复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

合集下载

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛⎫-+-- ⎪⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数①解:2i -+== ②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++④解:1i 1i 22++==4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. 并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式 ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭ 8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:∴1ππ1cosisin i 662=+z .2551cos πisin πi 662=+=+z ⑵-1的三次根 解:∴1ππ1cos isin 332=+=z的平方根.解:πi 4e ⎫⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图. 解:(1)、argz =π.表示负实轴. (2)、|z -1|=|z |.表示直线z =12. (3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换测验题2参考答案

复变函数与积分变换测验题2参考答案

第二章 解析函数一、选择题:1.B 可参照填空题第四小题的处理方法。

2.B 注: 函数)(z f 在点z 可导,)(z f 在点z 不一定解析;反之,)(z f 在点z 不解析,则函数)(z f 在点z 可导;函数)(z f 在一 区域内处处可导等价于处处解析3.D 注: A 三角函数的模可能大于1或无界;B 若0z 是函数)(z f 的奇点,则)(z f 在点0z 不一定不可导C 解析的条件; v u ,在区域D 内可微,v u ,在区域D 内满足柯西-黎曼方程,4. C 由柯西黎曼方程可得。

5.B 第二节例2.3的结论: 解析函数若)(z f '在某一区域内处处为零,则函数在此区域内为常数。

6.C 注:选项A ,B ,D 中函数)(z f 只是有定义,并为要求解析。

反例:x i x z f sin cos )(+= 选项C 设解析函数),(),()(y x iv y x u z f += 则 解析函数 ),(),()(y x iv y x u z f -=两式相加得到解析函数),()(y x u z g 2= 满足柯西黎曼方程 ,因此0=∂∂xu 两式相减得到解析函数),()(y x v z h 2= 满足柯西黎曼方程 ,因此 0=∂∂xv 所以,函数),(),()(y x iv y x u z f +=的导数0=∂∂+∂∂=x v i x u z f )(' 根据:第二节例2.3的结论: 解析函数若)(z f '在某一区域内处处为零,则函数在此区域内为常数。

7.A 导数公式 xv i x u z f y x iv y x u z f ∂∂+∂∂=+=)('),(),()(,则导数若 8.A 注: 本题 函数是 z e ,不是 ze 。

))sin()(cos(y i y e e e x iy x z -+-==-判定时,按照判定复变函数可导解析的方法进行处理。

《复变函数与积分变换复旦大学修订版》全部习题答案

《复变函数与积分变换复旦大学修订版》全部习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z ⑶33i +的平方根. 解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=L证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=L又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

(完整版)《复变函数与积分变换》习题册(2)

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 .8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____。

10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、。

方程0273=+z 的根为_________________________________。

12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 . 13、方程3)Im(=-z i 表示的曲线是__________________________.14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________。

15、不等式114z z -++<所表示的区域是曲线 的内部.16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题1

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题1

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i -++++++.①解:i 4πππe cos isin 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则 ()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭ ()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,k n k n k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1k n =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2i i i i +-+-++①解:2i -+== 2i 2i -+=-- ②解:33-= 33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i++=+⋅+=-⋅-=-④解:1i1i 22++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈,则z x x ==. ∴z z =. 命题成立. 5、设z ,w ∈,证明: z w z w ++≤ 证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w w z zw z w wz wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅ ()2222222z w z wz w z w z w ++⋅=++⋅=+≤ ∴z w z w ++≤. 6、设z ,w ∈,证明下列不等式.()2222Re z w z z w w +=+⋅+()2222Re z w z z w w -=-⋅+ ()22222z w z w z w ++-=+并给出最后一个等式的几何解释. 证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w -=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证. ∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3 352π2π;;1;8π(1);.cos sin7199ii ii+⎛⎫--+⎪+⎝⎭①解:()()()()35i17i35i7i117i17i+-+=++-3816i198ie5025iθ⋅--===其中8πarctan19θ=-.②解:e iiθ⋅=其中π2θ=.π2e ii=③解:ππi i1e e-==④解:()28π116ππ3θ-==-.∴()2πi38π116πe--=⋅⑤解:32π2πcos isin99⎛⎫+⎪⎝⎭解:∵32π2πcos isin199⎛⎫+=⎪⎝⎭.∴322πiπ.3i932π2πcos isin1e e99⋅⎛⎫+=⋅=⎪⎝⎭8.计算:(1)i的三次根;(2)-1的三次根;的平方根.⑴i的三次根.()13ππ2π2πππ22cos sin cos isin0,1,22233++⎛⎫+=+=⎪⎝⎭k ki k∴1ππ1cos isin i662=+z.2551cosπisinπi662=+=z3991cosπisinπi662=+=z⑵-1的三次根()()132π+π2ππcosπisinπcos isin0,1,233k kk++=+=∴1ππ1cos isin332=+=z2cosπisinπ1=+=-z3551cosπisinπ332=+=-z的平方根.解:πi4e⎫=⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin0,122k kk⎛⎫++⎪=⋅+=⎪⎝⎭∴π11i8441ππ6cos isin6e88⎛⎫=⋅+=⋅⎪⎝⎭z911πi8442996cosπisinπ6e88⎛⎫=⋅+=⋅⎪⎝⎭z.9.设2πe,2inz n=≥. 证明:110nz z-+++=证明:∵2πie nz⋅=∴1nz=,即10nz-=.∴()()1110nz z z--+++=又∵n≥2.∴z≠1从而211+0nz z z-+++=11.设Γ是圆周{:},0,e.iz r r a c rz cα=>=+-令:Im0z aL zbβ⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭,其中e ibβ=.求出Lβ在a切于圆周Γ的关于β的充分必要条件.解:如图所示.因为Lβ={z: Imz ab-⎛⎫⎪⎝⎭=0}表示通过点a且方向与b同向的直线,要使得直线在a处与圆相切,则CA⊥Lβ.过C作直线平行Lβ,则有∠BCD=β,∠ACB=90°故α-β=90°所以Lβ在α处切于圆周T的关于β的充要条件是α-β=90°.12.指出下列各式中点z所确定的平面图形,并作出草图.(1)argπ;(2);1(3)1|2;(4)Re Im;(5)Im1 2.zz zz iz zz z==-<+<>><且解:(1)、argz=π.表示负实轴.(2)、|z-1|=|z|.表示直线z=12.(3)、1<|z+i|<2解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πisin πi 662=+=z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

(
)
证明∵ z + w = ( z + w) ⋅ ( z + w) = ( z + w) z + w = z ⋅ z + z ⋅ w + w⋅ z + w⋅ w = z + zw+ z⋅ w + w = z + w

2 2 2 2
(
)
∴ −8π 1 + 3i = 16π ⋅ e 2π 2π ⎞ ⑤解: ⎛ + i sin ⎟ ⎜ cos 9 9 ⎠ ⎝
5、Imz>1,且|z|<2. 解:表示圆盘内的一弓形域。
iϕ (2) 记 w = ρ e ,则
0<θ <
π ,0 < r < 2 4 映成了 w 平面 π . 2
习题二 1 z 下圆周 | z |= 2 的像.
上扇形域,即
0 < ρ < 4, 0 < ϕ <
−7i
⎤ = x ( x − y ) − 2 xy + ⎡ ⎣ y ( x − y ) + 2x y ⎦ i
2 2 2 2 2 2
= x3 − 3 xy2 + ( 3 x2 y − y3 ) i

Re ( z
3
)=x
3
− 3 xy
2
,
Im ( z 3 ) = 3 x 2 y − y 3 .
⎛ 1 + i ⎞ (1 + i ) 1 − i ⎜ 2 ⎟= 2 = 2 ⎝ ⎠
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
π ⎛ 2 i 2 ⎞ 4 解: 3 + 3i= 6 ⋅ ⎜ + i = 6 ⋅ e ⎟ ⎜ 2 ⎟ 2 ⎠ ⎝

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题3

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题3

习题三1. 计算‎积分2()d Cx y ix z -+⎰,其中C 为从原‎点到点1+i 的直线段‎.解 设直线段的方‎程为y x =,则z x ix =+. 01x ≤≤‎故 ()()12212310()11(1)(1)(1)333Cx y ix dz x y ix d x ix i i ix i dx i i x i -+=-++-=+=+⋅=+=⎰⎰⎰2‎. 计算积分(1)d Cz z -⎰,其中‎积分路径C 为(1)‎ 从点0到点1+i 的‎直线段;(2) 沿‎抛物线y =x 2,从点‎0到点1+i 的弧段.‎解 (1)设z x ix =+. ‎ 01x ≤≤()()111()Cz d z x i x dx i x i-=-++=⎰⎰ (2)‎设2z x ix =+. 01x ≤≤()()122211()3Ciz dz x ix d x ix -=-++=⎰⎰ ‎3. 计算积分d Cz z ⎰,其‎中积分路径C 为(1‎) 从点-i 到点i 的‎直线段;(2) 沿‎单位圆周|z |=1的‎左半圆周,从点-i 到‎点i ;(3) 沿单‎位圆周|z |=1的右‎半圆周,从点-i 到点‎i .解 (1)设‎z iy =. 11y -≤≤1111Cz dz ydiy i ydy i --===⎰⎰⎰(2‎)设i z e θ=. θ从32π到2π‎22332212i i Cz dz de i de i ππθθππ===⎰⎰⎰(3) 设i z e θ=.‎ θ从32π到2π23212i Cz dz de i πθπ==⎰⎰‎6. 计算积分()sin zCz ez dz -⋅⎰ ,其‎中C 为0za =>.解()sin sin zzCCCz ez dz z dz e zdz -⋅=-⋅⎰⎰⎰‎∵sin ze z ⋅在z a =所围的区域内‎解析∴sin 0zCezdz ⋅=⎰从而()2022sin 0z i CCi z e z dz z dz adae a i e d πθπθθ-⋅====⎰⎰⎰⎰ ‎故()sin 0zCz ez dz -⋅=⎰7. 计算‎积分21(1)Cdz z z +⎰,其中积分路径‎C 为(1)11:2C z =‎(2)23:2C z =(3)31:2C z i +=‎(4)43:2C z i -= 解:‎(1)在12z =所围的区域‎内,21(1)z z +只有一个奇点0z =‎. 12111111()2002(1)22CC dz dz i i z z z z i z i ππ=-⋅-⋅=--=+-+⎰⎰ (2)在2C 所‎围的区域内包含三个奇‎点0,z z i ==±.故22111111()20(1)22CC dz dz i i i z z z z i z iπππ=-⋅-⋅=--=+-+⎰⎰ (3)‎在2C 所围的区域内包含‎一个奇点z i =-,故32111111()00(1)22C C dz dz i i z z z z i z i ππ=-⋅-⋅=--=-+-+⎰⎰‎(4)在4C 所围的区域‎内包含两个奇点0,z z i ==,故‎42111111()2(1)22C C dz dz i i i z z z z i z i πππ=-⋅-⋅=-=+-+⎰⎰10.利用‎牛顿-莱布尼兹公式计‎算下列积分. ‎(1)20cos 2izdz π+⎰(2‎)z ie dz π--⎰ (3)21(2)iiz dz +⎰‎(4) 1ln(1)1iz dz z ++⎰ (5‎)1sin z zdz ⋅⎰(6)211tan cos izdz z +⎰‎解 (1)2201cos sin21222iiz z dz ch ππ++==⎰(2‎)2zz iiedz e ππ----=-=-⎰(3)22311111111(2)(2)(2)(2)333ii ii iz dz iz d iz iz i i +=++=⋅+=-+⎰⎰ (‎4) 222111ln(1)11ln(1)ln(1)ln (1)(3ln 2)1284ii iz dz z d z z z π+=++=+=-++⎰⎰ (5)11110000sin cos cos cos sin1cos1z zdz zd z z z zdz ⋅=-=-+=-⎰⎰⎰‎(6) 222112111221tan 1sec sec tan tan cos 2111tan1tan 1t 122ii i i iz dz zdz z zdz tanz z z ith h +=+=+⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰11.‎ 计算积分21zCe dz z +⎰,其中C ‎为 (1) 1z i -= (‎2) 1z i += (3) ‎2z =解 (1)221()()z z ziz iC C e e e dz dz i e z z i z i z iππ===⋅=++-+⎰⎰ ‎(2)221()()z z zi z iC C e e e dz dz i e z z i z i z iππ-=-==⋅=-++--⎰⎰(3)‎122222sin1111z z z i iC C C e e e dz dz dz e e i z z z πππ-=+=-=+++⎰⎰⎰16. ‎求下列积分的值,其中‎积分路径C 均为|z |‎=1.(1) 5zC e dz z ⎰ ‎ (2) 3cos C z dz z ⎰(3)‎ 020tan12,()2C zdz z z z <-⎰ 解 (1) (4)52()4!12z z z C e i idz e z ππ===⎰ ‎(2)(2)3cos 2(cos )2!z C z i dz z i z ππ===-⎰(3)‎ 0'220tan22(tan )sec ()2z z C zz dz i z i z z ππ===-⎰17. 计‎算积分331(1)(1)C dz z z -+⎰ ,其中积分路‎径C 为(1)中心位‎于点1z =,半径为2R <的正‎向圆周(2) 中心‎位于点1z =-,半径为2R <的‎正向圆周解:(‎1) C内包含了奇点‎1z =∴(2)13331213()(1)(1)2!(1)8z C i idz z z z ππ===-++⎰ (2) C‎内包含了奇点1z =-,∴‎(2)13331213()(1)(1)2!(1)8z C i i dz z z z ππ=-==--+-⎰19. 验证下‎列函数为调和函数.‎3223(1)632;(2)e cos 1(e sin 1).x xx x y xy y y i y ωω=--+=+++解(1) 设w u i υ=+,‎3223632u x x y xy y=--+ 0υ=∴223123u x xy y x ∂=--∂ 22666ux xy y y∂=--+∂ ‎22612u x y x∂=-∂ 22612ux y y ∂=-+∂ 从而有22220u ux y ∂∂+=∂∂‎,w 满足拉普拉斯方程‎,从而是调和函数. ‎(2) 设w u i υ=+,cos 1x u e y =⋅+ ‎sin 1x e y υ=⋅+∴cos x u e y x ∂=⋅∂ s i n x ue y y∂=-⋅∂ 22cos x u e y x ∂=⋅∂ ‎ 22cos x u e y y∂=-⋅∂ 从而有22220u ux y∂∂+=∂∂,u ‎满足拉普拉斯方程,从‎而是调和函数. sin x e y x υ∂=⋅∂ ‎ cos x e y yυ∂=⋅∂ 22sin xe y x υ∂=⋅∂ 22s i n x y e yυ∂=-⋅∂ 22220x yυυ∂∂+=∂∂,‎υ满足拉普拉斯方程,‎从而是调和函数.‎20.证明:函数22u x y =-,‎22xx yυ=+都是调和函数,但()f z u i υ=+‎不是解析函数证明:‎ 2u x x ∂=∂ 2u y y ∂=-∂ 222u x ∂=∂ 222u y∂=-∂ ‎∴22220u ux y ∂∂+=∂∂,从而u 是调和函‎数. 22222()y x x x y υ∂-=∂+ 2222()xy y x y υ∂-=∂+ 223222362()xy x x x y υ∂-+=∂+ ‎ 223222362()xy x y x y υ∂-=∂+ ∴22220x yυυ∂∂+=∂∂,从而υ是‎调和函数. 但∵u x y υ∂∂≠∂∂ ‎ u yx υ∂∂≠-∂∂ ∴不满足C-R ‎方程,从而()f z u i υ=+不是解析‎函数.22.由下‎列各已知调和函数,求‎解析函数()f z u i υ=+ (1)22u x y xy =-+‎(2)22,(1)0yu f x y ==+ 解 (‎1)因为 2u x y x y υ∂∂=+=∂∂ 2u y x y xυ∂∂=-+=-∂∂ ‎ 所以22(,)(,)(2)(2)(2)00(0,0)(0,0)222u u x y x y y x dx dy C y x dx x y dy C xdx x y dy C y xx y xy Cυ∂∂=-++=-+++=-+++⎰⎰⎰⎰∂∂=-+++2222()i(2)22x y f z x y xy xy C =-++-+++令y ‎=0,上式变为22()i()2x f x x C =-+‎从而22()i i 2z f z z C =-⋅+(2)2222()u xy x x y ∂=-∂+ ‎ 22222()u x y y x y ∂-=∂+ 用线积分法,取‎(x 0,y 0)为(1‎,0),有2(,)4222(1,0)122222()0()1110x y x u u x y ydx dy C dx x dy Cy x x x y x x yC x x y x y υ∂∂=-++=-+⎰∂∂+=-+=-+++⎰⎰ 2222()i(1)y xf z C x y x y=+-+++ ‎由(1)0.f =,得C=0 ()11f i z z ⎛⎫∴=- ⎪⎝⎭‎23.设12()()()()n p z z a z a z a =--- ,其中(1,2,,)i a i n = ‎各不相同,闭路C 不通‎过12,,,n a a a ,证明积分1()d 2π()C p z z i p z '⎰ ‎等于位于C 内的p(z ‎)的零点的个数.‎证明: 不妨设闭路C ‎内()P z 的零点的个数为k ‎, 其零点分别为12,,...k a a a‎1112312121()()()...()...()1()12πi ()2πi ()()...()111111...2πi 2πi 2πi 111111...1...2πi 2πi nnk k n k k C Cn C C C nC C k n k z a z a z a z a z a P z dz dzP z z a z a z a dz dz dz z a z a z a dz d z a z a -==+-+--+--'=---=+++---=++++++--∏∏⎰⎰⎰⎰⎰⎰⎰个z k=24.试证明下‎述定理(无界区域的柯‎西积分公式): 设f ‎(z )在闭路C 及其外‎部区域D 内解析,且lim ()z f z A →∞=≠∞‎,则(),,1()d ,.2πC f z A z D f A z G i z ξξξ-+∈⎧=⎨∈-⎩⎰ 其中G 为C ‎所围内部区域.证‎明:在D 内任取一点Z ‎,并取充分大的R ,作‎圆C R : R z =,将C 与‎Z 包含在内则f(z ‎)在以C 及RC 为边界的‎区域内解析,依柯西积‎分公式,有R 1()()()[-]2πi C C f f f z d d z zζζζζζζ=--⎰⎰ 因为‎()f z zζζ-- 在R ζ>上解析,且‎()1lim lim ()lim ()11f f f z z ζζζζζζζζζ→∞→∞→∞=⋅==--所以,当Z 在C 外‎部时,有1()()2πi C f f z A d z ζζζ=--⎰即1()()2πi C f d f z A zζζζ=-+-⎰ ‎设Z 在C 内,则f(z ‎)=0,即 R 1()()0[]2πi C C f f d d zz ζζζζζζ=---⎰⎰ 故有‎:1()2πi C f d A z ζζζ=-⎰ ‎。

复变函数与积分变换 第二章课后答案

复变函数与积分变换 第二章课后答案

e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)

C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得

求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,

C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,

复变函数与积分变换包括答案马柏林、李丹横、晏华辉修订版本,习题2.docx

复变函数与积分变换包括答案马柏林、李丹横、晏华辉修订版本,习题2.docx

习题二1. 求映射 w z 1 下圆周| z | 2的像.z解:设因为z x i y,w u i vu i v x iy1i yxx2y2 4 ,所以 u iv则x i y x yx iy x2y2x x2y2i( y x2y2 )5 3x yi44所以 u 5x , v 3 y 44x u, yv 53 44所以u v2u 2v21 ,表示椭圆 . 5232即232544222.在映射w2下,下列z 平面上的图形映射为w 平面上的什么图形,设wiz e 或w u iv .( 1) 0r2,π;( 2) 0 r2,0π;44(3) x=a,y=b.(a, b 为实数 )解:设 w u iv(x iy) 2x2y22xyi所以 u x2y2 , v 2 xy.(1)记 w e i,则 0r2,π映射成 w 平面内虚轴上从O 到 4i 的一段,即40π4,. 2(2) 记 w i ππe ,则 0,0 r 2 映成了 w 平面上扇形域,即 04,0.42—(3) 记 wu iv ,则将直线 x=a 映成了 u a 2y 2 , v 2ay. 即 v 2 4a 2 (a 2 u). 是以原点为焦点,张口向左的抛物线将22y=b 映成了 u xb , v 2 xb.即 v 24b 2 (b 2u) 是以原点为焦点,张口向右抛物线如图所示.3. 求下列极限 .(1) lim1 2 ;1 zz解:令 z1,则 z,t0 .t于是 lim 1limt 20 .z 2t 2z1 t 01(2)lim Re( z) ;z 0z解:设 z=x+yi ,则Re(z)x x 有z i yRe( z)limx1lim zx 0xi kx 1 i kz 0y kx 显然当取不同的值时 f(z)的极限不同所以极限不存在 .(3) limz i2;z(1z iz )解: lim z i = limz i 1 1 z(1 2 ) z(iz)( z lim .z i z z i i ) z i z(i z) 2—zz 2 zz 2.(4) lim2z 1z1解:因为 zz 2 z z 2 ( z 2)( z1) z 221( z 1)(z1) z ,z1所以lim zz2z z 2 lim z 2 3 . z 1z 2 1 z 1 z124. 讨论下列函数的连续性:2xy 2 ,z0,(1) f ( z)x y0,z 0; 解:因为 lim f (z)limxy2 ,x 2yz 0( x, y) (0,0)若令 y=kx,则limxyk ,x2y21 k2( x, y)(0,0)因为当 k 取不同值时, f(z)的取值不同,所以 f(z)在 z=0 处极限不存在 .从而 f( z)在 z=0 处不连续,除 z=0 外连续 .x 3 y (2) f ( z)x 4 y 2 ,z 0, 0,z 0.3x 3yx解:因为 0x y,x 4y22 x2y2所以 limx 3 y0 f (0)y 2( x, y) (0,0)x 4 所以 f( z)在整个 z 平面连续 .5. 下列函数在何处求导?并求其导数. (1) f ( z) (z1)n 1(n 为正整数 );解:因为 n 为正整数,所以 f(z) 在整个 z 平面上可导 .f (z) n(z1)n 1 .(2) f ( z)z 2.( z 1)(z 2 1)解:因为 f(z) 为有理函数,所以 f(z) 在 (z 1)( z 2 1) 0 处不可导 .从而 f( z)除 z1, z i 外可导 .f( z 2) ( z 1)( z 2 1)(z 1)[( z 1)(z 21)](z)(z1)2 ( z 2 1)22z 3 5z 2 4 z 3(z2 221) ( z1)(3)3z 8f ( z).5z 7解: f(z)除 z= 7f ( z)3(5z7) (3z 8)5 61 外处处可导,且 (5z 22 . 57)(5 z 7)(4) f ( z) x y x y2 .2 2 i 2 yx y xx y i( xy) x i yi( xiy) ( x i y)(1i) z(1 i)1 i解:因为 f ( z)x2y2x 2y2x 2y 2 z 2z .所以 f( z)除 z=0 外处处可导,且f ( z)(1 i) .z 26. 试判断下列函数的可导性与解析性.(1)f ( z) xy 2i x 2 y ;解: u( x, y)2,v(x, y) 2xy x y 在全平面上可微 . yy 2 ,u 2 xy, v 2xy, v x 2 xyxy所以要使得u v , u v ,xyyx只有当 z=0 时,从而 f( z)在 z=0 处可导,在全平面上不解析 .(2)f ( z) x 2 i y 2 .解: u( x, y) x 22, v(x, y) y 在全平面上可微 .u 2 x, u0,v 0,vx yx 2yy只有当 z=0 时,即 (0,0)处有u v u v x,y.yy所以 f( z)在 z=0 处可导,在全平面上不解析 .(3)f ( z) 2x 3 3iy 3 ;解: u( x, y) 2 x 3 , v( x, y) 3 y 3 在全平面上可微 . u 6 x 2 , u 0,v 9 y 2 ,v 0x yxy所以只有当 2 x 3y 时,才满足C-R 方程 .从而 f( z)在 2x3y 0 处可导,在全平面不解析 .(4) f ( z) z z 2 .解:设 z x i y ,则 f (z)( x i y) ( x iy)2x 3 xy 2 i( y 3 x 2 y)u ( x, y) x 3 xy 2 , v( x, y)y 3 x 2 yu22u 2 xy,vv 22x 3xy ,2xy,y3 y xy x所以只有当 z=0 时才满足 C-R 方程 . 从而 f( z)在 z=0 处可导,处处不解析.7. 证明区域 D 内满足下列条件之一的解析函数必为常数.(1)f ( z)0 ;证明:因为 f ( z) 0 ,所以u u0 v v x y ,0 .xy所以 u,v 为常数,于是f(z)为常数 .(2) f ( z) 解析 .证明:设 f ( z) u iv 在 D 内解析 ,则u( v) uv x y xyu ( v) v y xyu v u vx,yxy而 f(z)为解析函数,所以 u u , u vx yy x所以vv , v v , 即 uu v v 0xxyyxyxy从而 v 为常数, u 为常数,即 f(z)为常数 .(3) Ref(z)=常数 .证明:因为 Ref(z)为常数,即 u=C 1,u u 0xy因为 f( z)解析, C-R 条件成立。

复变函数与积分变换课后习题答案

复变函数与积分变换课后习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈C ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈C ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=L证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=L又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

(含答案)复变函数与积分变换习题解析2

(含答案)复变函数与积分变换习题解析2

(含答案)复变函数与积分变换习题解析2习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明.(1)如果()f z 在0z 连续,那么0()f z '存在.(2)如果0()f z '存在,那么)(z f 在0z 解析.(3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导.(4)如果0z 是()f z和()g z 的⼀个奇点,那么0z 也是()()f z g z +和()()f z g z ?的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应⽤导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导.习题2.21. 设试证)(z f 在原点满⾜柯西-黎曼⽅程,但却不可导.(提⽰:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=;(2)i y x y x z f 22332)(+-=;(3)=)(z f232z z -+;(4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=;(4 4. (1)iz z z f 2)(3+=;(25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--;(2 (0)z ≠;(3)1(33)x iy ω-=-;(4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+.(1)2(1)u x y =-;(2)3223u x x xy =-+;(3)323u x xy =-;(4)23v xy x =+;(5)x y x v 222+-=;(62. 求k 值使22ky x u +=为调和函数,并求满⾜1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是⼀个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满⾜下列条件之⼀,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ;(7)i 3;(8)i i )1(+;(9)1(34)i i ++;(10))1sin(i +;(11)cos(5)i π+;(12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ;(3(4 (55.证明:(1)122=-z sh z ch ;(2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复习题⼆⼀、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B⼀、单项选择题1. ). D.z sin2. 下列说法正确的是().A.函数的连续点⼀定不是奇点B.可微的点⼀定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内⽆奇点D.不存在处处不可导的函数3. 下列说法错误的是(). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是().A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满⾜C-R ⽅程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是().A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是().7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是(). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数(). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是().A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是().A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是(). A. )(z f 在复平⾯上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是().A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==⼆、填空题在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivu)(.(1)xu=;(2)xy u=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22y=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数xu和),(yxv都具有⼆阶连续偏导数,且满⾜拉普拉斯⽅程,现令x yvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第⼆章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)zf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导,(44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(;(2)ci z z z f +-=32)(;(3)=)(z f 3z ci +;(4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2;(62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈;((5(6(7)3ln 2i k e e π-)(Zk ∈;(9 ((2.(1 (23.(1)正确;(2)正确;(3)正确.复习题⼆⼆、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0(Λ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平⾯内处处不可导,处处不解析;(2)在0=z 处可导,但在复平⾯内处处不解析,0)0(='f ;(3)在复平⾯内处处不可导,处处不解析;6.(1)4e -;(2))4sin 4(cos 3i e +;(3(4(6 (7。

复变函数与积分变换答案(马柏林)

复变函数与积分变换答案(马柏林)

1. 复级数1nn a∞=∑与1nn b∞=∑都发散,则级数1()nn n ab ∞=±∑和1n n n a b ∞=∑发散.这个命题是否成立?为什么?答.不一定.反例: 2211111111i ,i n n n n n n a b n n n n ∞∞∞∞=====+=-+∑∑∑∑发散但2112()i n n n n a b n ∞∞==+=⋅∑∑收敛 112()n nn n ab n∞∞==-=∑∑发散 241111[()]n n n n a b n n∞∞===-+∑∑收敛.2. 下列复数项级数是否收敛,是绝对收敛还是条件收敛?(1)2111i n n n +∞=+∑ (2)115i ()2nn ∞=+∑ (3) π1ei nn n∞=∑ (4) 1i ln nn n∞=∑ (5)cosi 2n n n ∞=∑解 (1) 211111i 1(1)i 1(1)i n n nn n n n n n n +∞∞∞===++-⋅-==+⋅∑∑∑ 因为11n n ∞=∑发散,所以2111i n n n +∞=+∑发散(2)1115i 2nnn n ∞∞==+=∑∑发散 又因为15i 15lim()lim(i)0222n nn n →∞→∞+=+≠ 所以115i()2nn ∞=+∑发散(3)πi11e 1nn n n n ∞∞===∑∑发散,又因为π111ππcosisin e 1ππ(cos isin )i nn n n n n n n n n n ∞∞∞===+==+∑∑∑收敛,所以不绝对收敛. (4)11i 1ln ln n n n n n∞∞===∑∑ 因为11ln 1n n >- 所以级数不绝对收敛.又因为当n=2k 时, 级数化为1(1)ln 2kk k∞=-∑收敛当n=2k+1时, 级数化为1(1)ln(21)kk k ∞=-+∑也收敛所以原级数条件收敛(5) 0000cosi 1e e 1e 11()()2222222n n n nnn n n n n n e -∞∞∞∞====+=⋅=+∑∑∑∑ 其中0e ()2nn ∞=∑ 发散,01()2n n e ∞=∑收敛 所以原级数发散.3.证明:若Re()0n a ≥,且1nn a∞=∑和21nn a∞=∑收敛,则级数21nn a∞=∑绝对收敛.证明:设2222i ,(i )2i n n n n n n n n n n a x y a x y x y x y =+=+=-+ 因为1nn a∞=∑和21nn a∞=∑收敛所以21111,,(),n nnn n n n n n n x y xy x y ∞∞∞∞====-∑∑∑∑收敛又因为Re()0n a ≥,所以0n x ≥且2lim lim 0n n n n x x →∞→∞== 当n 充分大时, 2n n x x <所以21nn x∞=∑收敛2222222()n n n n n n a x y x x y =+=--而212nn x∞=∑收敛,221()n n n xy ∞=-∑收敛所以21nn a∞=∑收敛,从而级数21nn a∞=∑绝对收敛.4.讨论级数1()n n n zz ∞+=-∑的敛散性解 因为部分和110()1nk k n n k s zz z ++==-=-∑,所以,1,1n z s <→-当时1,0n z s =→当时,1,n z s =-当时不存在.当i e z θ=而0θ≠时(即1,1z z =≠),cosn θ和sinn θ都没有极限,所以也不收敛.,n z s →∞当>1时.故当1z =和1z <时, 1()n n n zz ∞+=-∑收敛.5.幂级数(2)nnn C z ∞=-∑能否在z=0处收敛而在z=3处发散.解: 设1limn n nC C ρ+→∞=,则当12z ρ-<时,级数收敛,12z ρ->时发散.若在z=0处收敛,则12ρ>若在z=3处发散, 则11ρ<显然矛盾,所以幂级数0(2)nnn C z ∞=-∑不能在z=0处收敛而在z=3处发散6.下列说法是否正确?为什么?(1)每一个幂级数在它的收敛圆周上处处收敛.(2) 每一个幂级数的和函数在它的收敛圆内可能有奇点.答: (1) 不正确,因为幂级数在它的收敛圆周上可能收敛,也可能发散. (2) 不正确,因为收敛的幂级数的和函数在收敛圆周内是解析的.7.若0nn n C z ∞=∑的收敛半径为R,求0nn n n C z b ∞=∑的收敛半径。

复变函数与积分变换部分课后答案

复变函数与积分变换部分课后答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)—课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭① :≧设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ≨()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ≧()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ≨()332Re 3z x xy =-,()323Im 3z x y y =-.③解:≧(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=≨Re 1=⎝⎭, Im 0=⎝⎭. ④解:≧()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=≨Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ≧()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.≨当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ≨z =x 为实数.若z =x ,x ∈ ,则z x x ==. ≨z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明≧()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤≨z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.≧()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.≨()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.≨()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:≧32π2πcos isin 199⎛⎫+= ⎪⎝⎭.≨322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k≨1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=≨1ππ1cos i sin 332=+=+z2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根.πi 4e ⎫=⎪⎪⎝⎭≨)()1π1i ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭≨π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:≧2πi e nz ⋅= ≨1n z =,即10n z -=.≨()()1110n z z z --+++=又≧n ≥2. ≨z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90°故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换(修订版-复旦大学)课后习题答案

复变函数与积分变换(修订版-复旦大学)课后习题答案

习题 七1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f其中()⎰+∞⋅=0tdt sin π2)(ωωt f b当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f其中⎰+∞⋅=02tdt c f(t))(ωωos a证明:因为ωωωd G t f t i ⎰+∞∞-=e )(π21)(其中)(ωG 为f (t )的傅里叶变换()()()(cos sin )i tG f t edt f t t i t dt ωωωω+∞+∞--∞-∞==⋅-⎰⎰()cos ()sin f t tdt i f t tdt ωω+∞+∞-∞-∞=⋅-⋅⎰⎰当f (t )为奇函数时,t cos f(t)ω⋅为奇函数,从而⎰+∞∞-=⋅0tdt cos f(t)ωt sin f(t)ω⋅为偶函数,从而⎰⎰+∞∞-+∞⋅=⋅0.sin f(t)2tdt sin f(t)tdt ωω故.sin f(t)2)(0tdt iG ωω⋅-=⎰+∞有)()(ωωG G -=-为奇数。

ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+⋅=⋅=⎰⎰+∞∞-+∞∞-=01()sin d ()sin d 2ππi G i t G t ωωωωωω+∞+∞-∞⋅=⋅⎰⎰ 所以,当f(t)为奇函数时,有2()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞+∞=⋅⋅⎰⎰其中同理,当f(t)为偶函数时,有()()cos d f t a t ωωω+∞=⋅⎰.其中02()()cos πa f t tdt ωω+∞=⋅⎰ 2.在上一题中,设()f t =21,0,1t t t ⎧<⎪⎨≥⎪⎩.计算()a ω的值.解:1200111220012012011200222()()cos d cos d 0cos d πππ221cos d d(sin )ππ122sin sin 2d 0ππ2sin 4(cos )π2sin 4cos cos π2sin 4co a f t t t t t t t t t t t t t t t t t tt d t t t tdt ωωωωωωωωωωωωωωπωωωωωπωωπω+∞+∞=⋅=⋅+⋅=⋅=⋅=⋅⋅-⋅=⋅+⋅⎡⎤=+⋅-⎢⎥⎣⎦=+⎰⎰⎰⎰⎰⎰⎰⎰23s 4sin ωωπωπω-3.计算函数sin ,6π()0,6πt t f t t ⎧≤⎪=⎨≥⎪⎩的傅里叶变换. 解:[]6π6π6π6π6π02()()d sin d sin (cos sin )d 2sin sin d sin 6ππ(1)i t i t F f f t e t t e tt t i t ti t t t i ωωωωωωωω+∞---∞--=⋅=⋅=⋅-=-⋅=-⎰⎰⎰⎰4.求下列函数的傅里叶变换 (1)()tf t e -=解: []||(||)0(1)(1)2F f ()()d d d 2d d 1i t t i t t i t t i t i f te t e e t e te t e t ωωωωωωω+∞+∞+∞----+-∞-∞-∞+∞--+-∞==⋅==+=+⎰⎰⎰⎰⎰(2)2()t f t t e-=⋅解:因为22222/4F[].()(2)2.t t t t e ee e t t e ω-----==⋅-=-⋅而所以根据傅里叶变换的微分性质可得224()F()tG t e e ωω--=⋅=(3)2sin π()1tf t t =- 解:222202200sin π()F()()d 1sin π(cos sin )d 11[cos(π)cos(π)]sin πsin 2d 2d 11cos(π+)cos(π-)d d ()11sin ,||π20,|i tt G f e t t tt i t t t t t t t i t i t t t t t i t i t t t iωωωωωωωωωωωωω+∞--∞+∞-∞+∞+∞-∞+∞+∞==⋅-=⋅---+--⋅=-=---=----≤=⎰⎰⎰⎰⎰⎰利用留数定理当当|π.⎧⎪⎨⎪≥⎩(4)41()1f t t=+ 解:4444401cos sin ()d d d 111cos cos 2d d 11i tt t G e t t i t t t t t t t t t t ωωωωωω+∞+∞+∞--∞-∞-∞+∞+∞-∞==-+++==++⎰⎰⎰⎰⎰令41R(z)=1z +,则R(z)在上半平面有两个一级极1)i i +-+. R()d 2π[R())]2π[R()1)]i t i z i z t e t i Res z e i i Res z e i ωωω+∞-∞⋅=⋅⋅++⋅⋅-+⎰故.|244cos ||||d Re[d ]sin )1122i t t e t t t t ωωωωω+∞+∞--∞-∞=+++⎰⎰(5) 4()1tf t t =+ 解:4444()d 1sin cos d d 11sin d 1i t tG e t t t t t t t i t t t t t i tt ωωωωω+∞--∞+∞+∞-∞-∞+∞-∞=⋅+⋅=⋅-++⋅=-+⎰⎰⎰⎰ 同(4).利用留数在积分中的应用,令4R()=1zz z +则44|sin d ()Im(d )11sin22i tt tt e i t i t t t ie ωωωω+∞+∞-∞-∞-⋅⋅-=-++=-⋅⋅⎰⎰.5.设函数F (t )是解析函数,而且在带形区域Im()t δ<内有界.定义函数()L G ω为/2/2()()e d .L i t L L G F t t ωω--=⎰证明当L →∞时,有1p.v.()e d ()2πi t L G F t ωωω∞-∞→⎰ 对所有的实数t 成立.(书上有推理过程) 6.求符号函数 1,0sgn 1,0||t t t t t -<⎧==⎨>⎩的傅里叶变换. 解: 因为1F (())π().u t i δωω=+⋅把函数sgn()t 与u(t)作比较.不难看出 sgn()()().t u t u t =-- 故:[]11F[sgn()]F(())F(())π()[π()]π()22π()()t u t u t i i i i δωδωωδωδωωω=--=+⋅-+⋅--=+--=7.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t解:[]000-100000001()F (F())=π()()d 2πF(cos )=cos d d 2π[()()]()cos i ti t i t i t i tf t e t t e te e e tf t tωωωωωωδωωδωωωωωδωωδωωω+∞-∞+∞--∞-+∞--∞=⋅++-⋅+=⋅=++-=⎰⎰⎰而所以8.设函数f (t )的傅里叶变换()F ω,a 为一常数. 证明1[()]().f at F a a ωω⎛⎫=⎪⎝⎭1F[()]()()d ()d()i t i t f at f at e t f at e at a ωωω+∞+∞---∞-∞=⋅=⋅⎰⎰解:当a >0时,令u=at .则11F[()]()()d u i a f at f u e u F a a a ωωω-+∞-∞⎛⎫=⋅= ⎪⎝⎭⎰当a <0时,令u=at ,则1F[()]()F()f at a aωω=-. 故原命题成立.9.设()[]();F F f ωω=证明()()[]()F f t ωω=--F .证明:()[]()()()()()[]()[]()()[]()()e d e d e d e d e d .i t i u i i u u i t F f t f uf t u t f u f uu u f t F t ωωωωωωω+∞+∞--∞-∞+∞+∞--⋅-⋅--∞-∞+∞-⋅--∞=⋅=-⋅--=⋅=⋅=⋅=-⎰⎰⎰⎰⎰10.设()[]()F F f ωω=,证明:()[]()()()0001cos 2F f t F F t ωωωωωω⋅=-++⎡⎤⎣⎦以及()[]()()()0001sin .2F f t F F t ωωωωωω⋅=--+⎡⎤⎣⎦ 证明:()[]()()()()()0000000e +e cos 21e e 22212i t i t i t i t F f t F t f t F F f f t t F F ωωωωωωωωω--⎡⎤⋅=⋅⎢⎥⎣⎦⎧⎫⎡⎤⎡⎤=+⋅⋅⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭=-++⎡⎤⎣⎦同理:()[]()()(){}()()0000000e e sin 21e e 212i t i t i t i t Ff t F f t t i F F f f t t i F F i ωωωωωωωωω--⎡⎤-⋅=⋅⎢⎥⎣⎦=-⎡⎤⎡⎤⋅⋅⎣⎦⎣⎦=--+⎡⎤⎣⎦ 11.设()()π0,0sin ,0t 200e ,t t t f g t t t -⎧<⎧≤≤⎪==⎨⎨≥⎩⎪⎩,其他计算()*f g t . 解:()())*(d f y g y t f g t y +∞-∞-=⎰当t y o -≥时,若0,t <则()0,f y =故()*f g t =0.若0,0,2t y t π<≤<≤则()()()0()d sin d *t ty f y g y e y t f g t y t y -=⋅--=⎰⎰若,0..222t t y t y t πππ>≤-≤⇒-≤≤则()()2sin d *ty t e y t f g y t π--⋅-=⎰故()()()20,01,0sin cos e *221e .1e 22t t t t t t f g t t πππ--<⎧⎪⎪<≤-+=⎨⎪⎪>+⎩12.设()u t 为单位阶跃函数,求下列函数的傅里叶变换.()()()0e sin 1at f t u t t ω-=⋅()()()()()()()00000000002002e sin e e sin e e e e e 211e d d d d e 2d 2at i t at i t i t i t ati ta i t a i t ttG F t u f t t t i i i t t a i ωωωωωωωωωωωωωωωω+∞-∞+∞+∞+∞+--------+--++⎡⎤⎡⎤⎣∞⎣⎦⎦=====-=⋅⋅⋅⋅⋅-⋅⋅++⎰⎰⎰⎰⎰解:习题八1.求下列函数的拉普拉斯变换.(1)()sin cos f t t t =⋅,(2)4()etf t -=,(3)2()sin f t t= (4)2()f t t =, (5)()sinh f t bt=解: (1) 1()sin cos sin 22f t t t t =⋅=221121(())(sin 2)2244L f t L t s s ==⋅=++(2)411(())(e )24tL f t L s -==+(3)21cos 2()sin 2t f t t -==221cos21111122(())()(1)(cos2)222224(4)t L f t L L t s s s s -==-=⋅-⋅=++(4)232()L t s = (5)22e e 111111(())()(e )(e )22222bt bt bt bt bL f t L L L s b s b s b ---==-=⋅-⋅=-+-2.求下列函数的拉普拉斯变换.(1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩解: (1) 1220011(())()e 2e e (2e e )st st st s s L f t f t dt dt dt s +∞-----=⋅=⋅+=--⎰⎰⎰(2)πππ2011e (())()e cos e (1e )1s ststsL f t f t dt t dt s s -+∞---+=⋅=⋅=+++⎰⎰3.设函数()cos ()sin ()f t t t t u t δ=⋅-⋅,其中函数()u t 为阶跃函数, 求()f t 的拉普拉斯变换.解:20222(())()e cos ()e sin ()e cos ()e sin e 11cos e 1111st st st st st stt L f t f t dt t t dt t u t dtt t dt t dts t s s s δδ+∞+∞+∞---+∞+∞---∞-==⋅=⋅⋅-⋅⋅=⋅⋅-⋅=⋅-=-=+++⎰⎰⎰⎰⎰4.求图8.5所表示的周期函数的拉普拉斯变换解:2()e 1(())1e (1e )Tst T T as as f t dt as aL f t s s ---⋅+==---⎰5. 求下列函数的拉普拉斯变换.(1)()sin 2tf t lt l=⋅ (2)2()e sin5t f t t -=⋅(3)()1e t f t t =-⋅ (4)4()e cos4t f t t-=⋅(5()(24)f t u t =- (6()5sin 23cos 2f t t t =-(7) 12()e t f t t δ=⋅ (8) 2()32f t t t =++解:(1)222222221()sin [()sin ]221()(())(sin )[()sin ]22112()22()()tf t lt t lt l lt F s L f t L lt L t lt l ll ls s l s l l s l s l =⋅=--⋅==⋅=--⋅-'=-=-⋅=+++(2)225()(())(e sin 5)(2)25t F s L f t L t s -==⋅=++21(3)()(())(1e )(1)(e )(e )1111()1(1)t t t F s L f t L t L L t L t ss s s s ==-⋅=-⋅=+-⋅'=+=--- (4)424()(())(ecos 4)(4)16ts F s L f t L t s -+==⋅=++ (5)1,2(24)0,t u t >⎧-=⎨⎩其他22()(())((24))=(24)e 1=e =e st stsF s L f t L u t u t dtdt s∞-∞--==--⋅⎰⎰(6)222()(())(5sin 23cos2)5(sin 2)3(cos2)210353444F s L f t L t t L t L t s ss s s ==-=--=⋅-⋅=+++ (7)12332213(1)()22()(())(e )()()t F s L f t L t s s δδδΓ+Γ==⋅==-- (8)2221()(())(32)()3()2(1)(232)F s L f t L t t L t L t L s s s ==++=++=++6.记[]()()L f s F s =,对常数0s ,若00Re()s s δ->,证明00[e ]()()s t L f s F s s ⋅=-证明:00000()()00[e ]()e ()e ()e()e ()s t s tsts s ts s t L f s f t dtf t dt f t dt F s s ∞-∞∞---⋅=⋅⋅=⋅=⋅=-⎰⎰⎰7 记[]()()L f s F s =,证明:()()[(t)()]()n nF s L f t s =-⋅证明:当n=1时,0()()e st F s f t dt +∞-=⋅⎰0()[()e ][()e ]()e (())st stst F s f t dt f t dt t f t dt L t f t s+∞--+∞+∞-''=⋅∂⋅==-⋅⋅=-⋅∂⎰⎰⎰所以,当n=1时, ()()[(t)()]()n nFs L f t s =-⋅显然成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
v ex ( y cos y x sin y) ex (sin y) ex ( y cos y x sin y sin y) x
v ex (cos y y( sin y ) x cos y) ex (cos y y sin y x cos y ) y
所以 u
v ,
u
v
xy
y
x
所以 f( z)处处可导,处处解析 .
v
xy
y
x
所以 v xv,v源自xyv ,即 u u v v 0
y
xyxy
从而 v 为常数, u 为常数,即 f(z)为常数 .
(3) Ref (z)=常数 .
证明:因为 Ref(z)为常数,即 u=C1, u x
u0 y
因为 f( z)解析, C-R 条件成立。故 u x
u 0 即 u=C2 y
从而 f( z)为常数 .
而 lim u x, y x, y 0,0
x 3 y3
lim
x, y 0,0
x2
y2
欢迎下载
7


x3 x2
y3 y2
xy x y 1 x2 y2
∴ 0≤
x3 x2
y3 3 y2 ≤ 2 x
y
x3 y3

lim
x, y 0,0
x2
y2
0
同理
x3
lim
x, y 0,0
x2
y3 y2
0
∴ lim f z 0 f 0 x, y 0,0
证明:因为 f ( z) 0 ,所以 u x
u 0, v
y
x
v 0.
y
所以 u,v 为常数,于是 f(z)为常数 .
(2) f ( z) 解析 .
证明:设 f ( z) u iv 在 D 内解析 ,则
u ( v) u
v
xy
x
y
u
( v)
v
y
x
y
u
v
uv
,
x
y
yx
而 f(z)为解析函数,所以 u u , u
x y i( x y) x2 y2
x i y i( x iy) x2 y2
( x i y)(1 i) x2 y2
z(1 i)
2
z
1i .
z
所以 f( z)除 z=0 外处处可导,且 f ( z)
(1 i) z2
.
6. 试判断下列函数的可导性与解析性 . (1) f ( z) xy2 i x2 y ;
2
所以
lim
( x, y) (0,0)
x3 y x4 y2
0
f (0)
所以 f( z)在整个 z 平面连续 .
5. 下列函数在何处求导?并求其导数 . (1) f ( z) (z 1)n 1 (n 为正整数 );
解:因为 n 为正整数,所以 f(z) 在整个 z 平面上可导 . f (z) n(z 1)n 1 .
f (z)
u
v i
ex ( x cos y
y sin y
xx
ex cos y ie x sin y x(e x cos y
z
z
z
z
e xe iye e (1 z)
cos y) i(e x ( y cos y x sin y sin y)) iex sin y) iy (ex cos y ie x sin y)
4
4
uv
x 5 ,y 3
4
4
u 所以 5 2
4
v
u2
3 2 2即 5 2
4
2
v2 3 2 1 ,表示椭圆 .
2
2. 在映射 w
2
z
下,下列
z 平面上的图形映射为
w 平面上的什么图形,设 w ei 或
w u iv . ( 1) 0 r 2, π; 4 (3) x=a, y=b.(a, b 为实数 )
( 2) 0 r 2,0
∴f (z)在 z=0 处连续.
(2) 考察极限 lim f (z) f 0
z0
z
当 z 沿虚轴趋向于零时, z=iy,有
1 lim f iy f 0 y 0 iy
1 lim y 0iy
y3 1 i y2
当 z 沿实轴趋向于零时, z=x,有
1 lim f x x 0x 它们分别为
f0 1i
u i v, v i u
证明: u (x, y) ex ( x cos y y sin y ),
v(x, y)=e x ( y cos y x sin y ) 处处可微,且
ux
x
x
e (x cos y ysin y) e (cos y) e ( xcos y ysin y cos y)
x
ux
x
e ( x sin y sin y y cos y) e ( x sin y sin y y cos y)
z2
(2)
f ( z)
(z
1)(z2
. 1)
解:因为 f(z) 为有理函数,所以 f(z) 在 (z 1)( z2 1) 0 处不可导 .
从而 f( z)除 z 1, z i 外可导 .
欢迎下载
3

( z 2) ( z 1)( z2 1) (z 1)[( z 1)(z2 1)]
f (z)
(z 1)2( z2 1)2
(4) Im f (z)=常数 .
欢迎下载
5

证明:与( 3)类似,由 v=C1 得 v x
v0 y
因为 f(z) 解析,由 C-R 方程得 u x
u 0 ,即 u=C2 y
所以 f( z)为常数 .
5. |f(z)|=常数 . 证明:因为 |f (z)|=C,对 C 进行讨论 . 若 C=0,则 u=0,v=0,f (z)=0 为常数 .
u 3x2 3y2, x
u 6 xy,
y
v 6xy ,
x
v 3x 2 3 y2 y
所以 f( z)在全平面上满足 C-R 方程,处处可导,处处解析 .
f (z)
u i v 3 x2 3 y2 6xyi 3( x2 y 2 2xyi) 3z2 . xx
(2) f ( z) ex (x cos y y sin y) ie x ( y cos y x sin y) .
xy x2 y2
k 1 k2 ,
因为当 k 取不同值时, f(z)的取值不同,所以
从而 f( z)在 z=0 处不连续,除 z=0 外连续 .
f(z)在 z=0 处极限不存在 .
(2) f ( z)
x3y x4 y2 , 0,
z 0, z 0.
解:因为 0
3
xy x4 y2
x3 y 2 x2 y
x ,
u
u
v
0
x
x
解得 u v u v 0 ,即 u,v 为常数,于是 f(z)为常数 . x xy y
8. 设 f (z)=my3+nx 2y+i( x 3+lxy 2)在 z 平面上解析,求 解:因为 f(z) 解析,从而满足 C-R 条件 .
u 2nxy,
x
u
2
2
3my nx
y
v
2
2
3x ly ,
x
2
x ,v(x, y)
2
y 在全平面上可微 .
u 2 x,
x
u 0,
y
v 0,
x
v 2y
y
只有当 z=0 时,即 (0,0)处有 u
vu ,
v .
x yy
y
所以 f( z)在 z=0 处可导,在全平面上不解析 .
(3) f ( z) 2x 3 3iy 3 ;
解: u( x, y) 2 x3, v( x, y) 3 y3 在全平面上可微 .
π .
4
2

(3) 记 w u iv ,则将直线 x=a 映成了 u a2 y 2, v 2ay. 即 v2 4a2 (a 2 u). 是以原点为焦
点,张口向左的抛物线将
y=b 映成了 u
2
x
2
b ,v
2 xb.
即 v2 4b 2 (b 2 u) 是以原点为焦点,张口向右抛物线如图所示
.
3. 求下列极限 .
习题二
1 1. 求映射 w z 下圆周 | z | 2 的像 .
z 解:设 z x i y, w u i v 则
1
x iy
x
y
u i v x iy x i y x iy x2 y 2 x x 2 y 2 i( y x 2 y 2 )
因为 x 2
y2
4 ,所以 u
iv
5 x
3 yi
44
所以 u 5 x , v 3 y
x
xy y
∴ u v, u
v
xy y
x
∴满足 C-R 条件.
1 i.
(3) 当 z 沿 y=x 趋向于零时,有
3
3
f x i x f 0,0
x 1i x 1i i
lim
xy 0
x ix
lim
xy 0
3
2x 1 i
1i
∴ lim f 不存在.即 f(z) 在 z=0 处不可导. z0 z
11. 设区域 D 位于上半平面, D 1 是 D 关于 x 轴的对称区域,若 f(z) 在区域 D 内解析,求证
u ( x, y) x3 xy2, v( x, y) y 3 x 2 y
相关文档
最新文档