B 函数与导数_理科_
3-1导数的概念及运算
高考总复习·数学理科(RJ)
第三章 导数及其应用
【解析】 (1)f′(x)=2 017+ln x+1x·x=2 018+ln x.
由 f′(x0)=2 018,得 ln x0=0,则 x0=1.
(2)f′(x)=aln
x+x·1x=a(1+ln
x).
由于 f′(1)=a(1+ln 1)=a,又 f′(1)=3,所以 a=3.
(2)∵点(0,-1)不在曲线 f(x)=xln x 上, ∴设切点为(x0,y0).
高考总复习·数学理科(RJ)
第三章 导数及其应用
又∵f′(x)=1+ln x,∴yy00= +x10=ln(x01,+ln x0)x0, 解得 x0=1,y0=0. ∴切点为(1,0), ∴f′(1)=1+ln 1=1. ∴直线 l 的方程为 y=x-1,即 x-y-1=0.故选 B. 【答案】 (1)2x+y+1=0 (2)B
高考总复习·数学理科(RJ)
第三章 导数及其应用
角度二 求切点坐标 【例 3】 (2018·西安调研)设曲线 y=ex 在点(0,1)处的切线与 曲线 y=1x(x>0)上点 P 处的切线垂直,则点 P 的坐标为________.
高考总复习·数学理科(RJ)
第三章 导数及其应用
【解析】 由 y′=ex,知曲线 y=ex 在点(0,1)处的切线斜率 k1=e0=1.
第三章 导数及其应用
(3)若求过点 P(x0,y0)的切线方程,可设切点为(x1,y1),由
y1=f(x1),
求解即可.
y0-y1=f′(x1)(x0-x1)
高考总复习·数学理科(RJ)
第三章 导数及其应用
跟踪训练2 (1)(2018·开封模拟)曲线f(x)=x3-x+3在点P
高中数学知识点大全(一)
高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
(2)函数的表示法:解析法、表格法、图象法、分离法。
(3)函数的基本性质:单调性、奇偶性、周期性、对称性。
2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。
3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。
(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。
(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。
(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。
(5)极限存在的条件:夹逼定理、单调有界定理。
二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。
全国卷历年高考函数与导数真题归类分析(含答案)
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
高考数学一轮复习专题3.1导数的概念及运算定积分知识点讲解理科版含解析
知识点 7.微积分基本定理
一般地,如果 f(x)是在区间[a,b]上的连续函数,且 F′(x)=f(x),那么 错误!f(x)dx=F(b)-F(a).
b
| 这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把 F(b)-F(a)记为 F(x) ,即 错误!f(x)dx a b
| =F(x) )=F(b)-F(a). a 【特别提醒】
于形如 y=f(ax+b)的复合函数)的导数;
5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;
6.了解微积分基本定理的含义。
【重点知识梳理】
知识点 1.导数的概念
(1)函数 y=f(x)在 x=x0 处的导数:函数 y=f(x)在 x=x0 处的瞬时变化率 liΔxm→0 Δy=liΔxm→0 Δx
x 【答案】e
【方法技巧】
1.求函数导数的总原则:先化简解析式,再求导.
2.常见形式及具体求导 6 种方法
连乘形式
先展开化为多项式形式,再求导
三角形式 先利用三角函数公式转化为和或差的形式,再求导
分式形式
先化为整式函数或较为简单的分式函数,再求导
根式形式
先化为分数指数幂的形式,再求导
对数形式
先化为和、差形式,再求导
n
n b-a
点ξi(i=1,2,…,n),作和式 ∑ f(ξi)Δx= ∑
f(ξi),当 n→∞时,上述和式无限接近于某个
i=1
i=1 n
常数,这个常数叫做函数 f(x)在区间[a,b]上的定积分,记作 错误!f(x误!f(x)dx 中,a,b 分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被
函数 f(x)在闭区间[-a,a]上连续,则有
大学高等数学考试必记公式知识讲解
大学高等数学考试必记公式知识讲解【大学高等数学考试必记公式知识讲解】大学高等数学课程是理工科学生的必修课程之一,其中包含了许多重要的数学公式。
掌握这些公式对于考试表现和解题能力都非常关键。
本文将为大家讲解一些大学高等数学考试中必须记住的公式知识。
1.导数与微分在微积分中,导数与微分是重要的概念,掌握相关公式能够帮助我们求解函数的变化率、最值等问题。
1.1 导数公式:(1) 基本导数公式:- 常数函数导数:$(c)'=0$;- 幂函数导数:$(x^n)'=nx^{(n-1)}$;- 指数函数导数:$(a^x)'=a^x\ln a$;- 对数函数导数:$(\log_ax)'=\frac{1}{x\ln a}$;- 三角函数导数:$(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tanx)'=\sec^2 x$等。
(2) 导数运算法则:- 和、差的导数:$(f(x) \pm g(x))'=f'(x) \pm g'(x)$;- 积的导数:$(f(x) \cdot g(x))'=f'(x)g(x)+f(x)g'(x)$;- 商的导数:$(\frac{f(x)}{g(x)})'=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。
1.2 微分公式:微分公式是导数的一种应用形式,常见的微分公式有:- $(a^x)'=a^x\ln a \Rightarrow dy=a^x\ln a \cdot dx$,- $(\log_ax)'=\frac{1}{x\ln a} \Rightarrow dy=\frac{1}{x\ln a} \cdotdx$,- $(\sin x)'=\cos x \Rightarrow dy=\cos x \cdot dx$等。
高等数学(理工科)课件第3章导数的应用
0
0
极
f (x) ↗ 大
值
极大值 f (1) 10,
极
↘
小
↗
值
极小值 f (3) 22.
高等数学应用教程 3.2.1 函数的极值及其求法
解法2 f ( x) 3x2 6x 9 3( x 1)(x 3) f (x) 6x 6 6(x 1)
令 f ( x) 0, 得驻点 x1 1, x2 3. 由于 f (1) 12 0, 则 f (1) 10为极大值 由于 f (3) 12 0, 则 f (3) 22为极小值
1、求出函数 f(x)所有的临界点(驻点和不可导点);
2、计算各临界点的函数值和区间端点的函数值;
3、比较各函数值的大小,其中最大的就是函数 f(x)在区 间[a, b]上的最大值,最小的就是函数 f(x)在区间[a, b] 的最小值.
高等数学应用教程 3.2.2 函数的最大值与最小值 例3
高等数学应用教程 3.2.2 函数的最大值与最小值
2
arctan
1 n
n
( n 为正整数)?
高等数学应用教程
二、 型未定式
定理3.3.2 如果函数 f (x)和g (x)满足:
2)
f
( x)、g ( x)
,在
o
U(x0 )
内可导,且
f (x)
3) lim
A
xx0 g(x)
则 lim f (x) lim f (x) A
xx0 g(x) xx0 g(x)
高等数学应用教程
3.1 函数的单调性与凹凸性
3.1 函数的单调性与凹凸性
上面图形的形状可以通过导数的知识加以 研究解决,为此先介绍拉格朗日中值定理
高考数学二轮核心考点突破:专题05-函数与导数的综合应用(含答案)
专题05 函数与导数的综合运用【自主热身,归纳提炼】1、函数f (x )=13ax 3+12ax 2-2ax +2a +1的图像经过四个象限的充要条件是________.【答案】-65<a <-316【解析】:由f ′(x )=ax 2+ax -2a =0得x =1或x =-2,结合图像可知函数的图像经过四个象限的充要条件是⎩⎪⎨⎪⎧a <0,f 1>0,f -2<0或⎩⎪⎨⎪⎧a >0,f 1<0,f -2>0,解得-65<a <-316.2、 在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值为________.3、已知点A (0,1),曲线C :y =log a x 恒过点B ,若P 是曲线C 上的动点,且AB →·AP →的最小值为2,则实数a =________.【答案】e思路分析 根据条件,要求AB →·AP →的最小值,首先要将它表示成点P (x ,log a x )的横坐标x 的函数,然后再利用导数的方法来判断函数的单调性,由此来求出函数的最小值.点A (0,1),B (1,0),设P (x ,log a x ),则AB →·AP →=(1,-1)·(x ,log a x -1)=x -log a x +1.依题f (x )=x -log a x +1在(0,+∞)上有最小值2且f (1)=2,所以x =1是f (x )的极值点,即最小值点.f ′(x )=1-1x ln a=x ln a -1x ln a.若0<a <1,f ′(x )>0,f (x )单调递增,在(0,+∞)无最小值,所以a >1.设f ′(x )=0,则x =log a e ,当x ∈(0,log a e)时,f ′(x )<0;当x ∈(log a e ,+∞)时,f ′(x )>0,从而当且仅当x =log a e 时,f (x )取最小值,所以log a e =1,a =e.解后反思 本题的关键在于要能观察出f (x )=x -log a x +1=2的根为1,然后利用函数的极小值点为x =1来求出a 的值,因而解题过程中,不断地思考、观察很重要,平时学习中,要养成多思考、多观察的习惯. 4、 已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数的底,则满足f (e x)<0的x 的取值范围为________. 【答案】(0,1)思路分析 注意到条件f (e x )<0,让我们想到需要研究函数f (x )的单调性,通过函数的单调性将问题进行转化化简. 【答案】: -1e【思路分析】 若ba 的最小值为λ,则b a≥λ恒成立,结合题意必有λa -b ≤0恒成立.由f (x )=(ln x +e x )-ax -b ≤0恒成立,得f ⎝ ⎛⎭⎪⎫1e =-1e a -b ≤0.猜想a >0,从而b a ≥-1e . f ′(x )=1x+(e -a )=e -a x +1x(x >0),当e -a ≥0,即a ≤e 时,f (e b )=(e -a )e b>0,显然f (x )≤0不恒成立. 当e -a <0,即a >e 时,当x ∈⎝⎛⎭⎪⎫0,1a -e 时,f ′(x )>0,f (x )为增函数;当x ∈⎝ ⎛⎭⎪⎫1a -e ,+∞时,f ′(x )<0,f (x )为减函数,所以f (x )max =f ⎝⎛⎭⎪⎫1a -e =-ln(a -e)-b -1. 由f (x )≤0恒成立,得f (x )max ≤0,所以b ≥-ln(a -e)-1,所以得b a ≥-ln a -e -1a.设g (x )=-ln x -e -1x(x >e),g ′(x )=xe -x +ln x -e +1x 2=ee -x+ln x -e x2. 由于y =e e -x +ln(x -e)为增函数,且当x =2e 时,g ′(x )=0,所以当x ∈(e,2e)时,g ′(x )<0,g (x )为减函数;当x ∈(2e ,+∞)时,g ′(x )>0,g (x )为增函数,所以g (x )min =g (2e)=-1e ,所以b a ≥-1e,当a=2e ,b =-2时,b a 取得最小值-1e.解后反思 在考试时,到上一步就可以结束了,胆大一点,到猜想a >0这步就可结束了.现证最小值能取到,当b a =-1e 时,f ⎝ ⎛⎭⎪⎫1e =0应该是极大值,所以f ′⎝ ⎛⎭⎪⎫1e =2e -a =0,此时a =2e ,b =-2,f (x )=ln x -e x+2,易证f ⎝ ⎛⎭⎪⎫1e =0也是最大值,证毕.8、若函数f (x )=x 2||x -a 在区间[0,2]上单调递增,则实数a 的取值范围是________.【答案】(-∞,0]∪[3,+∞)思路分析 含绝对值的函数需要去绝对值转化为分段函数,本题已知函数在[0,2]上为增函数,则需先讨论函数在[0,+∞)上的单调性,自然地分a ≤0和a >0两个情况进行讨论,得到函数在[0,+∞)上的单调性,结合函数单调性得到23a ≥2,从而解出a 的取值范围.先讨论函数在[0,+∞)上的单调性.当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3, 0≤x ≤a ,x 3-ax 2, x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2,令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减;②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值范围是(-∞,0]∪[3,+∞).【关联1】、若函数f (x )=⎪⎪⎪⎪⎪⎪e x2-a e x (a ∈R )在区间[1,2]上单调递增,则实数a 的取值范围是________. 【答案】: ⎣⎢⎡⎦⎥⎤-e 22,e 22 【解析】:【思路分析】 本题所给函数含有绝对值符号,可以转化为g (x )=e x2-ae x 的值域和单调性来研究,根据图像的对称性可得g (x )=e x2-aex 只有单调递增和单调递减这两种情况.设g (x )=e x2-ae x ,因为f (x )=|g (x )|在区间[1,2]上单调递增,所以g (x )有两种情况:①g (x )≤0且g (x )在区间[1,2]上单调递减. 又g ′(x )=e x 2+2a2·e x,所以g ′(x )=e x 2+2a2·ex≤0在区间[1,2]上恒成立,且g (1)≤0. 所以⎩⎪⎨⎪⎧2a ≤-e x2,e 2-ae≤0,无解.②g (x )≥0且g (x )在区间[1,2]上单调递增,即g ′(x )=e x 2+2a2·ex≥0在区间[1,2]上恒成立,且g (1)≥0,所以⎩⎪⎨⎪⎧2a ≥-e x 2,e 2-ae≥0,解得a ∈⎣⎢⎡⎦⎥⎤-e 22,e 22.综上,实数a 的取值范围为⎣⎢⎡⎦⎥⎤-e 22,e 22.【关联2】、若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.【答案】: (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解. 函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|. 令g(x)=x 3+(2-a)x 2+(1-2a)x -a ,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a). 令g′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1.又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-1,2a -13,(a ,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a≥72,又因为a>-1,故a≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值范围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.9、 已知函数f (x )=⎩⎪⎨⎪⎧-|x 3-2x 2+x |, x <1,ln x , x ≥1,若对于∀t ∈R ,f (t )≤kt 恒成立,则实数k 的取值范围是________.【答案】: [1e ,1] 【思路分析】 本题条件“∀t ∈R ,f (t )≤kt ”的几何意义是:在(-∞,+∞)上,函数y =f (t )的图像恒在直线y =kt 的下方,这自然提示我们利用数形结合的方法解决本问题.令y =x 3-2x 2+x ,x <1,则y ′=3x 2-4x +1=(x -1)·(3x -1),令y ′>0,即(x -1)(3x -1)>0,解得x <13或x >1.又因为x <1,所以x <13.令y ′<0,得13<x <1,所以y 的增区间是(-∞,13),减区间是(13,1),所以y极大值=427.根据图像变换可作出函数y =-|x 3-2x 2+x |,x <1的图像.又设函数y =ln x (x ≥1)的图像经过原点的切线斜率为k 1,切点(x 1,ln x 1),因为y ′=1x ,所以k 1=1x 1=ln x 1-0x 1-0,解得x 1=e ,所以k 1=1e .函数y=x 3-2x 2+x 在原点处的切线斜率k 2=y ′x =0=1.因为∀t ∈R ,f (t )≤kt ,所以根据f (x )的图像,数形结合可得1e≤k ≤1.10、 已知a 为常数,函数f(x)=xa -x 2-1-x2的最小值为-23,则a 的所有值为________. 【答案】: 4,14解法1(构造三角形) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,由根号内的结构联想到勾股定理,从而构造△ABC 满足AB =a ,AC =1,AD ⊥BC ,AD =x ,则BD =a -x 2,DC =1-x 2,则S △ABC =12BC ·AD =12x(a -x 2+1-x 2)=12AB ·AC ·sin ∠BAC ≤12AB ·AC =12a ,当且仅当∠BAC =π2时,△ABC 的面积最大,且最大值为12 a.从而g(x)=x (a -x 2+1-x 2)|a -1|=2|a -1|S △ABC ≤a |a -1|,所以a |a -1|=23,解得a =4或a =14.解法2(导数法,理科) 由题意得函数f(x)为奇函数. 因为函数f(x)=x a -x 2-1-x2,所以f ′(x)=(a -x 2-1-x 2)-x ⎝ ⎛⎭⎪⎫-2x 2a -x 2--2x 21-x 2(a -x 2-1-x 2)2=a -x21-x 2-x2(a -x 2-1-x 2)a -x 21-x2,a ≠1.令f ′(x)=0,得x 2=a -x21-x 2,则x 2=a a +1.因为函数f(x)的最小值为-23,且a>0.由a -x21-x 2-x 2>0,得a -(a +1)x 2>0.①当0<a<1时,a -x 2-1-x 2<0,函数f(x)的定义域为[-a ,a],由f ′(x)>0得-a ≤x<-aa +1或aa +1<x ≤a ;由f ′(x)<0得-aa +1<x<a a +1,函数f(x)在[-a ,-a a +1),⎝ ⎛⎦⎥⎤a a +1,a 上为增函数,在(-a a +1,aa +1)上为减函数. 因为f(-a)=a 1-a >f ⎝⎛⎭⎪⎫a a +1=a a -1,所以f(x)min =f ⎝⎛⎭⎪⎫a a +1=a a -1=-23,解得a =14. ②当a>1时,a -x 2-1-x 2>0,函数f(x)的定义域为[-1,1],由f ′(x)>0得-aa +1<x<a a +1;由f ′(x)<0得-1≤x<-aa +1或a a +1<x ≤1,函数f(x)在⎝⎛⎭⎪⎫-aa +1,a a +1上为增函数,在⎣⎢⎡⎭⎪⎫-1,-a a +1,⎝ ⎛⎦⎥⎤a a +1,1上为减函数. 因为f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1<f(1)=1a -1,所以f(x)min =f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1=-23,解得a =4. 综上所述,a =4或a =14.解法3(构造向量) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,设向量a =(a -x 2,x 2),b =(x 2,1-x 2),a 与b的夹角为θ,则有a ·b =|a |·|b |cos θ≤|a |·|b |,即(a -x 2,x 2)·(x 2,1-x 2)≤(a -x 2)+x 2·x 2+(1-x 2), 亦即a -x 2·x 2+x 2·1-x 2≤a ,亦即x (a -x 2+1-x 2)≤a , 当且仅当a 与b 同向时等号成立,即a -x 2·1-x 2-x 2·x 2=0,亦即x 2=aa +1时,取等号.即x (a -x 2+1-x 2)的最大值为a ,从而g (x )的最大值为a |a -1|,即有a |a -1|=23,解得a =4或a =14.解后反思 1. 最值的求法通常有如下的方法:(2)解法1(根的分布) 当x 0>1时,则f(x 0)>0,又b =3-a ,设t =f(x 0),则题意可转化为方程ax +3-ax -c =t(t >0) 在(0,+∞)上有相异两实根x 1,x 2, (6分)即关于x 的方程ax 2-(c +t)x +(3-a)=0(t >0)在(0,+∞)上有相异两实根x 1,x 2. 则x 1,2=c +t ±(c +t )2-4a (3-a )2a,所以⎩⎪⎨⎪⎧0<a <3,Δ=(c +t )2-4a (3-a )>0,x 1+x 2=c +ta >0,x 1x 2=3-a a >0,得⎩⎪⎨⎪⎧0<a <3,(c +t )2>4a (3-a ),c +t >0.所以c >2a (3-a )-t 对任意t ∈(0,+∞)恒成立. 因为0<a <3,所以2a (3-a )≤2×a +3-a 2=3(当且仅当a =32时取等号). 又-t <0,所以2a (3-a )-t 的取值范围是(-∞,3),所以c ≥3. 故c 的最小值为3.(10分)解法2(图像法) 由b =3-a ,且0 <a <3,得g ′(x)=a -3-a x 2=ax 2-(3-a )x 2=0,得 x =3-aa或x =-3-a a (舍),则函数g(x)在⎝⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增. 又对任意x 0>1,f(x 0)为(0,+∞)上的任意一个值,若存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0),则g(x)的最小值小于或等于0. 即g ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c ≤0,(6分) 即c ≥2a (3-a )对任意 a ∈(0,3)恒成立. 又2a (3-a )≤a +(3-a)=3,所以c ≥3.当c =3时,对任意a ∈(0,3),x 0∈(1,+∞),方程g(x)-f(x 0)=0化为ax +3-a x -3-f(x 0)=0,即ax2-[3+f(x 0)]x +(3-a)=0 (*).关于x 的方程(*)的Δ=[3+f(x 0)]2-4a(3-a)≥[3+f(x 0)]2-4⎝ ⎛⎭⎪⎫a +3-a 22=[3+f(x 0)]2-9,因为x 0>1,所以f(x 0)=ln x 0>0,所以Δ>0,所以方程(*)有两个不相等的实数解x 1,x 2,又x 1+x 2=f (x 0)+3a >0,x 1x 2=3-aa >0,所以x 1,x 2为两个相异正实数解,符合题意.所以c 的最小值为3. 解法3(图像法) 当x 0>1时,可知f(x 0)>0,又b =3-a ,设t =f(x 0),则t >0. 令h(x)=ax +3-a x -c -t(x >0,t >0),同解法2可知h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增.当c <2a (3-a )时,若0<t <2a (3-a )-c ,则x >0时,h(x)=ax +3-ax-c -t ≥2a (3-a )-c-t >0,所以h(x)在(0,+∞)上没有零点,不符合题意. 当c ≥2a (3-a )时,h ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c -t ≤-t <0. 因为a (3-a )<2a (3-a )≤c ,a (3-a )<c +t ,所以0<3-ac +t <3-a a ,所以当0<m <3-ac +t时,3-a m >c +t ,所以h(m)=am +3-a m -c -t >3-am -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减,并且连续,则h(x)在(m ,3-aa)上恰有一个零点,所以存在x 1∈(0,3-aa),使得h(x 1)=0,即g(x 1)=t. 因为c +t >c >a (3-a ),所以c +ta >3-a a ,所以当n >c +t a 时,h(n)=an +3-an-c -t >an -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫3-a a ,+∞上单调递增,并且连续,则h(x)在⎝ ⎛⎭⎪⎫3-a a ,n 上恰有一个零点,所以存在x 2∈⎝⎛⎭⎪⎫3-a a ,+∞,使得h(x 2)=0,即g(x 2)=t. 所以当c ≥2a (3-a )时,对任意x 0∈(1,+∞)和任意a ∈(0,3),总存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0).即c ≥2a (3-a )对任意 a ∈(0,3)恒成立.又2a (3-a )≤a +(3-a)=3,当且仅当a =32时取等号,所以c ≥3.故c 的最小值为3.(3)当a =1时,因为函数f(x)与g(x)的图像交于A ,B 两点,所以⎩⎪⎨⎪⎧ln x 1=x 1+bx 1-c ,ln x 2=x 2+bx2-c ,两式相减,得b =x 1x 2(1-ln x 2-ln x 1x 2-x 1).要证明x 1x 2-x 2<b<x 1x 2-x 1,即证x 1x 2-x 2<x 1x 2⎝⎛⎭⎪⎫1-ln x 2-ln x 1x 2-x 1<x 1x 2-x 1,即证1x 2<ln x 2-ln x 1x 2-x 1<1x 1,即证1-x 1x 2<ln x 2x 1<x 2x 1-1.令x 2x 1=t ,则t>1,此时即证1-1t<ln t<t -1. 令φ(t)=ln t +1t -1,所以φ′(t)=1t -1t 2=t -1t 2>0,所以当t>1时,函数φ(t)单调递增.又φ(1)=0,所以φ(t)=ln t +1t -1>0,即1-1t<ln t 成立;再令m(t)=ln t -t +1,所以m ′(t)=1t -1=1-tt <0,所以当t>1时,函数m(t)单调递减.又m(1)=0,所以m(t)=ln t -t +1<0,即ln t<t -1也成立. 综上所述, 实数x 1,x 2满足x 1x 2-x 2<b<x 1x 2-x 1.【变式2】、.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m -n |≥1,使得f (m )=f (n ),求证:1≤ae -1≤e.思路分析(1) 先分段讨论,再整体说明单调区间是否可合并(关键是图像在x =0处怎样跳跃). (2) 转化为a =x 2+x +3x 在(0,+∞)上有实数解,即求函数g(x)=x 2+x +3x 在(0,+∞)上的值域.(3) 首先缩小a 的范围为1<a<e 2,在此基础上考察f(x)在0,1,2,m ,n 处的函数值的大小关系.【解析】:(1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x-2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分) (2) 当x>0时,f(x)=e x-ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2. 所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分)记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分) 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(10分) (3) 当x ∈[0,2]时,f(x)=e x-ax ,有f ′(x)=e x-a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.(11分) 所以1<a<e 2,此时可得f(x)在[0,ln a]上递减,在[ln a ,2]上递增.不妨设0≤m<ln a<n ≤2,则f(0)≥f(m)>f(ln a),且f(ln a)<f(n)≤f(2).由m ,n ∈[0,2],n -m ≥1,可得0≤m ≤1≤n ≤2.(12分) 因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,(14分)即e -1≤a ≤e 2-e ,所以1≤ae -1≤e .(16分) 解后反思 第(1)题中,若函数f(x)改为f(x)=⎩⎪⎨⎪⎧-x 3+x 2+2,x<0,e x -2x ,x ≥0.则函数f(x)的“两个”递减区间(-∞,0)和[0,ln 2]应合并为一个递减区间(-∞,ln 2],因为函数图像在x =0处(从左往右)向下跳跃.而原题中函数图像在x =0处(从左往右)向上跳跃,所以不能合并.【关联1】、.已知函数f(x)=e x(3x -2),g(x)=a(x -2),其中a ,x ∈R . (1) 求过点(2,0)和函数y =f (x )图像相切的直线方程; (2) 若对任意x ∈R ,有f (x )≥g (x )恒成立,求a 的取值范围; (3) 若存在唯一的整数x 0,使得f (x 0)<g (x 0),求a 的取值范围.思路分析 (1)利用导数的几何意义求切线的方程,根据斜率建立方程即可.(2)不等式恒成立问题处理的方法有两种:一种是分离参变,转化为相应函数的值域(最值)问题解决;另一种是转化为含参函数的值域问题,通过分类讨论解决.这里可以采取第一种方法,只是分离参变时要注意对x -2的符号进行分类讨论.(3)在第(2)小问的基础上,分离参变,转化为存在有限整数自变量满足条件的问题.利用导数研究函数F(x)=e x (3x -2)x -2的性质,找到相关的整数自变量,求得对应的函数值是解决本问题的关键.【解析】(1) 设切点为(x 0,y 0),f ′(x)=e x(3x +1),则切线斜率为e x 0(3x 0+1),所以切线方程为y -y 0=e x 0(3x 0+1)(x -x 0),因为切线过点(2,0), 所以-e x 0(3x 0-2)=e x 0(3x 0+1)(2-x 0), 化简得3x 20-8x 0=0,解得x 0=0或x 0=83,当x 0=0时,切线方程为y =x -2, 当x 0=83时,切线方程为y =9e 83x -18e 83.(2) 由题意,对任意x ∈R ,有e x(3x -2)≥a (x -2)恒成立, ①当x ∈(-∞,2)时,a ≥e x(3x -2)x -2,即a ≥⎣⎢⎡⎦⎥⎤e x(3x -2)x -2max.令F (x )=e x (3x -2)x -2,则F ′(x )=e x (3x 2-8x )(x -2)2, 令F ′(x )=0,得x =0,列表如下:F (x )max =F (0)=1,故此时a ≥1. ②当x =2时,恒成立,故此时a ∈R .③当x ∈(2,+∞)时,a ≤e x(3x -2)x -2,即a ≤⎣⎢⎡⎦⎥⎤e x(3x -2)x -2min,令F ′(x )=0,得x =83,列表如下:F (x )min =F ⎝ ⎛⎭⎪⎫83=9e 83, 故此时a ≤9e 83,综上,1≤a ≤9e 83.(3) 由f (x )<g (x ),得e x(3x -2)<a (x -2), 由(2)知a ∈(-∞,1)∪(9e 83,+∞),令F (x )=e x(3x -2)x -2,列表如下:(12分)当x ∈(-∞,2)时,存在唯一的整数x 0使得f (x 0)<g (x 0), 等价于a <e x(3x -2)x -2存在的唯一整数x 0成立,因为F (0)=1最大,F (-1)=53e ,F (1)=-e ,所以当a <53e 时,至少有两个整数成立,所以a ∈⎣⎢⎡⎭⎪⎫53e ,1. 当x ∈(2,+∞)时,存在唯一的整数x 0使得f (x 0)<g (x 0),等价于a >e x(3x -2)x -2存在唯一的整数x 0成立,因为F ⎝ ⎛⎭⎪⎫83=9e 83最小,且F (3)=7e 3,F (4)=5e 4,所以当a >5e 4时,至少有两个整数成立,当a ≤7e 3时,没有整数成立,所以a ∈(7e 3,5e 4].综上,a ∈⎣⎢⎡⎭⎪⎫53e ,1∪(7e 3,5e 4].【关联2】、已知函数f(x)=ln x(x +a )2,其中a 为常数.(1) 若a =0,求函数f(x)的极值;(2) 若函数f(x)在(0,-a)上单调递增,求实数a 的取值范围; (3) 若a =-1,设函数f(x)在(0,1)上的极值点为x 0,求证:f(x 0)<-2.思路分析 第一小问,利用导函数求单调性、极值、值域的一般步骤,必须掌握!也是解决后面问题的基础;第二小问,由函数在(0,-a)上的单调性得出导函数在特定区间的符号,转化为含参数的恒成立问题;第三小问,关键是找到零点的大致范围,还是利用导数求最大值、最小值的方法. 【解析】:(1) 当a =0时,f(x)=ln xx 2,定义域为(0,+∞).f ′(x)=1-2ln xx3,令f ′(x)=0,得x =e . 当x 变化时,f ′(x),f(x)的变化情况如下表:x (0,e ) e(e ,+∞)f ′(x) + 0 - f(x)极大值12e所以当x =e 时,f(x)的极大值为12e,无极小值.①若0<-a ≤e -12,即0>a ≥-e -12,则g ′(x)=2ln x +1<0对x ∈(0,-a)恒成立,所以g(x)=2x ln x -x 在(0,-a)上单调递减,则a ≤2(-a)ln (-a)-(-a),所以ln (-a)≥0,所以a ≤-1与a ≥-e -12矛盾,舍去;②若-a>e -12,即a<-e -12,令g ′(x)=2ln x +1=0,得x =e -12,当0<x<e -12时,g ′(x)=2ln x +1<0,所以g(x)=2x ln x -x 单调递减,当e -12<x<-a 时,g ′(x)=2ln x +1>0,所以g(x)=2x ln x -x 单调递增,所以当x =e -12时,g(x)min =g(e -12)=2e -12·lne -12-e -12=-2e -12,所以a ≤-2e -12.综上,实数a 的取值范围是(-∞,-2e -12].(3) 当a =-1时,f(x)=ln x (x -1)2,f ′(x)=x -1-2x ln xx (x -1)3.令h(x)=x -1-2x ln x ,x ∈(0,1),则h ′(x)=1-2(ln x +1)=-2ln x -1,令h ′(x)=0,得x =e -12.①当e -12≤x<1时,h ′(x)≤0,所以h(x)=x -1-2x ln x 单调递减,h(x)∈(0,2e -12-1],x ∈(0,1),所以f ′(x)=x -1-2x ln x x (x -1)3<0恒成立,所以f(x)=ln x (x -1)2单调递减,且f(x)≤f(e -12).②当0<x ≤e -12时,h ′(x)≥0,所以h(x)=x -1-2x ln x 单调递增,其中h ⎝ ⎛⎭⎪⎫12=12-1-2·12·ln 12=ln4e>0,h(e -2)=e -2-1-2e -2·lne -2=5e2-1<0,所以存在唯一x 0∈⎝⎛⎭⎪⎫e -2,12,使得h(x 0)=0,所以f ′(x 0)=0,当0<x<x 0时,f ′(x)>0,所以f(x)=ln x(x -1)2单调递增;当x 0<x ≤e -12时,f ′(x)<0,所以f(x)=ln x (x -1)2单调递减,且f(x)≥f(e -12),由①和②可知,f(x)=ln x(x -1)2在(0,x 0)上单调递增,在(x 0,1)上单调递减,所以当x =x 0时,f(x)=ln x(x -1)2取极大值.因为h(x 0)=x 0-1-2x 0ln x 0=0,所以ln x 0=x 0-12x 0,所以f(x 0)=ln x 0(x 0-1)2=12x 0(x 0-1)=12⎝⎛⎭⎪⎫x 0-122-12.又x 0∈⎝ ⎛⎭⎪⎫e -2,12⊆⎝ ⎛⎭⎪⎫0,12,所以2⎝ ⎛⎭⎪⎫x 0-122-12∈⎝ ⎛⎭⎪⎫-12,0,所以f(x 0)=12⎝⎛⎭⎪⎫x 0-122-12<-2.解后反思 本题三个小题梯度明显,有较好的区分度.其中第(1)小题简单;第(2)小题难度中等,但要完成讨论也需要不错的基础;第三小题“隐零点”问题.不是一般的考生能讨论出范围的,建议一般的考生果断放弃.各个小问题中都利用了导数研究函数的单调性、极值、值域. 【关联3】、已知函数f (x )=x-1-a lnx (其中a 为参数). (1) 求函数f (x )的单调区间;(2) 若对任意x ∈(0,+∞)都有f (x )≥0成立,求实数a 的取值集合;(3) 证明:⎝⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).【解析】:(1) f ′(x )=1-a x =x -ax(x >0),当a ≤0时,f ′(x )=1-a x =x -ax>0,所以f (x )在(0,+∞)上是增函数;当a >0时,x (0,a ) a(a ,+∞)f ′(x ) -0 + f (x )极小值所以f (x )的增区间是(a 综上所述, 当a ≤0时,f (x )的单调递增区间是(0,+∞);当a >0时,f (x )的单调递增区间是(a ,+∞),单调递减区间是(0,a ). (2) 由题意得f (x )min ≥0.当a ≤0时,由(1)知f (x )在(0,+∞)上是增函数, 当x →0时,f (x )→-∞,故不合题意;(6分)当a >0时,由(1)知f (x )min =f (a )=a -1-a ln a ≥0.令g (a )=a -1-a ln a ,则由g ′(a )=-ln a =0,得a =1,a (0,1) 1 (1,+∞)g ′(a ) +0 - g (a )极大值所以g (a )=a -1-a ln a min =0, 所以a =1,即实数a 的取值集合是{1}.(10分) (3) 要证不等式1+1n n <e<1+1nn +1,两边取对数后,只要证n ln1+1n <1<(n +1)ln1+1n,即只要证1n +1<ln1+1n <1n, 令x =1+1n ,则只要证1-1x<ln x <x -1(1<x ≤2).由(1)知当a =1时,f (x )=x -1-ln x 在(1,2]上递增, 因此f (x )>f (1),即x -1-ln x >0,所以ln x <x -1(1<x ≤2) 令φ(x )=ln x +1x -1(1<x ≤2),则φ′(x )=x -1x2>0,所以φ(x )在(1,2]上递增,故φ(x )>φ(1),即ln x +1x -1>0,所以1-1x<ln x (1<x ≤2).综上,原命题得证.【关联4】、已知函数f (x )=e x,g (x )=x -b ,b ∈R . (1) 若函数f (x )的图像与函数g (x )的图像相切,求b 的值; (2) 设函数T (x )=f (x )+ag (x ),a ∈R ,求T (x )的单调递增区间;(3) 设函数h (x )=|g (x )|·f (x ),b <1.若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,求b 的取值范围.【思路分析】 (1) 对于直线与曲线相切问题,只要切点不知道的,都要先设切点坐标,然后运用好切点的双重身份,即切点既是切线上的点,又是曲线上的点,它的坐标既适合切线方程,又适合曲线方程,再由方程(组)思想,求出未知量;(2) 要求函数T (x )的单调递增区间,只要求T ′(x )>0的解区间就行,不过需对a 进行分类讨论;(3) 首先要把“若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立”运用等价转化的思想转化为“h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1”,接下来的问题就是求h (x )在[0,1]上的最大值和最小值.对于含绝对值的函数一般首先要去掉绝对值,这里要运用好分类讨论思想.(3) 若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,则等价转化为h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1.解法1 h (x )=|g (x )|·f (x )=⎩⎪⎨⎪⎧x -b e x, x ≥b ,-x -b e x, x <b .当x ≥b 时,有h ′(x )=(x -b +1)e x>0; 当x <b -1时,有h ′(x )=-(x -b +1)e x>0; 当b -1<x <b 时,有h ′(x )=-(x -b +1)e x <0,所以h (x )在(-∞,b -1)上是增函数,在(b -1,b )上是减函数,在(b ,+∞)上是增函数.(10分) 因为b <1,则①当b ≤0时,h (x )在[0,1]上为增函数.所以h (x )max =h (1)=(1-b )e ,h (x )min =h (0)=-b .则由h (x )max -h (x )min >1,得(1-b )e +b >1,解得b <1,所以b ≤0.(12分)②当0<b <1时,h (x )在(0,b )上是减函数,在(b,1)上是增函数,所以h (x )min =h (b )=0,h (x )max =max{h (0),h (1)}.若h (0)-h (1)=b -(1-b )e =b (e +1)-e>0,即b >ee +1,此时h (0)>h (1);若b <e e +1,此时h (0)<h (1).(ⅰ) 当0<b <ee +1时,有h (x )max =h (1)=(1-b )e ,h (x )min =h (b )=0. 则由h (x )max -h (x )min >1,得(1-b )e>1,解得b <e -1e .(ⅱ) 当ee +1≤b <1时,有h (x )max =h (0)=b ,h (x )min =h (b )=0. 因为b <1,所以h (x )max -h (x )min =b >1不成立. 综上,b 的取值范围为-∞,e -1e.解法2 h (x )=|g (x )|·f (x )=|x -b |·e x=|(x -b )e x|,令φ(x )=(x -b )e x,则h (x )=|φ(x )|. 先研究函数φ(x )=(x -b )e x,φ′(x )=(x -b +1)e x.因为b <1,所以在[0,1]上有φ′(x )=(x -b +1)e x>0,因此φ(x )在[0,1]上是增函数.所以φ(x )min =φ(0)=-b ,φ(x )max =φ(1)=(1-b )e>0.①若φ(0)=-b ≥0,即b ≤0时,h (x )min =φ(0)=-b ,h (x )max =φ(1)=(1-b )e , 则由h (x )max -h (x )min >1,即(1-b )e +b >1,解得b <1,所以b ≤0.②若φ(0)=-b <0,即0<b <1时,h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}, 令-φ(0)-φ(1)=b -(1-b )e =b (e +1)-e =0,则b =ee +1.(ⅰ) 当0<b <ee +1时,-φ(0)-φ(1)<0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=φ(1)=(1-b )e , 由h (x )max -h (x )min >1,即(1-b )e>1,解得b <e -1e ,所以0<b <e -1e .(14分)(ⅱ) 当ee +1≤b <1时,-φ(0)-φ(1)≥0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=-φ(0)=b , 由h (x )max -h (x )min >1,得b >1,与b <1矛盾,故h (x )max -h (x )min >1不成立. 综上,b 的取值范围为-∞,e -1e .。
2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)
函数与导数02函数函数的基本性质【考点讲解】一、具体目标:1.结合具体函数,了解函数奇偶性的含义.会用函数的图象理解和研究函数的奇偶性.2.理解函数的单调性及其几何意义.会用基本函数的图象分析函数的性质.3. 了解函数的周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、知识概述:1.偶函数、奇函数的概念一般地,如果对函数f(x)的定义域内任意一个x,都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于__y轴__对称,奇函数的图象关于__原点__对称.3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.4.判断函数的奇偶性的常用方法:(1)定义法一般地,对于较简单的函数解析式,可通过定义直接作出判断;对于较复杂的解析式,可先对其进行化简,再利用定义进行判断.利用定义判断函数奇偶性的步骤:(2)图象法:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称.因此要证函数的图象关于原点对称,只需证明此函数是奇函数即可;要证函数的图象关于y 轴对称,只需证明此函数是偶函数即可.反之,也可利用函数图象的对称性去判断函数的奇偶性. (3)组合函数奇偶性的判定方法①两个奇(偶)函数的和、差还是奇(偶)函数,一奇一偶之和为非奇非偶函数.②奇偶性相同的两函数之积(商)为偶函数,奇偶性不同的两函数之积(商)(分母不为0)为奇函数. ③复合函数的奇偶性可概括为“同奇则奇,一偶则偶”. (4)分段函数的奇偶性判定分段函数应分段讨论,注意奇偶函数的整体性质,要避免分段下结1.已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.5.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.6.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 7.增函数与减函数一般地,设函数f (x )的定义域为I ,(1)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__增函数__.(2)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__减函数__.8.单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)__单调性__,区间D 叫做y =f (x )的__单调区间__. 9.函数的最大值与最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有__f (x )≤M __;存在x 0∈I ,使得__f (x 0)=M __,那么,我们称M 是函数y =f (x )的最 大值.(2)对于任意的x ∈I ,都有__f (x )≥M __;存在x 0∈I ,使得__f (x 0)=M __,那么我们称M 是函数y =f (x )的最小值.10.函数单调性的常用结论11.对勾函数的单调性对勾函数y =x +ax (a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数. 12.函数的周期性(1)对于函数f (x ),如果存在一个__非零常数__T ,使得当x 取定义域内的每一个值时,都有__f (x +T )=f (x )__,那么函数f (x )就叫做周期函数,T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__最小__正周期. 13.函数周期性的常用结论: 对f (x )定义域内任一自变量x 的值: (1)若f (x +a )=-f (x ),则T =2a (a >0); (2)若f (x +a )=1f (x ),则T =2a (a >0); (3)若f (x +a )=-1f (x ),则T =2a (a >0).14.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a,0),B (b,0)(a <b ),那么函数f (x )是周期函数,且周期 T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |.注:对于(1)(2)(3)中的周期公式可仿照正、余弦函数的图象加强记忆.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.15.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题主要考查函数的奇偶性,对数的计算.由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】3-2.【2019优选题】已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为 (|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<, 【真题分析】故答案为:17a -<< 【答案】17a -<<.3.【2017课标II 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【解析】本题考点奇函数的性质解决求函数值的问题. 法一:(2)(2)[2(8)4]12=--=-⨯-+=f f .法二:由题意可知函数()f x 是定义在R 上的奇函数,所以有()()()232x x x f x f +-=-=-,而因为()0,∞-∈x ,()∞+∈-,0x ,()232x x x f --=-所以有()⎪⎩⎪⎨⎧>-<+=0,20,22323x x x x x x x f ,()12222223=-⨯=f【答案】124. 【2017山东】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= 【解析】由f (x +4)=f (x -2)可知,()()6=+f x f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+=(1)6f =-=.【答案】65. 【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1211k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为123⎡⎢⎣⎭,. 【答案】123⎡⎢⎣⎭6.【2017山东理15】若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【解析】①()e =e e 22xx x xy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xxy f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e 2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.【答案】①④7.【2017天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<【解析】 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.【答案】C8.【2018新课标II 卷11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( )A .50-B .0C .2D .50【解析】本题考点是函数的性质的具体应用,根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 由题意可知原函数的定义域为()∞+∞-,的奇函数,并且有()()x f x f +=-11,所以有()()()111--=-=+x f x f x f ,所以有()()()113-=+-=+x f x f x f ,即有()()4+=x f x f ,所以函数是以周期为4的周期函数.因此有()()()()()()()()[]()()2143211250321f f f f f f f f f f +++++=++++Λ.因为()()()()2413f f f f -=-=,,()()()()04321=+++f f f f ,由()()()113-=+-=+x f x f x f 可得()()()00112==+--=f f f从而()()()()()2150321==++++f f f f f Λ,选C .【答案】C9. .已知定义在错误!未找到引用源。
高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第8练 含答案
第8练 突难点——抽象函数与函数图象[题型分析·高考展望] 抽象函数即没有函数关系式,通过对函数性质的描述,对函数相关知识进行考查,此类题目难度较大,也是近几年来高考命题的热点.对函数图象问题,以基本函数为主,由基本函数进行简单的图象变换,主要是平行变换和对称变换,这样的题目都离不开函数的单调性与奇偶性.体验高考1.(2015·安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )ax +b(x +c )2A.a >0,b >0,c <0B.a <0,b >0,c >0C.a <0,b >0,c <0D.a <0,b <0,c <0答案 C 解析 函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0.令x =0,得f (0)=,又由图象知f (0)>0,b c 2∴b >0.令f (x )=0,得x =-,结合图象知->0,b a b a∴a <0.故选C.2.(2015·天津)已知函数f (x )=Error!函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A. B.(74,+∞)(-∞,74)C. D.(0,74)(74,2)答案 D 解析 由f (x )=Error!得f (2-x )=Error!所以f (x )+f (2-x )=Error!即f (x )+f (2-x )=Error!y =f (x )-g (x )=f (x )+f (2-x )-b ,所以y =f (x )-g (x )恰有4个零点等价于方程f (x )+f (2-x )-b =0有4个不同的解,即函数y =b 与函数y =f (x )+f (2-x )的图象有4个公共点,由图象知<b <2.743.(2016·课标全国乙)函数y =2x 2-e |x |在[-2,2]的图象大致为( )答案 D解析 f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;当x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈时,f ′(x )<×4-e 0=0,(0,14)14因此f (x )在上单调递减,排除C ,故选D.(0,14)4.(2016·天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-),则a 的取值范围是________.2答案 (12,32)解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,∴在(0,+∞)上单调递减,f (-)=f (),22∴f (2|a -1|)>f (),∴2|a -1|<=221,22∴|a -1|<,即-<a -1<,即<a <.12121212325.(2015·浙江)已知函数f (x )=Error!则f (f (-3))=________,f (x )的最小值是________.答案 0 2-32解析 f (f (-3))=f (1)=0.当x ≥1时,f (x )=x +-3≥2-3<0,当且仅当x =时,取等2x22号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号.∴f (x )的最小值为2-3.2高考必会题型题型一 与函数性质有关的简单的抽象函数问题例1 已知函数f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A.既不充分也不必要条件B.充分而不必要条件C.必要而不充分条件D.充要条件答案 D解析 ①∵f (x )在R 上是偶函数,∴f (x )的图象关于y 轴对称.∵f (x )为[0,1]上的增函数,∴f (x )为[-1,0]上的减函数.又∵f (x )的周期为2,∴f (x )为区间[-1+4,0+4]=[3,4]上的减函数.②∵f (x )为[3,4]上的减函数,且f (x )的周期为2,∴f (x )为[-1,0]上的减函数.又∵f (x )在R 上是偶函数,∴f (x )为[0,1]上的增函数.由①②知“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.点评 抽象函数的条件具有一般性,对待选择题、填空题可用特例法、特值法或赋值法.也可由函数一般性质进行推理.变式训练1 已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)-f (x 2),且当x >1x 1x 2时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.解 (1)令x 1=x 2>0,代入f ()=f (x 1)-f (x 2),x 1x 2得f (1)=f (x 1)-f (x 2)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则>1.x 1x 2∵当x >1时,f (x )<0.∴f <0,即f (x 1)-f (x 2)<0,(x 1x 2)即f (x 1)<f (x 2),故函数f (x )在区间(0,+∞)上单调递减.(3)由f =f (x 1)-f (x 2),(x 1x 2)得f ()=f (9)-f (3).93而f (3)=-1,∴f (9)=-2,∴原不等式为f (|x |)<f (9).∵函数f (x )在区间(0,+∞)上单调递减,∴|x |>9,∴x <-9或x >9.∴不等式的解集为{x |x <-9或x >9}.题型二 与抽象函数有关的综合性问题例2 对于函数f (x ),若在定义域内存在实数x ,满足f (-x )=-f (x ),则称f (x )为“局部奇函数”.(1)已知二次函数f (x )=ax 2+2x -4a (a ∈R ),试判断f (x )是否为“局部奇函数”?并说明理由;(2)若f (x )=2x +m 是定义在区间[-1,1]上的“局部奇函数”,求实数m 的取值范围.解 f (x )为“局部奇函数”等价于关于x 的方程f (x )+f (-x )=0有解.(1)当f (x )=ax 2+2x -4a (a ∈R )时,方程f (x )+f (-x )=0即2a (x 2-4)=0.因为方程有解x =±2,所以f (x )为“局部奇函数”.(2)当f (x )=2x +m 时,f (x )+f (-x )=0可化为2x +2-x +2m =0,因为f (x )的定义域为[-1,1],所以方程2x +2-x +2m =0在[-1,1]上有解.令t =2x ∈[,2],则-2m =t +.121t设g (t )=t +,t ∈[,2],1t 12则g ′(t )=1-,t ∈[,2].1t 212当t ∈时,g ′(t )<0,(12,1)故g (t )在(0,1)上为减函数;当t ∈(1,2)时,g ′(t )>0,故g (t )在(1,2)上为增函数.所以函数g (t )=t +,t ∈[,2]的值域为[2,],1t 1252由2≤-2m ≤,得-≤m ≤-1,5254故实数m 的取值范围是[-,-1].54点评 (1)让抽象函数不再抽象的方法主要是赋值法和单调函数法,因此学会赋值、判断并掌握函数单调性和奇偶性是必须过好的两关,把握好函数的性质.(2)解答抽象函数问题时,学生往往盲目地用指数、对数函数等代替函数来解答问题,而导致出错.要明确抽象函数是具有某些性质的一类函数,而不是具体的某一个函数.因此掌握这类函数的关键是把握函数的性质以及赋值的方法.变式训练2 定义在(0,+∞)上的可导函数f (x )满足xf ′(x )-f (x )=x ,且f (1)=1.现给出关于函数f (x )的下列结论:(1)函数f (x )在上单调递增;(1e ,+∞)(2)函数f (x )的最小值为-;1e2(3)函数f (x )有且只有一个零点;(4)对于任意的x >0,都有f (x )≤x 2.其中正确结论的个数是( )A.1B.2C.3D.4答案 D解析 设g (x )=,x ∈(0,+∞),f (x )x 则g ′(x )===,xf ′(x )-f (x )x 2x x 21x 所以g (x )=ln x +c (c 为常数),所以f (x )=x ln x +cx .因为f (1)=1,所以c =1,所以f (x )=x ln x +x .对于(1),因为f ′(x )=ln x +2,当x >时,f ′(x )>ln +2=-1+2=1>0,1e 1e所以(1)正确.对于(2),由f ′(x )>0,得x >;1e2由f ′(x )<0,得0<x <,1e2所以f (x )=x ln x +x 在(0,]上单调递减,1e2在[,+∞)上单调递增.1e2所以当x =时,函数f (x )取得最小值f ()=ln +=-,所以(2)正确.1e21e21e21e21e21e2对于(3),函数f (x )=x ln x +x 的图象如图所示,所以(3)正确.对于(4),f (x )-x 2=x ln x +x -x 2=x (ln x +1-x ).令h (x )=ln x +1-x ,x ∈(0,+∞),则h ′(x )=-1=.1x 1-x x令h ′(x )>0,得0<x <1;令h (x )<0,得x >1.从而h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )≤h (1)=0,即ln x +1-x ≤0.又x >0,所以f (x )-x 2=x (ln x +1-x )≤0,即f (x )≤x 2.所以(4)正确.综上,正确结论的个数是4.题型三 函数图象的应用与判断例3 已知函数f (x )=,则y =f (x )的图象大致为( )1ln (x +1)-x答案 B解析 令g (x )=ln(x +1)-x ,则g ′(x )=-,x >-1.x1+x 当g ′(x )>0时,-1<x <0;当g ′(x )<0时,x >0.故g (x )<g (0)=0,即x >0或-1<x <0时均有f (x )<0,排除A ,C ,D.点评 (1)求函数图象时首先考虑函数定义域,然后考虑特殊值以及函数变化趋势,特殊值首先考虑坐标轴上的点.(2)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(3)在运用函数图象时要避免只看表象不联系其本质,透过函数的图象要看到它所反映的函数的性质,并以此为依据进行分析、推断,才是正确的做法.变式训练3 形如y =(a >0,b >0)的函数因其图象类似于汉字中的“囧”字,故生动b|x |-a 地称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg|x |的交点个数为n ,则n =________.答案 4解析 由题意知,当a =1,b =1时,y ==Error!1|x |-1在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.高考题型精练1.定义在R 上的偶函数f (x )满足f (2-x )=f (x ),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则下列不等式中正确的是( )A.f (sin α)>f (cos β)B.f (sin α)<f (cos β)C.f (cos α)<f (cos β)D.f (cos α)>f (cos β)答案 B解析 因为f (x )为R 上的偶函数,所以f (-x )=f (x ),又f (2-x )=f (x ),所以f (x +2)=f (2-(x +2))=f (-x )=f (x ),所以函数f (x )以2为周期.因为f (x )在[-3,-2]上是减函数,所以f (x )在[-1,0]上也是减函数,故f (x )在[0,1]上是增函数.因为α,β是钝角三角形的两个锐角,所以α+β<,α<-β,π2π2所以0<sin α<sin =cos β<1,(π2-β)故f (sin α)<f (cos β),故选B.2.定义域为R 的函数f (x )对任意x 都有f (2+x )=f (2-x ),且其导函数f ′(x )满足>0,f ′(x )2-x 则当2<a <4时,有( )A.f (2a )<f (log 2a )<f (2)B.f (log 2a )<f (2)<f (2a )C.f (2a )<f (2)<f (log 2a )D.f (log 2a )<f (2a )<f (2)答案 A解析 由函数f (x )对任意x 都有f (2+x )=f (2-x ),得函数f (x )图象的对称轴为直线x =2.因为函数f (x )的导函数f ′(x )满足>0,f ′(x )2-x 所以函数f (x )在(2,+∞)上单调递减,(-∞,2)上单调递增.因为2<a <4,所以1<log 2a <2<4<2a .又函数f (x )图象的对称轴为直线x =2,所以f (2)>f (log 2a )>f (2a ),故选A.3.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则“同根函数”是( )A.f 2(x )与f 4(x )B.f 1(x )与f 3(x )C.f 1(x )与f 4(x )D.f 3(x )与f 4(x )答案 A 解析 f 4(x )=log 2(2x )=1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.4.设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式>0恒成立,f (x 1)-f (x 2)x 1-x 2则实数a 的取值范围是( )A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]答案 C解析 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立;当a >0时,f (x )=Error!∴f (x )在上单调递增,(-∞,a 2)在上单调递减,在(a ,+∞)上单调递增,(a 2,a )∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].5.在平面直角坐标系中,若两点P ,Q 满足条件:(1)P ,Q 都在函数y =f (x )的图象上;(2)P ,Q 两点关于直线y =x 对称,则称点对{P ,Q }是函数y =f (x )的一对“和谐点对”.(注:点对{P ,Q }与{Q ,P }看作同一对“和谐点对”)已知函数f (x )=Error!则此函数的“和谐点对”有( )A.0对B.1对C.2对D.3对答案 C解析 作出函数f (x )的图象,然后作出f (x )=log 2x (x >0)关于直线y =x 对称的图象,与函数f (x )=x 2+3x +2(x ≤0)的图象有2个不同交点,所以函数的“和谐点对”有2对.6.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数:(1)对任意的x ∈[0,1],恒有f (x )≥0;(2)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立.则下列3个函数中不是M 函数的个数是( )①f (x )=x 2;②f (x )=x 2+1;③f (x )=2x -1.A.0B.1C.2D.3答案 B解析 在[0,1]上,3个函数都满足f (x )≥0.当x 1≥0,x 2≥0,x 1+x 2≤1时:对于①,f (x 1+x 2)-[f (x 1)+f (x 2)]=(x 1+x 2)2-(x +x )=2x 1x 2≥0,满足;212对于②,f (x 1+x 2)-[f (x 1)+f (x 2)]=[(x 1+x 2)2+1]-[(x +1)+(x +1)]=2x 1x 2-1<0,不满212足;对于③,f (x 1+x 2)-[f (x 1)+f (x 2)]=(212x +x -1)-(21x -1+22x -1)=21x 22x -21x -22x +1=(21x -1)·(22x -1)≥0,满足.故选B.7.已知函数f (x )=-m |x |有三个零点,则实数m 的取值范围为________.1x +2答案 (1,+∞)解析 函数f (x )有三个零点等价于方程=m |x |有且仅有三个实根.∵=m |x |⇔=1x +21x +21m |x |·(x +2),作函数y =|x |(x +2)的图象,如图所示.由图象可知m 应满足:0<<1,故m >1.1m8.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.答案 (-∞,0]∪(1,2]解析 y=f(x+1)的图象向右平移1个单位得到y=f(x)的图象,由已知可得f(x)的图象的对称轴为x=1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f(x)的大致图象如图所示.不等式(x-1)f(x)≤0可化为Error!或Error!由图可知符合条件的解集为(-∞,0]∪(1,2].9.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案 ①②解析 在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数,∴f(x)的最大值是2,最小值是1,故③错误.10.已知函数y=f(x)(x∈R)为奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x).当x∈(2,3)时,f(x)=log2(x-1),给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=f(x)是以2为周期的周期函数;③当x∈(-1,0)时,f(x)=-log2(1-x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增,则正确结论的序号是__________.答案 ①②③解析 因为f(1+x)=-f(1-x),y=f(x)(x∈R)为奇函数,所以f (1+x )=f (x -1),则f (2+x )=f (x ),所以y =f (x )(x ∈R )是以2为周期的周期函数,②正确;所以f (2k +x )=f (x ),f (x -k )=f (x +k )=-f (k -x ),所以f (x +k )=-f (k -x ),即函数y =f (x )的图象关于点(k ,0)(k ∈Z )成中心对称,①正确;由①知,函数f (x )的图象关于点(2,0)成中心对称,即f (x +2)=-f (2-x ).又因为当x ∈(-1,0)时,2-x ∈(2,3),所以f (x )=f (x +2)=-f (2-x )=-log 2(2-x -1)=-log 2(1-x ),③正确;函数y =f (|x |)是偶函数,在关于原点对称的区间上的单调性相反,所以④不正确.11.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=Error!作出函数图象如图.(1)函数的增区间为(1,2),(3,+∞);函数的减区间为(-∞,1),(2,3).(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.12.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=f (1)=0.12令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )在D 上为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数,∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.。
导数的运算及几何意义
三、导数的几何意义及应用
类型1、求曲线在某点处的切线方程
例3、已知曲线C: y 程
1 3 4 x 3 3
看到此题你又 想到什么?
, 求曲线C在横坐标为2的切线方
分析:想到了:1、求导 2、写出切线方程
【归纳总结】利用导数的几何意义求曲线在某点的切 线方程的步骤 1、求函数f(x)的导数,将 x0 代入导函数得 f , x0
1 【解析】(1)y= 和 y=x2 联立解得两曲线的交点 x 1 1 坐标为(1,1).y= 的导函数为 y′=- 2,所以它在交 x x 点处的切线的斜率为-1,切线方程为 y-1=-(x- 1),它与 x 轴的交点坐标为(2,0).y=x2 的导函数为 y′ =2x,所以它在交点处的切线的斜率为 2,切线方程 1 为 y-1=2(x-1),它与 x 轴的交点坐标为2,0.所以 1 1 两条切线与 x 轴所围成的三角形的面积为 × 2-2 2 3 ×1= . 4
【解析】 (1)设曲线 y=f(x)与 x 轴相切于点(x0, 0), 1 3 x0+ax0+ =0, 4 则 f(x0) = 0 , f ′ (x0) = 0 , 即 解得 2 3x 0+a=0, 1 x0=2, a=-3. 4 3 因此,当 a=- 时,x 轴为曲线 y=f(x)的切线. 4
(2)由题意知,y′=ln x+1,直线斜率为2. 由导数的几何意义知,令ln x+1=2,得x=e, 所以y=eln e=e,所以P(e,e). 当函数中含有 b 参数时,可用 (3)易知y′=2ax- 2. x 参数表示出斜 b 率和切线方程 - 5 = 4a + , 2 a=-1, ,再据条件求 根据题意有 解得 参数. b 7 b=-2, 4a- =- , 4 2 故a+b=-3.
专题24 导数(理科)解答题20题-备战高考数学冲刺横向强化精练精讲(原卷版)
导数(理科)解答题20题1.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2021年全国高考乙卷数学(理)试题)设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021·河北衡水中学模拟预测)已知函数()ln a f x x x=-. (1)若0a >,证明:()f x 在定义域内是增函数;(2)若()f x 在[1,e]上的最小值为32,求a 的值.4.(2021年全国高考甲卷数学(理)试题)已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间; (2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.5.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 6.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 7.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版))已知函数2()(2)(1)x f x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是()f x 的两个零点,证明:122x x +<.8.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知函数1()e ln ln x f x a x a -=-+. (1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.9.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线.10.(2021·广西玉林·模拟预测(理))已知函数321()23f x x ax =-+,a ∈R .(1)求()f x 的单调区间;(2)令1a =,记函数()f x 图象上的极大值和极小值对应的点分别为M ,N ,试判断线段MN 与曲线()f x 是否存在异于M ,N 的公共点,若存在,请确定公共点坐标;若不存在,请说明理由.11.(2018年全国卷Ⅲ理数高考试题)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .12.(17年全国3卷)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm +++<,求m 的最小值. 13.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷精编版))已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.14.(2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版))设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中α>0,记 ()f x 的最大值为A .(Ⅰ)求()'f x ;(Ⅱ)求A ;(Ⅲ)证明()2f x A '≤.15.(2021·河南·模拟预测(理))已知函数()()1e xf x x x =-+.(1)判断()f x 的单调性.(2)证明:()()322e e e 2e f x x x x ≥-++-.16.(2021·云南红河·模拟预测(理))已知函数()1log 2ln a f x x x x a ⎛⎫=-+ ⎪⎝⎭(a 为常数,0a >且1a ≠).(1)求函数()f x 的单调区间;(2)当a e =时,若()()2132g x f x mx x =-+有两个极值点1x ,2x ,证明:12ln ln 0x x +>.17.(2022·全国·模拟预测)已知函数2()ln 22(1)(0)f x x ax a x a =+++≠. (1)讨论函数()f x 的极值;(2)当0a <时,证明:[()2]1a f x +≥-恒成立.18.(2021·河北衡水中学模拟预测)已知函数()(1)ln f x a x b x =-+的图象在(1,(1))f 处的切线为1y x =-.(1)若函数1()()1x g x f x x +=--,求函数()g x 的单调区间; (2)设函数()e x h x =图象上存在一点()()00,M x h x 处的切线为直线l ,若直线l 也是曲线()y f x =((1,))x ∈+∞的切线,证明:实数0x 存在,且唯一.19.(2021·四川成都·一模(理))已知函数()sin 2,f x x ax a R =-∈. (1)a ≥12时,求函数f (x )在区间[0,π]上的最值;(2)若关于x 的不等式f (x )≤ax cos x 在区间(0,+∞)上恒成立,求a 的取值范围. 20.(2021·四川·内江市教育科学研究所一模(理))已知a ,b ∈R ,函数()322f x ax bx x =+-+.(1)若函数()f x 在点()1,1处的切线与x 轴平行,求a ,b 的值;(2)3b a =,过点()0,0可以作曲线()y f x =的三条切线,求实数a 的取值范围.。
2018届高三理科数学函数与导数解题方法规律技巧详细总结版
2018届高三理科数学函数与导数解题方法规律技巧详细总结版【3年高考试题比较】对于导数的解答题,考纲的要求是:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.会用导数解决实际问题.通过比较近三年的高考卷总结如下:一般有两问,(16年3卷出现了三问),第一问往往是以讨论函数单调性和切线问题为主,也有根据不等式恒成立或零点问题求参数范围的问题,但一般难度不大,第二问主要涉及不等式的恒成立问题,零点问题,函数最值问题,一元的不等式证明和二元的不等式证明,方法灵活,难度较大.【必备基础知识融合】1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 4.函数的单调性与导数(1)在区间D 上,若f ′(x )≥0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递增;(2)在区间D 上,若f ′(x )≤0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递减; (3)在区间D 上,若f ′(x )=0恒成立⇔函数f (x )在区间D 上是常函数. 5.函数的极值与导数6.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【解题方法规律技巧】典例1:已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.【规律方法】(1)求切线方程的方法:①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.典例2:设函数f(x)=a ln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.【规律方法】 (1)确定函数单调区间的步骤: ①确定函数f (x )的定义域; ②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; ④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)个别导数为0的点不影响所在区间的单调性,如函数f (x )=x 3,f ′(x )=3x 2≥0(x =0时,f ′(x )=0),但f (x )=x 3在R 上是增函数.(3)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.典例3: 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,③即a ≥1x 2-2x 恒成立.设G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.【规律方法】利用单调性求参数的两类热点问题的处理方法: (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;对于②:h (x )在(0,+∞)上存在递减区间,应等价于h ′(x )<0在(0,+∞)上有解,易误认为“等价于h ′(x )≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h ′(x )≤0在(0,+∞)上有解即为h ′(x )<0在(0,+∞)上有解,或h ′(x )=0在(0,+∞)上有解”,后者显然不正确;对于③:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.典例4:已知函数()()2ln R 2a f x x x x a =-∈ .(1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <()1'01,g x x a ⎛⎫<∈ ⎪⎝⎭,时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意.③当1a =时,当()0,1x ∈ 时, ()'0h x >, ()'g x 在()0,1内单调递增, ()1,x ∈+∞时, ()()'0,'h x g x < 在()1,+∞内单调递减,所以当()0,x ∈+∞时, ()()'0,g x g x ≤单调递减,不合题意. ④当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时, ()()'0,'h x g x < 单调递减, ()'0g x > ,当()1,x ∈+∞时, ()()'0,'h x g x <单调递减, ()'0g x < ,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a < .【规律方法】函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.典例5:已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝⎛⎭⎫-a2=0,不符合题意. ③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.【规律方法】(1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.典例6:已知函数f(x)=ax+ln x,x∈[1,e].(1)若a=1,求f(x)的最大值;(2)若f(x)≤0恒成立,求实数a的取值范围.【规律方法】 由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 典例7:设函数f(x)=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【规律方法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.典例8:已知函数f (x )=ax +b x 2+1在点(-1,f (-1))处的切线方程为x +y +3=0. (1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立;(3)若0<a <b ,求证:ln b -ln a b -a >2a a 2+b 2.【规律方法】 证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =b a然后再利用已知关系证明即可.典例9:设k ∈R ,函数()ln f x x kx =-.(Ⅰ)若2k =,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若()f x 无零点,求实数k 的取值范围;(Ⅲ)若()f x 有两个相异零点12x x ,,求证: 12ln ln 2x x +>.【答案】(Ⅰ) 10x y ++=;(Ⅱ) 1,e ∞⎛⎫+ ⎪⎝⎭;(Ⅲ)证明见解析.(Ⅱ)①若k 0<时,则()()'0f x f x >,是区间()0,∞+上的增函数,∵()()()10e e 1e 0k k k f k f k k k =->=-=-<,,∴()()1e 0k f f ⋅<,函数()f x 在区间()0,∞+有唯一零点; ②若()0ln k f x x ==,有唯一零点1x =;③若0k >,令()'0f x =,得1x k =, 在区间10,k ⎛⎫ ⎪⎝⎭上, ()'0f x >,函数()f x 是增函数;【规律方法】涉及到二元问题的证明问题,通常是将二元问题一元化,进而利用函数导数求最值即可得解. 二元问题一元化的一般思路有:(1)等量代换,将题中的等量关系代入即可;(2,12t x x =+,12t x x =-等手段将二元关系换成关于t 的一元函数即可; (3)利用“极值点偏移”的思想,将二元换为一元.典例10:设函数()()2(x f x x ax a e a R -=+-⋅∈). (1)当0a =时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围. 【答案】(1) 320ex y e ++=;(2) 1a ≤-或24a e ≥-.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦ ()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时, ()'0f x ≥在[]0,2上恒成立, ()f x 在[]0,2上为单调递增函数, ()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时, ()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e +⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时, ()'0f x ≤在[]0,2上恒成立, ()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.【规律方法】利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容是考查的重点.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“任意”和“存在”问题的等价转化,可以简化解题过程.本题“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”. 【归纳常用万能模板】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.6分(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)9分由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f (x )的最小值和基本不等式的应用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =x 0处最值的判定.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,求解使f ′(b )<0的b 满足的约束条件0<b <a 4,且b<14.如第(2)问中x 0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.。
高三数学专项训练:函数与导数,解析几何解答题(二)(理科)
(2)过右焦点 的直线与椭圆交于不同的两点 、 ,则 内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
35.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中 、 是过抛物线 焦点 的两条弦,且其焦点 , ,点 为 轴上一点,记 ,其中 为锐角.
(3)求证: .
4.已知函数 .
(Ⅰ)若函数 的值域为 ,若关于 的不等式 的解集为 ,求 的值;
(Ⅱ)当 时, 为常数,且 , ,求 的取值范围.
5.已知函数 ,函数 .
(I)试求f(x)的单调区间。
(II)若f(x)在区间 上是单调递增函数,试求实数a的取值范围:
(III)设数列 是公差为1.首项为l的等差数列,数列 的前n项和为 ,求证:当 时, .
41.(13分) 已知椭圆C的中心在原点,离心率等于 ,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足 = ,试问直线AB的斜率是否为定值,请说明理由。
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为 ,点P的坐标是(0,-1), 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.
27.已知两点 及 ,点 在以 、 为焦点的椭圆 上,且 、 、 构成等差数列.
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 与椭圆 有且仅有一个公共点,点 是直线 上的两点,且 ,
. 求四边形 面积 的最大值.
高考(理科)导数的定义,极限,几何意义应用以及导数的综合应用(以2011年高考题为例题讲解经典)
导数及其应用(理)(一)导数导数的基本知识点:(一).极限的基础知识:1.特殊数列的极限(1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 .(3)()111lim11nn a q a S qq→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和).2. 函数的极限定理lim ()x x f x a →=⇔0lim ()lim ()x x x x f x f x a -+→→==.3.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足:(1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立.4.几个常用极限 (1)1lim0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →=.5.两个重要的极限(1)0sin lim1x x x →=; (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…). 6.函数极限的四则运算法则若0lim ()x x f x a →=,0lim ()x x g x b →=,则(1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦; (2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦; (3)()()()0lim0x x f x ab g x b→=≠. 7.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±; (2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数).基本方法和数学思想1.数列极限(1)掌握数列极限的直观描述性定义;(2)掌握数列极限的四则运算法则,注意其适用条件:一是数列{a n }{b n }的极限都存在;二是仅适用于有限个数列的和、差、积、商,对于无限个数列的和(或积),应先求和(或积),再求极限;(3)常用的几个数列极限:C C n =∞→lim (C 为常数);01lim=∞→nn ,0lim =∞→n n q (a <1,q为常数); (4)无穷递缩等比数列各项和公式qa S S nn -==∞→1lim 1(0<1<q )2.函数的极限:(1)当x 趋向于无穷大时,函数的极限为a a x f x f n n ==⇔-∞→+∞→)(lim )(lim(2)当0x x →时函数的极限为a a x f x f x x x x ==⇔+-→→)(lim )(lim 0: (3)掌握函数极限的四则运算法则;3..函数的连续性:(1)如果对函数f(x)在点x=x 0处及其附近有定义,而且还有)()(lim 00x f x f x x =→,就说函数f(x)在点x 0处连续;(2)若f(x)与g(x)都在点x 0处连续,则f(x)±g(x),f(x)g(x),)()(x g x f (g(x)≠0)也在点x 0处连续;(3)若u(x)在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处也连续;4..初等函数的连续性:①指数函数、对数函数、三角函数等都属于基初等函数,基本初等函数在定义域内每一点处都连续;②基本初等函数及常数函数经有限次四则运算和复合后所得到的函数,都是初等函数.初等函数在定义域内每一点处都连续;③连续函数的极限运算:如果函数在点x 0处有极限,那么)()(lim 00x f x f x x =→(二)导数的定义:1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的 ,即)(x f '= = .2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a = )(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u = ])(['x Cf = )('uv = ,)('vu = )0(≠v (3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='.例题讲解:求极限的方法1.约去零因子求极限例1:求极限11lim 41--→x x x2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m mm n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x例4、(1)1lim2n a n n a ∞++=+→,则a =例5、)已知函数f(x)= 23(0(0x x a x +≠⎧⎨=⎩当时)当时) ,点在x=0处连续,则2221lim x an a n n →∞+=+ .例6、(2007湖北理)已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→A .0B .1C .pqD .11p q --练习:极限及其运算1.(1)5lim(7)10n n →∞-= ;(2)1lim n n n →∞+= ;(3)2(1)lim (1)n n nn →∞-+= ;(4)1lim ()2x x +→∞= ;(5)21lim()2x x →= ;(6)2211lim 21x x x x →---= ;(7) 24lim()1n n n n →∞--+= ;(8)32lim 32n n n n n →∞+-=;(9)1x →= ;(10)lim )x x +→∞= ;(11)111lim[(1)(1)(1)]23n n n→∞--⋅⋅⋅-= .2.设函数1(0)()0(0)1(0)x x f x x x x +>⎧⎪==⎨⎪-<⎩,则0lim()x f x +→= ; 0lim ()x f x -→= ; 0lim ()x f x →= . 3.已知0a >,则1lim 1n n a →∞+= ;lim 1nnn a a →∞+= .4.下列说法正确的是 A,若()f x =,则lim ()0x f x →∞=; B若()f x 则1lim ()0x f x →=; C 若22()2x x f x x +=+,则2lim ()2x f x →-=-;D,若0)()1(0)x f x x x ≥=+<⎪⎩,则0lim ()0x f x →=.5.下列函数在1x =处没有极限的是A,32()1x x f x x -=- B,3()21g x x =+C,2(1)()0(1)x x h x x ≥⎧=⎨<⎩ D,1(1)()1(1)x x v x x x ->⎧=⎨-+<⎩导数的几何意义应用:一、知识点:1. 函数)(x f y =在点0x 处的导数的几何意义是________________________________.2. 若函数)(x f y =在点0x 处的导数存在,则它所对应的曲线上点))(,(00x f x 处的切线方程是___________________________.3.曲线423+-=x x y 在点(1,3)处的切线的倾斜角为_______.4.曲线12++=x xe y x 在点(0,1)处的切线方程是_______________________.5.曲线2-=x xy 在点1=x 处的切线方程是______________________________. 例题:1.已知函数ax x x f +=32)(与c bx x g +=2)(的图像都过点P(2,0),且在点P 处有相同的切线。
高三数学理科测试题函数、导数、三角函数、解三角形(供参考)
高三数学《函数与导数、三角函数与解三角形》测试题(理科)一、选择题1.设2:f x x →是集合A 到集合B 的映射,若{}1,2B =,则AB 为( ) A .∅B .{1}C .∅或{2}D .∅或{1}2.函数x x x f ln )(+=的零点所在的区间为( ) A .(-1,0)B .(0,1)C .(1,2)D .(1,e )3.若函数2()log (3)a f x x ax =-+在区间(,]2a -∞上为减函数,则a 的取值范围是( )A .(0,1)B .(1,+∞)C .(1,23)D .(0,1)∪(1,23)4.若0()ln 0xe x g x xx ⎧≤=⎨>⎩,则1(())2g g = ( )A .12B .1C .12e D .ln 2-5.已知32()f x ax bx cx d =+++的图象如图所示,则有 ( ) A .0b < B .01b <<C .12b <<D .2b >6. 已知函数()f x 定义域为R ,则下列命题:①若()y f x =为偶函数,则(2)y f x =+的图象关于y 轴对称. ②若(2)y f x =+为偶函数,则()y f x =关于直线2x =对称. ③若函数(21)y f x =+是偶函数,则(2)y f x =的图象关于直线12x 对称. ④若(2)(2)f x f x -=-,则则()y f x =关于直线2x =对称. ⑤函数(2)y f x =-和(2)y f x =-的图象关于2x =对称.其中正确的命题序号是 ( ) A.①②④ B.①③④ C.②③⑤ D.②③④ 7.y =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数8.把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则( )xA .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π129.若函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B.⎝⎛⎭⎫π8,0 C .(0,0)D.⎝⎛⎭⎫-π4,0 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如右图所表示,A 、B 分别为最高与最低点,并且两点间的距离为22,则该函数的一条对称轴为( )A .x =2πB .x =π2C .x =1D .x =211.tan10°+tan50°+tan120°tan10°·tan50°的值应是( )A .-1B .1C .- 3D.3 12. 函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则 ( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<二、填空题13.设()f x 是定义在R 上且以3为周期的奇函数,若(1)1f ≤,23(2)1a f a -=+,则实数a 的取值范围是 .14.已知函数xx x f 2)(+=,x x x g ln )(+=,1)(--=x x x h 的零点分别为,,21x x 3x ,则321,,x x x 的大小关系是 .15.已知f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________.16.对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出下列命题:①f (x )的最小正周期为2π;②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上). 三、简答题17.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B2-cos2C =72.(1)求角C 的大小; (2)求△ABC 的面积.18.在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.19.向量m =(a +1,sin x ),n =(1,4cos(x +π6)),设函数g (x )=m ·n (a ∈R ,且a 为常数).(1)若a 为任意实数,求g (x )的最小正周期;(2)若g (x )在[0,π3)上的最大值与最小值之和为7,求a 的值.20.设函数22()(1)ln(1)f x x x =+-+ (1)求函数)(x f 的单调区间;(2)当]1,11[--∈e ex 时,不等式()f x m <恒成立,求实数m 的取值范围; (3)关于x 的方程2()f x x x a =++在[0,2]上恰有两个相异实根,求a 的取值范围. 21.设函数bx xex f xa +=-)(,曲线)(x f y =在点(2,)2(f )处的切线方程为4)1(+-=x e y .(1)求a ,b 的值; (2)求)(x f 的单调区间. 22.答案解析选择题 1—5 DBCAA 6—12 CDBAC CB填空题 13. 213aa <-≥或 14. 321x x x >> 15.[-1,2] 16.②③ 简答题17.[解析] (1)∵A +B +C =180°,4sin 2A +B 2-cos2C =72.∴4cos 2C 2-cos2C =72,∴4·1+cos C 2-(2cos 2C -1)=72,∴4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°. (2)∵c 2=a 2+b 2-2ab cos C , ∴7=(a +b )2-3ab ,解得ab =6. ∴S △ABC =12ab sin C =12×6×32=332.18.[解析] (1)由余弦定理及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C=3,得ab =4.联立方程组⎩⎨⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A , 当cos A =0时,A =π2,B =π6,a =433,b =233,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433. 所以△ABC 的面积S =12ab sin C =233.19.[解析] g (x )=m ·n =a +1+4sin x cos(x +π6)=3sin2x -2sin 2x +a +1 =3sin2x +cos2x +a =2sin(2x +π6)+a(1)g (x )=2sin(2x +π6)+a ,T =π.(2)∵0≤x <π3,∴π6≤2x +π6<5π6当2x +π6=π2,即x =π6时,y max =2+a .当2x +π6=π6,即x =0时,y min =1+a ,故a +1+2+a =7,即a =2.20. (1)函数定义域为),1()1,(+∞---∞ ,,1)2(2]11)1[(2)(++=+-+='x x x x x x f 由,0)(>'x f 得210x x -<<->或 ;由,0)(<'x f 得.012<<--<x x 或则递增区间是(2,1),(0,)--+∞递减区间是(,2),(1,0)-∞--。
2022年高考总复习数学(理科)课时作业:第2章 专题一 函数与导数 第1课时 Word版含解析
专题一 函数与导数 第1课时1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1 D .e2.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(0,+∞)3.某厂生产某种产品x 件的总成本C (x )=1200+275x 3(单位:万元),已知产品单价的平方与产品件数x成反比,生产100件这样的产品单价为50万元,则产量定为______件时总利润最大.( )A .10B .25C .30D .404.已知函数f (x )=13x 3+ax 2-bx +1(a ,b ∈R )在区间[-1,3]上是减函数,则a +b 的最小值是( )A.23B.32 C .2 D .3 5.(2022年新课标Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )(导学号 58940254)A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)6.(2022年新课标Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1).(导学号 58940255) (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围.7.(2021年广东肇庆一模)已知函数f (x )=x 3-3x .(导学号 58940256) (1)争辩f (x )的单调区间;(2)若函数g (x )=f (x )-m 在⎣⎡⎦⎤-32,3上有三个零点,求实数m 的取值范围; (3)设函数h (x )=e x -e x +4n 2-2n (e 为自然对数的底数),假如对任意的x 1,x 2∈⎣⎡⎦⎤12,2,都有f (x 1)≤h (x 2)恒成立,求实数n 的取值范围.8.(2022年北京)已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)专题一 函数与导数第1课时1.B 解析:由于f (x )=2xf ′(1)+ln x ,所以f ′(x )=2f ′(1)+1x .令x =1,得f ′(1)=2f ′(1)+1.解得f ′(1)=-1.故选B.2.C 解析:由题意知x >0,f ′(x )=1+a x ,要使函数f (x )=x +a ln x 不是单调函数,则需方程1+ax =0在x >0上有解,即x =-a ,所以a <0.故选C.3.B 解析:设单价为q >0,由题意q 2=kx,当x =100时,q =50,∴k =q 2x =502×100=250 000.∴q 2x=250 000,q =500x .∴总利润y =xq -C (x )=x ·500x -⎝⎛⎭⎫1200+275x 3.令y ′=500·12 x -275·3x 2=0,解得x =25.当0<x <25时,y ′>0,当x >25时,y ′<0,∴当x =25时,总利润最大.4.C解析:f ′(x )=x 2+2ax -b在[-1,3]上有f ′(x )≤0,∴⎩⎪⎨⎪⎧ f ′(-1)≤0,f ′(3)≤0,∴⎩⎪⎨⎪⎧2a +b ≥1,6a -b ≤-9.设⎩⎪⎨⎪⎧u =2a +b ≥1,v =b -6a ≥9.设a +b =mu +n v =m (2a +b )+n (-6a +b )=(2m -6n )a +(m +n )b ,对比参数:2m -6n =1,m +n =1,解得m =78,n =18,∴a +b =78u +18v ≥2.则a +b 的最小值为2.5.C 解析:a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a .若a >0,则由图象知f (x )有负数零点,不符合题意.则a <0,由图象结合f (0)=1>0知,此时必有f ⎝⎛⎭⎫2a >0,即a ×8a 3-3×4a 2+1>0, 化简,得a 2>4.又a <0,所以a <-2.故选C.6.解:(1)f (x )的定义域为(0,+∞).当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x -3,f ′(1)=-2,f (1)=0.曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0.令g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0,(ⅰ)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在x ∈(1,+∞)上单调递增,因此g (x )>0;(ⅱ)当a >2时,令g ′(x )=0,得 x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1.由x 2>1和x 1x 2=1,得x 1<1.故当x ∈(1,x 2)时,g ′(x )<0,g (x )在x ∈(1,x 2)单调递减,因此g (x )<0. 综上,a 的取值范围是(-∞,2].7.解:(1)f (x )的定义域为R ,f ′(x )=3x 2-3=3(x +1)(x -1). 由于当x <-1或x >1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.所以f (x )的单调递增区间为(-∞,-1)和(1,+∞),单调递减区间为(-1,1). (2)方法一,由(1)知,g (x )在(-∞,-1)和(1,+∞)上单调递增, 在(-1,1)上单调递减,所以g (x )在x =-1处取得极大值g (-1)=2-m ,在x =1处取得微小值g (1)=-2-m .由于g (x )在⎣⎡⎦⎤-32,3上有三个零点, 所以有⎩⎪⎨⎪⎧ g ⎝⎛⎭⎫-32≤0,g (-1)>0,g (1)<0,g (3)≥0,即⎩⎪⎨⎪⎧98-m ≤0,2-m >0,-2-m <0,18-m ≥0.解得98≤m <2.故实数m 的取值范围为⎣⎡⎭⎫98,2.方法二,要函数g (x )=f (x )-m 在⎣⎡⎦⎤-32,3上有三个零点,就是要方程g (x )=f (x )-m =0在⎣⎡⎦⎤-32,3上有三个实根,也就是只要函数y =f (x )和函数y =m 的图象在⎣⎡⎦⎤-32,3上有三个不同的交点. 由(1)知,f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减; 所以f (x )在x =-1处取得极大值f (-1)=2,在x =1处取得微小值f (1)=-2.又f ⎝⎛⎭⎫-32=98,f (3)=18. 故实数m 的取值范围为⎣⎡⎭⎫98,2.(3)对任意的x 1,x 2∈⎣⎡⎦⎤12,2,都有f (x 1)≤h (x 2)恒成立,等价于当x ∈⎣⎡⎦⎤12,2时,f (x )max ≤h (x )min 成立.由(1)知,f (x )在⎣⎡⎦⎤12,1上单调递减,在[1,2]上单调递增,且f ⎝⎛⎭⎫12=-118,f (2)=2,所以f (x )在⎣⎡⎦⎤12,2上的最大值f (x )max =2.h ′(x )=e x -e ,令h ′(x )=0,得x =1. 由于当x <1时,h ′(x )<0;当x >1时,h ′(x )>0;所以h (x )在⎣⎡⎦⎤12,1上单调递减,在[1,2]上单调递增. 故h (x )在⎣⎡⎦⎤12,2上的最小值h (x )min =h (1)=4n 2-2n . 所以4n 2-2n ≥2.解得n ≤-12,或n ≥1.故实数n 的取值范围是⎝⎛⎦⎤-∞,-12∪[1,+∞). 8.解:(1)由f (x )=2x 3-3x ,得f ′(x )=6x 2-3. 令f ′(x )=0,得x =-22,或x =22. 由于f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1,所以f (x )在区间[-2,1]上的最大值为 f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0). 因此t -y 0=(6x 20-3)(1-x 0).整理,得4x 30-6x 20+t +3=0. 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1), g (x )与g ′(x )的状况如下:x (-∞,0)0 (0,1) 1 (1,+∞)g ′(x ) +-+ g (x )t +3 t +1所以g (0)当g (0)=t +3≤0,即t ≤-3时,此时g (x )在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (1)=t +1≥0,即t ≥-1时,此时g (x )在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (0)>0,且g (1)<0,即-3<t <-1时,由于g (-1)=t -7<0,g (2)=t +11>0,所以g (x )分别在区间(-1,0),(0,1)和(1,2)上恰有1个零点.由于g (x )在区间(-∞,0)和(1,+∞)和(0,1)上单调,所以g (x )分别在区间(-∞,0)和[1,+∞)和(0,1)上恰有1个零点.综上可知,当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t的取值范围是(-3,-1).(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.。
基本初等函数导数公式
基本初等函数导数公式基本初等函数导数公式还有同学记得吗?不记得的话,快来小编这里瞧瞧。
下面是由小编为大家整理的“基本初等函数导数公式”,仅供参考,欢迎大家阅读。
基本初等函数导数公式C'=0、(x^n)'=nx^(n-1)、(a^x)'=a^x*lna、(e^x)'=e^x、(loga(x))'=1/(xlna)、(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx。
初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。
基本初等函数和初等函数在其定义区间内均为连续函数。
不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。
拓展阅读:高一数学必修一知识点总结高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x(R| x-3>2} ,{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}高一数学集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 之间的关系如 )
1 6 所示 从
1 6 A 5 B 8 快慢 Sn 法一 因 随着 n 的增大 Sn 在增大 要使 取得最大值 只要 随着 n 的增大 Sn n Sn Sn 的值超过 量明显变小 所 法
1 1
7 C
9 D 11 趋势 也就是函数增减 度的
C
[解析] 本题考查利用函数图像识别函数值的变
B1[2012·江西卷] 1 lnx B y sinx x sin x y xex D y x y
的函数为(
)
A C
等式等 解题的突破口 列 函数解析式所满 1 1 的定 域 {x|x≠0} y 的定 域 足的条 再通过解 等式达到目的 函数 y sin x 3 x lnx sinx {x|x≠kπ} y 的定 域 {x|x>0} y xex 的定 域 R y 的定 域 {x|x≠0} x x 2 D 故选 D.
S1
n
( 均变
)的 入即可 Sn
1
Sn Sn 的值 超过
1
S1
n
( 均变
)的舍
去 由图像可知 6,7,8,9 这几 的改变量较大 所 应该 入 到第 10,11 应该 入 故答案 C.
的时候 改变
Sm 0 Sm 1 0 Sm Sm 1 Sm S n 即可 也就是 > 即可 假设 是 取的最大值 所 只要 > m n m m 1 m 0 (m 1) 0 O(0,0)连线的斜率大于点 Qm 1(m S 9) 1 S m 1) O(0,0)连线的斜率 所 S10) O(0,0)连线的斜 O(0,0)连线的斜率开始大于点 Q10(10
考查推理论证能力 容易题 增函数 R 的减函数
x
f(x) ax
的减函数时
0<a<1,2 a>0
时 g(x) (2 a)x3 在 R
g(x) (2 a)x
增函数时 2 a>0 即 a<2 但 1<a<2 时 f(x) a
立 故选 A. 8 B3、 B10[2012· 京卷] 某棵 树前 n 的总产 Sn 目前记录的结 看 前 m 的 均产 最高 m 值为(
3 数 g(x) A C
A2、B3[2012·山东卷] 设 a>0 且 a≠1 则 函数 f(x) ax 在 R ) (2 a)x3 在 R 是增函数 的( 充 必要条 B 必要 充 条 充 必要条 D 既 充 也 必要条 [解析] 本题考查充 必要条 及函数的单调性 R
3
是 函数 是 函
3 A 立
∫ ∫令 14 B1[2012·天津卷] 已知函数 y 则实数 k 的取值范围是________ 14 y 象如图
函数
导数
函数及 表示 象 函数 y kx 2 的 象恰有两个交点
|x2 1| 的 x 1
(0,1) (1,4) [解析] 本题考查函数的表示及图象应用 考查应用意识 偏难 |x2 1|
据函数的性质得到函数 f(x)的解析式 结合函数图象求解 f( x) f(x) 所 函数 f(x) 偶函数 所
f(x) f(2 x) f(x 2) 所 函数 f(x) 周期 1 1 2 的周期函数 且 f(0) 0 f(1) 1 而 g(x) |xcos(πx)| 偶函数 且 g(0) g 2 g 2 3 1 3 的图像 发现在 1 3内图像共有 6 g 0 在同一坐标系 作 两函数在 2 2 2 2 2 1 3 个公共点 则函数 h(x) g(x) f(x)在 2 2 的零点个数 6.
x 1
x 1 x< 1或x>1
(x 1)
1 x<1
在同一坐标系内画
y kx 2
y
|x2
1| 的图 x 1
结合图象 直线 y kx 2 斜率 点 5 5 意 斜率 1 增到 4 时 |x2
0 增到 1 时
y
|x2
1| 在 x 轴 方的图象有两公共 x 1 方各有一个公共点
y
1| 的图象在 x 轴 x 1 1
A f(x) |x| B f(x) x |x| C f(x) x 1 D f(x) x 2 C [解析] 本题考查函数的新定 f(x) kx 复合函数的性质. A B D 满足条 对于 C
(解法一)因 (解法 对于 D 2
f(x) k|x|均满足 f(2x) 2f(x) 所
若 f(x) x 1 则 f(2x) 2x 1≠2f(x) 2x 2. )对于 A f(2x) f(2x) 2|x|,2f(x) 2|x| 可得 f(2x) 2f(x) 对于 B 2x,2f(x) 2x 可得 f(2x) 2f(x) 故选 C 1 列函数中 函数 y 定义域相 3 x f(2x) 2x 2|x| 2f(x) 2x 2|x| 可得 f(2x) 2f(x) 对于 C f(2x) 2x 1,2f(x) 2x 2 可得 f(2x)≠2f(x)
x2 1 x 1 B1[2012·江西卷] 若函数 f(x) lgx x>1 A lg101 B 2 C 1 D 0
[解析] 考查函数的定
域、解
3
则 f(f(10)) (
)
3
ቤተ መጻሕፍቲ ባይዱ
B
[解析] 考查
2
段函数的定 1 2 故选 B.
、对数的
算、 10>1
类
论思想
解题的突破口是 1
据自变量取值范围选择相应的解析式解决问题 f(f(10)) f(1) 1
B1[2012·江 卷] 函数 f(x) (0 6]
2 log6x的定义域为________ 域的求解 6. ) 解题突破口 找使函数解析式有
[解析] 本题考查函数定 由
的限制条 2
x>0 1 2log6x 0
列函数中
解得 0<x
B1[2012·安徽卷]
满足 f(2x) 2f(x)的是(
f(10) lg10 1
∫工 ∫左
反函数
函数的 调性 最值 ∞) 是增函数
7 B3[2012· 海卷] 已知函数 f(x) e|x a|(a 为常数) 若 f(x)在区间[1 则 a 的取值范围是________ 7 ( ∞ t
1] [解析] 考查复合函数的单调性 实 求参数 a 的取值范围 又 e>1 函数 f(x)在[1 ∞) 是增函数 只需函数 t
|x a|
|x a|在[1
∞)
是增函数 所 参数 a 的取值范围是( ∞ 1] 11 B3、B4、B9[2012·辽宁卷] 设函数 f(x)(x∈R)满足 f( x) f(x) f(x) f(2 x) 且 1 3 x∈[0,1]时 f(x) x3.又函数 g(x) |xcos(πx)| 则函数 h(x) g(x) f(x)在 2 2 的零点个 数为( ) A 5 B 6 C 7 D 8 11 B 口 [解析] 本小题 要考查函数的奇偶性 周期性和函数零点的判断 解题的突破