示处理是很复杂的,它往往占到一个应用程序的大部份代码,可见其重要性,但说到,这种复杂并不来自于单片机的本身,而是来自于操作者的习惯等等问题,因此,在编写键盘处理程序之前,最好先把它从逻辑上理清,然后用适当的算法表示出来,最后再去写代码,这样,才能快速有效地写好代码

单片机矩阵式键盘连接方法及工作原理

单片机矩阵式键盘连接方法及工作原理

矩阵式键盘的连接方法和工作原理什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩阵形式。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。

比如再多加一条线就可以构成20 键的键盘,而直接用端口线则只能多出一个键(9 键)。

由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的。

矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。

这样,当按键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下所述:二.矩阵式键盘的按键识别方法确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。

行扫描法又称为逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。

因此我们就以“行扫描法”为例介绍矩阵式键盘的工作原理:1.判断键盘中有无键按下将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表示键盘中无键按下。

2.判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。

其方法是:依次将行线置为低电平(即在置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。

下面给出一个具体的例子:单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4位,也就是把列线P1.0-P1.3 分别接4 个上拉电阻到电源,把列线P1.0-P1.3 设置为输入线,行线P1.4-P1.7 设置为输出线,4 根行线和4 根列线形成16 个相交点,如上图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵式键盘的连接方法和工作原理
什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩
阵形式。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直
接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。

比如再多加一条线就可以构成20 键
的键盘,而直接用端口线则只能多出一个键(9 键)。

由此可见,在需要的按键数量比较多时,采用矩
阵法来连接键盘是非常合理的。

矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接
电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。

这样,当按
键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输
入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下
所述:
二.矩阵式键盘的按键识别方法
确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。

行扫描法又称为
逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。

因此我们就以“行扫描法”为例介绍矩
阵式键盘的工作原理:
1.判断键盘中有无键按下
将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键
被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表
示键盘中无键按下。

2.判断闭合键所在的位置
在确认有键按下后,即可进入确定具体闭合键的过程。

其方法是:依次将行线置为低电平(即在
置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状
态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。

下面给出一个具体的例子:
单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4
位,也就是把列线P1.0-P1.3 分别接4 个上拉电阻到电源,把列线P1.0-P1.3 设置为输入线,行线
P1.4-P1.7 设置为输出线,4 根行线和4 根列线形成16 个相交点,如上图所示。

检测当前是否有键被按下:检测的方法是P1.4-P1.7 输出全“0”,读取P1.0-P1.3 的状态,若
P1.0-P1.3 为全“1”,则说明无键闭合;否则有键闭合。

去除键抖动:当检测到有键按下后,延时一段时间再做下一次的检测判断,若仍有键按下,应识
别出是哪一个键闭合,方法是对键盘的行线进行扫描,P1.4-P1.7 按下述4 种组合依次输出:P1.7 1110;
P1.6 1101;P1.5 1011;P1.4 0111;在每组行输出时读取P1.0-P1.3;若全为“1”,则表示为“0”这
一行没有键闭合;否则就是有键闭合。

由此得到闭合键的行值和列值,然后可采用计算法或查表法将闭
合键的行值和列值转换成所定义的键值。

为了保证按键每闭合一次CPU 仅作一次处理,必须去除键释放
时的抖动。

举个实例:
三.矩阵式键盘的实验程序
ORG 0030H ;
SCAN:MOV P1,#0FH ;
MOV A,P1 ;
ANL A,#0FH ;
CJNE A,#0FH,NEXT1 ;
SJMP NEXT3 ;
NEXT1:ACALL D20Ms ;
MOV A,#0EFH ;
NEXT2:MOV R1,A ;
MOV P1,A ;
MOV A,P1 ;
ANL A,#0FH ;
CJNE A,#0FH,KCODE ;
MOV A,R1 ;
SETB C ;
RLC A ;
JC NEXT2 ;
NEXT3:MOV R0,#00H ;
RET ;
KCODE:MOV B,#0FBH ;
NEXT4:RRC A ;
INC B ;
JC NEXT4 ;
MOV A,R1 ;
SWAP A ;
NEXT5:RRC A ;
INC B ;
JC NEXT5 ;
NEXT6:MOV A,P1 ; ANL A,#0FH ; CJNE A,#0FH,NEXT6; MOV R0,#0FFH ; RET ;
END。

相关文档
最新文档