第四章刚体的转动

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章刚体的转动

4-1有两个力作用在一个有固定转轴的刚体上:

(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;

(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;

(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;

(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.

对上述说法下述判断正确的是( )

(A) 只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误

(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确

分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).

4-2关于力矩有以下几种说法:

(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;

(2) 一对作用力和反作用力对同一轴的力矩之和必为零;

(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.

对上述说法下述判断正确的是( )

(A) 只有(2)是正确的 (B) (1)、(2)是正确的

(C)(2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的

分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).

4-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )

(A) 角速度从小到大,角加速度不变

(B) 角速度从小到大,角加速度从小到大

(C) 角速度从小到大,角加速度从大到小

(D) 角速度不变,角加速度为零

分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C ).

4 -4 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L 以及圆盘的角速度ω的变化情况为( )

(A ) L 不变,ω增大 (B ) 两者均不变

(C ) L 不变,ω减小 (D ) 两者均不确定

分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即

ωJ ωJ d m d m =+-00v v

式中m v D 为子弹对点O 的角动量ω0 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0 ,则ω<ω0 .故选(C ).

4 -

5 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )

(A ) 角动量守恒,动能守恒 (B ) 角动量守恒,机械能守恒

(C ) 角动量不守恒,机械能守恒 (D ) 角动量不守恒,动量也不守恒

(E) 角动量守恒,动量也守恒

分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×m v =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |

不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B ).

4 -13 如图(a ) 所示,质量m 1 =16 kg 的实心圆柱体A ,其半径为r =1

5 cm ,可以绕其固定水平轴转动,阻力忽略不计.一条轻的柔绳绕在圆柱体上,其另一端系一个质量m 2 =8.0 kg 的物体B .求:(1) 物体B 由静止开始下降1.0 s 后的距离;(2) 绳的张力F T .

分析 该系统的运动包含圆柱体的转动和悬挂物的下落运动(平动).两种不同的运动形式应依据不同的动力学方程去求解,但是,两物体的运动由柔绳相联系,它们运动量之间的联系可由角量与线量的关系得到.

解 (1) 分别作两物体的受力分析,如图(b ).对实心圆柱体而言,由转动定律得

αr m αJ r F T 212

1=

= 对悬挂物体而言,依据牛顿定律,有 a m F g m F P T T 222='-='-

且F T =F T′ .又由角量与线量之间的关系,得

αr a =

解上述方程组,可得物体下落的加速度

2

1222m m g m a +=

相关文档
最新文档