矩阵式键盘扫描原理

合集下载

键盘工作原理

键盘工作原理

键盘工作原理标题:键盘工作原理引言概述:键盘作为人机交互的重要设备,其工作原理是如何实现的呢?本文将从键盘的基本结构和原理出发,详细介绍键盘的工作原理。

一、基本结构1.1 键盘按键键盘上的按键是键盘的核心部件,通过按下按键来输入字符或命令。

1.2 电路板键盘内部的电路板负责传输按键输入的信号。

1.3 连接线连接键盘和计算机的传输线,传输按键输入信号。

二、扫描方式2.1 矩阵扫描键盘通过矩阵扫描的方式来检测按键的状态。

2.2 行扫描键盘先扫描行,确定按下的是哪一行的按键。

2.3 列扫描确定按下的是哪一列的按键,从而确定具体按下的按键。

三、按键信号传输3.1 按键编码键盘将按键编码成数字信号,传输给计算机。

3.2 USB接口现代键盘通常采用USB接口传输按键信号。

3.3 无线传输部分键盘采用无线传输技术,通过蓝牙或RF信号传输按键信号。

四、按键反馈4.1 机械键盘机械键盘通过按键下沉和弹起来提供按键反馈。

4.2 薄膜键盘薄膜键盘通过薄膜开关来提供按键反馈。

4.3 触摸键盘触摸键盘通过触摸板或触摸屏来提供按键反馈。

五、多媒体功能5.1 快捷键键盘上的快捷键可以实现快速操作,如音量调节、播放暂停等。

5.2 定制功能部分键盘支持定制功能,用户可以根据需求自定义按键功能。

5.3 RGB灯效一些游戏键盘支持RGB灯效,通过软件调节灯效来提升用户体验。

总结:通过以上介绍,我们可以了解到键盘的工作原理是通过按键输入、信号传输、按键反馈等多个环节来实现的,不同类型的键盘在工作原理上也有所不同,但都是为了更好地满足用户的需求。

键盘作为计算机的重要输入设备,其工作原理的了解对我们更好地使用键盘具有重要意义。

51单片机矩阵键盘原理

51单片机矩阵键盘原理

51单片机矩阵键盘原理51单片机矩阵键盘原理矩阵键盘是一种常用的输入设备,可以通过少量的I/O口控制多个按键。

51单片机作为嵌入式系统中常用的控制器,也可以通过控制矩阵键盘来实现输入功能。

1. 矩阵键盘的结构矩阵键盘由多个按键组成,每个按键都有一个引脚与其他按键共用,形成了一个按键矩阵。

例如,4x4的矩阵键盘有16个按键,其中每行和每列各有4个引脚。

2. 矩阵键盘的工作原理当用户按下某一个按键时,该按键所在行和列之间会形成一个电路通路。

这时,51单片机可以通过扫描所有行和列的电路状态来检测到用户所按下的具体按键。

具体实现过程如下:(1)将每一行引脚设置为输出状态,并将其输出高电平;(2)将每一列引脚设置为输入状态,并开启上拉电阻;(3)逐一扫描每一行引脚,当发现某一行被拉低时,则表示该行对应的某一个按键被按下;(4)记录下该行号,并将该行引脚设置为输入状态,其余行引脚设置为输出状态;(5)逐一扫描每一列引脚,当发现某一列被拉低时,则表示该列对应的是刚才所记录下的行号及其对应的按键;(6)通过行号和列号确定具体按键,并进行相应的处理。

3. 代码实现下面是一个简单的51单片机矩阵键盘扫描程序:```c#include <reg52.h> //头文件sbit row1 = P1^0; //定义引脚sbit row2 = P1^1;sbit row3 = P1^2;sbit row4 = P1^3;sbit col1 = P1^4;sbit col2 = P1^5;sbit col3 = P1^6;sbit col4 = P1^7;unsigned char keyscan(void) //函数定义{unsigned char keyvalue; //定义变量while(1) //循环扫描{row1=0;row2=row3=row4=1; //设置行状态 if(col1==0){keyvalue='7';break;} //读取按键值 if(col2==0){keyvalue='8';break;}if(col3==0){keyvalue='9';break;}if(col4==0){keyvalue='/';break;}row2=0;row1=row3=row4=1;if(col1==0){keyvalue='4';break;}if(col2==0){keyvalue='5';break;}if(col3==0){keyvalue='6';break;} if(col4==0){keyvalue='*';break;}row3=0;row1=row2=row4=1; if(col1==0){keyvalue='1';break;} if(col2==0){keyvalue='2';break;} if(col3==0){keyvalue='3';break;} if(col4==0){keyvalue='-';break;}row4=0;row1=row2=row3=1; if(col1==0){keyvalue='C';break;} if(col2==0){keyvalue='0';break;} if(col3==0){keyvalue='=';break;} if(col4==0){keyvalue='+';break;}}return keyvalue; //返回按键值}void main() //主函数{unsigned char key;while(1) //循环读取{key = keyscan(); //调用函数}}```以上代码实现了一个简单的矩阵键盘扫描程序,可以通过调用`keyscan()`函数来获取用户所按下的具体按键值。

电脑键盘工作原理

电脑键盘工作原理

电脑键盘工作原理简单来说,电脑键盘主要由按键组成,每个按键都对应一个特定的电信号。

按下按键时,按键会产生一个电信号,键盘通过将该信号转换成二进制码并发送给计算机,计算机再根据接收到的信号来进行相应的操作。

以下是一般电脑键盘的工作原理:1.扫描矩阵:电脑键盘通常采用矩阵结构。

这种结构将键盘按键分为多行和多列,并用导电材料连接每个按键的行和列。

在非按下状态下,行和列之间没有电流。

当按下一个按键时,该按键所在的行和列之间形成了电流通路。

2.扫描码检测:键盘控制器会不断扫描按键的状态。

当检测到一些按键的状态由非按下变为按下时,键盘控制器就会记录下该按键的位置信息。

3.按键编码:键盘控制器得到按键信息后,会将按键位置信息转换成特定的编码。

常见的编码方式包括ASCII码、扩展ASCII码、USBHID码等。

编码的目的是将按键的信息转化为计算机可识别的二进制信号。

4.传输信号:键盘控制器将按键编码后的信号通过键盘接口(如USB、PS/2、Bluetooth等)传输给计算机。

不同的接口有不同的传输协议和信号传输速率,但基本原理都是将按键信号转化为电信号进行传输。

5.计算机处理:除了上述基本的工作原理,键盘还有一些特殊功能:1.功能键:键盘上通常还有一些特殊功能键,如Ctrl、Shift、Alt等。

这些键的作用是与其他键结合使用,实现一些更加复杂的操作。

例如,Ctrl键+V可以实现粘贴操作。

2.多媒体键:有些键盘还配有一些额外的多媒体键,如音量控制键、播放/暂停键等。

这些键通过特定的编码和传输协议,可以控制计算机播放音频或视频等多媒体操作。

总结起来,电脑键盘的工作原理是将按键的电信号通过键盘控制器转换为计算机可识别的编码信号,并通过键盘接口传输给计算机。

计算机接收到信号后进行解码并执行相应的操作。

这样,用户通过按键就能够与计算机进行交互。

矩阵键盘的工作原理和扫描确认方式

矩阵键盘的工作原理和扫描确认方式
9.3.1 矩阵键盘的工作原理和扫描确认方式
来源:《AVR 单片机嵌入式系统原理与应用实践》M16 华东师范大学电子系 马潮 当键盘中按键数量较多时,为了减少对 I/O 口的占用,通常将按键排列成
矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图 9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交 点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行 或列线上的电平变化可以确定哪个按键被按下。
图 9-7 为一个 4 x 3 的行列结构,可以构成 12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个 16 键的键盘。很明显,在按键数量多的场合,矩 阵键盘与独立式按键键盘相比可以节省很多的 I/O 口线。
矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式 按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和 线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态, 因此会大量占用 MCU 的时间,所以较好的方式也是采用状态机的方法来设计, 尽量减少键盘查询过程对 MCU 的占用时间。
key_return = K1_1; break; case 0b00001101: key_return = K1_2; break; case 0b00001011: key_return = K1_3; break; case 0b00010110: key_return = K2_1; break; case 0b00010101: key_return = K2_2; break; case 0b00010011: key_return = K2_3; break; case 0b00100110: key_return = K3_1; break; case 0b00100101: key_return = K3_2; break; case 0b00100011: key_return = K3_3; break;

键盘扫描程序实验报告

键盘扫描程序实验报告

一、实验目的1. 理解键盘扫描的基本原理。

2. 掌握使用C语言进行键盘扫描程序设计。

3. 学习键盘矩阵扫描的编程方法。

4. 提高单片机应用系统的编程能力。

二、实验原理键盘扫描是指通过检测键盘矩阵的行列状态,判断按键是否被按下,并获取按键的值。

常见的键盘扫描方法有独立键盘扫描和矩阵键盘扫描。

独立键盘扫描是将每个按键连接到单片机的独立引脚上,通过读取引脚状态来判断按键是否被按下。

矩阵键盘扫描是将多个按键排列成矩阵形式,通过扫描行列线来判断按键是否被按下。

这种方法可以大大减少引脚数量,降低成本。

本实验采用矩阵键盘扫描方法,使用单片机的并行口进行行列扫描。

三、实验设备1. 单片机开发板(如51单片机开发板)2. 键盘(4x4矩阵键盘)3. 连接线4. 调试软件(如Keil)四、实验步骤1. 连接键盘和单片机:将键盘的行列线分别连接到单片机的并行口引脚上。

2. 编写键盘扫描程序:(1)初始化并行口:将并行口设置为输入模式。

(2)编写行列扫描函数:逐行扫描行列线,判断按键是否被按下。

(3)获取按键值:根据行列状态,确定按键值。

(4)主函数:调用行列扫描函数,读取按键值,并根据按键值执行相应的操作。

3. 调试程序:将程序下载到单片机,观察键盘扫描效果。

五、实验程序```c#include <reg51.h>#define ROW P2#define COL P3void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 123; j++);}void scan_key() {unsigned char key_val = 0xFF;ROW = 0xFF; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值}void main() {while (1) {scan_key();if (key_val != 0xFF) {// 执行按键对应的操作}}}```六、实验结果与分析1. 实验结果:程序下载到单片机后,按键按下时,单片机能够正确读取按键值。

stm32矩阵键盘原理

stm32矩阵键盘原理

STM32矩阵键盘原理详解引言矩阵键盘是一种常见的输入设备,广泛应用于电子产品中。

在STM32微控制器中,利用GPIO引脚实现矩阵键盘控制相对简单,本文将详细介绍STM32矩阵键盘的基本原理。

基本原理矩阵键盘由多个按键组成,通常采用行列式排列。

每个按键都由一个触点和一个按键外壳组成,触点一般为弹簧式结构,按下按键时触点接通,释放按键时触点断开。

矩阵键盘的连接方式矩阵键盘的每个按键都被分配一个行号和列号,通过行线和列线来连接按键和控制芯片。

STM32通过GPIO来控制行线和列线的电平,实现按键的扫描和检测。

在STM32中,行线和列线可以连接到不同的GPIO引脚上。

行线连接到输出引脚,列线连接到输入引脚。

这样,通过对行线的输出和对列线的输入,可以实现对矩阵键盘的扫描和检测。

矩阵键盘的扫描原理矩阵键盘的扫描原理可以简单描述为以下几个步骤:1.将所有行线设置为高电平,所有列线设置为输入模式。

2.逐个将行线设置为低电平,并同时检测列线引脚的电平状态。

3.如果某一列的输入引脚检测到低电平,表示该列对应的按键被按下。

4.通过行线和列线的对应关系,确定被按下的按键的行号和列号。

矩阵键盘的按键映射通过扫描后,可以得到被按下的按键的行号和列号,STM32可以根据行列号的映射关系将按键信息转化为相应的按键值。

通常,矩阵键盘的按键映射是通过二维数组来实现的。

数组的行号对应行线,列号对应列线。

数组中的元素对应按键的键值。

例如,要实现一个4x4的矩阵键盘,可以通过以下数组表示按键的映射关系:uint8_t keyMap[4][4] = {{ '1', '2', '3', 'A' },{ '4', '5', '6', 'B' },{ '7', '8', '9', 'C' },{ '*', '0', '#', 'D' }};通过行列号可以确定数组中的元素,从而得到按键的键值。

矩阵键盘的按键识别原理

矩阵键盘的按键识别原理

矩阵键盘的按键识别原理嘿,朋友们!今天咱来唠唠矩阵键盘的按键识别原理。

你看啊,这矩阵键盘就像是一个小小的战场,每个按键都是一名勇敢的战士呢!想象一下,这些按键整齐地排列在那里,等待着我们去“召唤”它们。

那它到底是怎么识别我们按的是哪个键呢?其实啊,就像是一场巧妙的游戏。

矩阵键盘是通过行列交叉的方式来工作的哦!比如说,它有好多行和列,就像一个方格网。

当我们按下一个键时,就相当于在这个方格网上点亮了一个特定的点。

这就好像是在一群人中,你一下子就找到了你要找的那个人一样神奇!每个按键都有它自己独特的位置,通过行和列的组合,矩阵键盘就能准确地知道是哪个键被按下啦。

那它怎么知道这个键被按下了呢?这就得说到它的检测机制啦。

它会不停地去“巡逻”这些行列,一旦发现有某个地方的信号有变化,嘿嘿,那就说明有键被按下去啦!这多有意思呀!而且哦,矩阵键盘还很聪明呢!它不会因为你不小心碰到了别的键就乱了套,它能准确地识别出你真正想要按的那个键。

这就好像一个经验丰富的侦探,能从一堆线索中找到真正的关键信息。

你说这矩阵键盘是不是很厉害?它就静静地待在那里,随时准备为我们服务,只要我们一伸手,它就能快速响应。

想想我们日常生活中的各种电子设备,好多都有矩阵键盘的身影呢!从小小的遥控器到复杂的电脑键盘,它们都在默默地工作着。

我们每天都在和它们打交道,却很少有人真正去了解它们背后的原理。

现在你知道了矩阵键盘的按键识别原理,是不是对这些常见的东西又多了一份好奇和敬意呢?下次再使用有矩阵键盘的设备时,你可以在心里默默感叹一下它的神奇哦!反正我是觉得挺有意思的,它就像是一个隐藏在电子世界里的小秘密,等着我们去发现和探索。

这不就是科技的魅力所在嘛!所以呀,别小看了这些看似普通的东西,它们背后可都有着不简单的原理和故事呢!原创不易,请尊重原创,谢谢!。

44 矩阵键盘工作原理

44 矩阵键盘工作原理

44 矩阵键盘工作原理
矩阵键盘是一种常见的输入设备,它可以用于电子设备、计算机等系统中。

它的工作原理是基于一个由多行多列的按键组成的矩阵。

矩阵键盘的按键布局类似于一个矩阵,其中按键的行和列被编号。

每个按键都有一个独特的行列地址。

按下一个按键时,矩阵键盘会通过行和列的触点之间的闭合来检测到按键的操作。

在工作时,矩阵键盘会周期性地轮询每个行和列的触点状态。

它会先闭合一个行(即将该行的输出信号置为高电平),然后依次检测每一列,看哪些按键的该列的触点闭合。

如果某个按键被按下,那么它所对应的行和列的触点就会闭合。

矩阵键盘通常采用编码器来记录按键信息。

在触发了某个按键后,编码器会将按键的行列地址转换成一个特定的二进制码。

这个二进制码可以被连接的设备(如计算机)所识别,从而得知哪个按键被按下了。

通过矩阵键盘的工作原理,我们可以实现对多个按键的监测和输入。

无论是在计算机上打字,还是在其他电子设备上进行输入,矩阵键盘都可以提供一个简单有效的解决方案。

矩阵按键原理

矩阵按键原理

矩阵按键原理
矩阵按键是一种常用的电子组件,它由一组排列成矩阵形式的按键单元组成。

每个按键单元都是一个触点开关,可以通过按下来触发电路连接或断开。

矩阵按键的主要原理是利用行列交叉的结构来实现多个按键的复用,从而减少引脚数量和电路复杂度。

在一个简单的4x4矩阵按键中,有4个行引脚和4个列引脚。

通过控制行引脚和列引脚的状态,就可以检测到每个按键的按下情况。

当某个按键被按下时,它所在的行和列相交的引脚之间形成了电路连接,可以通过检测到的电压信号来判断按键的按下状态。

为了减少干扰和误触发,通常还会在电路中加入外部电阻和电容来对信号进行滤波和去抖动处理。

这些电阻和电容的选择和连接方式可以根据具体的应用需求进行调整。

矩阵按键在很多电子设备中得到了广泛的应用,如计算器、远程控制器、键盘等。

它的设计简单、成本低廉,并且可以同时检测多个按键的按下情况,因此在多功能控制面板等场景下表现出了良好的性能。

矩阵键盘的检测和独立按键的区别

矩阵键盘的检测和独立按键的区别

矩阵键盘的检测和独立按键的区别
 这次我接着上次的说,讲一下复合按键和矩阵键盘。

 先说矩阵键盘,因为我写的组合键代码是在矩阵键盘的基础上写的,当然在独立按键上写组合键更简单一些。

所以当你矩阵键盘的组合键会写的时候,你在独立按键上的组合键也就会写了。

 矩阵键盘的检测和独立按键有很大的区别,但是究其本质还是一样的。

 先看一下矩阵键盘的原理图:
 矩阵键盘原理图
 由于矩阵键盘中每一个按键的两个接线口都是接在IO口上的,所以我们就必须在软件里面控制单片机在每个独立按键的两端加上不同的电平。

 【注】:独立按键很简单,直接在一端接地就行了。

矩阵式键盘扫描原理

矩阵式键盘扫描原理

矩阵式键盘扫描原理
矩阵式键盘扫描原理
将键值显示在七节显示器上的单片机源码。

把每个键都分成水平和垂直的两端接入,比如说扫描码是从垂直的入,那就代表那一行所接收到的扫描码是同一个bit,而读入扫描码的则是水平,扫描的动作是先输入扫描码,再去读取输入的值,比对之后就可知道是哪个键被按下。

比如说扫描码送入01111111,前面的0111是代表扫描第一行P1.0列,而后面的1111是让读取的4行接脚先设为VDD,若第一行的第三列按键被按下,那读取的结果就会变成01111101(注意1111变成1101),其中LSB的第三个bit会由1变成0,这是因为这个按键被按下之后,会被垂直的扫描码电位short,而把读取的LSB的bit电位拉到0,此即为扫描原理。

由于这种按键是机械式的开关,当按键被按下时,键会震动一小段时间才稳定,为了避免让8051误判为多次输入同一按键,我们必须在侦测到有按键被按下,就Delay一小段时间,使键盘以达稳定状态,再去判读所按下的键,就可以让键盘的输入稳定。

单片机矩阵式键盘连接方法及工作原理

单片机矩阵式键盘连接方法及工作原理

矩阵式键盘的连接方法和工作原理什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩阵形式。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。

比如再多加一条线就可以构成20 键的键盘,而直接用端口线则只能多出一个键(9 键)。

由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的。

矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。

这样,当按键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下所述:二.矩阵式键盘的按键识别方法确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。

行扫描法又称为逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。

因此我们就以“行扫描法”为例介绍矩阵式键盘的工作原理:1.判断键盘中有无键按下将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表示键盘中无键按下。

2.判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。

其方法是:依次将行线置为低电平(即在置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。

下面给出一个具体的例子:单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4位,也就是把列线P1.0-P1.3 分别接4 个上拉电阻到电源,把列线P1.0-P1.3 设置为输入线,行线P1.4-P1.7 设置为输出线,4 根行线和4 根列线形成16 个相交点,如上图所示。

44矩阵键盘工作原理

44矩阵键盘工作原理

44矩阵键盘工作原理
矩阵键盘是一种常见的电子设备输入装置,其工作原理基于按键与电路连接的方式。

它包含多个横向和纵向排列的按键,通过矩阵形式的电路连接来实现按键的识别和输入信号的传输。

具体而言,矩阵键盘由电路板、导线和按键组成。

电路板通常有两层,上层是横向导线,下层则是纵向导线。

按键则与这两层导线连接,形成一个矩阵。

每个按键分别对应一个顶点,横向导线连接所有按键的顶点,纵向导线连接所有按键的底座。

当按下一个按键时,该按键的顶点导线和底座导线会通过接触互相连接,形成通路。

这个通路的信息会被传入一个专门处理输入信号的控制芯片中。

控制芯片会分析这个通路,并根据通路位置的特定编码来确定被按下的按键。

工作原理的关键是通过行列的矩阵连接来检测按键的状态。

当不按下按键时,控制芯片会通过扫描横向导线和纵向导线上的电流是否闭合的方式来判断按键的位置。

由于按键上的导线并未连接,电流无法通过并被控制芯片检测到。

而当按下某个按键时,与该按键对应的行和列导线就会连接,形成闭合的电路,电流开始流动。

控制芯片通过检测到电流的存在来判断按键的位置。

总的来说,矩阵键盘通过按键与电路的连接来实现输入信号的传输和按键状态的识别。

它的工作原理主要基于按键通路形成和电流检测等原理。

这种设计使得矩阵键盘在电子设备中应用广泛,如计算机、手机等。

中断法识别矩阵键盘的原理

中断法识别矩阵键盘的原理

中断法识别矩阵键盘的原理
中断法识别矩阵键盘的原理如下:
在一个矩阵键盘中,每个按键都与一个行和一个列相交。

当按下某个按键时,该按键的行和列之间会形成一个电路。

这个电路会触发一个中断信号,通知处理器有一个按键按下了。

中断是一种硬件信号,它可以暂停处理器正在执行的程序,并跳转到一个特殊的中断处理程序。

在矩阵键盘中,当有按键按下时,会触发一个中断信号,处理器会立即跳转到中断处理程序。

中断处理程序会读取键盘的状态寄存器,确定哪个按键被按下了。

然后它会将按键的ASCII码或扫描码存储在一个缓冲区中,以便处理器的主程序可以读取它。

通过这种方式,处理器可以在不阻塞主程序的情况下,实时地响应用户的键盘输入。

矩阵键盘的工作原理和扫描确认方式

矩阵键盘的工作原理和扫描确认方式
在该方式中要使用mcu的一个定时器使其产生一个10ms的定时中断mcu响应定时中断执行键盘扫描当在连续两次中断中都读到相同的按键按下间隔10ms作为消抖处理mcu才执行相应的键处理程序中断方式
9.3.1 矩阵键盘的工作原理和扫描确认方式
来源:《AVR 单片机嵌入式系统原理与应用实践》M16 华东师范大学电子系 马潮 当键盘中按键数量较多时,为了减少对 I/O 口的占用,通常将按键排列成
矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图 9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交 点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行 或列线上的电平变化可以确定哪个按键被按下。
图 9-7 为一个 4 x 3 的行列结构,可以构成 12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个 16 键的键盘。很明显,在按键数量多的场合,矩 阵键盘与独立式按键键盘相比可以节省很多的 I/O 口线。
File name
: demo_9_3.c
Chip type
: ATmega16
Program type
: Application
Clock frequency
: 4.000000 MHz
// 输出行线电平 // 必须送 2 次!!!(注 1 // 读列电平 // 没有按键,继续扫描
// 有按键,停止扫描 // 转消抖确认状态
// 再次读列电平, // 与状态 0 的相同,确认按键 // 键盘编码,返回编码值
case 0b01000110:
key_return = K4_1;
break;
它们不仅与键盘的硬件连接有关系,同时还要注意他们在程序中是如何使用的, 其值的保存等等。

矩阵键盘键值的计算方法

矩阵键盘键值的计算方法

矩阵键盘键值的计算方法矩阵键盘是一种常见的输入设备,广泛应用于计算机、手机、电子器件等。

它通过将按下的键映射为一个特定的键值,实现对应用程序的输入控制。

本文将介绍矩阵键盘键值的计算方法,帮助读者了解矩阵键盘的工作原理和键值计算的方法。

一、矩阵键盘的基本原理矩阵键盘由多个行和列的按键构成,这些按键被排列成一个矩阵,行与列之间形成交叉点。

按下某个按键时,会使得对应行和列之间形成闭合电路。

矩阵键盘通过扫描行和列,检测到闭合电路,从而确定所按下的按键。

二、矩阵键盘键值计算的方法1. 扫描行和列矩阵键盘首先需要扫描行和列,以检测闭合电路。

这个过程可以通过控制行和列的输入输出来实现。

首先将所有行设置为高电平输出状态,然后逐行将其设置为低电平状态,同时检测列的输入状态。

如果某一列为低电平,则说明该行和列之间的按键闭合,即键盘检测到按键按下的动作。

2. 确定键值在检测到按键闭合后,需要进一步确定对应的键值。

这个过程需要根据键盘的布局和键盘的编码规则来实现。

一般情况下,我们可以以行列号的方式对键盘按键进行编码。

假设有N 行M 列的键盘,按下的按键位于第i 行第j 列,则键值可表示为(i-1)*M + j。

通过这种方式,我们可以根据按下的行和列号计算出对应按键的键值。

假设有一个4 行4 列的矩阵键盘,按下的按键位于第3 行第2 列。

按照上述计算方法,我们可以得到键值为(3-1)*4 + 2 = 10。

因此,按下的按键对应的键值为10。

3. 键值的应用计算出按键的键值后,我们可以将其应用于对应的应用程序中。

键值可以作为输入信号传递给应用程序,根据键值的不同,应用程序可以执行相应的操作。

例如,将键值与预先定义的按键映射表进行匹配,可以实现不同按键对应的功能,如快捷键、功能键等。

矩阵键盘键值的计算方法涉及到扫描行和列,确定键值等关键步骤。

通过扫描行和列,可以检测到按键的闭合电路;通过确定键值,可以识别所按下的按键。

这种计算方法可以广泛应用于矩阵键盘的设计和开发中,帮助我们理解矩阵键盘的工作原理和键值计算的方法,并将其应用到实际的应用程序中。

矩阵式键盘控制数码管显示

矩阵式键盘控制数码管显示
矩阵式键盘控制数码 管显示
目录
CONTENTS
• 矩阵式键盘工作原理 • 数码管显示原理 • 矩阵式键盘控制数码管显示方案 • 矩阵式键盘控制数码管显示应用 • 矩阵式键盘控制数码管显示常见问题及
解决方案
01 矩阵式键盘工作原理
按键检测方式
直接检测法
通过直接检测按键是否按下,判断按键状态。
间接检测法
按键与数码管显示不匹配
01
总结词
按键与数码管显示不匹配是矩阵式键盘控制数码管显示中 常见的问题之一,表现为按下某个按键后数码管显示的内 容与预期不符。
02
详细描述
这可能是由于键盘编码与数码管显示编码不匹配导致的问题。 例如,按下数字键“1”,数码管却显示字母“A”。
03
解决方案
可以通过调整键盘编码与数码管显示编码的对应关系来解 决这个问题。具体来说,需要检查键盘编码与数码管显示 编码的映射关系,确保它们一一对应。同时,也需要检查 键盘扫描程序和数码管显示驱动程序的实现是否正确。
静态驱动
每个数码管的每个段都由一个独立的 I/O口控制,适用于数码管数量较少 的情况。
动态驱动
通过扫描方式逐个点亮数码管的各个 段,可以节省I/O口资源,适用于数码 管数量较多的情况。
03 矩阵式键盘控制数码管显 示方案
硬件连接方案
矩阵式键盘与微控制器连接
将矩阵式键盘的行和列连接到微控制器的输入/输出端口,以便读取按键状态。
优化显示逻辑
优化数码管显示的逻辑,例如使用动态扫描技术,减少数码管的亮灭时间,提高显示效果。
04 矩阵式键盘控制数码管显 示应用
电子密码锁
总结词
矩阵式键盘控制数码管显示在电子密码锁中应用广泛,能够实现密码输入、显示和安全 验证等功能。

矩阵键盘原理

矩阵键盘原理

距阵键盘矩阵键盘是单片机编程中所使用的键盘.1.矩阵式键盘的结构与工作原理在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,如图1所示。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样,一个端口(如P1口)就可以构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出一键(9键)。

由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。

矩阵式结构的键盘显然比直接法要复杂一些,识别也要复杂一些,上图中,列线通过电阻接正电源,并将行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。

这样,当按键没有按下时,所有的输出端都是高电平,代表无键按下。

行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。

具体的识别及编程方法如下所述。

2、矩阵式键盘的按键识别方法确定矩阵式键盘上何键被按下介绍一种“行扫描法”。

行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,如上图所示键盘,介绍过程如下。

1、判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。

只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。

若所有列线均为高电平,则键盘中无键按下。

2、判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。

其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。

在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。

若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。

下面给出一个具体的例子:图仍如上所示。

8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由於这种按键是机械式的开关,当按键被按下时,键会震动一小段时间才稳定,為了避免让8051误判為多次输入同一按键,我们必须在侦测到有按键被按下,就Delay一小段时间,使键盘以达稳定状态,再去判读所按下的键,就可以让键盘的输,#F7H ; 扫描初始值
L1:
RLC A ; 将按键值左移一位元
JNC KEYIN ; 若 C=0, 有按, 执行 KEYIN
INC R1 ; 将指标值加 1, 继续扫描下一行
DJNZ R5,L1 ; 扫描四行
MOV A,R3 ; 载入扫描值
SETB C ; C=1
MOV R1,#00H ; 取码指标
SCAN1:
MOV A,R3 ; 开始扫描
MOV P1,A ; 将扫描值输出到 P1
MOV A,P1 ; 读入 P1 判断是否有按下
MOV R4,A ; 存到 R4, 判断是否放开
SETB C ; C=1
MOV R5,#04H ; 扫描 P14~P17
DJNZ R6,$
DJNZ R7,D2
D3:
MOV A,P1 ; 读入 P1
XRL A,R4
JZ D3
MOV A,R1
MOV DPTR,#TABLE
MOVC A,@A+DPTR
Table:
db0c0h,0f9h,0a4h,0b0h,099h ;0-4
db 092h,082h,0f8h,080h,090h ;5-9
db 088h,083h,0a7h,0a1h,086h ;A-E
db 08eh ;F
end
RRC A ; 扫描下一列(P13~P10)
MOV R3,A ; 存回扫描值
JC SCAN1 ; C=1, 尚未完成扫描
RET ; 结束键盘扫描, 回到 Main Program
KEYIN:
MOV R7,#10 ; 消除弹跳
D2:
MOV R6,#248
矩阵式键盘扫描原理
将键值显示在七节显示器上的单片机源码。把每个键都分成水平和垂直的两端接入,比如说扫描码是从垂直的入,那就代表那一行所接收到的扫描码是同一个bit,而读入扫描码的则是水平,扫描的动作是先输入扫描码,再去读取输入的值,比对之后就可知道是哪个键被按下。
比如说扫描码送入01111111,前面的0111是代表扫描第一行P1.0列,而后面的1111是让读取的4行接脚先设為VDD,若第一行的第三列按键被按下,那读取的结果就会变成01111101(注意1111变成1101),其中LSB的第三个bit会由1变成0,这是因為这个按键被按下之后,会被垂直的扫描码电位short,而把读取的LSB的bit电位拉到0,此即為扫描原理。
相关文档
最新文档