2.示范 公开课教案(1.2集合间的基本关系)(1)

合集下载

1.1.2集合间的基本关系教案

1.1.2集合间的基本关系教案

1.1.2集合的基本关系一、[教学目标]1、知识与技能理解集合之间包含与相等的含义,掌握子集、真子集、空集的定义,能够识别给定集合的子集。

同时培养学生类比、分析、归纳的能力,能使用Venn图表达集合的关系。

2、过程与方法通过类比元素与集合的从属关系,实数相等与不相等的关系,探究集合之间的包含与相等关系;初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力。

3、情感态度与价值观培养学生积极参与、合作交流的主体意识,在知识探索和发现的过程中,激发学生学习数学的兴趣。

二、[教学重点]理解集合之间包含与相等的含义,掌握子集、真子集的概念,以及识别给定集合的子集,同时学会用Venn图表示集合间的关系。

三、[教学难点]识别给定集合的子集,了解子集和真子集之间的区别和联系。

四、[教学方法]1、教法根据本节课的教学目标以及学生的实际情况,为了更有效地突出重点、突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以启发式引导法为主,问答式教学法、反馈式评价法为辅。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

2、学法新课程标准要求教师转换角色,不仅关注教授学生的具体知识,更应关注教授学生学习的策略。

在教学活动中要以学生为主体,充分发挥学生的在学习活动中的作用。

因此本节课学生学习的主要方式是:自主探究法,观察发现法、归纳总结法。

让学生在老师的引导下进行“观察—归纳—检验—应用”的学习过程,启发学生学习思维,最终掌握知识。

五、[教学过程]1、导入新课采用类比思想,元素与集合间有“属于”或“不属于”的关系,实数间有“相等”或“不相等”的关系,引导学生发现问题:集合与集合间有什么样的关系呢?学生观察例子,探究集合A与集合B之间的关系:A={x|x我们班的女同学},B={x|x我们班的全体同学}2、讲授新课1)集合的包含关系和子集讲解通过讨论得出上述集合A与集合B有包含关系,那么你可以概括包含关系和子集的定义吗?教师提醒学生从集合元素的角度出发,根据集合元素的特征来进行归纳概括。

集合间的基本关系-示范课教案教案

集合间的基本关系-示范课教案教案

1.1.2 集合间的基本关系教学目标;1.知识与技能(1)理解集合的包含和相等的关系以及子集,真子集,空集的概念(2)会使用Venn 图表示集合及其关系.(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.2.过程与方法(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.3.情感、态度与价值观应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.教学重点与难点重点:子集的概念;难点:属于关系与包含关系之间的区别.教学方法在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn 图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.教学过程1、 复习回顾元素与集合的关系2、 新课引入思考:实数有相等关系,大小关系,如5=5,5<7,5>3,等等。

类比实数之间的关系,你会想到集合之间的什么关系?3、问题探究例组1:【1】{}3,2,1=A ,B={}5,4,3,2,1;【2】设A 是天祝一中高一某班的全体女生组成的集合,B 为这个班全体学生组成的集合;【3】设C={}是两条边相等的三角形x x ,D={}是等腰三角形x x .子集(subset )定义:(略) 韦恩图(venn ): (略) 集合相等定义:(略) 将集合间的关系与实数间的关系类比,学生举出包含关系与相等关系的例子; 例组2:指出下列各组集合间的关系【1】 A=N ,B=Z ; 【2】A={}是长方形x x ,B={}是平行四边形x x ;【2】 A={}0232=+-x x x ,B={}2,1. 真子集(proper subset )定义:(略) 集合间的真包含关系与实数间的关系进行类比 例组3:指出下列集合中的元素(1) A=(){}2,=+y x y x (2)B={}012=+x x空集(empty set )定义:(略) 规定:(略)练习组1:用适当的符号填空【1】 0 {}0 【2】 0 φ 【3】 0{}φ 【4】 φ {}0 【5】 φ {}φ 思考:包含关系与属于关系的区别 一般结论:完成下列填空【1】 A A 【2】 如果B A ⊆,且C B ⊆,则A C与实数间的关系进行类比4、例题讲解 例题3:写出{}b a ,的所有子集,并指出哪些是真子集。

教学设计5:1.2 集合间的基本关系

教学设计5:1.2 集合间的基本关系

1.2集合间的基本关系【教学目标】1.理解集合之间包含和相等的含义,并会用符号和Venn图表示.(直观想象)2.会识别给定集合的真子集,会判断给定集合间的关系,并会用符号和Venn图表示.(直观想象)3.在具体情境中理解空集的含义.(数学抽象)【学法解读】1.在本节学习中,学生要以义务教育阶段学过的数学内容为载体,依据老师创设合适的问题情境,理解子集、真子集、集合相等、空集等概念.2.要注意集合之间关系的几种表述方法:自然语言、符合语言、图形语言,应理解并掌握以上方法的转化及应用.必备知识·探新知基础知识知识点1 子集、真子集的概念1.子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集记法与读法记作A⊆B(或B⊇A),读作“A包含于B”(或“B包含A”)图示或结论(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C.2.真子集的概念定义如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集记法记作A B(或B A)图示结论(1)A B,B C,则A C.(2)A ⊆B且A≠B,则A B.思考1:(1)任意两个集合之间是否有包含关系?(2)符合“∈”与“⊆”有什么区别?提示:(1)不一定,如集合A={1,3},B={2,3},这两个集合就没有包含关系.(2)①“∈”是表示元素与集合之间的关系,比如1∈N,-1∉N.②“⊆”是表示集合与集合之间的关系,比如N⊆R,{1,2,3}⊆{3,2,1}.③“∈”的左边是元素,右边是集合,则“⊆”的两边均为集合.知识点2 集合相等自然语言如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素,都是集合A的元素,那么集合A与集合B相等,记作A=B.符号语言A⊆B且B⊆A⇔A =B图形语言思考2:怎样证明或判断两个集合相等?提示:(1)若A⊆B且B⊆A,则A=B,这就给出了证明两个集合相等的方法,即欲证A=B,只需证A⊆B与B⊆A均成立.(2)判断两个集合相等,可把握两个原则:①设两集合A,B均为有限集,若两集合的元素个数相同,对应元素分别相同,则两集合相等,即A=B;②设两集合A,B均是无限集,只需看两集合的代表元素满足的条件是否一致,若一致,则两集合相等,即A=B.知识点3 空集定义不含任何元素的集合叫做空集记法∅规定空集是任何集合的子集,即∅⊆A特性(1)空集只有一个子集,即它的本身,∅⊆∅(2)A≠∅,则∅A思考3:∅,0,{0}与{∅}之间有怎样的关系?提示:∅与0∅与{0}∅与{∅}相同点都表示无的意思都是集合都是集合不同点 ∅是集合;0是实数∅不含任何元素;{0}含一个元素0∅不含任何元素;{∅}含一个元素,该元素是∅ 关系0∉∅∅{0}∅{∅}或∅∈{∅}知识点4 Venn 图在数学中,经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图,这种表示集合的方法叫做图示法.注意:1.用Venn 图可以直观、形象地表示出集合之间的关系.⎭⎪⎬⎪⎫A ⊆B A ≠B ⇒A B⎭⎪⎬⎪⎫B ⊆A B ≠A ⇒B A⎭⎬⎫A ⊆B B ⊆A ⇒A =BA B B A2.Venn 图适用于元素个数较少的集合. 思考4:Venn 图的优点是什么? 提示:形象直观.基础自测1.已知集合M ={1},N ={1,2,3},则有( ) A .M <N B .M ∈N C .N ⊆MD .M N【答案】D【解析】∵1∈{1,2,3},∴{1}{1,2,3}.故选D . 2.下列四个集合中,是空集的为( ) A .{0}B .{x |x >8,且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}【答案】B【解析】x>8,且x<5的数x不存在,∴选项B中的集合不含有任何元素,故选B.3.用适当的符号填空:(1)a____{a,b,c};(2)0____{x|x2=0};(3)∅____{x∈R|x2+1=0};(4){0,1}____N;(5){0}____{x|x2=x};(6){2,1}____{x|x2-3x+2=0}.【答案】(1)∈(2)∈(3)=(4)(5)(6)=4.若A={1,a,0},B={-1,b,1},且A=B,则a=____,b=____.【答案】-10【解析】利用集合相等,元素相同可得a=-1,b=0.5.判断下列两个集合之间的关系:(1)A={x|x<0},B={x|x<1};(2)A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3)A={x∈N+|x是4与10的公倍数},B={x|x=20m,m∈N+}.【解】(1)A B(2)A B(3)A=B关键能力·攻重难题型探究题型一集合间关系的判断例1(1)设集合A={x|x=k4+12,k∈Z},B={x|x=k2+14,k∈Z},则集合A与B的关系是()A.A⊆B B.B⊆AC.A=B D.A与B关系不确定(2)在下列各组中的集合M与N中,使M=N的是() A.M={(1,-3)},N={(-3,1)}B.M=∅,N={0}C.M={y|y=x2+1,x∈R},N={(x,y)|y=x2+1,x∈R} D.M={y|y=x2+1,x∈R},N={t|t=(y-1)2+1,y∈R}(3)判断下列两个集合之间的关系:①P={x|x=2n,n∈Z},Q={x|x=4n,n∈Z}.②P={x|x-3>0},Q={x|2x-5≥0}.③P={x|x2-x=0},Q={x|x=1+(-1)n2}.【答案】(1)B (2)D (3)见解析【解析】(1)对集合B ,x =k 2+14=14(2k +1),因为k 为整数,所以集合B 表示的数是14的奇数倍;对集合A ,x =k 4+12=14(k +2),因为k +2是整数,所以集合A 表示的数是14的整数倍.因此,B 中元素必定是A 中的元素,即B ⊆A ,故选B . (2)在A 中,M 和N 表示不同的点; 在B 中,M 是空集,N 是单元素集; 在C 中,M 是数集,N 是点集;在D 中,M ={y |y =x 2+1,x ∈R }={y |y ≥1},N ={t |t =(y -1)2+1,y ∈R }={t |t ≥1}.因此,M =N .故选D . (3)①因为P 是偶数集,Q 是4的倍数集,所以Q P ;②P ={x |x -3>0}={x |x >3},Q ={x |2x -5≥0}={x |x ≥52}.所以P Q .③P ={x |x 2-x =0}={0,1}.在Q 中,当n 为奇数时,x =1+(-1)n2=0,当n 为偶数时,x =1+(-1)n2=1,所以Q ={0,1},所以P =Q .[归纳提升] (1)集合间基本关系判定的两种方法和一个关键(2)证明集合相等的两种方法①用两个集合相等的定义,证明两个集合A ,B 中的元素全部相同,即可证明A =B ; ②证明A ⊆B ,同时B ⊆A ,推出A =B .【对点练习】❶下列各式中,正确的个数是( )①∅={0};②∅⊆{0};③∅∈{0};④0={0};⑤0∈{0};⑥{1}∈{1,2,3};⑦{1,2}⊆{1,2,3};⑧{a ,b }⊆{b ,a }. A .1 B .2C .3D .4【答案】D【解析】∅表示空集,没有元素,{0}有一个元素,则∅≠{0},故①错误;∵空集是任何集合的子集,故②正确;∅和{0}都表示集合,故③错误;0表示元素,{0}表示集合,故④错误;0∈{0},故⑤正确;{1},{1,2,3}都表示集合,故⑥错误;{1,2}中的元素都是{1,2,3}中的元素,故⑦正确;由于集合的元素具有无序性,故{a,b}⊆{b,a},故⑧正确.综上,正确的个数是4个.题型二确定集合的子集、真子集例2设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集.【解】由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)·(x+4)2=0,则方程的根为x=-4或x=-1或x=4.故集合A={-4,-1,4},由0个元素构成的子集为:∅.由1个元素构成的子集为:{-4},{-1},{4}.由2个元素构成的子集为:{-4,-1},{-4,4},{-1,4}.由3个元素构成的子集为:{-4,-1,4}.因此集合A的子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}.真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.[归纳提升](1)若集合A中有n(n∈N+)个元素,则集合A有2n个子集,有(2n-1)个真子集,有(2n-1)个非空子集,有(2n-2)个非空真子集.(2)写出一个集合的所有子集时,首先要注意两个特殊的子集:∅和自身.其次,依次按含有1个元素的子集,含有2个元素的子集,含有3个元素的子集,……,一一写出,保证不重不漏.【对点练习】❷满足{a,b}⊆A{a,b,c,d,e}的集合A的个数是()A.2B.6C.7 D.8【答案】C【解析】由题意知,集合A可以为{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.题型三由集合间的关系求参数范围问题例3已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A⊆B,求实数m的取值范围;(2)若B A,求实数m的取值范围.【解】(1)当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎪⎨⎪⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m >2,m ≤-3,m ≥3,∴m 不存在,即不存在实数m 使A ⊆B . (2)①当B ≠∅时,若B A ,如图所示,∴⎩⎪⎨⎪⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎪⎨⎪⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3.②当B =∅时,满足B A ,由m +1>2m -1,得m <2. 综上可得,m 的取值范围是m ≤3.[归纳提升] (1)分析集合间的关系时,首先要分析、简化每个集合.(2)借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示. 此类问题要注意对空集的讨论.【对点练习】❸ (1)已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,则实数m =____;(2)已知集合A ={x |x <-1,或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围. 【答案】(1)1(2)见解析【解析】(1)因为B ⊆A ,所以m 2=2m -1,即(m -1)2=0,所以m =1. 当m =1时,A ={-1,3,1},B ={3,1},满足B ⊆A ,故m =1. (2)当B =∅时,只需2a >a +3,即a >3; 当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a a +3<-1或⎩⎪⎨⎪⎧a +3≥2a2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.误区警示忽视“空集”的存在例4 已知集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( D ) A .{-1}B .{1}C .{-1,1}D .{-1,0,1}[错解] 因为B ⊆A ,而B ={x |x =-1a },因此有-1a∈A ,所以a =±1,故选C .[错因分析] 空集是一个特殊而重要的集合,它不含任何元素,记为∅.在解隐含有空集参与的集合问题时,极易忽视空集的特殊性而导致错解.本例求解过程中有两处错误,一是方程ax =-1的解不能写成x =-1a ,二是忽视了B ⊆A 时,B 可以为空集.事实上a =0时,方程无解.[正解] 因为B ⊆A ,所以当B ≠∅,即a ≠0时,B ={x |x =-1a },因此有-1a ∈A ,所以a =±1;当B =∅,即a =0时满足条件.综上可得实数a 的所有可能取值的集合是{-1,0,1}.故选D .[方法点拨] 已知两个集合之间的关系求参数时,要根据集合间的关系来确定元素之间的关系,需关注子集是否为空集.一般地,当集合为有限集时,往往通过列方程或方程组来处理,此时需注意集合中元素的互异性;当集合为连续型无限集时,往往借助数轴列不等式或不等式组来求解,要注意运用分类讨论、数形结合等思想方法,尤其需注意端点值能否取到.学科素养分类讨论思想的应用分类讨论,通俗地讲,就是“化整为零,各个击破”.分类讨论要弄清楚是依据哪个参数进行分类的,采用的标准是什么.分类讨论的原则是:(1)不重不漏;(2)一次分类只能按所确定的同一个标准进行.例5 若A ={|a |,a 2},B ={0,2,4},且A ⊆B ,则实数a 的所有值为____. 【答案】2,-2【解析】∵A ={|a |,a 2},B ={0,2,4},且A ⊆B , ∴由元素的互异性可知|a |≠a 2,∴a ≠0,∴|a |≠0.①当|a |=2时,a =±2,a 2=4,此时A ={2,4},符合题意; ②当|a |=4时,a =±4,a 2=16,此时A ={4,16},不符合题意. ∴a 的值为2或-2.[归纳提升] A 是B 的子集,则A 中元素都是B 中的元素,可以让A 中元素与B 中元素对应相等,但要注意检验,排除与集合互异性或与已知相矛盾的情形.课堂检测·固双基1.已知集合M ={菱形},N ={正方形},则有( ) A .M ⊆N B .M ∈N C .N ⊆MD .M =N【答案】C【解析】∵M ={菱形},N ={正方形},∴集合N 的元素一定是集合M 的元素,而集合M 的元素不一定是集合N 的元素,∴N ⊆M . 2.下列四个集合中是空集的是( ) A .{∅}B .{x ∈R |x 2+1=0}C .{x |1<x <2}D .{x |x 2+2x +1=0}【答案】B【解析】方程x 2+1=0无实数解,∴集合{x ∈R |x 2+1=0}为空集,故选B . 3.集合A ={x |0≤x <3且x ∈Z }的真子集个数是( ) A .5B .6C .7D .8【答案】C【解析】A ={x |0≤x <3且x ∈Z }={0,1,2},∴集合A 的真子集个数为7,故选C . 4.下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是________.【答案】②【解析】由N ={-1,0},知N M .5.设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若B ⊆A ,则实数a 组成的集合C =____. 【答案】{0,13,15}【解析】∵A ={x |x 2-8x +15=0},∴A ={3,5}.又∵B ={x |ax -1=0},∴当B =∅时,a =0,显然B ⊆A ; 当B ≠∅时,B ={1a },由于B ⊆A ,∴1a =3或5,∴a =13或15.故实数a 组成的集合C ={0,13,15}.。

集合间的基本关系示范教案

集合间的基本关系示范教案

集合间的基本关系示范教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,理解集合中的元素具有无序性和确定性。

通过实际例子,让学生理解集合的表示方法,如用大括号表示集合,用集合的字母表示集合。

1.2 集合的类型介绍集合的种类,如自然数集、整数集、实数集等。

引导学生理解无限集合和有限集合的概念。

1.3 集合的运算介绍集合的并、交、差运算。

通过示例,让学生理解并集、交集、差集的概念和运算方法。

第二章:集合的关系2.1 集合的相等关系引导学生理解集合相等的概念,即两个集合包含相同的元素。

通过示例,让学生理解集合相等的判断方法。

2.2 集合的包含关系引导学生理解集合的包含关系,即一个集合是另一个集合的子集。

通过示例,让学生理解子集、真子集、超集的概念。

2.3 集合的幂集引导学生理解幂集的概念,即一个集合的所有子集构成的集合。

通过示例,让学生理解幂集的表示方法和性质。

第三章:集合的德摩根定律3.1 德摩根定律的定义引导学生理解德摩根定律的概念,即德摩根定律是描述集合的并、交运算与集合的补集运算之间的关系。

3.2 德摩根定律的证明通过逻辑推理和集合的运算,引导学生理解德摩根定律的证明过程。

3.3 德摩根定律的应用通过示例,让学生理解德摩根定律在解决集合运算问题中的应用。

第四章:集合的集合4.1 集合的集合的概念引导学生理解集合的集合的概念,即集合的元素本身也是集合。

4.2 集合的集合的运算介绍集合的集合的并、交、差运算。

通过示例,让学生理解集合的集合的运算方法和性质。

4.3 集合的集合的应用通过示例,让学生理解集合的集合在解决集合运算问题中的应用。

第五章:集合的布尔代数5.1 集合的布尔代数的定义引导学生理解集合的布尔代数的概念,即集合的布尔代数是一种描述集合运算的数学系统。

5.2 集合的布尔代数的运算介绍集合的布尔代数的并、交、差、补集运算。

通过示例,让学生理解集合的布尔代数的运算方法和性质。

集合间的基本关系教案

集合间的基本关系教案

集合间的基本关系教案集合间的基本关系教案(通用11篇)作为一无名无私奉献的教育工作者,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。

那么应当如何写教案呢?下面是小编帮大家整理的集合间的基本关系教案,欢迎大家分享。

集合间的基本关系教案 1教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1、集合是中学数学的一个重要的基本概念。

在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。

例如,在代数中用到的有数集、解集等;在几何中用到的有点集。

至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。

这些可以帮助学生认识学习本章的意义,也是本章学习的.基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。

例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。

然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念。

学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。

本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念。

在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。

教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。

《1.1.2集合间的基本关系》教案

《1.1.2集合间的基本关系》教案

《1.1.2集合间的基本关系》教案——选自普通高中课程标准实验教科书数学必修1教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn图表达集合间的关系;(4)了解与空集的含义。

教学重点:子集与空集的概念;用Venn图表达集合间的关系。

教学难点:弄清元素与子集、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一)集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作 A B用Venn 图表示两个集合间的“包含”关系)(A B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=A B B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。

记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定: 空集是任何集合的子集,是任何非空集合的真子集。

集合间的基本关系示范教案

集合间的基本关系示范教案

集合间的基本关系示范教案一、教学目标1. 让学生理解集合间的基本关系,包括子集、真子集、非空子集、超集等概念。

2. 培养学生运用集合间的基本关系解决实际问题的能力。

3. 提高学生对集合论的兴趣,培养学生的逻辑思维能力。

二、教学内容1. 集合间的基本关系概念讲解。

2. 集合间基本关系的图示演示。

3. 集合间基本关系的应用举例。

三、教学重点与难点1. 重点:集合间的基本关系概念及运用。

2. 难点:理解真子集、非空子集等概念。

四、教学方法1. 采用讲授法讲解集合间的基本关系。

2. 利用图示法直观展示集合间的基本关系。

3. 通过举例法引导学生运用集合间的基本关系解决问题。

五、教学准备1. 教案、PPT及相关教学资料。

2. 教学黑板、粉笔。

3. 练习题及答案。

一、集合间的基本关系概述1. 子集:如果一个集合的所有元素都是另一个集合的元素,这个集合就是另一个集合的子集。

2. 真子集:如果一个集合是另一个集合的子集,并且这两个集合不相等,这个集合就是另一个集合的真子集。

3. 非空子集:如果一个集合的子集中包含至少一个元素,这个子集就是非空子集。

4. 超集:如果一个集合包含另一个集合的所有元素,这个集合就是另一个集合的超集。

二、集合间基本关系的图示演示1. 通过图示展示子集、真子集、非空子集、超集等概念。

2. 让学生直观理解集合间的基本关系。

三、集合间基本关系的应用举例1. 举例说明集合间基本关系在实际问题中的应用。

2. 引导学生运用集合间的基本关系解决问题。

四、真子集与非空子集的判断1. 讲解如何判断一个集合是否为真子集。

2. 讲解如何判断一个集合是否为非空子集。

五、练习与巩固1. 布置练习题,让学生巩固所学内容。

2. 批改作业,及时反馈学生学习情况。

六、集合的相等关系1. 定义:如果两个集合包含相同的元素,则这两个集合相等。

2. 性质:集合的相等关系是一种对称关系和传递关系。

3. 举例:解释并展示几个集合相等的情况。

示范教案(集合间的基本关系)

示范教案(集合间的基本关系)

1.1.2 集合间的基本关系从容说课本课主要是研究集合的关系,从同学们熟知的背景出发逐步建立子集、集合相等、真子集等概念及表述方法和研究手段.对一些结论的产生不是直接得到,而是要引导学生发现.本节包含了较多的新概念、新符号,教学中可通过区别“∈”与“⊆”,“{0}与∅”等关系,帮助学生扫除“符号混淆”这一障碍,对于元素与集合、集合与集合的关系,尤其是一个集合是另一个集合的元素时,学生不易理解,数学中结合实例进行分析,如{a}∈{{a},{b},∅}中{a}表示集合{{a},{b},∅}的一个元素.三维目标一、知识与技能1.了解集合间包含关系的意义.2.理解子集、真子集的概念和意义.3.会判断简单集合的相等关系.二、过程与方法1.观察、分析、归纳.2.数学化表示日常问题.3.提高学生的逻辑思维能力,培养学生等价和化归的思想方法.三、情感态度与价值观1.培养数学来源于生活,又为生活服务的思维方式.2.个体与集体之间,小集体构成大社会的依存关系.3.发展学生抽象、归纳事物的能力,培养学生辩证的观点.教学重点子集、真子集的概念.教学难点元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解.教具准备中国地图、多媒体、胶片.教学过程一、创设情景,引入新课师:今天我们先来看一看中国地图,先看江苏省区域在什么地方?再看一看中国的区域.请问:江苏省的区域与中国的区域有何关系?生:江苏省的区域在中国区域的内部.师:如果我们把江苏省的区域用集合A来表示,中国的区域用集合B来表示,则会发现集合A在集合B内,即集合A中的每一个元素都在集合B内.再看一看下面两个集合之间的关系(投影胶片,胶片上可以用一组人群表示)A={x|x为江苏人},B={x|x为中国人},生:江苏人是中国人.师:我说的是从集合的角度看是什么关系?生:集合A中的元素都是集合B中的元素.师:说得对,再来看一看下面给出的集合A中的元素与集合B中的元素有什么关系?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为海门中学高一(2)班女生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.生:均有集合A中的元素都是集合B中的元素.由此引出子集的概念.二、讲解新课1.子集对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B(或B ⊇A).读作“A含于B”(或“B包含A”).其数学语言的表示形式为:若对任意的x∈A,有x∈B,则A⊆B.——为判别A是B的子集的方法之一.很明显:N⊆Z,N⊆Q,R⊇Z,R⊇Q.若A不是B的子集,则记作A B(或B A).读作“A不包含于B”(或“B不包含A”).例如,A={2,4},B={3,5,7},则A B.2.图示法表示集合(1)Venn图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图(必要时还可以用小写字母分别定出集合中的某些元素).由此,A⊆B的图形语言如下图.BA(2)数轴在数学中,表示实数取值范围的集合,我们往往借助于数轴直观地表示.例如{x|x>3}可表示为435x12又如{x|x≤2}可表示为还比如{x|-1≤x<3=可表示为x3.集合相等对于C={x|x是两条边相等的三角形},D={x|x是等腰三角形},由于“两条边相等的三角形”是等腰三角形,因此,集合C、D都是由所有等腰三角形组成的集合,即集合C中任何一个元素都是集合D中的元素.同时,集合D中任何一个元素也都是集合C中的元素.这样,集合D的元素与集合C的元素是一样的.我们可以用子集概念对两个集合的相等作进一步的数学描述.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.事实上,A⊆B,B⊆A⇔A=B.上述结论与实数中的结论“若a≥b,且b≥a,则a=b”相类比,同学们有什么体会?4.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(或B A).例如,A={1,2},B={1,2,3},则有A B.子集与真子集的区别就在于“A B”允许A=B或A B,而“A B”是不允许“A=B”的,所以若“A⊆B”,则“A B”不一定成立.5.空集我们把不含有任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集,即∅⊆A.例如{x|x2+1=0,x∈R},{边长为3,5,9的三角形}等都是空集.可以让同学们列举多个生活中空集的例子.空集是任何非空集合的真子集,即若A≠∅,则∅A.6.子集的有关性质(1)A⊆A;(2)A⊆B,B⊆C⇒A⊆C;A B,B C⇒A C.7.例题讲解【例1】写出集合{a,b}的子集.解:∅,{a},{b},{a,b}.方法引导:写子集时先写零个元素构成的集合,即∅,然后写出一个元素构成的集合,再写两个元素构成的集合,依此类推.师:请写出{a,b,c}的所有子集.生:∅,{a},{b},{c},{a,b},{a,c}{b,c},{a,b,c}.师:写出{a}的子集.生:∅,{a}.师:∅的子集是什么?生:∅.师:我们可以列一个表格(板演),先猜一猜4个元素集合的子集个数是多少?集合集合元素个数集合子集个数∅0 1{a} 1 2{a,b} 2 4{a,b,c} 3 8{a,b,c,d} 4…………n个元素生:16个.师:从上面写出的集合子集我们可以看出集合的子集个数与集合的元素个数之间有什么关系?换句话:你能否猜想n个元素集合的子集共有多少个子集?生:2n个.师:猜得很好.因为我们所学知识还不能证明这个结论,要等到高二学过排列、组合知识后就可以证明了,有兴趣的同学可以自己先学.【例2】写出不等式x-3>2的解集并进行化简(即化成直接表明未知数本身的取值范围的解集).解:不等式x-3>2的解集是{x|x-3>2}={x|x>5}.【例3】在以下六个写法中,错误写法的个数是①{0}∈{0,1}②∅{0}③{0,-1,1}⊆{-1,0,1}④0∈∅⑤Z={全体整数}⑥{(0,0)}={0}A.3B.4C.5D.6思路分析:①中是两个集合的关系,不能用“∈”;④表示空集,空集中无任何元素,所以应是0∉∅;⑤集合符号“{}”本身就表示全体元素之意,故此“全体”不应写;⑥等式左边集合的元素是平面上的原点,而右边集合的元素是数零,故不相等.只有②和③正确.故选B.【例4】已知A={x|x=8m+14n,m、n∈Z},B={x|x=2k,k∈Z},问:(1)数2与集合A的关系如何?(2)集合A与集合B的关系如何?师:元素与集合之间、集合与集合之间分别用什么符号连接?生:元素与集合之间用“∈”或“∉”连接,集合与集合之间用“⊆”“”“=”或“”等连接.师:本问题的第(1)问给了我们什么启示?生:要判别2是否属于A,只需考虑2能否表示成8m+14n的形式,若能写成8m+14n 的形式,则说明2∈A,否则2∉A.师:很好.现在的问题是2能否写成8m+14n的形式?生:能,并且可以有多种写法,比如:2=8×2+14×(-1),且2∈Z,-1∈Z,2=8×(-5)+14×3,且-5∈Z,3∈Z等.所以2∈A.师:我们从第(2)问中读到了什么?生:判定两个集合A、B的关系,应优先考察它们的包含关系.对于本题,我们的思考是A⊆B成立吗?B⊆A成立吗?如果两个方面都成立,则A=B;如果只有一个方面成立,则应考虑是否是真子集;如果两个方面都不成立,则两集合不具备包含关系.师:回答得很好,问题是如何判别A⊆B?生:用定义法.任取x∈A,只要能够证明x∈B,则A⊆B就成立了.师:好,现在我们一起解决问题(2).生:任取x0∈B,则x0=2k,k∈Z.∵2k=8×(-5k)+14×3k,且-5k∈Z,3k∈Z,∴2k∈A,即B ⊆A.任取y0∈A,则y0=8m+14n,m、n∈Z,∴y0=8m+14n=2(4m+7n),且4m+7n∈Z.∴8m+14n∈B,即A⊆B.由B ⊆A且A⊆B,∴A=B.师:对于本题我们能够得到A=B,现在的问题是在集合有关问题中如何证明两个集合相等?生1:欲证A=B,根据定义,只需证A⊆B,且B ⊆A即可.生2:如果A、B是元素较少的有限集合,也可用穷举法判别它们相等.师:很好,两位同学的方法加以组合,判别两个集合相等的方法就完美了.由此,平时的学习中,只要敢于探究,善于探究,我们一定能挖掘出自身的潜能,使自己的学习永远立于不败之地,这对我们今后的学习和工作将十分有益.三、课堂练习教科书P8练习题2答案:(1)∈ (2)∈ (3)= (4) (5) (6)= 四、课堂小结1.本节学习的数学知识:子集、集合相等、真子集、子集的性质. 2.本节学习的数学方法:归纳的思想、定义法、穷举法. 五、布置作业1.教科书P 8练习题3.2.教科书P 13习题1.1 A 组第5题.3.满足条件{1,2} M ⊆{1,2,3,4,5}的集合M 的个数是 A.3B.6C.7D.84.已知集合A ={x ,xy ,1-xy },B ={0,|x |,y },A =B ,求实数x 、y 的值.5.已知M ⊆{1,2,3,4,5},且a ∈M 时,也有6-a ∈M ,试求集合M 所有可能的结果.6.若a 、x ∈R ,A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},求:(1)使A ={2,3,4}的x 的值; (2)使2∈B ,B A 的a 、x 的值; (3)使B =C 的a 、x 的值. 板书设计1.1.2 集合间的基本关系子集 Venn 图 集合相等 真子集 空集子集的性质 例1 例2 例3 例4课堂练习 课堂小结。

人教版高中数学必修一1、1、2集合间的基本关系教案

人教版高中数学必修一1、1、2集合间的基本关系教案

1、1、2集合间的基本关系
一、教学目标:.
1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系
2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系
二、教学重难点:
教学重点:理解集合间包含与相等的含义.
教学难点:理解空集的含义.
三、教学课时:1课时
四、教学过程:
课题引入:实数有相等关系,大小关系,元素与集合之间有属于与不属于关系,
那类比他们的关系,集合之间是否具备类似的关系?
思考:
例1:观察下面三个集合, 找出它们之
间的关系: A={1,2,3},B={1,2,7},C={1,2,3,4,5}
子集:一般地,对于两个集合,如果A中任意一个元素都是B的元素,称集合A 是集合B的子集,记作A B.读作“A包含于B”或“B包含A”.这时说集合A 是集
合B的子集.
注意:①区分∈;②也可用.
文氏图:
A
B
思考:A= {x | x是两条边相等的三角形} B= {x | x是等腰三角形}
有A B,B A,则A=B.
集合相等:若A B,B A,则A=B.
思考:A={1, 2, 7},B={1, 2, 3, 7},
真子集:如果A B,但存在元素x B,且x∈A,称A是B的真子
集.记作A B(或B A).读作A真包含于B,或B真包含A。

思考:指出B={x| x2+1=0,x∈R}.的元素
B没有元素.
1 / 2。

集合间的基本关系教案

集合间的基本关系教案

集合间的基本关系教案教学目标:1. 了解并掌握集合间的四种基本关系:子集、真子集、非子集、相等。

2. 能够运用集合间的四种基本关系解决实际问题。

3. 理解集合间的基本关系在数学及其它领域的重要性。

教学内容:一、集合间的基本关系概述1. 引入集合的概念,引导学生回顾集合的基本定义。

2. 介绍集合间的四种基本关系:子集、真子集、非子集、相等。

二、子集与真子集1. 讲解子集的定义,举例说明子集的概念。

2. 引导学生理解真子集的概念,即除去集合本身外的子集。

3. 通过例题,让学生掌握判断子集和真子集的方法。

三、非子集1. 讲解非子集的定义,即一个集合不是另一个集合的子集。

2. 通过例题,让学生理解非子集的概念,并掌握判断非子集的方法。

四、相等1. 讲解集合相等的定义,即两个集合包含的元素完全相同。

2. 通过例题,让学生理解集合相等的概念,并掌握判断集合相等的方法。

五、集合间基本关系的应用1. 引导学生运用集合间的四种基本关系解决实际问题。

2. 通过例题,让学生学会运用集合间的基本关系分析问题和解决问题。

教学方法:1. 采用讲解法,明确集合间基本关系的定义和概念。

2. 运用例题,让学生通过实践掌握集合间基本关系的判断方法。

3. 引导学生进行小组讨论,培养学生的合作能力和解决问题的能力。

教学评价:1. 通过课堂提问,检查学生对集合间基本关系的理解和掌握程度。

2. 通过课后作业,检验学生运用集合间基本关系解决问题的能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习效果进行综合评价。

六、集合的幂集1. 引入幂集的概念,讲解幂集的定义。

2. 通过图示和例题,让学生理解幂集的概念,并掌握求解幂集的方法。

七、集合的笛卡尔积1. 讲解笛卡尔积的概念,引导学生理解笛卡尔积的定义。

2. 通过例题,让学生掌握求解集合的笛卡尔积的方法。

3. 引导学生运用笛卡尔积解决实际问题,如排列组合问题。

八、集合的包含关系与维恩图1. 讲解集合的包含关系的概念,引导学生理解包含关系的含义。

《集合间的基本关系》示范公开课教学设计【高中数学人教版】

《集合间的基本关系》示范公开课教学设计【高中数学人教版】

《1.2 集合间的基本关系》教学设计1.通过类比实数间的关系,观察、发现、形成集合间关系的概念,理解集合之间的包含与相等的含义,提升学生的数学抽象素养.2.能识别给定集合的子集,了解空集的含义.3.对集合之间的关系,能进行自然语言、图形语言(Venn图)、符号语言间的转换,提升数学抽象素养.教学重点:集合间包含与相等的含义,用集合语言表达数学对象或数学内容.教学难点:对相似概念及符号的理解,例如区别元素与集合、属于与包含等概念及其符号表示.PPT.一、概念的引入问题1:上一节我们学习了集合,对于这个新的研究对象,接下来该如何研究呢?比如要研究些什么?用什么方法研究?如果有困难可以阅读本节的引言.师生活动:学生独立思考、讨论交流,教学时要特别关注研究方法的指引.教师提示,类比已有的学习经验是一个好方法,类比已有的学习经验是一个好方法,比如我们已研究过“实数”,引导学生回顾实数研究了哪些内容,如实数间的关系、实数的运算等,最后确定集合的研究问题:集合间的关系,集合的运算设计意图:引入一个新的数学对象后,关键在于引导学生思考“如何研究一个数学对象”,这种思考有助于学生掌握研究数学对象的方法,学会发现问题和提出问题.这里采用的“类比”就是一种重要的数学思维方法.问题2:阅读教科书第7页“观察”,类比实数之间的相等关系、大小关系,集合与集合之间有哪些关系?师生活动:学生独立观察,充分思考,交流讨论.根据学生交流讨论情况,教师可以适时地选择以下问题进行追问.追问:(1)你从哪个角度来分析每组两个集合间的关系?(从元素与集合之间的关系.)(2)上述三个具体例子有什么共同特点?请你概括.(在每组的两个集合中,第一个集合中的任何一个元素都是第二个集合中的元素.).(3)上述三组集合中,前两组的两个集合间的关系与第三组的两个集合间的关系有什么不同之处?(不同之处是:前两组集合中,集合B中有的元素属于集合A,有的元素不属于集合A;第三组集合中,集合A中的任何一个元素都属于集合B,反过来,集合B中的任何一个元素也都属于集合A.)师生活动:教师引导学生梳理观察、讨论、分析的结果,抽象概括形成数学定义,介绍子集、包含关系和相等关系.一般地:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:A⊆B(B⊇A)读作:A 包含于B(或B包含A).设计意图:让学生通过观察、比较、归纳、概括出集合间的基本关系.并创设情境,让学生运用类比、联想、抽象、概括的思维方法解决问题,提升学生数学抽象素养.教学时要确保学生独立思考、讨论交流的时间.二、概念的理解问题3:阅读教科书第7页观察之后至第8页思考之前的内容,你有什么疑问?如果没有疑问,请你回答下列问题:(1)你能举几个具有包含关系、相等关系的集合,并用符号语言和Venn图表示吗?(2)子集和真子集的区别与联系是什么?(3)什么是空集?请你再举几个空集的例子.师生活动:让学生独立阅读这段内容,然后分别提出自己感到困惑的问题.教师根据学生回答的情况,进行补充,帮助学生提升对概念的理解,比如集合“{0}”是否为空集等例子.设计意图:对于难度不大的内容,特别是符号比较多时,通过阅读,熟悉自然语言、符号语言和图形语言,并建立它们之间的对应关系;通过阅读,提出自己的困惑,学会质疑,深入理解概念;通过举例子,抽象概念具体化,深入理解概念.问题4:包含关系{a}⊆A与属于关系a∈A有什么区别?试结合实例作出解释.师生活动:让学生独立思考,然后讨论交流,教师提问.预设的答案:{a}⊆A表示集合与集合间的关系,集合{a}是集合A的子集;而a∈A表示元素a与集合A间的关系.如针对集合A={0,1,2},{0}⊆{0,1,2}而0∈{0,1,2}.本图片为微课《【知识点解析】包含于的含义》及《【知识点解析】属于》的含义的知识讲解,微课中分别讲解了包含于和属于的意义,并进行了辨析,若需使用,请插入相应微课.设计意图:通过新学习的知识和已学习知识的对比,学生更容易区别集合的子集、元素与集合的关系,以及符号间的区别.问题5:通过类比实数关系的性质,你能发现集合之间的关系有哪些性质?师生活动:学生回顾、讨论、交流,教师提问.预设的答案:(1)任何一个集合是它本身的子集,即A⊆A(2)对于集合A⊆B,B⊆C,那么A⊆C.设计意图:类比实数关系的对称性、传递性等性质,得出两个集合间的关系的性质.在旧知识的基础上学习新知识有生长点,学生容易类比、掌握.三、概念的巩固应用例1 写出集合{a,b}的所有子集,并指出哪些是它的真子集.师生活动:学生分析解题思路,教师给出解答示范,特别突出有规律地列举.答案:子集有Φ,{a},{b},{a,b},其中真子集是Φ,{a},{b}.设计意图:巩固子集和真子集的概念和性质,体会分类的原则和方法,为保证不重不漏,要按照一定顺序写出子集,比如可以根据子集中元素的个数分类.例2 判断下列各题中集合A是否为集合B的子集,并说明理由:(1)A={1,2,3},B={x|x是8的约数};(2)A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.师生活动:学生判断,教师给出解答示范.答案:(1)A={1,2,3},B={x|x是8的约数}={1,2,4,8},其中3 ∉B,所以集合A不是集合B的子集.(2)A=B.设计意图:检验学生对子集概念的掌握情况,进一步明确判断两个集合之间关系的基本方法——定义法.例3 (1)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.(2)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⫋A,则实数m 的取值范围为________.师生活动:学生做练习,教师根据学生练习情况给予反馈.答案:(1)(-∞,3] ;(2)(-∞,3).设计意图:巩固两个集合的基本关系.两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.特别要注意易错点:丢掉空集.常用数轴、Venn图来直观解决这类问题.练习:教科书第8-9页练习1,2,3题.四、归纳总结、布置作业问题6:本节课你有哪些收获?可以从以下几方面思考:(1)两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)你是如何研究集合间基本关系的?(3)包含关系与属于关系有什么区别?设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书习题1.2第1,2,3题.五、目标检测设计1.用适当的符号填空:(1)0______{x|x2=x};(2)-1______{x|x2=x};(3)Φ______ {x|x2=x};(4){0}______{x|x2=x};(5){0,1}______ {x|x2=x};(6)Φ______ {x|x2<-1}.设计意图:考查学生对符号语言的掌握程度.2.已知满足条件{1,2}⫋M⊆{1,2,3,4,5},写出满足条件的集合M.设计意图:考查学生对子集的概念、性质与符号的理解.3.已知集合A={x|1≤x<5},C={x|-a<x≤a+3}.若C⊆A,则a的取值范围是________.设计意图:考查学生对符号语言的掌握程度.参考答案:1.(1)∈;(2)∉;(3)⊂;(4)⊂;(5)=;(6)=.2.M={1,2,3}、{1,2,4}、{1,2,5}、{1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,2,3,4,5}.3.(-∞,-1].。

1.1.2集合间的基本关系说课稿[合集五篇]

1.1.2集合间的基本关系说课稿[合集五篇]

1.1.2集合间的基本关系说课稿[合集五篇]第一篇:1.1.2集合间的基本关系说课稿1.1.2集合间的基本关系数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.一、教学内容分析集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。

本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。

通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。

二、学情分析本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。

由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。

而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。

而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。

根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:三、教学目标:知识与技能目标:(1)理解集合之间包含和相等的含义;(2)能识别给定集合的子集;(3)能使用Venn图表达集合之间的包含关系过程与方法目标:(1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;(2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;情感、态度、价值观目标:(1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;(2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。

2 集合间的基本关系》优秀教案教学设计

2 集合间的基本关系》优秀教案教学设计

2 集合间的基本关系》优秀教案教学设计2集合间的基本关系:优秀教案教学设计1. 引言教学中,让学生理解和掌握集合间的基本关系是非常重要的。

本教案教学设计旨在帮助学生通过活动和练加深对集合间基本关系的理解。

2. 教学目标通过本次教学,学生将能够:- 掌握并描述集合的基本概念- 理解并应用集合的并、交、差等基本操作- 运用集合的基本关系解决实际问题3. 教学内容3.1 集合的基本概念- 定义集合的概念- 表示集合的方法和符号3.2 集合的基本操作- 集合的并操作- 集合的交操作- 集合的差操作3.3 应用实例- 解决集合应用问题4. 教学流程4.1 导入环节通过例子或问题导入,引发学生对集合的兴趣与思考。

4.2 知识讲解介绍集合的基本概念和符号表示,示范并解释集合的并、交、差等基本操作。

4.3 讨论与练鼓励学生互动,通过小组讨论和个人练,巩固学生对基本概念及操作的理解和掌握。

4.4 拓展应用提供一些实际问题,引导学生应用集合的基本关系进行解决。

4.5 总结与反思对本节课学到的内容进行总结,并引导学生思考研究过程中遇到的困难和解决方法。

5. 教学评价与反馈通过教学中的讨论、练和应用环节,收集学生的表现和回答情况,进行评价和反馈。

6. 扩展练布置一些扩展练题,让学生在课后巩固和拓展所学知识。

7. 教学资源准备相关练题、实例和课堂活动所需的教学资源和材料。

8. 学生作业规定学生完成相关作业,以检验他们对集合间基本关系的理解和运用能力。

9. 参考资料列出使用的参考资料和教辅书籍。

以上是2集合间的基本关系优秀教案教学设计的大纲。

通过本次课程的学习,相信学生们能够更好地理解和应用集合的基本关系。

集合间的基本关系公开课教案

集合间的基本关系公开课教案

符号语言 若集合 A⊆ B,但存在 x∈B, 且 x∉A,则 A B(或 B A) (读作“A 真包含于 B”或“B 真包含 A”)
图形语言
5.空集
(1)定义:我们把不含任何元素的集合叫做空集,记作 .
(2)规定:空集是任何集合的 子集 ,即 ⊆ A,空集是任何 非空集合 的真子集,即 A(A≠ ).
即时训练 1-1:(1)已知集合 B={-1,1,4},满足条件 M⊆ B 的集合 M 的个数
为( )
(A)3
(B)6
(C)7
(D) 8
(2)已知 A⊆ {1,2,3,4},且 A 中至少有一个偶数,则这样的 A 有
个.
解析:(1)由题意可知集合M是集合B的非空子集,集合B中有3个元素,因此 非空子集有7个,选C. (2)由A⊆{1,2,3,4}知集合A是{1,2,3,4}子集,且A中至少有一个偶数,则满 足条件的集合A有{2},{2,1},{2,3},{1,2,3};{4},{1,4},{3,4},{1,3, 4};{2,4},{1,2,4},{2,3,4},{1,2,3,4}.共有12个. 答案:(1)C (2)12
b2, 2a
解得
a b
1 4 1 2
,

a b
0, 0
(舍去)故
a b
0, 1

a b
1, 4 1. 2
方法技巧(1)求解含参数的集合相等问题,要注意验证所求参数是否满足集 合中元素的互异性. (2)本题中的解法二利用了两集合相等的性质,即两集合相等时,两集合中 所有元素的积相等,两集合中所有元素的和相等.
自我检测
1.集合A={x∈N|0<x<4}的真子集个数为( C ) (A)3 (B)4 (C)7 (D)8

教学设计2:1.2 集合间的基本关系

教学设计2:1.2 集合间的基本关系

1.2 集合间的基本关系教学分析第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别.教学目标与核心素养课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组,此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类.教学重难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练.教学工具:多媒体.教学过程一、问题导入:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?要求:让学生自由发言,教师不做判断.而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本,思考并完成以下问题1. 集合与集合之间有什么关系?怎样表示集合间的这些关系?2. 集合的子集指什么?真子集又是什么?如何用符号表示?3. 空集是什么样的集合?空集和其他集合间具有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题.三、新知探究(一)知识整理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B.图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.(二)知识扩展1. 能否说任何一集合是它本身的子集,即A A ⊆?2. 集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别?3. 空集是任何集合的子集吗?空集是任何集合的真子集吗?4. 集合的子集和真子集个数与集合元素有什么关系?结合实例探究.5. 0,{0}与∅三者之间有什么关系?6. {}a A ⊆与属于关系a A ∈有什么区别?试结合实例做出解释.7. 对于集合A ,B ,C ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题,教师巡视指导,解答学生在自主学习中遇到的困惑过程.结论:(1).A A ⊆(类比a a ≤)(2)空集是任何集合的子集,是任何非空集合的真子集.(3)若,,A B B C ⊆⊆则C A ⊆(类比b a ≤,c b ≤则c a ≤)(4)一般地,一个集合元素若为n 个,则其子集数为2n 个,其真子集数为2n -1个,特别地,空集的子集个数为1,真子集个数为0.四、典例分析、举一反三题型一 写出给定集合的子集例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:由此猜想:含n 个元素的集合{a 1,a 2,…,a n }的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?【答案】见解析【解析】分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n个元素的集合{a1,a2,…,a n }的所有子集的个数是2n,真子集的个数是2n -1,非空真子集的个数是2n -2.解题技巧:(分类讨论是写出所有子集的方法)1.分类讨论是写出所有子集的有效方法,一般按集合中元素个数的多少来划分,遵循由少到多的原则,做到不重不漏.2.若集合A中有n个元素,则集合A有2n个子集,有(2n -1)个真子集,有(2n -1)个非空子集,有(2n -2)个非空真子集,该结论可在选择题或填空题中直接使用.跟踪训练一1.若{1,2,3}⊆A⊆{1,2,3,4,5},则满足条件的集合A的个数为()A.2B.3C.4D.5【答案】B【解析】集合{1,2,3}是集合A的真子集,同时集合A又是集合{1,2,3,4,5}的子集,所以集合A 只能取集合{1,2,3,4},{1,2,3,5}和{1,2,3,4,5}.题型二韦恩图及其应用例2下列能正确表示集合M={-1,0,1}和N={x|x2+x=0}的关系的维恩图是()【答案】B【解析】∵N={x| x2+x=0}={x|x=0或x=-1}={0,-1},∴N M,故选B.解题技巧:(Venn图应用)Venn是集合的又一种表示方法,使用方便,表达直观,可迅速帮助我们分析问题、解决问题,但它不能作为严密的数学工具使用.跟踪训练二2.设A={四边形},B={梯形},C={平行四边形},D={菱形},E={正方形},则下列关系正确的是()A.E D C AB.D E C AC.D B AD.E D C B A【答案】A【解析】集合A,B,C,D,E之间的关系可用Venn图表示,结合下图可知,应选A.题型三由集合间的关系求参数的范围例3 已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}.(1)若a=-1,试判断集合A,B之间是否存在子集关系;(2)若A⊇B,求实数a的取值范围.【答案】见解析【解析】分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}.如图在数轴上标出集合A,B.由图可知,B A.(2)由已知A⊇B.①当B=⌀时,2a-3≥a-2,解得a≥1.显然成立.②当B≠⌀时,2a-3<a-2,解得a<1.由已知A⊇B,如图在数轴上表示出两个集合,由图可得解得-1≤a≤4.又因为a<1,所以实数a的取值范围为-1≤a<1变式1.[变条件]【例3】(2)中,是否存在实数a,使得A⊆B?若存在,求出实数a的取值范围; 若不存在,试说明理由.【答案】见解析【解析】因为A={x|-5<x<2},所以若A⊆B,则B一定不是空集.变式2.[变条件]若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A⊇B,求实数a的取值范围. 【答案】见解析【解析】①当B=⌀时,2a-3≥a-2,解得a≥1.显然成立.②当B≠⌀时,2a-3<a-2,解得a<1.由已知A⊇B,如图在数轴上表示出两个集合,由图可知2a-3≥2或a-2≤-5,解得又因为a<1,所以a≤-3.综上,实数a的取值范围为a≥1或a≤-3.解题技巧:(根据集合之间关系,求参数的值或范围)1.求解此类问题通常是借助于数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,同时还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.2.涉及“A⊆B”,且B≠⌀”的问题,一定要分A=⌀和A≠⌀两种情况进行讨论,其中A=⌀的情况容易被忽略,应引起足够的重视.跟踪训练三3.若集合A ={x |x 2+x −6=0},B ={x |x 2+x +a =0},且B ⊆A ,求实数a 的取值范围.【答案】见解析【解析】A ={-3,2}.对于x 2+x +a =0,当Δ=1-4a <0,即a >14时,B =⌀,B ⊆A 成立;当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2},所以a =-3×2=-6. 综上可知,a 的取值范围为a >14或a =-6.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计教学反思在本节的教学过程中,空集和端点问题是学生最不容易掌握的地方,需在此细嚼慢咽.若理解能力比较弱的同学可让其采取“里实外空,‘==’取不到”的方法做题.。

学案2:1.2 集合间的基本关系

学案2:1.2 集合间的基本关系

1.2 集合间的基本关系学习目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用. 重点难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.学习过程一、 预习导入1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B.图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.结论:(1).A A ⊆(类比a a ≤)(2)空集是任何集合的子集,是任何非空集合的真子集.(3)若,,A B B C ⊆⊆则C A ⊆(类比b a ≤,c b ≤则c a ≤)(4)一般地,一个集合元素若为n 个,则其子集数为2n 个,其真子集数为2n -1个,特别地,空集的子集个数为1,真子集个数为0.小试牛刀1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素. ( )(2)任何一个集合都有子集. ( )(3)若A =B ,则A ⊆B . ( )(4)空集是任何集合的真子集. ( )2.用适当的符号填空3.设a ∈R ,若集合{2,9}={1-a,9},则a =________.自主探究例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:由此猜想:含n 个元素的集合{a 1,a 2,…,a n }的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?例2 下列能正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}的关系的维恩图是( )例3 已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}.(1)若a=-1,试判断集合A,B之间是否存在子集关系;(2)若A⊇B,求实数a的取值范围.变式1.[变条件]【例3】(2)中,是否存在实数a,使得A⊆B?若存在,求出实数a的取值范围; 若不存在,试说明理由.变式2.[变条件]若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A⊇B,求实数a的取值范围.当堂检测1.已知集合A={2,-1},集合B={m2-m,-1},且A=B,则实数m等于() A.2B.-1C.2或-1D.42.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈AC.∅∈A D.{0}⊆A3.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为() A.6B.5C.4D.34.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是() A.A⊆B B.A=BC.A B D.A B5.已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若B⊆A,求实数a的取值范围.参考答案小试牛刀1.答案:(1) ×(2) √(3) √ (4)×2.(1)∈(2)= (3)= (4)⊆(5)⊈(6)=3.-1自主探究例1【答案】见解析【解析】分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n个元素的集合{a1,a2,…,a n }的所有子集的个数是2n,真子集的个数是2n -1,非空真子集的个数是2n -2.例2【答案】B【解析】∵N={x| x2+x=0}={x|x=0或x=-1}={0,-1},∴N M,故选B.例3【解析】分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}.如图在数轴上标出集合A,B.由图可知,B A.(2)由已知A⊇B.①当B=⌀时,2a-3≥a-2,解得a≥1.显然成立.②当B≠⌀时,2a-3<a-2,解得a<1.由已知A⊇B,如图在数轴上表示出两个集合,由图可得解得-1≤a≤4.又因为a<1,所以实数a的取值范围为-1≤a<1变式1.[变条件]【例3】(2)中,是否存在实数a,使得A⊆B?若存在,求出实数a的取值范围; 若不存在,试说明理由.【答案】见解析【解析】因为A={x|-5<x<2},所以若A⊆B,则B一定不是空集.变式2.[变条件]若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A⊇B,求实数a的取值范围. 【答案】见解析【解析】①当B=⌀时,2a-3≥a-2,解得a≥1.显然成立.②当B≠⌀时,2a-3<a-2,解得a<1.由已知A⊇B,如图在数轴上表示出两个集合,由图可知2a-3≥2或a-2≤-5,解得又因为a<1,所以a≤-3.综上,实数a的取值范围为a≥1或a≤-3.当堂检测1-4.CDAD5.【答案】见解析【解析】∵B⊆A,∴B的可能情况有B≠∅和B=∅两种.①当B=∅时,由a>2a-1,得a<1.②当B ≠∅时,∵B ⊆A ,∴⎩⎪⎨⎪⎧ a >3,a ≤2a -1或⎩⎪⎨⎪⎧2a -1<-2,a ≤2a -1成立,解得a >3; 综上可知,实数a 的取值范围是{a |a <1或a >3}.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 集合间的基本关系整体设计教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与的区别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用V enn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2);(3)∈)推进新课新知探究提出问题(1)观察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知A B,试用Venn 图表示集合A 和B 的关系.(7)任何方程的解都能组成集合,那么x 2+1=0的实数根也能组成集合,你能用Venn 图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A ⊆B,但存在x ∈B,且x ∉A,我们称集合A 是集合B 的真子集,记作A B(或B A).(3)实数中的“≤”类比集合中的⊆.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当A ⊆B 时,A B 或A=B.(7)方程x 2+1=0没有实数解.(8)空集记为∅,并规定:空集是任何集合的子集,即⊆∅A;空集是任何非空集合的真子集,即∅A(A≠∅).(9)类比子集.讨论结果:(1)①集合A 中的元素都在集合B 中;②集合A 中的元素都在集合B 中;③集合C 中的元素都在集合D 中;④集合E 中的元素都在集合F 中.可以发现:对于任意两个集合A,B 有下列关系:集合A 中的元素都在集合B 中;或集合B 中的元素都在集合A 中.(2)例子①中A ⊆B,但有一个元素4∈B,且4∉A;而例子②中集合E 和集合F 中的元素完全相同.(3)若A ⊆B,且B ⊆A,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B.图1-1-2-1图1-1-2-2(6)如图1-1-2-3和图1-1-2-4所示.图1-1-2-3图1-1-2-4(7)不能.因为方程x 2+1=0没有实数解.(8)空集.(9)若A⊆B,B⊆C,则A⊆C;若A B,B C,则A C.应用示例思路11.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B 表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?A⊆B,B⊆A,A⊆C,C⊆A.(2)试用Venn图表示集合A、B、C间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则A⊆B成立,否则A⊆B不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.(2)根据集合A、B、C间的关系来画出Venn图.解:(1)包含关系成立的有:B⊆A,C⊆A.(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么.判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有A⊆B;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有A B;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有A B,且B A,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}.变式训练2007山东济宁一模,1已知集合P={1,2},那么满足Q⊆P的集合Q的个数是( )A.4B.3C.2D.1分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合Q⊆P,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为∅,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为∅,{a},即子集的个数是2=21;当n=2时,即含有一个元素的集合如{a,b}的子集为∅,{a},{b},{a,b},即子集的个数是4=22. ……集合A 中含有n 个元素,那么集合A 有2n 个子集,由于一个集合不是其本身的真子集,所以集合A 有(2n -1)个真子集.思路21.2006上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m 2}.若B ⊆A,则实数m=_______. 活动:先让学生思考B ⊆A 的含义,根据B ⊆A,知集合B 中的元素都属于集合A,集合元素的互异性,列出方程求实数m 的值.因为B ⊆A,所以3∈A,m 2∈A.对m 2的值分类讨论. 解:∵B ⊆A,∴3∈A,m 2∈A.∴m 2=-1(舍去)或m 2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m 2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m 的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M={x|2-x<0},集合N={x|ax=1},若N M,求实数a 的取值范围.分析:集合N 是关于x 的方程ax=1的解集,集合M={x|x>2}≠∅,由于N M,则N=∅或N≠∅,要对集合N 是否为空集分类讨论.解:由题意得M={x|x>2}≠∅,则N=∅或N≠∅.当N=∅时,关于x 的方程ax=1中无解,则有a=0;当N≠∅时,关于x 的方程ax=1中有解,则a≠0,此时x=a 1,又∵N M,∴a 1∈M.∴a1>2. ∴0<a<21.综上所得,实数a 的取值范围是a=0或0<a<21,即实数a 的取值范围是{a|0≤a<21} 2.(1)分别写出下列集合的子集及其个数:∅,{a},{a,b},{a,b,c}. (2)由(1)你发现集合M 中含有n 个元素,则集合M 有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)∅的子集有:∅,即有1个子集;{a}的子集有:∅、{a},即{a}有2个子集;{a,b}的子集有:∅、{a}、{b}、{a,b},即{a,b}有4个子集;{a,b,c}的子集有:∅、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M 有2=21个子集;当n=2时,集合M 有4=22个子集;当n=3时,集合M 有8=23个子集;因此含有n 个元素的集合M 有2n 个子集.变式训练已知集合A {2,3,7},且A 中至多有一个奇数,则这样的集合A 有……( )A.3个B.4个C.5个D.6个分析:对集合A 所含元素的个数分类讨论.A=∅或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】1.判断正误:(1)空集没有子集. ( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集. ( )(4)若B⊆A,那么凡不属于集合A的元素,则必不属于B. ( )分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x∉A时也必有x∉B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n 个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:∅、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为( )①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是( )A.a MB.a∉MC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于∅只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}⊆{0,1,2},④应是∅⊆{0,1,2},⑤应是∅⊆{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}M.答案:(1)C (2)C (3)D4.判断如下集合A 与B 之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k ∈Z },B={x|x=2m+1,m ∈Z };(2)A={x|x=2m,m ∈Z },B={x|x=4n,n ∈Z }.解:(1)因A={x|x=2k-1,k ∈Z },B={x|x=2m+1,m ∈Z },故A 、B 都是由奇数构成的,即A=B.(2)因A={x|x=2m,m ∈Z },B={x|x=4n,n ∈Z },又x=4n=2·2n,在x=2m 中,m 可以取奇数,也可以取偶数;而在x=4n 中,2n 只能是偶数.故集合A 、B 的元素都是偶数.但B 中元素是由A 中部分元素构成,则有BA. 点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.5.已知集合P={x|x 2+x-6=0},Q ={x|ax+1=0}满足QP,求a 所取的一切值. 解:因P={x|x 2+x-6=0}={2,-3},当a=0时,Q ={x|ax+1=0}=∅,QP 成立. 又当a≠0时,Q ={x|ax+1=0}={a 1-},要Q P 成立,则有a 1-=2或a 1-=-3,a=21-或a=31. 综上所述,a=0或a=21-或a=31. 点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q 为空集的情况,而当Q =∅时,满足Q P.6.已知集合A={x ∈R |x 2-3x+4=0},B={x ∈R |(x+1)(x 2+3x-4)=0},要使AP ⊆B,求满足条件的集合P.解:由A={x ∈R|x 2-3x+4=0}=∅,B={x ∈R |(x+1)(x 2+3x-4)=0}={-1,1,-4},由A P ⊆B 知集合P 非空,且其元素全属于B,即有满足条件的集合P 为{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.点评:要解决该题,必须确定满足条件的集合P 的元素,而做到这点,必须明确A 、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.设A={0,1},B={x|x ⊆A},则A 与B 应具有何种关系?解:因A={0,1},B={x|x ⊆A},故x 为∅,{0},{1},{0,1},即{0,1}是B 中一元素.故A ∈B.点评:注意该题的特殊性,一集合是另一集合的元素.8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},(1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m+1>2m-1即m<2时,B=∅满足B ⊆A.当m+1≤2m -1即m≥2时,要使B ⊆A 成立,需⎩⎨⎧>+-≥+51,121m m m 可得2≤m≤3.综上所得实数m 的取值范围m≤3. (2)当x ∈Z 时,A={-2,-1,0,1,2,3,4,5},所以,A 的非空真子集个数为2上标8-2=254.(3)∵x ∈R ,且A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立. 则①若B≠∅即m+1>2m-1,得m<2时满足条件;②若B≠∅,则要满足条件有:⎩⎨⎧>+-≤+51,121m m m 或⎩⎨⎧-<--≤+212,121m m m 解之,得m>4.综上有m<2或m>4.点评:此问题解决要注意:不应忽略∅;找A 中的元素;分类讨论思想的运用.拓展提升问题:已知A ⊆B,且A ⊆C,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A 共有多少个? 活动:学生思考A ⊆B,且A ⊆C 所表达的含义.A ⊆B 说明集合A 是集合B 的子集,即集合A 中元素属于集合B,同理有集合A 中元素属于集合C.因此集合A 中的元素是集合B 和集合C 的公共元素.思路1:写出由集合B 和集合C 的公共元素所组成的集合,得满足条件的集合A;思路2:分析题意,仅求满足条件的集合A 的个数,转化为求集合B 和集合C 的公共元素所组成的集合的子集个数.解法一:因A ⊆B,A ⊆C,B={0,1,2,3,4},C={0,2,4,8},由此,满足A ⊆B,有:∅,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32(个).又满足A ⊆C 的集合A 有:∅,{0},{2},{4},{8},{0,2},{0,4},{0,8},{2,4},{2,8},{4,8},{0,2,4}, {0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=16(个).其中同时满足A ⊆B,A ⊆C 的有8个:∅,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.解法二:题目只求集合A 的个数,而未让说明A 的具体元素,故可将问题等价转化为B 、C 的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8(个). 点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.课堂小结本节课学习了:①子集、真子集、空集、V enn 图等概念;②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.作业课本P 11习题1.1A 组5.设计感想本节教学设计注重引导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.。

相关文档
最新文档