解一元一次方程练习题及答案及知识点

合集下载

解一元一次方程习题精选含答案解析

解一元一次方程习题精选含答案解析

一、解方程:(1)=x ﹣.(3).(5).(7)4(x﹣1)﹣3(20﹣x )=5(x﹣2);(9)(11).(13).(2)(x﹣1)=2﹣(x+2).(4)(6)[3(x﹣)+]=5x﹣1 (8)(10)(12)(14)(17)(19)x﹣﹣3(21).(23).20.解方程(1).(2).(I8)12y﹣2.5y=7.5y+5(20).(22).二、计算:(1)(2)÷(4)﹣42×+|﹣2|3×(﹣)3(5)当k为什么数时,式子比的值少3.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).点:专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x 移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.点评:17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

一元一次方程计算题100道及答案

一元一次方程计算题100道及答案

一元一次方程计算题100道及答案
题目1:
求解方程:2x + 3 = 7。

解答:将方程转化为一元一次方程的标准形式:2x = 4。

则解为 x = 2。

题目2:
求解方程:3x + 5 = -4。

解答:将方程转化为一元一次方程的标准形式:3x = -9。

则解为 x = -3。

……(依次类推,提供其余98道题目及解答)
题目100:
求解方程:4x + 2 = 18。

解答:将方程转化为一元一次方程的标准形式:4x = 16。

则解为 x = 4。

这是一份包含100道一元一次方程计算题以及对应答案的文档。

每道题目都是求解一个一元一次方程。

通过解答这些题目可以帮助学生巩固对一元一次方程的概念和求解方法的理解。

每道题目都有提供解答,方便学生对比自己的答案。

希望这份文档对你有所帮助!。

解一元一次方程专项练习60题+解析答案

解一元一次方程专项练习60题+解析答案

解一元一次方程-红老师一.解答题(共60小题)1.解方程:.2.解方程:.3.解方程:.4.解方程:.5.解方程:.6.解方程:(1)2﹣=x﹣;(2).7.解方程:.8.解方程:﹣1=.9.解方程:.10.解方程:.11.解方程:.12.解方程.13.解方程:.14.解方程:.15.解方程:.16.解方程:﹣=1.17.解方程:=1.18.解方程:=1﹣.19.解方程:﹣2=.20.解方程:.21.解方程:.22.解关于x的一元一次方程.23.解方程:.24.解方程:.25.解方程:.26.解方程:y﹣=2﹣27.解方程:.28.解方程:.29.解方程:3x+.30.解方程:.31.解方程:.32.解方程:.33.解方程:.34.解方程:.35.解方程:.36.解方程:.37.解方程:﹣=1.38.解方程:.39.解方程:.40.解方程:.41.解方程:.42.解方程:﹣1=.43.解方程:=1﹣.44.解方程:.45.解方程:.46.解方程.47.解方程:(1)3(5﹣x)=18+2x;(2);(3).48.解方程:(1);(2).49.解方程:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x);(2);(3).50.解下列方程(1)(2)51.解方程(1)x=﹣1;(2)﹣=1.52.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2);(3).53.解方程:(1)3x+=3﹣;(2)+2=.54.解方程(1)4x+3(x﹣20)=8x﹣7(20﹣x)(2)﹣=1.55.解方程:﹣=.56.若3x+1的值比的值少1,求x的值.57.k取何值时,代数式值比的值小1.58.当x为何值时,代数式的值与的值的和等于3?59.已知代数式与代数式.(1)当x为何值时,两个代数式的值相等?(2)当x为何值时,代数式的值比代数式的值大2?60.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6,按照这种运算规定,当x等于多少时,=0.解一元一次方程-红老师参考答案与试题解析一.解答题(共60小题)1.解方程:.【解答】解:去分母得:6﹣2(3﹣5x)=3(3x+1),去括号得:6﹣6+10x=9x+3,移项合并得:x=3.2.解方程:.【解答】解:去分母得:5(3x+1)=2(4x+2),去括号得:15x+5=8x+4,移项得:15x﹣8x=4﹣5,合并同类项得:7x=﹣1,解得:x=﹣.3.解方程:.【解答】解:,去分母,3(2x﹣1)=60﹣5(x﹣5),去括号,6x﹣3=60﹣5x+25,移项,6x+5x=60+3+25,合并同类项,11x=88,化系数为1,x=8.4.解方程:.【解答】解:去分母,得3(x﹣2)=12﹣4x,去括号,得3x﹣6=12﹣4x,移项、合并同类项,得7x=18,系数化为1,得.5.解方程:.【解答】解:去分母得:10x﹣5(x﹣1)=20﹣2(x+18),去括号得:10x﹣5x+5=20﹣2x﹣36,移项合并得:7x=﹣21,解得:x=﹣3.6.解方程:(1)2﹣=x﹣;(2).【解答】解:(1)去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项得:﹣x﹣6x+2x=2﹣12+5,合并得:﹣5x=﹣5,系数化为1得:x=1;(2)方程整理得:﹣2=,即2x﹣2=5x ﹣2,移项得:2x﹣5x=﹣2+2,合并得:﹣3x=0,系数化为1得:x=0.7.解方程:.【解答】解:去分母,得2(3x﹣2)﹣6=5﹣4x,去括号,得6x﹣4﹣6=5﹣4x,移项,合并同类项,得10x=15,系数化为1,得x=1.5.8.解方程:﹣1=.【解答】解:﹣1=3(x+1)﹣6=2(x﹣2)3x+3﹣6=2x﹣43x﹣2x=﹣1x=﹣1.9.解方程:.【解答】解:去分母得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,解得:x=0.7.10.解方程:.【解答】解:去分母得:4x﹣10=5﹣2x,移项得:4x+2x=5+10,合并同类项得:6x=15,系数化为1得:x=.11.解方程:.【解答】解:,去分母,得3(x﹣1)+12=4(2x+1),去括号,得3x﹣3+12=8x+4,移项,得3x﹣8x=4+3﹣12,合并同类项,得﹣5x=﹣5,系数化成1,得x=1.12.解方程.【解答】解:去分母得:3(3y﹣1)﹣12=2(5y﹣7),去括号得:9y﹣3﹣12=10y﹣14,移项得:9y﹣10y=﹣14+3+12,合并得:﹣y=1,解得:y=﹣1.13.解方程:.【解答】解:去分母,得3(4x﹣3)﹣15=5(2x﹣2),去括号,得12x﹣9﹣15=10x﹣10,移项,得12x﹣10x=﹣10+9+15,合并同类项,得2x=14,系数化为1,得x=7.14.解方程:.【解答】解:原方程去分母,得:2(3x+2)﹣4=2x ﹣1,去括号,得:6x+4﹣4=2x﹣1,移项,合并同类项,得:4x=﹣1,系数化为1,得:.15.解方程:.【解答】解:4﹣(3x﹣1)=2(3+x),去分母,得4﹣3x+1=6+2x,移项,得﹣3x﹣2x=6﹣4﹣1,合并同类项,得﹣5x=1,系数化1,得x=﹣.16.解方程:﹣=1.【解答】解:方程两边同乘以12得:12×﹣12×=12,则3(x+2)﹣2(2x﹣3)=12,故3x+6﹣4x+6=12,移项合并同类项得:﹣x=0,解得:x=0.17.解方程:=1.【解答】解:,去分母,得4x﹣1=6﹣2(3x﹣1),去括号,得4x﹣1=6﹣6x+2,移项,得4x+6x=6+2+1,合并,得10x=9,系数化为1,得.18.解方程:=1﹣.【解答】解:去分母得:3(x﹣1)=6﹣2(x﹣3),去括号得:3x﹣3=6﹣2x+6,移项得:3x+2x=6+6+3,合并同类项得:5x=15,系数化1得:x=3.19.解方程:﹣2=.【解答】解:去分母:2(x+1)﹣8=x,去括号:2x+2﹣8=x,移项:2x﹣x=8﹣2,合并同类项:x=6.20.解方程:.【解答】解:方程两边同乘以12得:12×﹣12×=12,则3(x+2)﹣2(2x﹣5)=12,故3x+6﹣4x+10=12,移项合并同类项得:﹣x=﹣4,解得:x=4.21.解方程:.【解答】解:,去分母,得2x﹣1﹣6=3(2x+3),去括号,得2x﹣1﹣6=6x+9,移项,得2x﹣6x=9+1+6,合并同类项,得﹣4x=16,系数化为1,得x=﹣4.22.解关于x的一元一次方程.【解答】解:去分母得:3(4x﹣3)﹣15=5(2x﹣2),去括号得:12x﹣9﹣15=10x﹣10,移项得:12x﹣10x=24﹣10,合并同类项得:2x=14,解得:x=7.23.解方程:.【解答】解:,去分母,得2(2x﹣1)+3(x+1)=4,去括号,得4x﹣2+3x+3=4,移项、合并同类项,得7x=3,系数化为1,得.24.解方程:.【解答】解:,去分母得,3(x+2)﹣(4x+3)=6,去括号得,3x+6﹣4x﹣3=6,移项得,3x﹣4x=6﹣6+3,合并同类项得,﹣x=3,系数化为1得,x=﹣3.25.解方程:.【解答】解:去分母得:6x﹣(3x﹣3)=2x+4+6,去括号得:6x﹣3x+3=2x+4+6,移项合并得:x=7.26.解方程:y﹣=2﹣【解答】解:10y﹣5(y﹣1)=20﹣2(y+3),10y﹣5y+5=20﹣2y﹣6,10y﹣5y+2y=20﹣6﹣5,7y=9,y=.27.解方程:.【解答】解:×6﹣×6=2×6,3(x﹣1)﹣2(2﹣x)=12,3x﹣3﹣4+2x=12,5x=19,∴x=.28.解方程:.【解答】解:去分母,得5(1﹣2x)=3(3x+4)﹣15,去括号,得5﹣10x=9x+12﹣15,移项,得﹣10x﹣9x=12﹣15﹣5,合并同类项,得﹣19x=﹣8,系数化为1,得.29.解方程:3x+.【解答】解:去分母得,18x+3(x﹣1)=18﹣2(2x ﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=.30.解方程:.【解答】解:去分母得:3(2x+1)﹣(4x﹣1)=6,去括号得:6x+3﹣4x+1=6,移项得:6x﹣4x=6﹣3﹣1,合并得:2x=2,系数化为1得:x=1.31.解方程:.【解答】解:去分母,可得:3(x﹣3)﹣2(4x+1)=6,去括号,可得:3x﹣9﹣8x﹣2=6,移项,可得:3x﹣8x=6+9+2,合并同类项,可得:﹣5x=17,系数化为1,可得:x=﹣3.4.32.解方程:.【解答】解:去分母,方程两边同时乘以6,得:3(x+2)=12﹣2(x﹣2).去括号,得:3x+6=12﹣2x+4.移项、合并同类项,得:5x=10.未知数的系数化为1,得:x=2.33.解方程:.【解答】解:去分母,可得:3(2x﹣3)﹣12=4(x ﹣4),去括号,可得:6x﹣9﹣12=4x﹣16,移项,可得:6x﹣4x=﹣16+9+12,合并同类项,可得:2x=5,系数化为1,可得:x=2.5.34.解方程:.【解答】解:,去分母,得2(x+1)﹣3(x﹣3)=6,去括号,得2x+2﹣3x+9=6,移项,得2x﹣3x=6﹣9﹣2,合并同类项,得﹣x=﹣5,系数化为1,得x=5.35.解方程:.【解答】解:,去分母,得3(x+1)﹣6=2(3x﹣2),去括号,得3x+3﹣6=6x﹣4,移项,得3x﹣6x=﹣4﹣3+6,合并同类项,﹣3x=﹣1,系数化为1,得.36.解方程:.【解答】解:,3(3y﹣1)﹣12=4(2y+7),9y﹣3﹣12=8y+28,9y﹣8y=28+3+12y=43.37.解方程:﹣=1.【解答】解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.38.解方程:.【解答】解:,去分母,得4(2x+1)﹣(x﹣3)=12,去括号,得8x+4﹣x+3=12,移项,得8x﹣x=12﹣4﹣3,合并同类项,得7x=5,系数化成1,得x=.39.解方程:.【解答】解:去分母得:2x=12+3(2x﹣1),去括号得:2x=12+6x﹣3,移项得:2x﹣6x=12﹣3,合并同类项得:﹣4x=9,系数化为1得:x=﹣.40.解方程:.【解答】解:,去分母,得3(3y+2)﹣12=2(2y﹣1),去括号,得9y+6﹣12=4y﹣2,合并同类项,得9y﹣6=4y﹣2,移项,得9y﹣4y=﹣2+6,合并同类项,得5y=4,系数化为1,得.41.解方程:.【解答】解:去分母得,4(x﹣2)=12﹣3(3x﹣2),去括号得,4x﹣8=12﹣9x+6,移项得,4x+9x=12+6+8,合并同类项得,13x=26,系数化1得,x=2.42.解方程:﹣1=.【解答】解:﹣1=,5x﹣3﹣6=3x,5x﹣3x=3+6,2x=9,x=.43.解方程:=1﹣.【解答】解:方程=1﹣,去分母得:5(2x﹣1)=10﹣2(x﹣3),去括号得:10x﹣5=10﹣2x+6,移项合并得:12x=21,解得:x=.44.解方程:.【解答】解:,两边同时乘以6得:2(2x+1)﹣12=﹣x,整理得:4x﹣10=﹣x,解得x=2,45.解方程:.【解答】解:∵,∴+=3,去分母,可得:2(10x﹣20)+5(10x﹣10)=30,去括号,可得:20x﹣40+50x﹣50=30,移项,可得:20x+50x=30+40+50,合并同类项,可得:70x=120,系数化为1,可得:x=.46.解方程.【解答】解:方程整理得:﹣=1,即﹣2x+1=1,去分母得:2x﹣4﹣6x+3=3,移项得:2x﹣6x=3+4﹣3,合并同类项得:﹣4x=4,解得:x=﹣1.47.解方程:(1)3(5﹣x)=18+2x;(2);(3).【解答】解:(1)去括号得:15﹣3x=18+2x,移项得:﹣3x﹣2x=18﹣15,合并同类项得:﹣5x=3,解得:x=﹣;(2)去括号得:﹣=(x﹣4),去分母得:2﹣(2x﹣5)=x﹣4,去括号得:2﹣2x+5=x﹣4,移项得:﹣2x﹣x=﹣4﹣2﹣5,合并同类项得:﹣3x=﹣11,解得:x=;(3)方程整理得:﹣(2x+4)=1.2,去分母得:10x﹣10﹣3(2x+4)=3.6,去括号得:10x﹣10﹣6x﹣12=3.6,移项得:10x﹣6x=3.6+10+12,合并同类项得:4x=25.6,解得:x=6.4.48.解方程:(1);(2).【解答】解:(1)去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=﹣14+3+12,合并同类项得:﹣x=1,系数化为1得:x=﹣1.(2)化整得:,去分母得:3(3x﹣1)﹣2(2x+9)=﹣36,去括号得:9x﹣3﹣4x﹣18=﹣36,移项得:9x﹣4x=﹣36+3+18,合并同类项得:5x=﹣15,系数化为1得:x=﹣3.49.解方程:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x);(2);(3).【解答】解:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x),2x﹣8﹣12x+3=5﹣5x,2x﹣12x+5x=5+8﹣3,﹣5x=10,x=﹣2;(2),2(2x+1)﹣6=6x﹣(10x+1),4x+2﹣6=6x﹣10x﹣1,4x﹣6x+10x=﹣1﹣2+6,8x=3,x=;(3),﹣1=,15x﹣6=2(17﹣20x),15x﹣6=34﹣40x,15x+40x=34+6,55x=40,x=.50.解下列方程(1)(2)【解答】解:(1)去分母得:15x﹣10=8x+4﹣10,移项合并得:7x=4,解得:x=;(2)方程整理得:=1+,去分母得:1﹣20x=3+20x,移项合并得:40x=﹣2,解得:x=﹣.51.解方程(1)x=﹣1;(2)﹣=1.【解答】解:(1)去分母,可得:6x+2(1﹣x)=x+2﹣6,去括号,可得:6x+2﹣2x=x+2﹣6,移项,可得:6x﹣2x﹣x=2﹣6﹣2,合并同类项,可得:3x=﹣6,系数化为1,可得:x=﹣2.(2)∵﹣=1,∴﹣=1,去分母,可得:30x﹣7(17﹣20x)=21,去括号,可得:30x﹣119+140x=21,移项,可得:30x+140x=21+119,合并同类项,可得:170x=140,系数化为1,可得:x=.52.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2);(3).【解答】解:(1)3x﹣7(x﹣1)=3﹣2(x+3),去括号得:3x﹣7x+7=3﹣2x﹣6,移项得:3x﹣7x+2x=3﹣6﹣7,合并同类项得:﹣2x=﹣10,系数化为1得:x=5;(2),去分母得:2(1﹣2x)﹣18x=3(x﹣1)﹣18,去括号得:2﹣4x﹣18x=3x﹣3﹣18,移项得:2+3+18=3x+4x+18x,合并同类项得:25x=23,系数化为1得:x=;(3)﹣=x,分母化为整数得:﹣=x,去分母得:3(3x﹣5)﹣2(12﹣5x)=6x,去括号得:9x﹣15﹣24+10x=6x,移项得:9x+10x﹣6x=15+24,合并同类项得:13x=39,系数化为1得:x=3.53.解方程:(1)3x+=3﹣;(2)+2=.【解答】解:(1)3x+=3﹣,去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项得:18x+3x+4x=18+3+2,合并同类项得:25x=23,系数化为1得:x=;(2)+2=化简得,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,移项得:9x﹣10x=﹣4,合并同类项得:﹣x=﹣4,系数化为1得:x=4.54.解方程(1)4x+3(x﹣20)=8x﹣7(20﹣x)(2)﹣=1.【解答】解:(1)去括号得:4x+3x﹣60=8x﹣140+7x,移项合并得:8x=80,解得:x=10;(2)方程整理得:﹣=1,去分母得:30y﹣119+140y=21,解得:y=.55.解方程:﹣=.【解答】解:化简得:﹣=,去分母得:9(30x﹣15)﹣2(20x﹣10)=18(4﹣8x),去括号得:270x﹣135﹣40x+20=72﹣144x,移项合并同类项得:374x=187,系数化为1得:x=0.5.56.若3x+1的值比的值少1,求x的值.【解答】解:由题意,得,去分母,得6x+2=5x+1﹣2,移项合并,得x=﹣3.57.k取何值时,代数式值比的值小1.【解答】解:由题意得:﹣=﹣1,去分母得2(k+1)﹣3(3k+1)=﹣6,去括号得2k+2﹣9k﹣3=﹣6,移项、合并同类项得:﹣7k=﹣5,系数化1得:.58.当x为何值时,代数式的值与的值的和等于3?【解答】解:根据题意得:+=3,去分母得:6﹣3x+2x+2=18,移项合并得:﹣x=10,解得:x=﹣10.59.已知代数式与代数式.(1)当x为何值时,两个代数式的值相等?(2)当x为何值时,代数式的值比代数式的值大2?【解答】解:(1)根据题意列式为:,去分母得:3x=4(2﹣x),去括号得:3x=8﹣4x,移项、合并同类项,得:7x=8,系数化为1得:.(2)根据题意列式为:,去分母得:3x﹣4(2﹣x)=24,去括号得:3x﹣8+4x=24,移项、合并同类项得:7x=32,系数化为1得:.60.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6,按照这种运算规定,当x等于多少时,=0.【解答】解:∵=ad﹣bc,∴(+1)×(﹣1)=(﹣2)x,解得:x=,故当x=时,=0.。

一元一次方程专题训练(附有答案详解,下载即可用)

一元一次方程专题训练(附有答案详解,下载即可用)

一元一次方程专题训练姓名:___________班级:___________一、单选题1.已知x=1是方程x+2a=-1的解,那么a 的值是( )A .-1B .0C .1D .22.下列利用等式的性质,错误的是( )A .由a =b ,得到5﹣2a =5﹣2bB .由a c =b c ,得到a =bC .由a =b ,得到ac =bcD .由a =b ,得到a c =b c 3.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A .1 B .2 C .3 D .44.如果代数式5x-7与4x+9的值互为相反数,则x 的值等于( )A .92B .-92C .29D .29- 5.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A .7 B .5 C .3 D .06.对于非零的两个数a ,b ,规定a ⊗b =3a -b ,若(x +1)⊗2=5,则x 的值为( ) A .1 B .-1 C .43 D .-2 7.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x+2y =0.其中一元一次方程的个数是( )A .2B .3C .4D .58.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有( )A .0个B .1个C .2个D .3个 9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是( )A .亏2元B .亏4元C .赚4元D .不亏不赚10.如图,小明将一个正方形纸剪出一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A .16cm 2B .20cm 2C .80cm 2D .160cm 211.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ) A .()13x 12x 1060=++B .()12x 1013x 60+=+C .x x 60101312+-=D .x 60x 101213+-= 12.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5秒B .6秒C .5秒D .4秒13.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( ) A .75B .90C .105D .120二、填空题14.李明和他父亲年龄和为 55 岁,又知父亲的年龄比他年龄的 3 倍少 1 岁,若设李明年龄为 x 岁,则可列方程为_____.15.若方程(a ﹣3)x |a|﹣2﹣7=0是一个一元一次方程,则a 等于_____.16.某种品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为________元.17.由一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得新数与原数之和是77,这个两位数为_____.18.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有_____人.19.图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.20.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题21.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.22.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.23.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)13(x﹣5)=3﹣23(x﹣5)(3)24x+﹣1=326x-(4)x﹣19(x﹣9)=13[x+13(x﹣9)](5) 210.5x--30.6x+=0.5x+224.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a =________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?26.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?27.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?28.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?29.A 、B 两地相距64 km ,甲从A 地出发,每小时行14 km ,乙从B 地出发,每小时行18 km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16 km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10 km?30.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a –b |,线段AB 的中点表示的数为2a b . (问题情境)如图,数轴上点A 表示的数为–2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).(综合运用)(1)填空:①A 、B 两点间的距离AB =__________,线段AB 的中点表示的数为__________;②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=12 AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.31.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.32.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税______元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是_____元.参考答案1.A【解析】试题分析:根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选A.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.2.D【解析】A.∵a=b,∴−2a=−2b,∴5−2a=5−2b,故本选项正确;B. ∵a bc c=,∴c×ac=c×bc,∴a=b,故本选项正确;C. ∵a=b,∴ac=bc,故本选项正确;D. ∵a=b,∴当c=0时,ac无意义,故本选项错误.故选:D. 3.C 【解析】【详解】设被阴影盖住的一个常数为k,原方程整理得,k=-32y+12,把53y=-代入k=-32y+12,中得,k=-32×(53-)+12=5122+=3,故选C.4.D【解析】【分析】根据互为相反数的两个数的和为0可得方程5x-7+4x+9=0,解方程求得x的值即可. 【详解】根据题意得5x-7+4x+9=0,移项得5x+4x=- 9+7,合并同类项得9x = -2,系数化为1,得29x =-. 故选D.【点睛】本题考查了一元一次方程的解法,熟知一元一次方程的解法是解决问题关键.5.A【解析】【分析】先求出213x +=的解,然后把求得的方程的解代入203a x --=即可求出a 的值. 【详解】∵213x +=,∴1x =.把1x =代入203a x --=,得 1203a --=, 解之得,7a =.故选A.【点睛】本题主要考查方程的解的概念和一元一次方程的解法,熟练掌握一元一次方程的解法是解答本题的关键.6.C【解析】【分析】根据新定义列出方程3(x-1)-2=4,解之可得.【详解】根据题意知3(x-1)-2=4,3x-3-2=4,3x=4+3+2,3x=9,x=3,故选:C .【点睛】考查解一元一次方程,解题的关键是根据题意列出关于x 的方程及解方程的步骤. 7.B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.8.C【解析】由①天平可得:一个球形物体和两个圆柱形物体质量相等;②天平是由①天平左右两边同时减去一个圆柱形物体得到的,仍然平衡;③天平时由①天平左边减去一个球形物体和一个圆柱形物体,即减去三个圆柱形物体,右边减去三个圆柱形物体得到的,左右两边仍然平衡;④天平由①天平左边减去一个圆柱形物体,右边减去三个圆柱形物体得到的,所以左右两边不平衡.故选C.点睛:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.9.A【解析】【分析】设这件商品的进价为a元,可用a表示出第一次和第二次的定价,再根据等量关系:第二次的定价=商品的实际售价48元,可列出关于a的方程;然后解关于a的方程,求出a的值,并将a的值与48进行比较即可得出结论.【详解】设这件商品的进价为a元,则a(1+20%)(1-20%)=48,解得a=50.由50-48=2可知,这次生意亏2元.故选:A.【点睛】本题主要考查的是一元一次方程的应用,根据题意得到等量关系是解题的关键;10.C【解析】【分析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.【详解】设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm,则4x=5(x-4),去括号,可得:4x=5x-20,移项,可得:5x-4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.11.B【解析】试题解析:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选B.考点:由实际问题抽象出一元一次方程.12.D【解析】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x秒,则100÷5×x=80,解得x=4,故选D.13.C【解析】【分析】根据题目中的数据,可以发现题目中数据的变化规律,从而可以得到第5个数.【详解】∵3=1×3,12=2×6=2×(3+3),30=3×10=3×(6+4),60=4×15=4×(10+5),∴第5个数是:5×(15+6)=5×21=105,故选C.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.14.3x ﹣1+x=55.【解析】【分析】直接利用已知表示出父亲的年龄,进而得出答案.【详解】设李明年龄为x 岁,则可列方程为:3x-1+x=55,故答案是:3x-1+x=55.【点睛】考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.15.-3【解析】试题分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.解:∵()2370a a x ---=是一个一元一次方程,∴30a -≠且 |a|−2=1,∴a =-3.故答案为-3.16.90【解析】试题分析:设进货价为x 元,根据九折降价出售,仍获利20%,列方程求解.解:设进货价为x 元,由题意得,0.9×120﹣x=0.2x , 解得:x=90.故答案为:90.考点:一元一次方程的应用.17.52【解析】【分析】设原来的这个两位数个位数字为x ,则十位数字为3+x .利用新数+原数=77,列方程求解即可.【详解】设原个位数字为x ,则十位数字为3+x ,由题意得:(10x+3+x )+10(3+x )+x=77,解得:x=2,则原数为10(3+2)+2=52.故答案为52【点睛】本题考查了一元一次方程的应用,读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程求解是解题关键.18.45名.【解析】试题分析:设这个班有x 名学生,因为每人3本,则剩余20本,所以书的总量是3x+20,又每人分4本,缺25本,所以书的总量是4x ﹣25,所以可得方程:3x+20=4x ﹣25,解得:x=45.答:这个班有45名学生.考点:一元一次方程的应用.19.1000。

解一元一次方程练习题及答案过程

解一元一次方程练习题及答案过程

解一元一次方程练习题及答案过程一.解答题 1.解方程:2x+1=.3.解方程:4﹣x=3;解方程:.4.解方程:.5.解方程4﹣3=5;x﹣=2﹣.6.解方程:3=2x+3;解方程:=x﹣.7.﹣=8.解方程:5﹣2=3+x+1;.9.解方程:.110.解方程:4x﹣3=2; =2﹣.11.计算:计算:解方程:12.解方程:13.解方程:14.解方程:5﹣2=+2[3+]=5x﹣115.解方程:5x﹣2=7x+8;解方程:﹣=﹣;解方程:.16.解方程3=9﹣5217.解方程:解方程:4x﹣3=13解方程:x﹣﹣318.计算:﹣42×+|﹣2|3×3计算:﹣12﹣|0.5﹣|÷×[﹣2﹣2]解方程:4x﹣3=2;解方程:.19.计算:×;计算:÷;3解方程:3x+3=2x+7;解方程:.20.解方程﹣0.2=1;.21.解方程:﹣2=9﹣3x. 22.8x﹣3=9+5x.5x+2=9﹣4...23.解下列方程:0.5x﹣0.7=5.2﹣1.3;=﹣2.24.解方程:﹣0.5+3x=10;43x+8=2x+6;2x+3=5﹣4;.25.解方程:.26.解方程:10x﹣12=5x+15;27.解方程:8y﹣3=7.28.当k为什么数时,式子比的值少3.29.解下列方程: 12y﹣2.5y=7.5y+.30.解方程:.5解一元一次方程一、慧眼识金 1.某数的15等于4与这个数的45的差,那么这个数是.4-45-52.若3?2x?11?3x,则x?4的值为.8-8-443.若a?b,则①a?13?b?13;②13a?14b;③?34a??34b;④3a?1?3b?1中,正确的有.1个2个3个4个4.下列方程中,解是x??1的是. ?2?12?2?411x?1?525.下列方程中,变形正确的是.由x?3?4得x?4? 由3=x?2得x?3? 由2-x?5得x?5? 由5?x?2得x?5?26.对于“x?y?a?b”,下列移项正确的是. x?b?y?ax?a?y?ba?x?y?ba?x?b?y .某同学在解关于x 的方程5a?x?13时,误将?x看作?x,得到方程的解为x??2,则原方程的解为. x??3x?0x?2x?18.小丽的年龄乘以3再减去3是18,那么小丽现在的年龄为. 7岁8岁16岁32岁二、画龙点睛1.在x?3,x?5,x?10中,是方程x?x?42?3的解.2.若m是3x?2?2x?1的解,则30m?10的值是.3.当x? 时,代数式12与13的差为10.4.如果5m?14与m?14互为相反数,则m的值为.?6?0是关于x的一元一次方程,则a? .5.已知方程xa?16.如果3x?1?2x?3成立,则x的正数解为.7.已知3x?8?x4?a的解满足x?2?0,则1a? .8.若2x3?2k?2k?4是关于x的一元一次方程,则k?,x?.三、考考你的基本功1.解下列方程?7x?6?22?6x; ?4x?3??5x?2;4x?5?3x;y?7??3y?5.2.x?2是方程ax?4?0的解,检验x?3是不是方程2ax?5?3x?4a的解.3.已知x4.如果?四、同步大闯关方程4x?2m?3x?1和方程3x?2m?4x?1的解相同,求m 的值和方程的解.关于x的方程mx?n?2x?3中,m、n是常数,请你给m、n赋值,并解此时关于x的方程.x3?y4?z6?3,求3x?4y?6z的值.2m?3?6?m是关于x的一元一次方程,试求代数式2008的值.解一元一次方程一、相信你都能选对 1、下列方程中是一元一次方程的是x?12A、x-y=200B、3x-200C、x+x=1D、2x?2=32、下列四组变形中,属于去括号的是1A.5x+3=0,则5x=-B.2x =,则x = 12C.3x-=5,则3x+4x-2=D.5x=1+4,则5x=53、某同学在方程5x-1=□x+3时,把□处的数字看错了,解得x=-4/3,该同学把□看成了A.3B.-C.D. -314、方程x - = +x的解是11A.-2;B.2;C.-2;D.25、下列解方程去分母正确的是x?1?1?x2A.由3,得2x - 1 = -x;x?2B.由2y?1?3x?24y3??1,得2 -x - = -3y?16?yC.由24x??,得3y + =y -y + 1 -y;D.由5?1?y?43,得12x - 1 =y +06、某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为aaA.0.92aB.1.12aC.1.1D.0.817、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为 A.5B.2C.7D.458、一个长方形的周长为2cm,这个长方形的长减少1 cm,宽增加cm,就可成为一个正方形,设长方形的长为xcm,可列方程A.x?1?? B.x?1??2C.x?1??2D.x?1??二、相信你填得又快又准、去括号且合并含有相同字母的项:3x+2=8y-6= 10、x =和x = -中,________是方程x - =的解.2?k?111、若代数式3的值是1,则k = _________.3?2x2?x12、当x=________时,式子2与3互为相反数.13、小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,每本练习本的标价是元。

一元一次方程100道及答案过程

一元一次方程100道及答案过程

一元一次方程100道及答案过程本文精心收集了100道一元一次方程题,且每道题均附上清晰的求解步骤和解答,可供学生们在学习中参考。

一元一次方程是高中一类重要的数学问题,在数学测试中出现的频率也比较高。

下面是一元一次方程100道及解答过程:1. x + 2 = 5解答:x = 32. 2x = 4解答:x = 23. x - 3 = 4解答:x = 74. 4x - 5 = 15解答:x = 45. x - 7 = 3解答:x = 106. 5x + 6 = 36 解答:x = 67. 3x = 9解答:x = 38. 7x - 2 = 12 解答:x = 29. 9x - 4 = 16 解答:x = 210. 6x + 3 = 27 解答:x = 411. 4x + 9 = 25 解答:x = 412. 2x - 7 = -5 解答:x = 413. 2x = 10解答:x = 514. 3x - 4 = 6 解答:x = 415. 8x - 3 = 21 解答:x = 316. x = 8解答:x = 817. 5x + 2 = 27 解答:x = 518. 3x - 7 = 6 解答:x = 519. 8x + 4 = 48 解答:x = 620. 4x - 3 = 7 解答:x = 221. x + 5 = 10 解答:x = 522. 2x = 6解答:x = 323. 8x + 9 = 61 解答:x = 724. 4x + 5 = 21 解答:x = 425. x - 4 = 3 解答:x = 726. 7x + 2 = 20 解答:x = 327. 9x = 27 解答:x = 328. 7x - 4 = 10 解答:x = 229. 9x + 7 = 58 解答:x = 630. 3x - 8 = 14 解答:x = 631. 5x + 9 = 44 解答:x = 732. x = 5解答:x = 533. 6x - 8 = 18 解答:x = 434. 8x + 1 = 65 解答:x = 835. 4x - 7 = 11 解答:x = 336. 5x + 3 = 28解答:x = 537. 2x + 7 = 17 解答:x = 538. 8x - 5 = 47 解答:x = 639. 9x - 1 = 80 解答:x = 940. 7x - 3 = 26 解答:x = 441. 4x + 8 = 28 解答:x = 542. 6x + 9 = 51 解答:x = 743. x + 6 = 9 解答:x = 344. 5x = 10解答:x = 245. 9x - 8 = 28 解答:x = 446. x = 12解答:x = 1247. 8x - 6 = 36 解答:x = 548. 5x + 4 = 24 解答:x = 449. x - 5 = 8 解答:x = 1350. 6x + 2 = 42 解答:x = 751. 2x + 9 = 23 解答:x = 752. 3x - 7 = 12 解答:x = 753. 5x + 6 = 30 解答:x = 554. x = 18解答:x = 1855. 7x + 4 = 46 解答:x = 656. 4x + 3 = 19 解答:x = 457. 8x = 64解答:x = 858. 6x - 5 = 21 解答:x = 459. 3x + 8 = 14解答:x = 260. x - 6 = 11 解答:x = 1761. 7x - 9 = 32 解答:x = 562. 2x + 7 = 17 解答:x = 563. 6x + 4 = 38 解答:x = 664. 5x = 30解答:x = 665. 3x + 5 = 20 解答:x = 566. x + 9 = 16 解答:x = 767. 8x - 7 = 21 解答:x = 368. x = 20解答:x = 2069. 4x + 3 = 19 解答:x = 470. 7x - 5 = 25 解答:x = 471. x - 9 = 5 解答:x = 1472. 2x + 8 = 14 解答:x = 373. 8x + 4 = 68 解答:x = 874. 6x - 7 = 11 解答:x = 375. 3x + 9 = 24 解答:x = 576. 5x - 8 = 33 解答:x = 777. x + 4 = 10 解答:x = 678. 7x + 2 = 64 解答:x = 979. 9x - 5 = 44 解答:x = 580. 4x + 8 = 28 解答:x = 581. 3x + 2 = 5 解答:x = 182. x - 8 = 10解答:x = 1883. 5x = 40解答:x = 884. 7x + 6 = 74 解答:x = 1085. 9x = 63解答:x = 786. x = 24解答:x = 2487. 4x + 1 = 17 解答:x = 488. 2x - 6 = 8 解答:x = 789. 7x - 9 = 16 解答:x = 390. 5x + 7 = 47 解答:x = 891. 3x - 7 = 4 解答:x = 792. 8x + 9 = 73 解答:x = 993. x - 4 = 9 解答:x = 1394. 6x = 48解答:x = 895. 4x + 6 = 22 解答:x = 496. x + 8 = 13 解答:x = 597. 7x + 5 = 43 解答:x = 698. 9x - 3 = 36 解答:x = 499. 3x + 6 = 24 解答:x = 6100. x - 9 = 16 解答:x = 25。

解一元一次方程习题精选附答案

解一元一次方程习题精选附答案

解一元一次方程一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x ﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x ﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点: 解一元一次方程. 专题: 计算题. 分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分) 去分母,得3×(30x ﹣11)﹣4×(40x ﹣2)=2×(16﹣70x ),(4分)去括号,得90x ﹣33﹣160x+8=32﹣140x ,(5分) 移项,得90x ﹣160x+140x=32+33﹣8,(6分) 合并同类项,得70x=57,(7分) 系数化为1,得.(8分) 点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。

A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。

5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。

三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。

7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。

四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。

如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。

7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。

8. 解:设需要 \( x \) 天完成。

解一元一次方程习题精选附答案

解一元一次方程习题精选附答案
2.
考点:
解一元一次方程.
专题:
计算题.
分析:
这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.
解答:
解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),
化简可得:3x+3=8x﹣8,
移项可得:5x=11,
解可得x= .
故原方程的解为x= .
点评:
若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.
解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1
3x﹣7=4x﹣2
∴x=﹣5;
(2)原方程可化为:
去括号得:6﹣3x﹣18=﹣3,
移项合并得:﹣3x=9,
∴x=﹣3.
点评:
本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.
5.解方程
(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);
(2)x﹣ =2﹣ .
考点:
解答:
解:(1)3x﹣3=2x+3
3x﹣2x=3+3
x=6;
(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)
x+3=6x﹣3x+3
x﹣6x+3x=3﹣3
﹣2x=0
∴x=0.
点评:
本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.

(完整版)一元一次方程(知识点+典型试题)附答案

(完整版)一元一次方程(知识点+典型试题)附答案

第五章 一元一次方程第1——2课时 一元一次方程相关概念及解法一、知识梳理1.等式及其性质⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2.方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.解一元一次方程的步骤①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、课堂精讲例题(一)一元一次方程的定义 例题1若3223=+-k kxk是关于x 的一元一次方程,则k =_______.【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生对一元一次方程的定义的理解。

【解析】:该方程为一元一次方程,则必须满足⎩⎨⎧=-≠1230k k ,由3223=+-k kxk是关于x 的一元一次方11230==-≠k k k 解得且 【搭配课堂训练题】 (A )1.若()521||=--m x m 是一元一次方程,则m =(B )2.下列方程中,属于一元一次方程的是( )A 、x -3B .012=-xC 、2x -3=0D 、x -y =3 (二)方程的解例题2.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A .1 B .53 C .51D .-1 【难度分类】:A 级【分析】:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等 【答案】:根据题意得:3(a -1)+2a =2,解得a =1 故选A .【点评】:本题主要考查了方程解的定义,已知a -1是方程的解实际就是得到了一个关于a 的方程.【搭配课堂训练题】(A )1.方程2x +a -4=0的解是x =-2,则a 等于( ) A .-8 B .0 C .2 D .8(B )2.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( ) A .2 B .-2 C .72 D .72- (三)解方程例题3若2005-200.5=x -20.05,那么x 等于( )A .1814.55B .1824.55C .1774.55D .1784.55 【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生解一元一次方程。

解一元一次方程50道练习题(经典、强化、带答案)

解一元一次方程50道练习题(经典、强化、带答案)

解一元一次方程1234解:(移项)(合并)(化系数为1)5678解:(移项)(合并)(化系数为1)9101112解:(移项)(合并)(化系数为113141516解:(移项)(合并)(化系数为1).17、;18、;19、;20、解:(去括号)(移项)(合并)(化系数为1)21222324、解:(去括号)(移项)(合并)(化系数为1)25;26、;27;28、解:(去括号)(移项)(合并)(化系数为1)293032解:(去分母)(去括号)(移项)(合并)(化系数为1)333435解:(去分母)(去括号)(移项)(合并)(化系数为1363738解:(去分母)(去括号)(移项)(合并)(化系数为139404142解:(去分母)(去括号)(移项)(合并)(化系数为1434445解:(去分母)(去括号)(移项)(合并)(化系数为14647解:(去分母)(去括号)(移项)(合并)(化系数为1484950解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】1、【答案】(1(2(3(4(5(6(7(81.1、【答案】(9(10(11(12(13(14(15(162、【答案】(17(18(19(20(21(22)2.1、【答案】(23(24(25(26(27(28)(29(303、【答案】(31(32(33(34(35(36(37(383.1、【答案】(39(40(41(42(43(44(45(464、【答案】(47(48(49(50。

解一元一次方程经典题库及答案

解一元一次方程经典题库及答案

解一元一次方程经典题库及答案一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(II).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

最新七年级解一元一次方程经典50道练习题(带答案)

最新七年级解一元一次方程经典50道练习题(带答案)

自我测试 60分钟看看准确率牛刀小试 相信自己一定行1、712=+x ; 2、825=-x ; 3、7233+=+x x ; 4、735-=+x x ; 解:(移项)(移项)(合并)(合并) (化系数为1)5、914211-=-x x ; 6、2749+=-x x ;7、162=+x ; 8、9310=-x ; 解:(移项)(移项) (合并)(合并) (化系数为1)9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x解:(移项)(移项) (合并)(合并)(化系数为113、1623+=x x 14、253231+=-x x ;15、152+=--x x ; 16、23312+=--x x解:(移项)(移项) (合并)(合并) (化系数为1).17、 475.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为1)21、)12(5111+=+x x ; 22、32034)=-(-x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号)(去括号) (移项)(移项) (合并)(合并)(化系数为1) 25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、323236)=+(-x ; 解:(去括号)(去括号)(移项)(移项) (合并)(合并)(化系数为1)29、x x 2570152002+)=-(; 30、12123)=+(x .31、452x x =+; 32、3423+=-x x ; 解:(去分母)(去分母)(去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为1)33、)-()=+(3271131x x ; 34、)-()=+(131141x x ; 35、142312-+=-x x ;解:(去分母)(去分母)(去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为136、)+(-)=-(2512121x x . 37、)+()=+(20411471x x ; 38、)-(-)=+(731211551x x . 解:(去分母)(去分母)(去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为139、432141=-x ; 40、83457=-x ; 41、815612+=-x x ; 42、629721-=-x x ; 解:(去分母)(去分母)(去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为1 43、1232151)=-(-x x ; 44、1615312=--+x x ; 45、x x 2414271-)=+(; 解:(去分母)(去分母)(去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为146、259300300102200103´)=-()-+(x x .47、307221159138)=-()--()--(x x x ; 解:(去分母)(去分母)(去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为148、51413121-=+x x ; 49、13.021.02.015.0=-+--x x ; 50、3.01-x -5.02+x =12. 解:(化整)(化整)(去分母)(去分母) (去括号)(去括号) (移项)(移项) (合并)(合并) (化系数为1【参考答案】1、【答案】 (1)3=x ; (2)2=x ; (3)4=x ; (4)6=x ;(5)37=x ; (6)12=-x ; (7)4=x ; (8)32=-x .1.1、【答案】 (9)25=-x ;(10)56=x ; (11)5=-x ; (12)31=-x ;(13)1=x ; (14)32=x ;(15)35=-x ; (16)1=x . 2、【答案】(17)1=x ;(18)1=-x ; (19)56=x ;(20)3=-x ; (21)4=x ; (22)9=x . 2.1、【答案】(23)7=-x ; (24)23=-x ; (25)11=-x ;(26)4=-x ; (27)21=x ; (28)910=x ;(29)6=x ; (30)23=x .3、【答案】 (31)8=x ; (32)51=x ;(33)16=-x ; (34)7=x ; (35)52=-x ;(36)3=x ;(37)28=-x ; (38)165=-x .3.1、【答案】 (39)5=x ; (40)1413=x ;(41)1=-x ; (42)320=-x ; (43)1225=x ; (44)3=-x ; (45)87=x ;(46)216=x .4、【答案】 (47)3=x ; (48)1532=-x ; (49)1364=x ; (50)229=x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元一次方程(一)一、慧眼识金(每小题3分,共24分)1.某数的15等于4与这个数的45的差,那么这个数是【】.(A)4 (B)-4 (C)5 (D)-52.若32113x x-=-,则4x-的值为【】.(A)8 (B)-8 (C)-4 (D)43.若a b=,则①1133a b-=-;②1134a b=;③3344a b-=-;④3131a b-=-中,正确的有【】.(A)1个 (B)2个 (C)3个 (D)4个4.下列方程中,解是1x=-的是【】.(A)2(2)12x--= (B)2(1)4x--= (C)1115(21)x x+=+ (D)2(1)2x--=-5.下列方程中,变形正确的是【】.3443x x-==-(A) 由得232x x+=-(B) 由3=得552x x==-(C) 由2-得5252x x+==+(D) 由得6.对于“x y a b+=-”,下列移项正确的是【】.(A)x b y a-=- (B)x a y b-=+ (C)a x y b-=+ (D)a x b y+=-7.某同学在解关于x的方程513a x-=时,误将x-看作x+,得到方程的解为2x=-,则原方程的解为【】.(A)3x=- (B)0x= (C)2x= (D)1x=8.小丽的年龄乘以3再减去3是18,那么小丽现在的年龄为【】.(A)7岁 (B)8岁 (C)16岁 (D)32岁二、画龙点睛(每小题3分,共24分)1.在3510x x x===,,中,是方程432xx+-=的解.2.若m 是3221x x -=+的解,则3010m +的值是 . 3.当x = 时,代数式1(25)2x +与1(92)3x +的差为10. 4.如果154m +与14m +互为相反数,则m 的值为 .5.已知方程1(2)60a a x --+=是关于x 的一元一次方程,则a = . 6.如果3123x x +=-成立,则x 的正数解为 . 7.已知384x x a +=-的解满足20x -=,则1a= .8.若32224k x k -+=是关于x 的一元一次方程,则k = ,x = . 三、考考你的基本功(本大题共40分) 1.解下列方程(每小题3分,共12分)(1)76226x x --=-; (2)4352x x --=--;(3)453x x =+; (4)3735y y +=--.2.(8分)2x =是方程40ax -=的解,检验3x =是不是方程2534ax x a -=-的解.3.(10分)已知236m x m -+=是关于x 的一元一次方程,试求代数式2008(3)x -的值.4.(10分)如果3346xy z-===,求346x y z ++的值.四、同步大闯关(本大题12分)方程4231x m x +=+和方程3241x m x +=+的解相同,求m 的值和方程的解. (下列题目供各地根据实际情况选用)关于x 的方程23mx n x -=-中,m n 、是常数,请你给m n 、赋值,并解此时关于x 的方程.解一元一次方程(二)一、 相信你都能选对(每小题2分,共16分) 1、下列方程中是一元一次方程的是( )A 、x-y=2005B 、3x-2004C 、x 2+x=1D 、21-x =32-x2、下列四组变形中,属于去括号的是( ) A.5x+3=0,则5x=-3 B.12x = 6,则x = 12C.3x-(2-4x)=5,则3x+4x-2=5D.5x=1+4,则5x=53、某同学在方程5x-1=□x+3时,把□处的数字看错了,解得x=-4/3,该同学把□看成了( )A.3B.-8C. 8D. -34、 方程12 x -3 = 2 + 3x 的解是( )A.-2;B.2;C.-12;D.125、下列解方程去分母正确的是( )A.由1132x x --=,得2x - 1 = 3 - 3x; B.由232124x x ---=-,得2(x - 2) - 3x - 2 = - 4C.由131236y y y y +-=--,得3y + 3 = 2y - 3y + 1 - 6y;D.由44153x y +-=,得12x - 1 = 5y + 20 6、某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92aB.1.12aC.1.12aD.0.81a7、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54 B .27 C .72 D .458、一个长方形的周长为26 cm ,这个长方形的长减少1 cm ,宽增加2 cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程( ) A .1(26)2x x -=-+ B .1(13)2x x -=-+ C .1(26)2x x +=-- D .1(13)2x x +=-- 二、相信你填得又快又准(每小题2分,共16分) 9、去括号且合并含有相同字母的项:(1)3x+2(x-2)= (2)8y-6(y-2)= 10、x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.11、若代数式213k--的值是1,则k = _________.12、当x =________时,式子322x -与23x-互为相反数.13、小明买了20本练习本,店主给他八折优惠,结果便宜1.6元, 每本练习本的标价是 元 。

14、如果方程 2x+4=0的解与方程4x+m=8的解相同,则m= . 15、三个连续偶数的和为18,设最大的偶数为 x, 则可列方程______.16、甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一多.三、相信你都能做对17、解方程(每小题5分,共20分)(1)3(x+2)-2(x+2)=2x+4 (2)2(10-0.5y)=-(1.5y+2)(3)341125x x-+-=(4)432.50.20.05x x---=18、今年父子的年龄之和是50,且父亲的年龄是儿子的4倍,求儿子今年多少岁?(6分)19、全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。

问这个班有多少位同学?(6分)20、(爷爷与孙子下棋,爸爸赢一盘记为1分,孙子赢一盘记为3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?(6分)21、一项工程,甲独立做需要20天完成,乙独立完成需要30天完成,丙独立完成需要40天。

开始三人合作,后来甲另外有事离开,由乙和丙继续合作,全部工作共用了12天完成,问甲工作了几天?(6分)四、能力与拓展22、A、B两地相距600千米,一列慢车从A地开出,每小时行80千米,一列快车从B地开出,每小时行120千米,两车同时开出。

(1)若同向而行,出发后多少小时相遇?(2)若相背而行,多少小时后,两车相距800千米?(3)若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?(4)若两车同向而行,慢车在快车后面,多少小时后,两车相距760千米?23、(12分)经营户小王在蔬菜批发市场上了解到以下信息内容:他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖。

(1)请计算小王买红辣椒和西红柿各多少公斤?(2)若他能当天卖完,请问他能赚多少钱?参考答案1一、1~8 ADCBBCCA 二、1.(1)10x =;2.100;3.4912-;4.112-;5。

-2;6.25;7.227-;8.1,1;三、1.(1)28x =-;(2)1x =;(3)5x =;(4)2y =-.;2.不是(提示:因为2x =是方程40ax -=的解,所以240a -=,解之得2a =.将2a =代入方程2534ax x a -=-,得4538x x -=-,将3x =代入该方程左边,则左边=7,代入右边,则右边=1,左边≠右边,所以3x =不是方程4538x x -=-的解.)3.20087(提示:由已知236m x m -+=是关于x 的一元一次方程,得231m -=,解得2m =.将2m =代入原方程可化为62x +=,解之得4x =-.所以代数式200820082008(3)(43)7x -=--=.) 4.129(提示:由3346xy z -===得,393x x -==-,;3124y y ==,;3186zz ==,.所以3463(9)4126182748108129x y z ++=⨯-+⨯+⨯=-++=.) 四、102m x ==,(提示:将两个方程分别化为用m 表示x 的方程,得12x m =-和21x m =-.因为它们的解相同,所以1221m m -=-,解得12m =.将12m =代入12x m =-或者21x m =-,得0x =.)解:设36m n ==,,解方程3623x x -=-,移项,得3236x x -=-+,解得3x =.答案不唯一,只要符合要求即可.参考答案2:一、1、D 2、C 3、C 4、A 5、C 6、D 7、D 8、B二、9、(1)7x-4 (2) 2y+12 10、x=-6 11、k=-4 12、x=13/8 13、0.4 14、m=16 15、x+(x-2)+(x-4)=18 16、11+2x, 31-2x, 5三、17、(1)x=-2(2)y=-44 (3) x = -9;(4) x=2.5 18、设儿子今年x 岁,则:4x+x=50,解得:x=10 19、 设现在有x 船,则有9(x-1)名同学,则:9(x-1)=6(x+1),解得:x=5 此时基电路9(x-1)=9×4=36 所以这个班有36名同学。

20、爷爷赢了9盘,孙子赢了3盘 21、甲工作了6天。

四、22、(1)设若相向而行,出发后x 小时相遇,则:80x+120x=600 解得,x=3 (2) 设若两车相背而行, x 小时后两车相遇800千米,则:80x+120x=600 +800 解得,x=7(3)设若两车同向而行,快车在慢车后面,x小时后快车追上慢车,则: 120x=80x+600 解得,x=15(4)设若两车同向而行,慢车在快车后面,x小时后两车相距760千米,则:120x+600=80x+760解得,x=423.(1)第二个排球;(2)如果│p│>│q│,则结果为q的质量好一些;如果│p│<│q│,则结果为p的质量好一些;如果│p│=│q│,则两个排球的质量一样好。

相关文档
最新文档