稠油开采技术的最新研究进展
稠油—油气资源勘探新方向

地球科学新进展
四月
由中石油、加拿大阿尔伯达省政府、中石化、中海油 和中化集团公司主办,中国石油学会协助支持,中加阿 尔伯达石油中心和DMG世界媒体有限公司(DMG World Media)具体承办的“首届世界稠油大会” 于 2006年11月在北京举行。
一、大会主题:“稠油——全球能源的未来” 二、大会宗旨:在全球能源需求不断增长的形势下, 重新评估稠油资源的战略地位;促进全球范围内经济、 环保地开发利用稠油资源;推进稠油科技进步及先进技 术共享;共同展望稠油发展的前景。 国际石油界在重油勘探、开发炼制与综合利用、以及 环境保护方面仍然存在一些尚待解决的问题,加强世界 重油生产国对重油资源的勘探开发及合理利用,关系到 全球石油工业的可持续发展。
四月
中国稠油资源比较丰富,陆上稠油、沥青资源 约占石油资源总量的20%以上,预测资源量198亿 吨,其中最终可探明的地质资源量为79.5亿吨, 已探明稠油地质储量20.6亿吨,可采资源量为19.1 亿吨,已动用地质储量13.59亿吨,剩余为动用地 质储量7.01亿吨。
目前中国稠油油藏深度大于800m的稠油储量 约占已探明储量的80%以上,其中约有一半的油 藏埋深在1300~1700m。吐哈油田的稠油油藏埋 深在2400~3400m,塔里木油田的轮古稠油油藏 埋深在5300m左右。
地球科学新进展
四月
原油生物降解作用的研究,主要集中在以下三个方面: ①现象认识:始于二十世纪六十年代末。研究多集中在 生物降解作用及其对原油物理化学性质的改造等现象的描 述和分析上。通过这些分析,石油地质工作者认识到,伴 随着生物降解作用的发生,首先造成了正构烷烃,包括无 环类异戊二烯类姥鲛烷和植烷的消耗,并形成具有分子量 大,不能分辨的复杂混合物(UCM,或“鼓包”) ,且 随生物降解程度的增加而增大;它不可避免地导致原油的 密度和粘度增大,对原油的物理和化学性质产生重大改变; 探讨了饱和烃和芳烃生物标记化合物的抗生物降解能力及 同位素变化特征;建立了生物标记化合物抗生物降解序列 ; 根据不同烃类的相对丰度,建立了评价石油遭受生物降解 程度的尺度。
稠油开采技术现状及展望石油工程导论课程论文-V1

稠油开采技术现状及展望石油工程导论课程论文-V1现今石油市场的大多数油田都是从比较容易开采的浅层油层中提取石油,而稠油是指黏度比较高,它的开采难度远远高于常规石油。
因此,稠油开采技术现状及展望已经成为了石油工程领域的研究热点。
本文将介绍稠油开采技术的现状以及未来的发展趋势。
一、稠油开采技术现状1. 蒸汽吞吐法蒸汽吞吐法是一种较为成熟的稠油开采技术。
它通过在井口加热注入蒸汽的方式将稠油加热到足够的温度,并利用注入的高压蒸汽将油驱出沉积岩。
这种方法的优点在于能够通过非常规手段提高石油的采收率,但是其劣势是需要大量的能源用于蒸汽的生产,从而导致高额的成本和较大的环境影响。
2. 微生物法微生物法可以分为生物反应器和原位生物处理两种方式。
前者需要将稠油和生物物质混合并加热,体系被滴注进微生物反应器中生物降解,由于表面活性物质的作用使其生物可分解性大大增加,所以可以将其转为可采油藏;后者则利用现有的生物在地下水层中津贴稠油,使得油更易于开采。
3. 电子束技术电子束技术的原理是通过电子束电离分解分子或产生大量的空气离子,之后失去电子并与浸渍油核发生反应,形成离子复合体,从而降低了油的粘度。
电子束技术优点是可以较少地消耗能源以及对环境的污染相对较轻,劣势在于其高成本和使用限制。
二、稠油开采技术展望1. 生产石油的开采方法的完善首先,需要改进现有的各种开采技术。
在此基础上,需要设计新的稠油开采方法,并通过生产实践不断加以完善。
这些技术必须考虑到能源消耗、环保、成本控制等多种因素。
2. 采用新型钻探技术探测较深的储层目前,技术发展已可以钻探到较深的储层中开采稠油,但是需要更可靠,更准确的方法提高勘探成功率。
探测成功后,还需要开发一套完整的采收方法和系统以最大程度地优化石油采收过程。
3. 综合利用稠油资源综合利用稠油资源是一种可持续的发展方式。
在采油过程中,需要进一步开发全流程的低能耗、低排放、高效节能的油气生产过程技术,并进行能源回收和再利用。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油是一种具有高黏度、高密度、难以流动的油藏原油,由于其在地下储层中常常与水和天然气共存,使得开采难度大大增加。
为了提高开采效率,稠油热采技术应运而生。
稠油热采是指通过加热地下油藏,降低原油的黏度,从而使得其能够被更轻松地开采出来的一种采油技术。
这种技术在稠油资源丰富的地区得到广泛应用,同时也面临着诸多挑战和发展机遇。
目前,稠油热采技术在世界各地得到了广泛应用并取得了显著效果。
主要的热采方法包括蒸汽吞吐法、蒸汽驱动法、燃烧气吞吐法、燃烧气驱动法、电阻加热法等。
这些方法的基本原理都是通过向油藏注入热能,从而使得稠油流动性增加,容易被开采。
在这些方法中,蒸汽吞吐法是目前应用最为广泛的一种技术,它通过向油藏注入高温高压的蒸汽,将原油加热并增加压力,从而推动原油流向井口。
这种方法具有操作简单、效果显著的特点,因此被广泛应用于加拿大、委内瑞拉、俄罗斯等稠油资源丰富的国家。
在中国,稠油热采技术也在不断发展。
根据《中国石油天然气集团公司科技发展战略规划》,中国已经建成了多个稠油热采示范工程,形成了稠油热采的成熟技术路线和产业体系。
在大庆油田,采用了蒸汽驱动法对稠油进行热采,实现了稠油资源的高效开发。
中国还在不断探索和引进新的热采技术,如电阻加热技术、微波加热技术等,以提高稠油开采的效率和安全性。
尽管稠油热采技术取得了显著成效,但仍然面临一系列挑战。
热采过程中需要大量的能源,特别是燃煤或燃气。
这不仅增加了成本,还会对环境造成较大影响。
由于稠油地质条件复杂,加热过程中油藏中可能会产生较大的变形和沉陷,导致地质灾害的风险增加。
热采过程中可能会产生大量的尾水和尾气,对环境造成污染。
如何减少能源消耗、降低环境影响成为热采技术发展的重要课题。
在未来,稠油热采技术的发展将主要集中在三个方面:一是提高热采效率,通过改进加热方式和增设管网等措施,降低能源消耗,减少环境污染。
二是深入研究地热能源的应用,如地热蒸汽、地热水等,降低外部能源的使用。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油热采技术是一种针对油砂、重油等高粘度油藏开采的方法,通过供热使原油降低粘度,提高流动性,从而实现油藏的高效开发。
稠油热采技术包括蒸汽吞吐、蒸汽辗转、蒸汽驱等多种方法,下面将对其现状及发展趋势进行详细分析。
稠油热采技术的现状:1. 蒸汽吞吐技术:蒸汽吞吐是目前广泛应用的一种稠油热采技术,通过注入高温高压蒸汽使原油粘度降低,从而提高采收率。
蒸汽吞吐技术具有简单、成本较低的特点,适用于高温高压区块。
由于蒸汽吞吐技术存在注汽周期长、水汽云难以控制等问题,使得其效果受到限制。
2. 蒸汽辗转技术:蒸汽辗转技术是近年来发展起来的一种稠油热采技术,通过在油藏中形成蒸汽辗转的气体流动,使原油流动起来。
蒸汽辗转技术相比蒸汽吞吐技术具有注汽周期短、大面积覆盖等优势,适用于较大底水厚度的高粘度油藏。
目前,蒸汽辗转技术已在国内外一些油田中得到应用,取得了一定的效果。
3. 蒸汽驱技术:蒸汽驱技术以蒸汽为驱动剂,通过驱替作用将原油推向井口,实现油田的高效开发。
蒸汽驱技术具有可控性强、适应性好的特点,适用于不同地质条件的油藏。
目前,蒸汽驱技术广泛应用于国内外的重油油田中,取得了良好的开发效果。
稠油热采技术的发展趋势:1. 温度控制技术的发展:随着稠油热采技术的发展,越来越多的油田需要用到高温蒸汽进行开采,因此温度控制技术变得尤为重要。
发展更加精确、高效的温度控制技术,可以更好地实现稠油热采过程中的热能利用。
2. 系统集成技术的应用:稠油热采技术需要配套的供热、注汽、电力等设备,将来的发展方向是更加注重系统集成,在设计上更加合理地组合各个设备,实现能量的互通与优化利用。
3. 非常规能源的应用:随着能源的紧缺以及环保意识的增强,非常规能源作为替代能源的一种,未来在稠油热采技术中的应用将越来越广泛,比如生物质能源、太阳能、地热能等。
4. 人工智能技术的应用:人工智能技术能够模拟复杂的油藏开发过程并进行优化,可以实现稠油热采过程的自动化、智能化。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油是一种质地黏稠的石油,是一种具有高含硫量和高粘度的重质原油。
由于其黏稠度高,稠油的开采和提炼相对要困难和昂贵。
稠油在全球范围内占据着相当大的比例,其资源储量丰富,因此对于石油行业来说,稠油的开采和利用具有重要的意义。
为了更有效地开采稠油资源,研发了许多热采技术。
本文将对稠油热采技术的现状及发展趋势进行探讨。
一、稠油热采技术现状1. 蒸汽吞吐法:蒸汽吞吐法是一种将高温高压蒸汽注入稠油藏层,使稠油产生稠油-水混合物,降低了稠油的黏度,从而促进油藏产液。
这种方法具有对水源要求低、操作灵活等优点,被广泛应用于加拿大、委内瑞拉等稠油资源丰富的地区。
2. 蒸汽辅助重力排放法:蒸汽辅助重力排放法是将高温高压蒸汽注入稠油层,通过蒸汽的热能作用使稠油产生流动,从而提高了油藏产液速率。
这种方法适用于深层、高黏稠度稠油层,可以挖掘更多的稠油资源。
3. 燃烧加热法:燃烧加热法利用地下燃烧或地面燃烧的方式,通过高温热能将稠油层加热,降低了稠油的粘度,从而促进了油藏的排放。
这种方法具有热效率高、可控性强等优点,是一种较为成熟的稠油热采技术。
1. 技术创新:随着石油工业的发展,热采技术也在不断创新。
未来,稠油热采技术将更加注重提高采收率、降低成本、减少环境影响等方面的技术创新,以提高稠油资源的开采效率和利用价值。
2. 能源替代:在稠油热采过程中,通常需要大量的燃料来产生热能,这不仅增加了生产成本,还会对环境产生负面影响。
未来稠油热采技术可能会向更加环保、节能的能源替代方向发展,例如采用太阳能、地热能等清洁能源进行热采。
3. 智能化应用:随着智能技术的不断发展,稠油热采技术也将向智能化方向发展。
未来,稠油热采可能会利用物联网、大数据、人工智能等技术,实现对油藏的实时监测、智能调控,从而提高生产效率和资源利用效率。
4. 油田整体化管理:随着油田规模的不断扩大,油田整体化管理成为未来热采技术发展的重要方向。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油指的是一种密度较高、粘度较大的原油,其常用的定义是在温度为20℃时,其密度大于0.92 g/cm3,粘度大于10 mPa·s。
稠油通常由含沥青质较高的油藏中开采而得,由于其粘度较大,使得传统的自然流动或压裂开采技术难以应用。
稠油热采技术成为稠油开发过程中的重要手段之一。
目前,稠油热采技术主要包括蒸汽吞吐法、蒸汽驱、电加热法、水热法等。
蒸汽吞吐法是最早被广泛使用的稠油热采技术之一。
该技术通过注入高温高压的蒸汽来降低稠油的粘度,使得稠油能够自然流动或被泵上地面。
蒸汽驱则是通过注入蒸汽将稠油推进到井底,进而提高含油层的渗透性,使得稠油能够自然流动。
电加热法是利用地层电阻加热原理,通过在井筒中通电加热管线,使得地层温度升高,稠油粘度降低,从而实现稠油的开采。
水热法是通过注入高温高压的水来降低稠油的粘度和密度,使得稠油能够自然流动。
1. 降低能耗:稠油热采过程中需要大量的热量来降低稠油的粘度,然而传统的热采方式存在能源消耗大、温度损失严重等问题。
未来的稠油热采技术将会更加注重能源的有效利用,通过优化采油设备和工艺,降低能耗,提高能源利用效率。
2. 提高采收率:传统稠油热采技术的采收率有限,通常在20%左右。
为了提高稠油的采收率,未来的技术发展将会更加注重稠油热采与其他采油方式的结合,如蒸汽吞吐法与蒸汽驱的结合、电加热法与蒸汽驱的结合等,以进一步提高稠油的采收率。
3. 应对环境和安全问题:稠油热采会产生大量的废水和废气,对环境造成一定的污染。
稠油开采地区通常是环境复杂、气候恶劣的地区,容易发生安全事故。
未来的稠油热采技术将会更加注重环境保护和安全性,通过减少废水和废气的排放,提高设备的安全性能来应对环境和安全问题。
4. 进一步完善稠油热采技术:尽管目前已经有多种稠油热采技术可供选择,但是这些技术仍然存在一些问题,如热能损失、油水分离、管道腐蚀等。
未来的稠油热采技术发展将会更加注重解决这些问题,通过改进设备和工艺,进一步完善稠油热采技术,并提高其经济效益和技术可行性。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油热采是目前油田开发领域的一个焦点,其技术现状和发展趋势备受关注。
稠油热采技术包括蒸汽吞吐、蒸汽驱、电加热等,可以提高产油率、降低生产成本,是一种节能环保型的油田开采方式。
稠油热采技术的现状主要包括以下方面:1. 蒸汽吞吐技术蒸汽吞吐技术是一种利用高温高压蒸汽将稠油剥离出来的技术,具有节能环保的特点。
目前,蒸汽吞吐技术已经得到广泛应用,并不断发展和完善。
在蒸汽吞吐技术中,关键是提高蒸汽的利用效率和稠油的剥离率。
蒸汽驱技术是一种在地层注入高温高压蒸汽,使稠油流动起来,从而提高产油率的技术。
蒸汽驱技术具有操作简单、提高石油采收率等优点,但其难点在于如何降低驱油效率下降的问题。
3. 电加热技术电加热技术是使用电加热棒在地层中加热稠油,使其流动起来,提高产油率的一种技术。
电加热技术广泛应用于稠油的开采,其优点是能够在不需要燃料时提供加热,从而达到节能的目的。
1. 提高技术水平稠油热采技术发展的趋势是提高技术水平,加强技术研究,不断改进现有技术,并研究新的技术,提高石油采收率和降低生产成本。
2. 推广应用稠油热采技术的应用范围将会逐渐扩大,应用场景也会越来越广泛。
随着技术的不断发展和成熟,稠油热采的应用将更加广泛。
3. 环保节能环保和节能是未来稠油热采技术发展的重点。
稠油热采技术的开发应该尽可能的提高能源的利用效率,减少对环境的影响。
4. 多种技术的协同应用未来,不同的稠油热采技术需要协同应用,形成更加多元化、高效环保的稠油热采系统。
通过多种技术的辅助配合利用,提高稠油的开采效率,实现稳步可持续发展。
总而言之,稠油热采技术是油田开采的重要手段,其技术现状和发展趋势将继续受到关注和推广。
未来,制定更加科学合理的稠油开采技术和政策,将更有助于促进稠油的开发与利用,为我国能源安全和经济发展做出重要贡献。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油是指粘度较大的原油,通常属于非常具有挑战性的开采对象。
稠油热采技术是指利用热能降低稠油粘度,从而提高原油产量的一种开采技术。
随着对非常规油气资源的需求日益增长,稠油热采技术在石油工业领域也受到了越来越多的关注。
本文旨在对稠油热采技术的现状与发展趋势做一番探讨。
一、稠油热采技术现状1. 热采原理热采技术主要是通过注入热能使稠油渗流性增加,粘度减小,从而提高原油产量的一种开采方式。
目前广泛应用的热采方法包括蒸汽吞吐法、燃烧热采法和电加热法等。
蒸汽吞吐法是应用最为广泛的一种热采方法,其原理是通过注入高温高压蒸汽使稠油产生热胀冷缩的效应,降低原油的黏度,从而提高原油产量。
2. 技术难点稠油热采技术面临着一些技术难点,主要包括热能传输效率低、地层温度降低、碳排放增加等问题。
由于原油储层深埋地下,热能在传输过程中会受到很大的损失,导致热能利用率低,影响了热采效果。
随着油田开采时间的延长,地层温度也会逐渐降低,导致原油黏度增加,热采效果减弱。
燃烧热采法会导致大量的二氧化碳排放,对环境造成不良影响。
3. 应用现状目前,稠油热采技术已经在北美、俄罗斯、委内瑞拉等国家和地区得到了广泛应用,取得了一些成功的经验。
加拿大的阿尔伯塔地区是世界著名的稠油开采区域,该地区的稠油资源丰富,以蒸汽吞吐法为主要开采方法,取得了较好的开采效果。
俄罗斯的西伯利亚地区和委内瑞拉的奥里诺科地区等地也应用了稠油热采技术,取得了一定的成果。
1. 技术创新随着石油工业的发展,稠油热采技术也在不断地进行技术创新。
为了提高热能利用率,目前正在研究开发新型的热传导介质和热能传输技术,提高热采效果。
一些新型的热采方法也在不断涌现,如微波加热法、化学热采法等,这些新技术有望在未来得到更广泛的应用。
2. 环境友好随着环境保护意识的提高,稠油热采技术也在朝着更环保的方向发展。
目前,一些国家已经开始研究开发低碳排放的热采方法,以减少对环境的不良影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《稠油开采技术的最新研究进展》
油工(2)2001
喻天龙
201013074
近年来,随着塔河油田开发规模的不断扩大,稠油开发的难度越来越高。
其中,塔河12区超稠油井越来越多,超稠油油藏开发的形势越来越不容乐观。
该厂尽管在稠油深抽、稠油降粘等稠油开采配套技术上不断下大功夫,但稠油井筒举升难的问题依然进度缓慢。
根据多方论证和技术分析,其主要原因是12区原油粘度高,在油藏条件下具有较好的流动性。
但是,在进入井筒后的垂直流动过程中,随着井筒温度的降低,原油粘度逐步增大,流动性逐渐变差。
针对以上客观实际难题,该厂充分发挥地质技术人员攻关优势,紧跟开采开发形势,瞄准10区、12区超稠油举升、掺稀降粘、化学降粘技术难题,展开大胆探索和技术攻关,初步获得了突破性进展。
第一,根据油田快速上产发展要求,不断加大稠油开采工艺自主创新力度。
今年以来,先后实施了两级接力举升、深抽减载装置、超深尾管深抽电泵、电加热杆等稠油新工艺,配套实施了18型游梁式抽油机、24型塔式抽油机、皮带式抽油机等配套工艺,试验取得较好效果。
目前,已初步形成具有塔河特色的稠油开发采油技术模式。
第二,进一步加大油溶性、水溶性化学降粘剂评价、优选和试验力度。
今年以来,筛选出两种水溶性化学降粘剂、三种油溶性化学降粘剂进入现场进行放大样试验。
与去年相比较,化学降粘剂的应用效果得到很大提高,极大地缓解了稠油区块稀油紧缺的瓶颈问题,保证了新区稠油井正常投产需要。
第三,加大了中质油混配密度。
目前,混配密度达到了0.898g/cm3,日增加中质油300吨。
同时,加大掺稀生产井优化力度,分区块、分单元判定不同的掺稀优化目标,还采用低压自喷井提前转抽,提高混配效果等一系列措施,今年上半年,共计节约稀油11万余吨。
1、稠油油田开采历程及开采现状
欢喜岭采油厂稠油开采始于1982年5月。
在当时勘探发现油层发育好、油层集中的锦89块、锦203块、锦8块等有效厚度大于10m的范围内布井118口,
实施规模开采。
但因原油稠,油井产能低,开采效果不理想,致使面对稠油开采出现”井井有油,井井油不流,人人见了稠油就发愁”的状况。
到1984年4月,全厂工艺技术人员针对稠油特性,开展技术攻关,采用先进技术,实施技术改造,在充分研究和参考国外稠油开采成功经验的基础上开展了蒸汽吞吐先导试验,从1984年4月-10月在欢17等3个区块的11口稠油井进行了12井次的蒸汽吞吐试验,单井获得日产油达100-200t的好效果,其中第一口蒸汽吞吐先导试验—锦89井经注汽吞吐,自喷期累计达到108天,平均日产油150吨,成为当时全国稠油蒸汽吞吐开采自喷期最长,单井周期累积产油最高的油井。
先导试验的成功,为后来大规模、高速、高效开采稠油积累了宝贵的经验。
目前我厂开采的稠油主力区块有三个,即齐40块、齐108块和欢127块,含油面积共14.8km2,原油地质储量7831×104t,共有油井1400口左右,平均单井吞吐9.4次,现开井1060口左右,日产油3500t左右,日产水10000 m3左右,稠油产量约占全厂总产油量的2/3。
在齐40块有一个70m×100m井距4个井组的蒸汽驱先导试验区。
试验区试验已历时4年,汽驱阶段累计产油13.7366×104t,采出程度31.6%,试验区累积采出程度达56.3%。
2、稠油开采配套工艺技术
通过近二十年对稠油的开采,我们在稠油开采方面积累了丰富的经验,并完善了其工艺配套技术。
概括来讲主要有以下几个方面:
稠油热采井的钻井完井技术
稠油热采井全部采用预应力、高强度钢级套管(如N80、P110等钢级7英寸套管),完井固井质量要求全井段合格,水泥返高要达到地面。
稠油热采井的先期防砂技术
针对部分区块出砂比较严重的问题,采取了先期防砂工艺技术,该种防砂技术在防砂的同时,有效地避免了油层污染,有利于原油的渗流,避免了射孔和其它作业的伤害。
保证注汽质量的井筒隔热技术
在井筒降热方面主要采取全部下入高质量隔热油管,环空采用密封效果好的热采封隔器,并开套管闸门注汽。
对特殊工艺井采取环空氮气隔热技术。
目前部分油井采用真空隔热管隔热技术,其隔热性能、机械性能均达到国际先进水平[1]。
保证注汽质量的地面隔热技术
地面建立固定的注汽管网,尽量降低和减少热损失,保证高质量蒸汽注入油层。
充分发挥注入蒸汽的热能加热原油,提高吞吐效果。
吞吐初期,延长油井自喷期的井口接力泵技术
对吞吐初期有一定自喷能力的油井采取井口接力泵技术,抽汲井筒产液,降低井筒回压,延长自喷期,提高油井产量,为下泵转抽做好准备。
干抽技术及掺稀原油降粘技术
对油品性质较好和吞吐下泵初期,油层温度高,产出液温度高的油井,采取不掺油不加热干抽的方法,充分利用注汽热能,尽量提高油井产量。
待温度降到一定值时,采取掺稀原油降粘,保证油井生产。
目前欢喜岭采油厂除部分高含水油井外,绝大部分油井都采取泵下或地面掺稀原油降粘方式生产。
机、杆、泵优化配套技术
根据欢喜岭油田原油物性特点和油藏埋深的实际,在开发初期采取大机、长泵、粗管、强杆、深下的配套采油技术。
后期随着产量、含水等参数的变化,对上述工艺技术进行了适当的调整,并将优化设计技术应用于油井机、杆泵的选择上,在保证油井产能的前提下,提高了效率效率。
如,目前我们将调速电机(三种速度分别为750、900、1200转/分)应用于稠油井,目的在于根据油井生产状况便于生产参数的调整。
高温监测技术
为深化对油藏的认识,监测油藏的开采情况,使用了以TPS-9000型测井热电偶测试技术及高温测试仪为主的高温测试技术,对正确认识吸汽剖面、油层用情况及井间汽窜情况提供了准确的依据。
三级站双管流程集输工艺
针对稠油特点和实际生产情况,我们采取三级站双管流程的集输工艺,即采取原油从油井进入计量站,计量后经接转站输送到联合站进行处理。
联合站将稀原油输送到接转站、计量站后,掺到各生产井。
这就保证了采出与掺入原油集输过程中的温度,杜绝了集输过程中因油温低影响生产事故的发生。
3、高轮次吞吐期存在的主要问题及配套技术
随着我厂稠油开采的深入,在进入高轮次吞吐阶段后,也就是我们常说的进入了油井蒸汽吞吐的中后期阶段,开采的矛盾日益暴露,并表现得非常突出,直接影响着油井的正常生产。
归纳起来主要有以下几个方面的矛盾:平面上边水入浸
由于稠油开采都是采取降压开采方式,随着开采的深入,油层压力越来越低,与外部边水的压力平衡打破,导致边水的大量入浸,造成水淹油层,直接影响油井的正常吞吐,严重时导致大量储量损失而无法开采。
纵向上动用程度不均,平面上汽窜严重
由于油藏构造先天造成油层非均质性和原油物性的差异,在常规的蒸汽吞吐中,经吸汽剖面和产液剖面测试发现,仅50-60%的油层动用程度较好,其它几乎未动用,造成油层在纵向上动用不均,储量浪费。
同时,因动用不均,注汽时发生单层突进,发生汽窜现象非常严重,轻的影响油井生产,重则发生井喷,酿成事故。
经多轮次吞吐,套管损坏严重,无法继续生产
油井在经多轮次吞吐后,套管损坏非常严重,几乎每年以10%的速度增加,使油井无法生产,给开采带来非常大的难题。
油井出砂严重
由于油藏构造和油层物性、稠油的特性与蒸汽吞吐开采的方式的特殊性,导致稠油吞吐井出砂非常严重,严重影响稠油吞吐井正常生产。
油层中存水多,转抽投产排水期长,周期产量递减幅度大,吞吐有效期缩短部分油井的周期吞吐油气比,已经接近或低于0.20的经济极限,无法继续吞吐经过多年的实践和摸索,我们总结出治理汽窜的对策:一是注汽前向井内注入高温调剖剂,封堵汽窜层位,调整吸汽剖面,达到注汽井正常注汽和对应井正常生产的目的。
二是采取分层注汽的办法,封住已汽窜的层位,继续吞吐未汽窜层位,达到防窜和动用中低渗透层的目的。
三是采取一注一关的对策,即一井注汽时,对应汽窜井关井,这种办法适用于对应井产量低或高含水井。
四是采取两井同时注汽的办法达到防窜和提高注汽效果的目的。
目前欢采厂稠油区块的防窜问题基本得到了解决。