电子式电能表的结构和工作原理

合集下载

电子式电能表的工作原理及AD7755的简介

电子式电能表的工作原理及AD7755的简介

电子式电能表的工作原理及AD7755的简介电子式电能表的工作原理为:由分压器完成电压取样,由取样电阻完成电流取样,取样后的电压、电流信号由乘法器转换为功率信号,经V/F变换后,输出的脉冲信号推动计数器工作,如果是智能电表,则将脉冲信号输入单片机系统进行处理。

要完成上述功能,就要采用专用的电功率测量芯片,其中最常用的AD7755就是一种高精度的电功率测量芯片,其内部的乘法器是数字型乘法器。

AD7755的功能框图见图 1,引脚见图2。

它输出的脉冲信号可以直接驱动计数器的步进电机。

AD7755的性能测试电路见图3。

其中V1P、V1N为电流传感器的模拟输入端,V2P、V2N为电压传感器的模拟输入端。

按图中SCF、S1、SO的接法,CF输出频率是F1和F2的16倍。

图1 AD7755内部框图图2AD7755引脚排列图3 AD7755性能测试电路图4 AD7755信号处理框图AD7755的信号处理框图见图4。

两个ADC分别对来自CH1(交流电流取样)和CH2(交流电压取样)的电压信号进行数字化,这两个ADC都是16位的数模转换器。

电流通道内的高通滤波器(HPF)滤掉电流信号中的直流分量,从而消除了曲于电流或电压失调所造成的有功功率计算上的误差。

瞬时功率由电压信号和电流信号直接相乘得到,通过低通滤波器(LPF)得到有功功率。

再经电压一频率转换,引脚F1和F2以较低频率形式输出有功功率平均值,此脉冲推动计数器计数,引脚CF以较高频率形式输出有功功率瞬时值,用于仪表校验,由于其输出频率高,便于进行处理,因此本文利用CF输出的脉冲信号作为测量信号。

AD7755在电子电度表电路中的应用AD7755是一种高准确度电能测量集成电路。

AD7755只在ADC和基准源中使用模拟电路,其它信号处理(如相乘和滤波)都使用了数字电路,这使AD7755在恶劣的环境条件下仍能保持极高的准确度和长期的稳定性。

AD7755有24脚DIP和SSOP两种封装。

20.电能表(电能表结构和工作原理)

20.电能表(电能表结构和工作原理)

电子式电能表与感应式电能表相 比主要优点有哪些?
▪ 测量精度高、频带宽、过载能力强、功率 小,由于可将测量值(脉冲)输出,故可 进行远方测量。此外,引入单片微机后, 可实现功能拓展,制成多功能和智能电能 表等。
什么是多功能电能表?
▪ 根据电力行业标准DL∕T614-1997对电子式 多功能电能表的定义:“凡是由测量单元 和数据处理单元等组成,除计量有功、无 功电能外,还具有分时、测量需量等两种 以上功能,并能显示、存储和输出数据的 电能表”。
电能表基础知识
电能计量的基本概念
▪ 随着国民经济的发展和人民生活水平的持续提高,电能已 得到越来越广泛的运用。电能有别于其它产品,首先它是 看不见、摸不着的,在使用的过程中无法直接通过人的感 观器官确定量的多少,必须通过专用的设备进行测量。这 种专门用于测量电能量的设备叫电能计量装置,既电能计 量的专用设备叫电能计量装置;其次电能不能存储,电力 企业的生产和销售是同时完成的,等用户使用后再测量是 无法测量的。所以在电能的生产、传输和使用中,电力部 门装设了大量的电能计量装置,以正确、及时了解各环节 中电能的数量。这些数据不仅是电力系统内部进行生产安 排调度的依据,还关系着国计民生和千家万户,尤其在如 今的社会主义市场经济条件下,更需要依法测量,保证测 量数值的准确、公正,以保护国家、电力用户和电力部门 的经济利益。如何对电能进行测量?又如何能够保证测量 的准确公正?这是一门复杂的学科,我们称它为电能计量。
▪ 精密级:0.01、0.05级,主要作为校验普通等级电能表的校验基准。
3按用途分:

1)有功电能表;用于测量有功电量。

2)无功电能表;用来计量发、供、用电的无功电能。

3)最大需量表;是一种能计算用户耗电量的数量,还指示用户

电子式电能表内部原理

电子式电能表内部原理

液晶具体工作原理:
在上下玻璃电极之间封入液晶材料,液晶分子平行排列上、下扭曲90度,
外部入射光线通过上偏振片后形成偏振光,该偏振光通过平行排列的液晶
材料被旋转90度,再通过与上偏振片垂直的下偏振片,被反射板反射回来 ,呈透明状态;当上、下电极加上一定的电压后,电极部分的液晶分子转 成垂直排列妥失去旋光性,从上偏振片入射的偏振光不被旋转,光无法通 过下偏振片返回,因而呈黑色。
电压/频率转换器:
得到输出电压U。的频率
22
谢谢.
计量中心 2012.5.16
根据需要将电极做成各种文字、数字、图形,就可以获得各种状态显示。
4
管理部分:
单片机:所有的控制命令,都是由它发出的。它是电子式电能表
的大脑
4
(一)单片机内部结构:
控制 结构
时钟
由晶振产生,相当于人的神经信号 原理:压电效应。在电场中的晶体受交变电压作用发生振 荡,振荡后产生交变电场,从而产生时钟频率。
计量单元
2013-7-31
测量部分:
1
接收交流电压、电流信号,将其运算后得 到 相乘的电功率信号,数字乘法器或A/稳定性的主要性能就由此部件决定。它是 电子式电能表的心脏
5
电能数字测量原理:
18
A/D转换器
类似于称重原理
数字乘法器
数字乘法器实现电能测量的精度主要取决于A/D转 换器的精度(位数)以及采样间隔的大小。A/D转换 器的精度越高,测量精度越高,采样间隔越小,测 量精度越高。
电子式电能 表内部原理
计量中心
5/16
2013-7-31
电子式电能 表内部结构
计量中心
2013-7-31
总体 结构

电子式电能表工作原理与基本结构

电子式电能表工作原理与基本结构

电子式电能表工作原理与基本结构电子式电能表1、电子式电能表按其工作原理的不同,可分为模拟乘法器型、电子式电能表和数字乘法器型电子式电能表。

2、一般来说,电子式电能表由六个部分组成:电源单元、电能测量单元、中央处理单元(单片机) 、显示单元、输出单元、通信单元。

3、正常供电时,电子式电能表的工作电源通常有三种实现方式:工频电源(即变压器降压) 、阻容电源(电阻和电容降压) 、开关电源。

4、电子式电能表的显示单元主要分为 LED数码管和 LCD液晶显示器两种,后者功耗低,并支持汉字显示。

5、电子式电能表的关键部分是电能测量单元6、时分割乘法器是许多电子式电能表的关键部分,它通常由三角波发生器、比较器、调制器、滤波器四个部分组成。

7、若某电子式电能表的启动电流是0.01Ib,过载电流是6Ib,则A/D型的电能表要求A/D转换器的位数可以是10,A/D的位数取决于Imax和Imin的比值,6÷0.01=600,而29<600<210,即要求A/D的位数至少是10位。

8、U/F(电压/频率)转换器组成的电能测量单元,其作用是产生正比于有功功率的电能脉冲。

9、采用电阻网络作为电能表的电压采样器的最大特点是线性好和成本低,缺点是无法实现电气隔离。

采用电压互感器的最大优点是可实现初级和次级的电气隔离,并可提高电能表的抗干扰能力,缺点是成本高。

请登陆: 浏览更多信息10、检定无源脉冲电能表误差:通常在脉冲正端施加一个VDD=+5~12V的直流电源,有的现场校验仪或电能表检定装置具有这一电源,中间串联R=5~10Ω的电阻,再输入给检定脉冲回路。

11、单片机就是将微型计算机所具备的几个基本功能,如中央处理单元CPU 、程序存储器ROM 、数据存储器RAM 、定时计数器Timer/Counter 、输入输出接口I/O 等,集成到一块芯片中而构成小型计算机。

12、单片机的总线可以分为三种:地址总线AB 、数据总线DB 、控制总线CB 。

电子式电能表电原理图分析

电子式电能表电原理图分析

电子式电能表电原理图分析大纲:一、电子式电能表原理(分类为5大部分:电源、采样计量、单片机处理、通讯、输出):电表维修原则:1、通过现象查上一级电路输出的电压(或信号)是否正常。

2、上一级电路输出的电压(或信号)是正常的,则故障不在上一级电路,查本级电路。

3、上一级电路输出的电压(或信号)是不正常的,再查上上一级电路输出的电压(或信号)是否正常。

4、通过分级检测输出的电压(或信号)是否正常来确定故障的范围。

1、供电原理(讲原理时要画出电路,提及有故障时的现象和检测维修方法);1.1、三相表供电原理:变压器供电原理(详细讲解);电原理图如下:用变压器变压、整流、稳压对三相表进行供电,电路中有三个变压器。

其中的每个变压器的工作原理都相同,只是各个变压器的初级输入电压是三相电压中的不同的相。

对于三相四线电表:T1初级为A—N线电压,T2初级为B—N线电压,T3初级为C—N线电压;对于三相三线电表:T1初级为A—B相电压,T2初级为A—C相电压,T3初级为B —C相电压,对应我们经常在三相三线电表上显示的A相电压(为A—B相电压)、B相电压(为A—C相电压)、C相电压(为B—C相电压)。

用三个变压器供电的好处是:1、当电网出现某一相或两相无电压时,电表仍然可以计量有电压的相的用电情况;2、增加电表供电的带载能力,保证电表的正常工作。

现以变压器T1为例详细说明以上供电电路的工作原理:1、压敏电阻RV1压敏电阻的工作原理顾名思义,压敏电阻就是对电压敏感,由电压的改变而改变自身的电阻,我公司使用的压敏是正常时为开路,当电压达到一定值时(压敏的动作电压),压敏电阻会非常快速地阻值下降到零(短路。

这个时间为t、t为1nS—10 nS,t 因选择的压敏型号不同而不同)。

而对多少电压值(动作电压)会开始阻值下降也是因选用的型号不同而不同,一般是型号上的数值。

比如:20K510的压敏电阻,则最大不动作电压为510V,可以查相关的电子元件资料,电子文档文件路径:Z:\研发中心\综合组\陈大全。

电能表的分类和原理

电能表的分类和原理

电能表的分类和原理
电能表的分类可以分为机械式电能表和电子式电能表两类。

1. 机械式电能表:通过电流和电压的作用,驱动电能表内的机械部件运动,从而计量电能。

机械式电能表通常由电流线圈、电压线圈、铝盘电动机和机械计数装置等部件组成。

其工作原理是,电流线圈产生的磁场和电压线圈产生的磁场相互作用,通过铝盘电动机驱动计数装置转动,进而计算出电能的消耗。

2. 电子式电能表:借助电子技术和数字信号处理技术,实现对电能的计量和记录。

主要由电流变换器、电压变换器、微控制器、模数转换器和显示装置等组成。

其工作原理是,通过电流变换器和电压变换器将电能信号转换为低压信号,再经过模数转换器将信号数字化,最后由微控制器进行数据处理和显示。

电子式电能表具有测量精度高、抗干扰能力强、功能丰富等特点。

电子式单相电表原理

电子式单相电表原理

电子式单相电表原理
电子式单相电表是一种使用电子技术来测量电能消耗的装置。

它的工作原理基于电能测量的基本原理,通过测量电压和电流来确定电能的消耗。

以下是电子式单相电表的工作原理:
1. 电流测量:电子电表通过电流互感器将电流信号转化为低电平信号。

电流互感器是一种电感器,可以将电流信号转化为与之成正比的电压信号。

这样,电子电表可以通过测量电压信号来间接测量电流。

2. 电压测量:电子电表使用变压器将输入电压转化为与输入电流成正比的低电平信号。

这样,电子电表可以通过测量电压信号来间接测量电压。

3. 电能计算:电子电表使用微处理器或专用集成电路来计算电能的消耗。

通过采集和处理电压和电流信号,并结合时间信息,电子电表可以计算出电能的消耗。

4. 数字显示:电子电表使用数码显示器来显示电能的消耗。

数码显示器可以将计算得到的电能数值以数字形式显示出来,方便用户读取。

5. 数据记录:电子电表通常具有数据记录功能,可以记录电能消耗的历史数据。

这些数据可以用于分析电能使用情况,帮助用户了解和管理电能消耗。

总结而言,电子式单相电表通过测量电压和电流来间接测量电
能消耗,并利用微处理器或专用集成电路进行计算和显示。

它具有精准度高、功能丰富、数据可记录等优点,是现代电能计量的重要工具。

单相预付费电子式电能表的原理与应用

单相预付费电子式电能表的原理与应用

单相预付费电子式电能表的原理与应用电能表是用于测量和记录电能消耗的设备,随着科技的进步,电能表也得到了许多改进和创新。

单相预付费电子式电能表作为一种新型的电能表,在电力管理和使用方面起到了重要的作用。

本文将介绍单相预付费电子式电能表的原理和应用。

一、原理单相预付费电子式电能表的工作原理基于电能计量和费用计算。

它由电流互感器、电压互感器、电能计量芯片、显示屏、控制器等组成。

其工作过程如下:1. 电流互感器和电压互感器:单相预付费电子式电能表通过电流互感器和电压互感器来测量电流和电压。

电流互感器是用于测量并降低高压电流,而电压互感器是用于测量并降低高压电压。

通过互感器,电能表可以获取准确的电流和电压数值。

2. 电能计量芯片:电能计量芯片是电能表的核心部件,用于计量电能的消耗。

它通过对电流和电压进行采样和计算,实时地记录电能的使用情况。

经过电能芯片的计算和处理,可以得出用户所消耗的电能量。

3. 显示屏和控制器:显示屏和控制器是用户与电能表进行交互的界面设备。

显示屏用于显示电能的使用情况、剩余金额等信息,方便用户了解自己的电能消耗情况。

控制器则用于进行充值、查询余额、设置功能等操作。

二、应用单相预付费电子式电能表具有以下应用场景和优势:1. 居民用户:单相预付费电子式电能表可广泛应用于居民用户的电力管理中。

通过预付费方式,用户可以提前充值电力,并通过显示屏实时了解自己的电能使用情况和剩余金额,提高用电的主动性和节能意识。

2. 商业用户:商业用户的电力消耗通常较大。

采用单相预付费电子式电能表可以更好地控制电力使用的成本,避免因为大额电费账单而产生的不必要的经济压力。

同时,商业用户也可通过电能表的智能功能实时监测用电情况,进行用电量分析,优化用电策略。

3. 对电力公司的利益保护:使用单相预付费电子式电能表可以有效防止电力盗窃和欠费行为的发生。

采用预付费方式后,电力公司可以在用户将电力全部消耗完之前预收费用,确保用户按照实际使用情况进行电费充值,维护了公司的经济利益。

电子式电能表的组成

电子式电能表的组成

电子式电能表的组成为了能将被测电压、电流变为代表被测功率的标准脉冲,并显示所计电能值,电子式电能表一般由输入级、乘法器、变换器、计数显示控制电路、直流电源等部分组成。

其中乘法器和变换器组成电能计量单元电路。

(1)输入级输入级的作用是将被测的高电压(几十伏或几百伏)和大电流(几安至几十安)转换成电子电路能处理的低电压(几十毫伏至几伏)和小电流(几毫安)输人到乘法器中,并使乘法器和电网隔离,减小干扰。

电压采样器和电流采样器构成了表计的输入级,电压采样可采用电压互感器或分压电阻,电流采样可采用电流互感器或锰铜分流器,它们与乘法器、U/f 转换器或D/f转换器共同构成了电子式电能表的电能测量单元。

(2)乘法器乘法器是实现被测电压、电流相乘,并输出功率的器件,它是电子式电能表的关键部分。

常用的乘法器可分为模拟乘法器和数字乘法器。

①模拟乘法器。

模拟乘法器分为时分割乘法器、霍尔乘法器和热电转换型乘法器。

目前采用较多的是时分割乘法器,又称PWM乘法器。

它实质上是一个脉宽、幅度调制器。

两路输入信号中的一路对脉宽进行调制,另一路对幅值进行调制,被调制的脉冲信号的直流分量就是两路输入信号的乘积。

时分割乘法器的制造技术成熟且工艺性好,原理先进,具有很好的线性度和很高的准确度,但与数字乘法器相比,功能扩展较难。

②数字乘法器。

数字乘法器可分为高精度A/D型乘法器和DSP型乘法器。

A/D型乘法器的作用,就是对输入的交流电压、电流波形进行分时采样,把模拟量变成数字量,然后由CPU对电压、电流数字量进行相乘、相加,计算功率,对时间积分得到电能。

DSP芯片也称数字信号处理器,它除具有A/D转换器的交流采样功能外,还肩负CPU数据处理的一部分功能,大大减轻了CPU的工作负荷,使整机的功能得到进一步加强。

(3)转换器转换器是把乘法器输出的代表有功功率的信号变为标准脉冲,并且用脉冲频率的高低来代表功率的大小,它和计数器一起实现电能测量中的积分运算。

单相电子式电能表的工作原理及应用研究

单相电子式电能表的工作原理及应用研究

单相电子式电能表的工作原理及应用研究引言:随着电力行业的发展和电能计量技术的进步,传统的机械式电能表逐渐被单相电子式电能表所取代。

单相电子式电能表具有精确计量、安全可靠、智能化管理等优势,因此在电力系统中得到了广泛的应用。

本文将对单相电子式电能表的工作原理及应用进行详细研究。

一、工作原理1. 电能表结构单相电子式电能表的结构主要由电流传感器、电压电路、信号处理器、运算器、存储器、显示器和通信接口等组成。

电流传感器负责感知电流信号,电压电路用于测量电压波形,信号处理器负责对感测到的电流和电压信号进行滤波、放大和线性化处理,运算器进行电能计量和数据处理,存储器用于存储计量结果,显示器用于显示电能数据,通信接口用于与外部系统进行数据交互。

2. 电能计量原理单相电子式电能表的电能计量基于电能守恒定律和欧姆定律。

当电流通过电能表流过时,电流传感器感测到电流信号,并经过电压电路测量电压信号,通过信号处理器进行滤波和放大处理后送到运算器进行电能计量。

根据欧姆定律和电能守恒定律,电能计量可通过电流和电压的乘积来实现。

运算器根据采集到的电流和电压信号,通过特定算法计算出瞬时功率,再积分得到电能。

3. 主要特点和优势单相电子式电能表相比传统机械式电能表具有以下主要特点和优势:(1) 高精确度:单相电子式电能表采用数字信号处理技术,具有较高的计量精度和稳定性。

(2) 多功能性:单相电子式电能表可实现电能测量、功率因数测量、需量测量等多种功能。

(3) 抄读方便:单相电子式电能表的计量数据可以通过通信接口传输,实现自动抄表和远程监控。

(4) 负载容量大:单相电子式电能表能够适应不同负载条件,满足工业和家庭用电需求。

(5) 节能环保:单相电子式电能表的电能损耗较低,能够减少能源浪费。

二、应用研究1. 工业应用单相电子式电能表在工业领域广泛应用,可用于对电动机、照明设备、变压器等的电能计量,帮助企业实现能耗监测和用电管理,提高能源利用率和降低生产成本。

电子式电能表

电子式电能表

电子式电能表电子式电能表也称为数字式电能表,是一种用来监测用电情况的仪表。

电能表可以实时记录用电量并按照一定的间隔时间发出电能量的报告,从而使用电的用户可以实时地知道自己的用电量,从而减少滥用电的实行,减少能源的浪费。

电子式电能表的结构一般由电机驱动的旋转梅花针、电机驱动的金属轮、数字显示装置、单向锁存机构、电压表等组成。

它的原理是当电流经过表内的线圈时,电机驱动的旋转梅花针会不断转动,而这个运动的有效量恰巧等同于电的有效量。

由于梅花针的旋转次数是一定的,所以,可以把旋转次数转换成电流的数值。

单向锁存机构又可以将转换后的数值累加起来,这样,就可以知道某一段时间内的用电量了。

除了能够监测用电量外,电子式电能表还可以进行短路、漏电、过流、失压及过压自动保护,从而有效地防止电器出现短路、漏电等现象,保护电器安全运行。

电子式电能表的优点也很明显,无论是测量精度、可靠性、维护性或是环保性都比普通的机械式电能表好很多。

电子式电能表可以准确地记录用电量,而机械式电能表往往会因损坏或脱落而出现偏差,这样就造成数据不准确的情况。

而且,电子式电能表的测量间隔更短,可以准确读取用电量,使用起来更加方便。

此外,电子式电能表在维护和环保方面比机械式电能表要更好,电子式电能表更加环保,无需在现场开关电源,也不需要定期校验,可以降低成本与环境污染。

尽管电子式电能表具有众多优势,但在安装和使用过程中仍然存在一定的难度。

由于电子式电能表结构比较复杂,对安装人员的技术要求也较为严格,另外由于电子式电能表的动态性能是由电子技术和计算机技术完成的,要求使用者在保证电子系统、计算机系统及其相关软件程序的可靠性方面投入更多的精力,从而增加了使用成本。

电子式电能表是电能表发展的一个重大里程碑,它的发展对于优化能源利用,提高行业用电效率,满足用户的用电需求,节约能源,保护环境都有着一定的重要作用。

作为一种重要的节能器具,电子式电能表应该得到更多支持和大力推广,以促进电能的安全、合理、环保的使用。

单项电子式电表工作原理

单项电子式电表工作原理

单项电子式电表工作原理
单项电子式电表是一种通过测量和记录电流和电压变化来测量电能消耗的仪表。

其工作原理如下:
1. 电流测量部分:电流通过电表时会产生一个与电流大小成正比的电压降,该电压降经过一个电阻之后产生一个与电流大小成正比的电压信号。

2. 电压测量部分:电压信号经过放大电路,转化为与电压大小成正比的电压值。

3. 数据处理部分:电流信号和电压信号通过一个模数转换器转换为数字信号,再经过微处理器进行数据处理和电能计算。

4. 数据显示部分:电表会将计算得到的电能数值显示在液晶显示屏上,供用户查看。

5. 数据存储部分:电表通常具备存储功能,可以记录电能使用的历史数据,并且可以进行远程通讯,将数据传输到上位机或数据管理中心。

总结:单项电子式电表通过测量电流和电压变化,经过数据处理和计算得到电能消耗的数值,并提供显示和存储功能,实现精确测量和监控用电情况。

电子式电能表的工作原理

电子式电能表的工作原理

电子式电能表的工作原理
电子式电能表是在数字功率表的基础上进展起来的,它采纳乘法器实现对功率的测量,其工作原理如图1所示。

被测高电压u、大电流i 经电压变换器和电流变换器转换后送至乘法器M,乘法器M完成电压和电流瞬时值相乘,输出一个与—段时间内的平均功率成正比的直流电压U0,后再利用电压/频率转换器,U0被转换成相应的脉冲频率f0,即得到f0正比于平均功率,将该频率分频,并通过一段时间内计数器的计数,显示出相应的电能。

图1 全电子式电能表的工作原理
由电子式电能表的测量原理可以看出电子计量模块从结构功能上可以分为以下三个部分:
第一部分:电压、电流输入回路,是将被测功率的电压和电流分别通过分压器和互感器变换为适合于电子式电能表乘法器所需要的小电压送至乘法器。

其次部分:乘法器。

乘法器是用来完成两个电量(如电压、电流)相乘运算的器件。

由全电子式电能表工作原理可以看出,乘法器是全电子式电能表的核心,它的精确度直接影响着电能表的精确度。

依据所采纳乘法器的不同,可以将全电子式电能表做进—步划分。

乘法器主要有模拟乘法器和数字乘法器两大类。

模拟乘法器又有晶体管阵列平方乘法器、热偶乘法器、对数—反对数型乘法器、
可变跨导型乘法器、双斜积分乘法器、霍尔效应乘法器、时分割乘法器等多种。

数字乘法器则是以微处理器为核心,采纳A/D转换器将电压和电流进行数字化相乘。

第三部分:变换器也称电压—频率转换电路。

因乘法器输出的是一个模拟量(直流电压),用电压表(数字式表)测量这个电压,用功率单位(W或KW)表示的测量结果就是功率值。

测量电能则需将这个电压转换成相应的脉冲数,在一段时间内所累计的脉冲数,才是要测的电能量。

电子式电能表原理

电子式电能表原理

电子式电能表工作原理及调试方法第一节电子式电能表概述一、电子式电能表发展历史20世纪40年代:诞生于欧洲20世纪80年代之前:主要用于标准表、高精度表和检验装置20世纪80年代末、90年代初:国外推出全电子电子表(斯伦贝谢兰吉尔、 GE),电子表迅猛发展,但价格昂贵。

20世纪90年代初:国内推出全电子电能表2000年以后:国内电子表在电网改造中大批量推广应用,设计水平、生产工艺水平非常成熟,价格越来越低,目前已成为电能计量的主流产品。

二、电子式电能表的分类根据分类方法的不同,通常有以下几种:1、按规格:单相电子表、三相电子表。

2、按接线方式:直接接入式、经互感器接入式。

3、按功能:有功电子式电能表、无功有功电子式电能表、有功无功组合电子式电能表、有功多费率电子式电能表、多功能电子式电能表。

三、电子式电能表的优点近几年来电子式电能表之所以发展如此迅速,是因为它与感应式电能表相比,在性能和功能方面有着明显的优势。

性能对比见下表感应式电能表与电子式电能表性能表比较L L i(t)u i(t)第二节电子式电能表的基本结构一、电子式电能表的原理构成电子式电能表通常由以下几部分组成:电流变换电路、电压变换电路、计量芯片、MCU 、显示部分、接口部分、电源部分、外壳。

二、电流变换电路、电压变换电路电流变换电路、电压变换电路作用是将大电流、高电压转换成微小电压信号,输入至电能计量芯片的乘法器。

1、电流变换电路有两种 :一种是采用电流互感器,优点是电表与电网隔离,电表抗干扰性能好,缺点是体积大成本高。

2、电压变换电路另一种是采用分压网络,优点是线性好、成本低,缺点是不能实现电气隔离。

以单相电子表为例,以L (火线)为公共地,V2P为输入至计量芯片电压通道的电压,分压网络如下:U 为火线和中线之间的电压,若=220V ,将阻值代入上式,计算出V2p=124mV 分压网络将高电压变换成毫伏级微小电压,输入计量芯片。

三、测量部分测量部分将电压变换电路输出的电压信号和电流变换电路输出的电压信号进行运算,得到电功率信号。

电子式电表工作原理

电子式电表工作原理

电子式电表工作原理
电子式电表工作原理是通过测量电流和电压的相乘来计算电力的消耗量。

电流和电压是通过装在电表内部的感应器进行测量的。

电流感应器是将待测电流通过一根线圈传导,产生感应磁场,进而激发出感应电势。

这个感应电势经过放大和处理后,转换为代表电流大小的电信号。

电压感应器是通过将待测电压接到电表的电压输入端口上,经过一定的放大和处理,将输入电压转化为代表电压大小的电信号。

电流和电压信号经过放大和处理后,进入一块专用的电路芯片,根据电流和电压的乘积计算出电力的消耗量。

然后,电路芯片将计算结果转化为表针或数字显示器上的读数。

除了计算电力消耗量,电子式电表还可以进行其他功能,例如记录用电量、显示电压频率、分析电流波形等。

总之,电子式电表通过测量电流和电压,通过相关电路和芯片的处理和计算,来实现电力的测量、记录和显示。

电子电能表的工作原理

电子电能表的工作原理

电子电能表的工作原理
电子电能表是一种用于测量和记录电能消耗的仪表。

其工作原理基于电流和电压之间的相位差以及电流和电压的乘积。

电子电能表通过电流互感器和电压互感器来测量电流和电压。

电流互感器通常是一种开环型传感器,它将电流传感器的一侧与负载电流回路相连接,另一侧则与电路的其他部分相连接。

电流互感器内部包含有一根导线,通过该导线传输电流。

电压互感器则以开环型或闭环型传感器的形式存在,它通过连接电压传感器的一侧和负载电路的两个端点来测量电压。

闭环型传感器内部通过绕制线圈的方式感测电压,而开环型传感器则在绕制的线圈间加入一个磁芯,以提高传感器的灵敏度。

在电子电能表中,电流和电压的读数可通过模拟电信号或数字化电信号实现。

当电信号为模拟信号时,传感器将产生一个等效于实际电流或电压的电压。

该电压经过放大处理后,再被数字化模块转换成数字信号。

当电信号为数字化信号时,传感器直接将电流或电压转换为数字信号,并传输给数字处理单元。

所得到的数字信号经过计算,可以得到电流和电压的读数。

在电子电能表中,电流和电压的乘积即为电能的消耗量。

电能消耗量可以通过内部电路进行累加,并以某种形式显示在电能表的显示屏上。

总之,电子电能表通过电流互感器和电压互感器来测量电流和电压,然后将其转换为数字信号进行处理,最后计算得到电能的消耗量,并在显示屏上展示。

单相电子式电能表原理

单相电子式电能表原理

单相电子式电能表原理
单相电子式电能表是一种用于测量单相电力消耗的电器设备,其工作原理基于电压和电流的测量。

该电能表使用了一对电压线圈和一对电流线圈,分别用于测量输入电路中的电压和电流。

当待测电路通电时,输入电流将通过电流线圈,而输入电压将通过电压线圈。

电流线圈和电压线圈各自将产生相应的磁场。

为了测量电能,电流线圈和电压线圈之间通过一个电流、电压倍数调整器和一个共安装的显示和计算装置连接在一起。

电压线圈的输出电压经过倍数调整器进行放大或缩小,以匹配电压线圈传感器的灵敏度。

同样地,电流线圈的输出电压经过倍数调整器也进行同样的放大或缩小操作。

在电压线圈和电流线圈的输出电压已经调整完成后,它们将进入显示和计算装置。

该装置通过将电压和电流乘以相应的倍数,然后将它们相乘,从而计算出电能的消耗。

该结果将通过数字显示屏显示出来,以供用户查看。

总体来说,单相电子式电能表通过测量电压和电流,然后将其作为输入送入显示和计算装置,以计算出电能的消耗。

这种电能表具有精确度高和稳定性好等特点,被广泛应用于家庭和工业领域中。

电子式电能表工作原理

电子式电能表工作原理

电子式电能表工作原理目前大多应用单相电子式电能表,其中采用步进式马达推动计数器工作,请问电流经取样后是如何使之与步进式马达的推动成正比的?另外有谁知道它所用的集成电路ade7755的引脚功能?也望一并提供。

Ade7755v/F转换器,即电压-频率转换器。

ade7755是用于电能计量设备上的芯片,它将有功功率的信息以频率的形式输出。

有功功率由电流和电压通道信号的乘积通过低通滤波获得。

最后,它被V-F转换,并以频率的形式从F1和F2引脚输出。

同时,CF引脚输出用于电表校正的高频信号。

F1和F2的输出信号可以直接驱动步进电机。

该芯片采用过采样ADC和DSP技术,对温度的灵敏度较低,即使在非常恶劣的温度条件下也能保持较高的测试精度。

由于芯片中设计了抗混叠滤波器,最大限度地降低了片外滤波器的要求,使得片外一阶R-C滤波器的-3dB调谐频率可以扩展到100kHz,这不仅降低了滤波器中的电阻和电容,同时也大大降低了对电阻和电容的精度要求。

电流通道可编程放大器(PGA)可提供4种不同的增益,增益为1/2/8/16倍,适用于不同的锰铜采样电阻。

由于电流和电压通道采用几乎相同的电路(唯一的区别是电流通道有四个不同的增益,而电压通道只有单位增益),因此可以忽略芯片本身造成的电压和电流通道之间的相位匹配误差。

芯片中设计了电源电压检测电路。

当电源电压降至80%VDD时,芯片将自动复位。

检测电路的检测阈值设计为100mV滞环电压范围,以避免电源电压波动噪声引起的重复复位电子电度表功率表工作原理及窃电当电度表连接到被测电路时,被测电路的电压U被施加到电压线圈上,在其铁芯中形成交变磁通量,这是从回路磁极通过铝盘到回路电压线圈铁芯的磁通量φU的一部分;同样,被测电路电流I通过电流线圈后,电流线圈φI的U形铁芯中也应形成交变磁通量。

磁通量由U形成。

铁芯的一端从下到上穿过铝盘,然后从上到下穿过铝盘,返回到U形铁芯的另一端。

电度表的电路和磁路如图6-3所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章
电子式电能表的结构和工作原理
第三章 电子式电能表的结构和原理
第一节 机电式电能表的结构和工作原理 第二节 全电子式电能表的结构和工作原理 第三节 单相电子式复费率电能表 第四节 单相预付费电能表 第五节 三相三线电子式多功能电能表
电子式电能表的结构和工作原理
第一节 机电式电能表的结构和工作原理
U U(t)K U X(t)U Y(t)
割乘法器 它在提供的节拍信号的周期T里,对被测电压信号ux作脉
冲调宽式处理,调制出一正负宽度T1、T2之差(时间量)与 ux成正比的不等宽方波脉冲,即T2-T1=K1ux;再以此脉冲宽 度控制与ux同频的被测电压信号uy的正负极性持续时间,进 行调幅处理,使u=K2uy;最后将 调宽调幅波经滤波器输出,输出 电压U0为每个周期T内电压u的平 均值,它反映了ux、uy两同频电 压乘积的平均值,实现了两信号 的相乘,输出的调宽调幅方波如 图3-17所示。
缺点是结构复杂、价格昂贵。
电子式电能表的结构和工作原理
第二节 全电子式电能表的结构和工作原理
电子式电能表工作原理框图如图3-10所示 被测量的高电压u、大电流i经电压和电流变换器转换后
送至乘法器,乘法器完成电压和电流瞬时值相乘,输出一个 与一段时间内的平均功率成正比的直流电压U,然后再利用 电压/频率转换器,U被转换成相应的脉冲频率f,将该频率 分频,并通过一段时间内计数器的计数,显示出相应的电能。
机电式电能表主要由感应式测量机构、光电转换器和分频 器、计数器及显示器四大部分组成,工作原理框图如图3-1所 示。
• 感应式测量机构的主要作用是将电能信号转变为转盘的转数 • 光电转换器的作用是将正比于电能的转盘转数转换为电脉冲 • 分频器和计数器的主要作用是对经光电转换器转换成的脉冲信
号进行分频、计数,从而得到所测量的电能。 • 显示器的作用是把电能表所测量的电能用电子器件显示出来,
为穿透式光电头,图3-3(b)是反射式光电头。
电子式电能表的结构和工作原理
一、单向脉冲式电能表
2.光电转换电路
一种最基本的光电转换电路如图3-4所示。当光敏管接 收到较强的光照时,处于导通状态,光电流增加,V1导通, 作用到V2和V3组成的射极耦合放大器上,使输出电压呈高电 平;反之,当光敏管接收到的光照较弱时,处于截止状态, 相应的输出电压呈低电平。
电子式电能表的结构和工作原理
一、输入变换电路
2.电压互感器
采用互感器的最大优点是可实现一次侧和二次侧 的电气隔离,并可提高电能表的抗干扰能力,缺点是成 本高。其电路图如图3-14所示。
其数学表达式为u(t)=KU uU(t)
电子式电能表的结构和工作原理
二、乘法器电路
模拟乘法器是一种完成两个互不相关的模拟信号(如输 入电能表内连续变化的电压和电流)进行相乘作用的电子电 路,通常具有两个输入端和一个输出端,是一个三端网络, 如图3-15所示。理想的乘法器的输出特性方程式可表示为
电子式电能表的结构和工作原理
一、输入变换电路
(一)电流输入变换电路 1.锰铜片分流器 以锰铜片作为分流电阻RS,当大电流i(t)流过时会 产生相应的成正比的微弱电压 Ui(t),其数学表达式为
Ui(t)=i(t)R
电子式电能表的结构和工作原理
一、输入变换电路
2.电流互感器
采用普通互感器(电磁式)的最大优点是电能表内主回 路与二次回路、电压和电流回路可以隔离分开,实现供电主 回路电流互感器二次侧不带强电, 并可提高电子式电能表的抗干扰能 力。其原理框图如图3-12所示。 其数学表达式为
电子式电能表的结构和工作原理
第二节 全电子式电能表的结构和工作原理
一、输入变换电路 二、乘法器电路 三、电压/频率转换器 四、分频计数器 五、显示器
电子式电能表的结构和工作原理
一、输入变换电路
输入电路的作用,一方面是将被测 信号按一定的比例转换成低电压、小电流 输入到乘法器中;另一方面是使乘法器和 电网隔离,减小干扰。
P1 N u(k)i(k)
T k1
电子式电能表的结构和工作原理
三、电压/频率转换器
电子式电能表常用的双向积分式电压/频率转换器的 原理电路如图3-21所示。
输出电压U0的频率
f T 1电子2式R电能表(C U 的1结1构和U 工作2原)理Ui Ui
四、分频计数器
所谓分频,就是使输出信号的频率分为输入信号频率 的整数分之一;所谓计数,就是对输入的频率信号累计脉 冲个数。 图3-23为分频计数器原理框图和脉冲波形。
电子式电能表的结构和工作原理
二、乘法器电路
(二)数字乘法器 采用数字乘法器的全电子式电能表的基本结构框图如
图3-20所示。 微处理器控制双通道A/D转换,同时对电压、电流进
行采样,由微处理器完成相乘功能并累计电能。平均功率
表示为 P 1 T u(t)i(t)dt T0
以△t为时间间隔将上式中的 积分做离散化处理,即对电压、 电流同时进行采样,则
电子式电能表的结构和工作原理
二、双向脉冲式电能表
• 双向脉冲式电能表具有双向计度的功能,既能测量正 向消耗电能,又能测量反向消耗电能。
• 双向脉冲式电能表光电转换及双向脉冲输出控制电路 如图3-8所示。
电子式电能表的结构和工作原理
第二节 全电子式电能表的结构和工作原理
全电子电能表的优点是准 确度高、频带宽、体积小,适 合遥控、遥测功能。
以方便读取数据。
电子式电能表的结构和工作原理
第一节 机电式电能表的结构和工作原理
一、单向脉冲式电能表 二、双向脉冲式电能表
电子式电能表的结构和工作原理
一、单向脉冲式电能表
单向脉冲式电能表的光电转换器主要包括光电头和 光电转换电路两部分。
1.光电头
光电头由发光器件和光敏器件组成。 两种典型光电头的安装结构如图3-3所示。图3-3(a)
u(t)iT(t)RL iK (tI)RL
电子式电能表的结构和工作原理
一、输入变换电路
(二)电压输入变换电路 1.电阻网络
采用电阻网络的最大优点 是线性好、成本低,缺点 是不能实现电气隔离。
电子式电能表的结构和工作原理
一、输入变换电路
(二)电压输入变换电路 1.电阻网络
实用中,一般采用多级(如3级)分压,以便提高耐 压和方便补偿与调试。典型接线如图3-13所示。
相关文档
最新文档