第五章_管道的抗震设计计算
2-公路桥梁抗震设计规范2020宣贯第四章和第五章(陶夏新)
![2-公路桥梁抗震设计规范2020宣贯第四章和第五章(陶夏新)](https://img.taocdn.com/s3/m/575a90bdf18583d04864591c.png)
The End
taoxiaxin@
谢谢!
(五)——地震作用
• 本规范表 5.2.2-2 和表5.2.3-2中的数值是根据一项专题研究 的结果归纳的,表达了场地条件对竖向和水平向反应谱最大 值之比以及特征周期的影响。研究采用了全球最大的强地震 动数据库,NGA-west2,包括607次地震中观测记录的 21539组加速度时程。地震以美国西部占多数,也含有我国 汶川地震、我国台湾集集地震以及日本、意大利、新西兰、 墨西哥等国家的4.2-7.9级的地震,距离范围0.44-1162千米 。从中选取PGA大于20gal且有场地数据的4435组记录,统 计各分组的平均反应谱,提取最大值和特征周期。根据规范 式(5.2.2)以及表5.2.2-2中场地系数、表5.2.3-2中的特征 周期值确定的设计反应谱与统计的平均谱的比较,说明本规 范对竖向地震作用的规定反映了地震动反应谱的平均特征, 有一定的安全冗余度,在长周期段尤其是安全的。
• 5.4.2 公式中反应谱S后面增加“(T)”,强调是周期T的 函数,避免误解。对持续时间给出一个取值范围的建议,便 于应用。
• 5.5.1提高了“E2 地震作用下桥墩未进入塑性时”的要求, 更为合理。
(五)——地震作用
• 5.5.3和5.5.4 对应于原细则的5.5.3条,是第五章另一处修改 最大的部分。原细则中动水压力是作为一个静力,简单作用 在淹没水深一半处,其作用效应(主要是内力)与地震动的 效应、主动土压力效应组合,改为在动力分析中作为附加质 量考虑,解算出动水压力与地震动的综合效应。参照欧洲桥 梁抗震设计规范 2005 版的附件F,规定了三种截面桥墩的 附加质量计算公式。
(五)——地震作用
• (2)规定水平向场地系数的表 5.2.2-1,直接采用了《中国 地震动参数区划图》(GB18306-2015)的表E.1,主要是 为了保证标准之间的衔接,避免设计人员的困惑。仔细比较 ,可知表中数值与原细则的表5.2.2相差并不大。相应的水 平向设计加速度反应谱特征周期调整表,表 5.2.3-1,采用 了该国标的表1,和《建筑抗震设计规范》(GB500112010)的表 5.1.4-2 也是完全一致的。
水平管线侧向及纵向抗震支吊架间距计算公式
![水平管线侧向及纵向抗震支吊架间距计算公式](https://img.taocdn.com/s3/m/b1986d50fe00bed5b9f3f90f76c66137ee064fdc.png)
水平管线侧向及纵向抗震支吊架间距计算公
式
水平管线侧向抗震支吊架间距计算公式如下:
间距= (α × L × g)/ F
其中,α为系数,取值一般为2.5;L为管线段的长度;g为重力加速度,一般取9.8m/s^2;F为水平地震力。
水平管线纵向抗震支吊架间距计算公式如下:
间距= (β × L × g)/ F
其中,β为系数,取值一般为3.5;L为管线段的长度;g为重力加速度,一般取9.8m/s^2;F为纵向地震力。
需要注意的是,实际使用时还需要考虑管线材质、管线内流体性质、管道支撑形式等因素对抗震性能的影响,并进行合适的修正。
此外,地震设计规范和标准也会对抗震支吊架间距提供详细的指导和要求,建议按照当地的规范进行计算和设计。
拓展:除了水平管线的抗震支吊架间距计算,还有其他相关的抗
震设计要素,如选用合适的材料、确定适当的管道轮廓、考虑管件连
接方式等,都对提高管道系统的抗震性能具有重要意义。
同时,在管
道系统的设计过程中,还要考虑到不同地震等级的要求,以及不同部
位的抗震需求,综合考虑多种因素才能得到较为可靠的抗震设计方案。
建筑结构抗震总复习第五章-地震作用和结构抗震设计要点
![建筑结构抗震总复习第五章-地震作用和结构抗震设计要点](https://img.taocdn.com/s3/m/27bab28852ea551811a6872e.png)
6度时建造于IV类场地上较高的高层建筑(高于40米的钢筋混 凝土框架,高于60米的其他钢筋混凝土民用房屋和类似的工业 厂房,以及高层钢结构房屋),7度和7度以上的建筑结构(生 土房屋和木结构房屋等除外),应进行多遇地震作用下的截面 抗震验算。
FEk——结构总水平地震作用标准值; a1 ——相应于结构基本自振周期的水平地震影响
系数值,多层砌体房屋、底部框架和多层
内框架砖房,宜取水平地震影响系数最大
Hale Waihona Puke 值;第五章 地震作用和结构抗震设计要点
Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%;
Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j 的计算高度;
改变了地基运动的频谱组成,使接近结构自振频率的分量获 得加强; 改变了地基振动加速度峰值,使其小于邻近自由场地的加速 度幅值; 由于地基的柔性,使结构的基本周期延长; 由于地基的柔性,有相当一部分振动能量将通过地基土的滞 回作用和波的辐射作用逸散至地基,使得结构振动衰减,地 基愈柔,衰减愈大;
第五章 地震作用和结构抗震设计要点
第五章 地震作用和结构抗震设计要点
1. 建筑的分类与抗震设防 1.1 建筑抗震设防类别:
(1) 特殊设防类:指使用上有特殊设施,涉及国家公共 安全的重大建筑工程和地震时可能发生严重次生灾害等特 别重大灾害后果,需要进行特殊设防的建筑。简称甲类。 (2)重点设防类:指地震时使用功能不能中断或需尽快恢 复的生命线相关建筑,以及地震时可能导致大量人员伤亡 等重大灾害后果,需要提高设防标准的建筑。简称乙类。 (3)标准设防类:指大量的除1、2、4款以外按标准要求 进行设防的建筑。简称丙类。 (4)适度设防类:指使用上人员稀少且震损不致产生次生 灾害,允许在一定条件下适度降低要求的建筑。简称丁类。
管道第五章之管道的抗震设计计算(50页)
![管道第五章之管道的抗震设计计算(50页)](https://img.taocdn.com/s3/m/e8a5b679e45c3b3567ec8bf8.png)
也可根据最大加速度来确定地震烈度
美国地震烈度表
烈度
加速度 cm/s2 烈度
加速度 cm/s2
I
II
III
ห้องสมุดไป่ตู้
IV
V
<1.0 1.0~2.1 2.1~5.0 5.0~10 10~21
VI 21~44
VII 44~94
VIII
IX
94~202 202~432
• 管道抗震的设计规定:设防地震动峰加速度为 0.1~0.15g以上(地震烈度为七度)。
5-1 工程抗震常识
1、地震波
• 地震时,地下积蓄的变形能量以波的形式释放, 从震源向四周传播。
• 地震波主要分为体波和面波。
• 体波主要有两种成分:
–压缩波(P波):又称纵波或疏密波,其质点的振动方 向与波的前进方向一致,可在固体或液体中传播。其特 点是周期短、振幅小。
– 1976年的唐山大地震,震级7.8级,震中烈度11度,唐山市房屋绝 大部分倒塌。
– 2008年的汶川大地震,震级8.0级,震中烈度11度,汶川大地震是 中国一九四九年以来破坏性最强、波及范围最大的一次地震。
• 全世界平均每年发生5级以上的地震130次。
地震使管道破坏并产生严重的次生灾害
• 地震对管道的影响: –断层 –土壤液化 –地面波动
抗震设防烈度
• 抗震设防烈度是按国家规定的权限批准作为一个 地区抗震设防依据的地震烈度。
• 我国抗震设防范围为七、八、九度。九度以上的 地区不宜建包括油罐在内的工业设施。
5-2 场地及地基土类别的划分
震害表明,同一烈度区内,局部土质条件不同, 建筑物的破坏程度差异很大。
第五章-多高层建筑钢筋混凝土结构抗震设计5
![第五章-多高层建筑钢筋混凝土结构抗震设计5](https://img.taocdn.com/s3/m/fd1dad4325c52cc58bd6be8f.png)
9度和一级框架结构尚应符合:
l r M M bua V 1 . 1 bua V b Gb l n
l n ——梁的净跨;
V Gb
——梁在重力荷载代表值(9度时高层建筑还应包括竖 向地震作用标准值)作用下,按简支梁分析的梁端截 面剪力设计值; 截面组合的弯矩设计值;一级框架两端弯矩均 为负弯矩时,绝对值较小一端的弯矩取零;
5.3.4
内力组合
1、两种基本组合 通过内力计算,获得了在不同荷载作用下产生的构件 内力标准值。根据可能出现的最不利情况进行构件的内力 组合所得设计内力值,进行截面设计. 在框架抗震设计时一般有两种组合: (1)地震作用效应与重力荷载代表值效应的组合
S 1 . 2 S 1 . 3 S GE Eh
多层及高层钢筋混凝土房屋 抗震设计
概述 抗震设计的一般要求 框架内力和位移计算 钢筋混凝土框架结构构件设计
5.1 5.2 5.3 5.4
5.3
框架内力与位移计算
结构抗震计算的内容一般包括: • 结构动力特性分析,主要是结构自振周期的确定; • 结构地震反应计算,包括多遇烈度下的地震荷载与结构 侧移; • 结构内力分析; • 截面抗震设计等。 框架结构设计的过程: 结构布置及构件截面尺寸确定——计算简图——荷载计算 ——重力荷载代表值计算——水平(地震)作用计算—— 内力计算(竖向、水平向)——内力组合——截面强度计 算——变形验算——构造措施等。
5.4.1
框架梁截面设计
框架结构的合理屈服机制是在梁上出现塑性铰。 对框架梁端抗震设计的基本要求: ①梁形成塑性铰后仍有足够的受剪承载力(强剪弱 弯) ——设计剪力的取值; ②梁筋屈服后,塑性铰区段应有较好的延性和耗能能 力——延性设计问题;
建筑结构抗震设计与实例第5章
![建筑结构抗震设计与实例第5章](https://img.taocdn.com/s3/m/893643f743323968001c9282.png)
3) 质量和刚度明显不对称的结构,应考虑双向水平 地震作用下的扭转影响。其他情况,可以采用调 整地震作用效应的方法计入扭转影响;
4) 不同方向抗侧力结构的共同构件,应考虑双向水 平地震作用的影响。
5) 8度和9度的大跨度结构、长悬臂结构及9度时的 高层建筑,应考虑竖向地震作用。
8度Ⅲ、Ⅳ场地
>80
9度
>60
表5.2 地震9度
多遇地震
18
35
70
(55) (110) 140
罕遇地震
—
220 400 (310) (510) 620
三、重力荷载代表值的计算
❖ 进行结构抗震设计时考虑的重力荷载称为重力荷载 代表值。重力荷载包括恒载和活载。由于地震发生 时,活载往往达不到其标准值,因此,在计算质点 的重力荷载可对活载进行折减按P98表5.3采用。
输入加速度调整
当结构采用三维空间模型等需要双向(2个水平 方向)或3向(2个水平方向和1个竖向)地震波输入 时,其加速度最大值通常按下列比例调整: 1(水平1):0.85(水平2):0.65(竖向)
表5.1 采用时程分析的房屋高度范围
烈度、场地类型 房屋高度范围(米)
7度及8度Ⅰ、Ⅱ类场地
>100
2. 乙类建筑:地震作用应符合本地区抗震设防烈度
要求。一般情况6~8度时,提高1度进行抗震设防, 9度时应比9度设防更高的要求。
3. 丙类建筑:地震作用和抗震措施均应符合本地区
抗震设防烈度要求。
4. 丁类建筑:一般情况下(具体规定除外),地震
作用应符合本地区抗震设防烈度要求,抗震措施可 适当降低,但6度抗震时不降低。 5. 抗震设防烈度为6度时,除特殊要求外,一般情况 下对乙类、丙类和丁类建筑可不进行地震作用计算。
工程结构抗震设计电子教案
![工程结构抗震设计电子教案](https://img.taocdn.com/s3/m/d34f6d172a160b4e767f5acfa1c7aa00b52a9d3a.png)
工程结构抗震设计电子教案第一章:地震及地震工程概述1.1 地震的成因及分类1.2 地震波的传播特性1.3 地震工程基本概念1.4 工程结构抗震设计的重要性第二章:地震烈度与地震动参数2.1 地震烈度的概念及测定方法2.2 地震动参数的定义及测定2.3 地震动参数对工程结构的影响2.4 地震区划及设计地震动参数的选用第三章:工程结构抗震设计原理3.1 抗震设计的基本原则3.2 结构地震反应分析3.3 结构抗震设计方法3.4 结构抗震计算的基本假定第四章:工程结构抗震设计规范与应用4.1 我国抗震设计规范简介4.2 抗震设防烈度与设计基本地震加速度4.3 抗震设计要求及构造措施4.4 抗震设计规范在工程中的应用实例第五章:常用抗震构件及连接设计5.1 钢筋混凝土构件的抗震设计5.2 钢结构构件的抗震设计5.3 钢筋混凝土构件的连接设计5.4 钢结构构件的连接设计第六章:地震防护措施6.1 隔震与减震技术6.2 地震防护结构体系6.3 场地与地基的抗震措施6.4 地震紧急疏散与救援设施第七章:抗震加固技术7.1 抗震加固的基本原则7.2 钢筋混凝土结构加固方法7.3 钢结构加固方法7.4 抗震加固技术的应用实例第八章:抗震试验研究8.1 抗震试验的基本类型与方法8.2 结构模型试验与振动台试验8.3 结构动力特性测试8.4 结构抗震性能评估与试验数据分析第九章:工程结构抗震设计案例分析9.1 案例一:钢筋混凝土框架结构抗震设计9.2 案例二:钢结构高层建筑抗震设计9.3 案例三:桥梁结构抗震设计9.4 案例四:生命线工程抗震设计第十章:抗震设计软件与应用10.1 抗震设计软件简介10.2 结构分析与设计软件的操作方法10.3 软件在抗震设计中的应用实例10.4 抗震设计软件的发展趋势与展望重点和难点解析重点环节1:地震及地震工程概述地震工程是一门研究地震对工程结构影响及其防治措施的学科。
了解地震的成因、分类、地震波的传播特性和地震工程基本概念是理解抗震设计的基础。
钢筋混凝土结构设计 第五章 单项选择
![钢筋混凝土结构设计 第五章 单项选择](https://img.taocdn.com/s3/m/6df1be929b89680203d825db.png)
一、单项选择:1.在需要进行抗震设防的框架节点中()A.梁、柱中的箍筋都应在框架节点区内设置B.节点区箍筋用量至少与柱端箍筋加密区用量相同C.节点区箍筋用量至少与梁端箍筋加密区用量相同D.节点区无法设置箍筋,只能设置拉结筋2.计算水平地震作用时,重力荷载代表值G E中对于住宅楼面活荷载的组合值系数为()A.0.3 B.0.5C.0.8 D.0.93.有局部突出塔楼的建筑,当基本自振周期T1>1.4T g时,其附加水平地震作用ΔF n应置于()A.局部突出塔楼的顶部B.主体房屋的顶部C.主体房屋的中部D.主体房屋的底部4.我国抗震规范第二阶段设计的内容是()A.验算构件的承载力B.验算结构小震时的弹性变形C.验算结构大震时的弹塑性变形D.验算结构大震时的弹性变形5.一般情况下,设防烈度可采用()A.众值烈度B.罕遇地震烈度C.基本烈度D.多遇地震烈度6.在框架—剪力墙结构的抗震设计中()A.框架作为第一道抗震防线,剪力墙作为第二道抗震防线,因此剪力墙的抗震等级一般不低于框架B.框架作为第一道抗震防线,剪力墙作为第二道抗震防线,因此剪力墙的抗震等级一般低于框架C.剪力墙作为第一道抗震防线,框架作为第二道抗震防线,因此剪力墙的抗震等级一般低于框架D.剪力墙作为第一道抗震防线,框架作为第二道抗震防线,因此剪力墙的抗震等级一般不低于框架7.在确定高层建筑防震缝最小宽度时,不需要...考虑的因素是()A.结构类型B.设防烈度C.结构最大层高D.屋面高度8.用底部剪力法计算地震作用时,以第一振型为主,近似认为第一振型接近于()A.折线B.直线C.抛物线D.双曲线9.带有砌体填充墙的钢筋混凝土框架在地震作用下的层间弹性位移角限值为()A.1/800B.1/550C.1/450D.1/100010.在建筑抗震设计中,关于建筑场地,下列说法中不正确...的是()A.可以根据土层剪切波速划分场地土类型B.土层剪切波速越大,建筑场地土越软C.根据场地土类型和场地覆盖层厚度划分建筑场地类别D.场地覆盖层厚度是指地面至剪切波速大于500m/s的土层的距离11. 抗震设计基本原则的第一水准是()A.强柱弱梁B.强剪弱弯C.大震不倒D.小震不坏12. 根据《建筑抗震设防分类标准》,一般工业与民用建筑属于()A.甲类建筑B.乙类建筑C.丙类建筑D.丁类建筑13.一般情况下,下列说法中不正确...的是()A.一次地震只有一个震级B.一次地震只有一个震中C.一次地震只有一个地震烈度D.一次地震只有一个震源深度14.底部剪力法适用的房屋高度不超过...()A.20mB.30mC.40mD.50m15.在多遇地震作用下结构抗震变形验算公式△u e≤[θe]h中,[θe]为()A.层间弹性位移限值B.层间弹塑性位移限值C.层间弹性位移角限值D.层间弹塑性位移角限值16.我国《建筑抗震设计规范》(GBJ11-89)采用的第二阶段设计方法,是为了保证()A.小震不坏B.强柱弱梁C.强剪弱弯D.大震不倒17.下列关于框架柱轴压比的概念中,不正确...的是A.抗震等级越高,柱子的轴压比限值越大B.限制柱子的轴压比可减小发生受压脆性破坏的可能性C.提高混凝土强度可减小柱子的轴压比D.增加柱子截面尺寸可以减小柱子的轴压比18.在《建筑抗震设防分类标准》中,“对地震作用和抗震措施,均按本地区的设防烈度设计”的规定,适用的建筑类别为()A.甲类B.乙类C.丙类D.丁类19.在地球表面传播的地震波称为()A.面波B.体波C.纵波D.横波20.在我国《建筑抗震设计规范》(GB50011—2001)给出的地震影响系数计算方法中,没有..考虑的影响因素是()A.建筑物的抗震设防烈度B.建筑物的自振周期C.场地类别D.地震持续时间21.下列说法中错误..的是()A.地震烈度是指地震对地表及工程建筑物影响的强弱程度B.离震中愈近,地震烈度愈高C.一次地震只有一个震级D.一次地震只有一个烈度22. 关于底部剪力法的适用条件,下列说法中错误..的是( ) A .高度不超过60m B .质量沿高度分布比较均匀 C .以第一振型为主 D .刚度沿高度分布比较均匀23. 在楼层屈服强度系数的计算公式ey y V V =ξ中,V y 或V e 的正确定义是( )A .V e 为罕遇地震作用下楼层的弹塑性地震剪力B .V e 为多遇地震作用下楼层的弹性地震剪力C .V y 为按构件的实际配筋及材料强度设计值计算的楼层受剪承载力D .V y 为按构件的实际配筋及材料强度标准值计算的楼层受剪承载力24. “强柱弱梁”指的是( ) A .塑性铰首先出现在梁端B .柱钢筋设计强度大于梁钢筋设计强度C .塑性铰首先出现在柱端D .柱混凝土强度等级大于梁混凝土强度等级26. 框架柱轴压比是框架柱轴向压力设计值与( ) A .柱核心区面积之比B.柱全截面面积之比C.柱全截面面积和混凝土轴心抗压强度设计值乘积之比D.柱核心区面积和混凝土轴心抗压强度标准值乘积之比27.下列叙述中,错误..的是()A.一次地震有多个烈度B.一次地震有多个震级C.地震震级是衡量一次地震所释放能量大小的尺度D.震源在地面上的垂直投影点,称为震中28.下列关于建筑结构规则性的叙述中,不属于...建筑结构平面不规则类型的是()A.结构平面凹进的一侧的尺寸,大于相应投影方向总尺寸的30%B.楼层的最大弹性水平位移大于该楼层两端弹性水平位移平均值的1.2倍C.有效楼板宽度小于该层楼板典型宽度的50%D.局部收进的水平向尺寸大于相邻下一层的25%29.下述底部剪力法的适用条件中,错误..的是()A.以第一振型为主B.高度不超过40mC.以弯曲变形为主D.质量和刚度沿高度分布比较均匀30.在地震作用效应和其他荷载效应的基本组合中()A.重力荷载作用必须参与组合,其分项系数取1.20B.仅考虑水平地震作用时,水平地震作用分项系数取1.30 C.同时考虑水平与竖向地震作用时,水平地震作用分项系数取1.30,竖向地震作用分项系数取0.8D.风荷载分项系数取0.2032.地震震级是指地震对地表及工程建筑物影响的强弱程度B.一次地震只有一个地震震级C.地震震级增大一级,地面振幅增大约10倍D.地震震级是衡量一次地震所释放能量大小的尺度33.在单自由度体系中,质点受到的惯性力为()A.-m(t)x B.-Kx(t)C.-C)(t x D.-m[(t)]x gx(t)34.与划分建筑抗震等级无关..的因素是()A.建筑高度B.结构类型C.混凝土强度等级D.抗震设防烈度35.在地震区,框架结构应采用的承重方案是()A.现浇横向框架承重B.现浇纵向框架承重C.现浇纵横向框架承重D.装配式纵横向框架承重36.在建筑抗震设计中,关于建筑场地,下列说法中不正确...的是()A.可以根据土层剪切波速划分场地土类型B.土层剪切波速越小,建筑场地土越硬C.建筑场地类别根据场地土类型和场地覆盖层厚度划分D.场地覆盖层厚度是指地面至剪切波速大于500m/s的土层的距离37.造成建筑物和地表破坏的主要地震波是()A.面波B.横波C.纵波D.纵波和横波38.下列说法中正确的是()A.一次地震有多个震级B.一次地震只有一个地震烈度C.各类建筑场地中I类最好,Ⅳ类最差D.震源至震中的竖直距离称为震中距39.设防烈度为7度的钢筋混凝土框架结构,当场地类别为I类时,确定其抗震等级时所采用的设防烈度为()A.6度B.7度C.8度D.9度40.在抗震设计的第一阶段,()A.计算结构构件的承载能力B.验算结构的弹塑性变形C.采用大震作用效应D.验算是否满足“大震不倒”的要求41.影响结构水平地震作用的参数很多,以下叙述中不正确...的是()A.当结构的自振周期T大于场地特征周期T g时,T愈大,水平地震作用愈小B.土的剪切波速愈大,水平地震作用愈小C.结构自重愈小,水平地震作用愈小D.地震动加速度愈大,水平地震作用愈小42.高度60m的钢筋混凝土结构,其水平地震作用的计算方法,不应..选择()A.振型分解反应谱法B.底部剪力法C.时程分析法D.振型分解反应谱法,时程分析法作补充计算43.第二阶段抗震设计的主要任务是()A.验算构件的承载力B.验算构件的抗裂性能C.验算结构的弹性变形D.验算结构的弹塑性变形44.对突出屋面的小塔楼的地震作用,计算小塔楼时,该水平地震作用()A.应放大3倍,增大部分传给下部楼层B.应放大3倍,增大部分不传给下部楼层C.应放大2倍,增大部分传给下部楼层D.应放大2倍,增大部分不传给下部楼层45.关于地震烈度,下列说法中错误..的是()A.一般情况下,距震中越近,地震烈度越高B.一次地震有多个地震烈度C.地震烈度是指地震对地表及工程建筑物影响的强弱程度D.地震烈度是衡量一次地震所能释放能量大小的尺度46.下列说法中不正确...的是()A.纵波引起地面的竖向振动B.地表某处与震中的距离称为震中距C.横波是剪切波D.地壳中产生地震波的部位称为震中47. . 下列说法中正确的是()A.距震中愈远,地震烈度愈高B.一次地震有多个震级C.一次地震有多个烈度D.设防烈度等于多遇地震烈度48.下列地基中,对抗震有利的是()A.卵石层B.淤泥质土C.软弱粘土D.饱和松砂49.下列建筑中需要采用时程分析法进行补充分析的是()A.6度区的甲类建筑B.7度区高度为80m的乙类规则建筑C.7度区高度为90m的丙类规则建筑D.9度区高度为40m的丙类规则建筑50. .在单自由度体系中,质点受到的弹性恢复力为()A.)t(x mB.-Kx(t)C.)t(x CD.)t(x m g51. 进行多遇地震作用下各类结构的抗震变形验算时,其楼层内最大的层间弹性位移应( )A.计入扭转变形,各作用分项系数均取1.0B.不考虑扭转变形,各作用分项系数均取1.0C.计入扭转变形,各作用分项系数均取1.2D.不考虑扭转变形,各作用分项系数均取1.252. 在第一阶段抗震设计中,验算构件承载力时采用的荷载效应组合是( )A.小震作用效应和其他荷载效应的标准组合B.大震作用效应和其他荷载效应的标准组合C.小震作用效应和其他荷载效应的基本组合D.大震作用效应和其他荷载效应的基本组合53. 有地震作用组合时,截面承载力设计表达式为( )A.S≤RE /R γB.S≤RC.0γS≤RD. 0γS≤RE /R γ54. 关于在框架梁端设置箍筋加密区的目的,下列说法中错误..的是( )A.约束混凝土B.提高梁的变形能力C.满足抗剪承载力要求D.增加梁的延性55.下列有关地震的说法中,不正确...的是( )A.大于5级的地震称为破坏性地震B.我国现行抗震规范采用两阶段设计法C.低于7度的地区为非抗震设防区D.纵波又称P波56.下列有关地震的说法中,正确的是( )A.造成建筑物和地表破坏的地震波主要是体波B.地壳中产生地震波的部位称为震源C.纵波是剪切波D.横波引起地面的竖向振动57.下列地基中,地震时可能发生液化的是( )A.饱和松砂B.淤泥质土C.饱和粘土D.冲填土58.采用底部剪力法时,突出屋面的屋顶间的水平地震作用效应宜放大( )A.1.5倍B.2.0倍C.2.5倍D.3.0倍59.与水平地震影响系数无关..的是( )A.建筑场地类别B.结构自振周期C.抗震设防烈度D.建筑平面形状60.关于框架柱的轴压比,下列说法中正确的是( )A.设定轴压比限值是为了保证框架柱的抗震延性B.设定轴压比限值是为了保证框架柱的极限承载力C.轴压比限值与结构体系无关D.轴压比限值与抗震等级无关61.与确定结构抗震等级无关..的是()A.设防烈度B.基础类型C.房屋高度D.结构类型62.关于地震波,下列说法不正确...的是()A.地震波分为体波和面波B.体波分为纵波和横波C.纵波使建筑物水平方向摇晃D.横波又称S波63.在结构抗震设计时,下列说法不正确...的是()A.我国《抗震规范》将建筑分为4个抗震设防类别B.抗震设计基本原则是“小震不坏,中震可修,大震不倒”C.抗震设防烈度为6度时,对各类建筑可不进行地震作用计算D.我国《抗震规范》采用两阶段设计法64. 对多层框架结构,计算多遇地震作用标准值产生的最大弹性层间位移时,下列选项不正确...的是( ) A.各项作用分项系数采用1.0 B.可不计入扭转变形C.钢筋混凝±构件可采用弹性刚度D.可不扣除结构整体弯曲变形65. 在多遇地震作用下,框架结构抗震变形验算公式e u ∆≤[e θ]h 中,[e θ]为( )A.层间弹性位移角限值,取1/550B.层间弹塑性位移角限值,取1/550C.层间弹性位移角限值,取1/50D.层间弹塑性位移角限值,取1/5066.设防烈度是抗震设计的依据,一般情况下,设防烈度可采用( )A .罕遇地震烈度B .多遇地震烈度C .地震基本烈度D .众值烈度67.下列建筑中,可用底部剪力法计算水平地震作用的是( )A .高度超过80m 的框筒结构B .自振周期T 1超过特征周期T g 五倍的框架—剪力墙结构C.高度不超过40m,质量、刚度沿高度分布较均匀的框架结构D.平面上质量、刚度有较大偏心的剪力墙结构68.框架柱设计中,“强剪弱弯”的设计原则是指( ) A.柱抗弯承载力大于梁抗弯承载力B.柱抗剪承载力不低于节点核心区抗剪承载力C.柱抗剪承载力大于梁抗剪承载力D.柱抗剪承载力大于柱弯曲破坏时产生的剪力69.与地震系数k有关的因素是( )A.地震基本烈度B.场地卓越周期C.场地土类别D.结构基本周期70.关于地震,下列叙述中不正确...的是( )A.与横波相比,纵波的周期短、振幅小、波速快B.造成建筑物和地表破坏的,主要是面波C.50年内,多遇地震烈度的超越概率为10%D.一次地震只有一个震级,但有多个烈度71.关于影响结构水平地震作用的参数,下列叙述中不正确...的是( )A.当结构的自振周期T大于场地特征周期T g时,T愈大,水平地震作用愈小B.土的剪切波速愈大,水平地震作用愈小C.结构自重愈小,水平地震作用愈小D.地震动加速度愈大,水平地震作用愈小72.关于地震,下列说法中正确的是( )A.一次地震有一个震级和一个地震烈度B.一次地震有一个震级和多个地震烈度C.距震中愈近,地震烈度愈低D.地震震级是衡量地震烈度大小的尺度73.抗震设计时,框架结构的“强柱弱梁”要求是( )A.塑性铰先出现在柱端,后出现在梁端B.梁柱节点处柱的总弯曲承载能力不低于梁的总弯曲承载能力C.梁柱节点处柱的总抗弯配筋面积不低于梁的总抗弯配筋面积D.框架平面内柱的截面高度不低于梁的截面高度74.地震时使用功能不能中断的建筑,其抗震设防类别为( )A.甲类建筑B.乙类建筑C.丙类建筑D.丁类建筑75.与结构自振周期有关的因素是( )A.地震烈度B.地震震级C.结构自身的刚度与质量D.建筑场地类别76.地震时,造成建筑物和地表破坏的地震波主要是( )A.面波B.体波C.纵波D.横波77.在罕遇地震作用下,框架结构抗震变形验算公式Δu p≤[θp]h 中,[θp]为( )A.层间弹性位移角限值,取1/550B.层间弹塑性位移角限值,取1/550C.层间弹性位移角限值,取1/50D.层间弹塑性位移角限值,取1/50二、填空:1.单自由度弹性体系的最大加速度反应S a与该体系自振周期T的关系曲线,称为最大加速度__反应谱曲线____。
建筑抗震设计规范强制性条
![建筑抗震设计规范强制性条](https://img.taocdn.com/s3/m/14fcd7714a35eefdc8d376eeaeaad1f3469311d0.png)
建筑抗震设计规范强制性条.doc建筑抗震设计规范强制性条文前言本文档旨在提供建筑抗震设计中必须遵守的强制性条文,以确保建筑物在地震作用下的安全性和稳定性。
第一章:总则第一条:目的确保建筑结构在地震作用下的安全,减少地震灾害。
第二条:适用范围适用于新建、扩建和改建的各类建筑物的抗震设计。
第二章:抗震设计基本要求第三条:抗震设防类别建筑物应根据其重要性、使用功能和地震影响程度,划分为不同的抗震设防类别。
第四条:抗震设防标准建筑物的抗震设防标准应符合国家现行的抗震设计规范要求。
第五条:抗震设计方法建筑物的抗震设计应采用性能化设计方法,确保结构在不同地震作用下的安全性。
第三章:场地与地基第六条:场地选择建筑物的选址应避开地震断裂带、滑坡、泥石流等不利地形。
第七条:地基处理建筑物的地基应进行适当的处理,以满足抗震设计的要求。
第八条:地基承载力建筑物的地基承载力应通过地质勘察确定,并满足抗震设计的要求。
第四章:结构体系与布局第九条:结构体系选择建筑物的结构体系应根据其功能、规模和抗震要求合理选择。
第十条:结构布局建筑物的结构布局应合理,避免不规则布局带来的不利影响。
第十一条:结构刚度与强度建筑物的结构刚度与强度应满足抗震设计的要求。
第五章:抗震措施第十二条:抗震构造措施建筑物应采取有效的抗震构造措施,如设置隔震缝、减震器等。
第十三条:非结构构件抗震建筑物的非结构构件,如墙体、楼板、屋顶等,也应采取抗震措施。
第十四条:设备抗震建筑物内的重要设备和管道应采取抗震措施,防止地震时的损坏。
第六章:施工与验收第十五条:施工质量控制施工过程中应严格控制质量,确保建筑物的抗震性能。
第十六条:抗震性能验收建筑物竣工后,应进行抗震性能验收,确保满足抗震设计要求。
第七章:附则第十七条:规范修订本规范应根据建筑抗震技术的发展和地震灾害的实际情况进行定期修订。
第十八条:解释权本规范的最终解释权归国家建设主管部门所有。
《建筑抗震设计规范》 (GB50011-2001)强制性条文内容[1]
![《建筑抗震设计规范》 (GB50011-2001)强制性条文内容[1]](https://img.taocdn.com/s3/m/b5bc3d1f227916888486d769.png)
《建筑抗震设计规范》(GB50011-2001)强制性条文内容《建筑抗震设计规范》GB50011-2001,自2002年1月1日起施行,原《建筑抗震设计规范》GBJ11-89以及《工程建设国家标准局部修订公告》(第1号)于2002年12月31日废止。
《建筑抗震设计规范》GB50011-2001,其中有52条为强制性条文,必须严格执行。
现将该52条强制性条文摘录如下:一.第一章“总则”部分第 1.0.2 条:抗震设防烈度为6度及以上地区的建筑,必须进行抗震设计。
第 1.0.4条:抗震设防烈度必须按国家规定的权限审批、颁发的文件(图件)确定。
二.第三章“抗震设计的基本要求”部分第3.1.1条:建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。
甲类建筑应属于重大建筑工程和地震时可能发生次生灾害的建筑;乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑;丙类建筑应属于除甲类、乙类、丁类以外的一般建筑;丁类建筑应属于抗震次要建筑。
第3.1.3条:各抗震设防类别建筑的抗震设防标准,应符合下列要求:1:甲类建筑,地震作用应高于本地区抗震设防烈度的要求,其值应按批准的地震安全性评价结果确定;抗震措施,当抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求,当抗震设防烈度为9度时,应符合比9度抗震设防更高的要求。
2:乙类建筑,地震作用应符合本地区抗震设防烈度的要求;抗震措施,一般情况下,当抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求,当抗震设防烈度为9度时,应符合比9度抗震设防更高的要求;地基基础的抗震措施,应符合有关规定。
另外,对较小的乙类建筑,当其结构改用抗震性能较好的结构类型时,应允许仍按本地区抗震设防烈度的要求采取抗震措施。
3:丙类建筑,地震作用和抗震措施均应符合本地区抗震设防烈度的要求。
4:丁类建筑,一般情况下,地震作用仍应符合本地区抗震设防烈度的要求;抗震措施,应允许比本地区抗震设防烈度的要求适当降低,但当抗震设防烈度为6度时不应降低。
直管道与玩管道抗震计算
![直管道与玩管道抗震计算](https://img.taocdn.com/s3/m/ec81e11510a6f524ccbf857c.png)
设计压力P(MPa)管道规格(mm)内径d (mm)泊桑比μ 4.4φ610X11.958.620.3钢材的弹性模量E (MPa)钢材线膨胀系数α(℃-1)2000000.000012由于内压和温度变化产生的管道轴向应变ε=ζa/E 设计地震动峰值加速度a(m/s 2)特征周期T g (s)剪切波速C(m/s)0.0001962562.1560.52210εmax+ε容许拉伸应变[εt ]v 6.抗震校核结论:由于εmax+ε<[εt]v,所以埋地管道抗震校核符合要求,地震动峰值加速度为0.1g。
7.管道截面稳定性校核5.管道轴向应变校核:地震波冲击作用下管道截面轴向组合应变计算按下列公式计算:当εmax+ε≤0时:|εmax+ε|≤[εc]v当εmax+ε>0时:εmax+ε≤[εt]v地震波引起管道的最大轴向拉压应变εmax=±aT g /4πC 0.0004250530.000621309 1.00%4.当量应力校核结论:由于σe =σh -σL <0.9σs ,满足要求。
3.按最大剪切应力强度理论计算当量应力当量应力ζe =ζh -ζL (MPa)最低屈服强度ζs (MPa)0.9ζs (MPa)-28.41388235407366.330152.应力计算式及计算结果内压力产生的环向应力ζh =Pd/2δ (MPa)管道轴向应力 бa=μζh +E α(t 1-t 2) (MPa)10.8373109239.25119328一.埋地管段轴向应力计算和当量应力校核及抗震校核1.基本计算参数壁厚δn (mm)11.9管道下沟回填温度t 1(℃)管道工作温度t 2(℃)7.管道截面稳定性校核根据国外的研究结果一般认为只有当管子直径与厚度比大于140时才会在管子正常运输、铺设、埋管情况下出现圆截面失稳。
D/=51.26钢管不会出现圆截面失稳问题.参考文献:某天然气长输管道工程管道强度与抗震校核分析_牛念参考规范:油气输送管道线路工抗震设计规范GB50470-2008、《输油(气)钢质管道抗震设计规范》第五章。
管道强度计算演示文稿
![管道强度计算演示文稿](https://img.taocdn.com/s3/m/6101652ec850ad02df804101.png)
s :管材的屈服强度,P5,表1-1
第二节 地下管道强度计算
根据管道的环向应力计算壁厚,由薄壳应力公式得出:
1、液体管道直管段计算壁厚:
PD t 0 2[ ]
式中: P------管道的工作压力 D------管道的外直径
[σ]------管材许用应力,
2、气体管道直管段计算壁厚:
第一节 概述
管沟底宽度规定:当管沟深度小于等于3米时,管沟底宽度b为:
b Dg K
式中:K-------沟底加宽系时,管沟底宽度b按上式求得值再加宽0.2米。
管沟的边坡规定:根据土壤类别和土壤的物理力学性能确定。[1]P285表11-2
强度试验规定:管道在沟上或沟下焊接组装后,应进行分段试压。干线试压 管段长度10-15公里,自然高差不超过30米,以1.25倍的管道工作压力作为强 度试压压力。当管道最大操作压力大于8kgf/cm2时,应以水作为试压介质, 小于8kgf/cm2时,允许采用空气或其它气体作为试压介质。
一、管道所受轴向应力由不同情况确定: 1、直线埋土管段:完全嵌固段
1
PD
2
ET
2、靠近出土处的管截面:自由段
1 PDi 4
3、过渡管段:与自由端相距一段距离的埋土管段,管道所受轴向应力随土 壤对管道的约束程度的不同而逐渐改变,介于1、2情况之间。
石油、石油规划设计、石油工程建设、炼油技术与工 程、石油工程建设 5、 API650美国石油学会标准 6、 BS2654英国油罐规范 7、 JIS B8501日本工业标准
考核成绩评定
一、总成绩=考试成绩(90%)+平时成绩(10%) 二、考试形式:闭卷 三、试题类型:1、填空题(1*15=15分)
第5章 地基基础抗震设计
![第5章 地基基础抗震设计](https://img.taocdn.com/s3/m/307dfb253968011ca3009161.png)
(b)汶川县城山体大面积滑坡
(c)北川中学新校区被滑坡体掩埋
5 地基基础抗震设计
土木工程学院
建筑结构抗震设计
5.2.1 天然地基的震害特点(续)
地裂:构造性地裂和非构造性地裂
(a)构造性地裂,百花小学教学楼后(b)非构造性地裂,河岸,汉旺镇
5 地基基础抗震设计
土木工程学院
建筑结构抗震设计
5.2.1 天然地基的震害特点(续)
Ni、Ncri——i点标准贯入锤击数的实测值和临界 值,当实测大于临界时取临界值;
2016年10月28日
5 地基基础抗震设计
土木工程学院
建筑结构抗震设计
5.3.1液化土地基——3)液化地基的评价
1. 地基液化指数IlE --定量评价液化土的危害程度。
I lE
n
i 1
Ni (1 ) d iW i N c ri
越大,液化后果越严重
式中: n —— 在判别深度范围内每一个钻孔标准贯 入试验 点的总数;
抗震规范关于地基、基础的设计原则:
(1)同一结构单元基础不宜落在性质不同的地基土; (2)同一结构单元基础不宜采用不同基础型式;
( 3 )存在不利地基土时,应考虑不均匀沉降、倾覆、滑移等
不利影响,并采取加强整体性和刚度措施。
5 地基基础抗震设计
土木工程学院
建筑结构抗震设计
5.2 地基抗震验算
1. 地基--建筑物基础以下受力层范围内的岩/土层。
危险地段
5 地基基础抗震设计
土木工程学院
建筑结构抗震设计
5.1 地基基础抗震设计原则及要求(续)
2)加强基础与上部结构的整体性
(1)钢筋混凝土结构、钢结构:
建筑结构抗震设计课件第5章第5节
![建筑结构抗震设计课件第5章第5节](https://img.taocdn.com/s3/m/2bbf2b28c77da26924c5b015.png)
f yv Asvj
hb0 as s
9度一级时
Vj
1
RE
0.9
j
ftbjhj
f yv Asvj
hb0 as s
f t ---混凝土抗拉强度设计值;
N ---对应与组合剪力设计值的上柱组合轴向压力较小值;
f yv ---箍筋抗拉强度设计值; Asvj ---核心区有效验算宽度范围内同一截面验算方向箍筋的总截面面积;
2.梁、柱截面的剪压比不宜过大(6.2.9条)
剪压比:截面内平均剪应力与混凝土抗压强度设计值之
比,即:
Vb / bh0 fc
剪压比过大,混凝土会过早发生斜压破坏,箍筋不能充分
发挥作用,它对构件的变形能力也有显著影响。因此应控制。
跨高比大于2.5时: 跨高比等于或小于2.5时:
VbΒιβλιοθήκη 1RE(0.2
fcbh0 )
截面中配置受压钢筋可以改善构件的弯曲延性。
2、受剪构件的剪跨比及破坏特征
构件在弯矩和剪力共同作用下,受剪破坏与剪跨比有关.
剪跨比:
M / Vh0
h0为截面有效高度。
当 1 ~ 1.5或构件为超配箍时,发生斜压型破坏; 当 2 ~ 3 且构件为低配箍时,发生斜拉型破坏;
脆性破坏
当 1 ~ 1.5 2 ~ 3且配筋箍适量时,发生剪压破坏; 延性破坏
高构件的延性、防止混凝土过早地压溃及防止纵向钢筋的压 曲失稳。
加密位置、箍筋直径、箍筋间距等应符合规范规定。
四、框架的节点设计
框架节点破坏的主要形式是节点核心区剪切破坏和钢 筋锚固破坏。
节点主要受剪力和压力的组合作用,节点核心区未开 裂前,箍筋应力很小,基本上是混凝土承受剪力。约当剪 力达到核心区极限抗剪能力60~70%时,混凝土突然发生 对角贯通裂缝,节点刚度明显降低,箍筋应力也突然增大, 个别甚至屈服,此后斜裂缝增多赠宽,箍筋陆续达到屈服。
第五章-地震作用和结构抗震设计要点
![第五章-地震作用和结构抗震设计要点](https://img.taocdn.com/s3/m/f39c9b084a7302768e993975.png)
Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%; Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j
η
的计算高度;
ζ
δn——顶 部 附 加 地震作用 系数 ,多层 钢筋混凝土 和钢结 构房屋可按表6采用,多层内框架砖房可采用0.2,其 他房屋可采用0.0; ∆Fn ——顶部附加水平地震作用。
i =1 i =1 n n 2
式中 Fji——j 振型 i 质点的水平地震作用标准值; aj——相应于 j 振型自振周期的地震影响系数; Xji——j 振型 i 质点的水平相对位移; γj ——j 振型的参与系数。 水平地震作用效应(弯矩、剪力、轴向 力和变形),应按 下式确定:
S Ek = ∑ S j
有斜交抗侧力构件的结构,当相交角度大于15 度时, 应分别考虑各侧力构件方向的水平地震作用; 质量和刚度明显不对称的结构,应考虑双向水平地震 作用下的扭转影 响。其他情况,可以采用调整 地震作 用效应的方法计入扭转影响; 8度和9度的大跨度结构、长悬臂结构及9度时的高层建 筑,应考虑竖向地震作用。
1.1.2 地震作用计算方法
现行《抗震规范》的抗震设计计算采用以下三种方法: 适用于多自由度体系的振型分解反应谱法; 将多自由度体系看作等效单自由度体系的底部剪力法; 直接输入地震波求解运动方程及结构地震反应的时程分 析法 。
《抗震规范》对上述三种方法的使用范围作了如下规定: 高度不超过40m,以剪切变形为主且质量和刚度沿高 度分布比较均匀的结构,以及近似于单质点体系的结 构,可采用底部剪力法等简化方法 ; 除上述以外的建筑结构,宜采用振型分解反应谱法; 特别不规则的建筑,甲类建筑和表1所列的高层建 筑,应采用时程分析法进行多遇地震作用下的补充计 算,并取多条时程曲线计算结果的平均值与振型分解 反应谱法计算结果的较大值。
工程结构抗震设计教学大纲
![工程结构抗震设计教学大纲](https://img.taocdn.com/s3/m/7c533a9581eb6294dd88d0d233d4b14e85243ed6.png)
《工程结构抗震设计》课程教学大纲1.课程概况第一章地震工程基本知识1.教学要求(1)了解地震的主要类型及其成因;(2)了解世界及我国地震活动性以及地震成灾机制;(3)掌握地震波的运动规律和震级、地震烈度等地震强度度量指标;(4)掌握建筑抗震设防分类、抗震设防目标和抗震设计方法;(5)理解工程结构抗震概念设计基本要求;(6)了解地震预警与救援的原则与意义。
2.教学重点地震基础知识,地震活动与地震分布,地震特征描述,工程结构抗震设防,工程结构抗震概念设计。
3.教学难点里氏震级和矩震级的定义和区别,设计基本地震加速度、设计特征周期、设计地震分组运用,工程结构概念设计的把握与理解。
第二章场地、地基与基础抗震1.教学要求(1)理解工程地质条件对结构震害的影响,(2)掌握场地与场地土的概念,场地与场地土的分类以及场地条件对工程结构抗震的影响;(3)掌握天然地基、基础的抗震验算方法;(4)掌握场地土液化的概念及其影响因素;(5)了解场地土液化的判别方法、可液化地基与软弱地基的抗震处理措施。
2.教学重点场地与场地土的概念及分类,天然地基、基础的抗震验算方法,砂土液化的概念与判别方法等。
3.教学难点场地土与场地的分类及区别,天然地基、基础的抗震验算方法中地基抗震承载力提高的原因。
第三章地震作用与结构抗震验算1.教学要求(1)掌握结构的动力地震反应的特性。
(2)掌握反应谱的概念,地震系数、动力系数、地震影响系数、重力荷载代表值的概念。
(3)掌握振型分解反应谱法计算多自由度弹性体系地震反应的方法。
(4)掌握用底部剪力法计算水平地震作用(5)理解结构竖向地震作用的计算方法。
(6)了解结构的扭转效应的概念。
(7)了解结构时程分析法的概念。
(8)理解和掌握结构构件抗震承载力验算、多遇地震下结构抗震变形验算及罕遇地震下结构抗震变形验算的概念与方法。
2.教学重点地震影响系数和反应谱的概念与表达式,振型分解的概念,振型分解反应谱法,底部剪力法,结构构件抗震承载力验算及变形验算等。
市政给水排水工程抗震设防技术要点分析
![市政给水排水工程抗震设防技术要点分析](https://img.taocdn.com/s3/m/e7461079b207e87101f69e3143323968011cf4f5.png)
市政给水排水工程抗震设防技术要点分析摘要:市政给水排水工程,作为城市重要的生命线工程之一,其结构的抗震设防问题须得到工程及设计人员的高度重视。
笔者们从给水排水工程的场地影响、抗震设防标准、各类结构设施的抗震设防重点等方面进行了具体讨论。
关键词:市政;给水排水工程;结构;抗震设防引言随着城乡建设的蓬勃发展,城市供排水工程结构、管道的范围与种类将不断增加。
在国家重大的生命线建设工程之中,这一类建筑的抗震设防问题应当受到有关设计部门的密切注意。
供水及施工设备的顺利工作,是人民群众正常工作、日常生活用水排水的根本保障。
此外必须特别说明的是,对因地震自然灾害所造成的给水排水工程设备损毁等所导致的次生灾害,也同样应该受到重点注意。
例如,在1960年4月18日,在美国加利福尼亚州出现了8.3级的大地震,因为地震使该市的供水管路和煤气管路损毁严重,也使得救援人员没有了控制次生火灾的水源,火灾连续燃烧了三日,共破坏了520个社区的大约三万幢建筑,20万人因此无家可归[1]。
由次生灾害所引发的直观经济损失,远高于自然地震毁坏的直观经济损失。
由于地下压力给水管道的破损坏,导致局部地面出现了一定程度的沉降,特别是在靠近道路、重构或建筑物区域的沉降,可能会成为严重的隐患,以至导致社会重大损失。
另外,对地下排水管道的损坏也会污染,导致了环境污染等社会问题。
所以,解决好这些建筑构件的抗震设防,改善其防震特性,防止和减少地震后破坏,是十分关键的。
供水的基础建筑,主要包括厂站构建筑物(包括各种水处理池、贮水池、加压泵房等)和地下管道二个方面。
本篇文章仅从建筑设计人员的视角,来具体谈谈厂站内结构楼板与地埋管线之间的抗震设防关系,给设计人员的实际设计工作提供了一点借鉴。
1、场地影响对给排水工程结构及抗震设防问题,首要关注的点便是建筑场地。
场地的影响因素包括地质条件与地形地貌等,其对厂站构建筑物和地埋管道的抗震设防起着至关重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Kv Ka KH DL Kv
管线变形后形状
2.1 考虑管沟敷设参数的土弹簧刚度计算方法
•管轴方向—ASCE指南 •水平和垂直方向—实际管沟截面内的平面应变有限元分析
60000 40000 20000 0 -0.0010 -0.0005
力(N)
60000 40000
位移 (m)
力 (N)
20000 位移 (m) 0 -0.0010 0.0000 -20000 -40000 0.0010 0.0020 0.0030
• 断层对管道的作用:
破坏模式
三种可能的破坏模式:拉裂、局部屈曲和梁式屈曲
–埋地钢管在穿越正断层或以 90的交角穿越 走滑断层时,主要承受拉力,破坏模式为拉裂。 通常极限拉应变取4%,大于该值即认为管道已 发生拉裂破坏。
–地下管道穿越逆断层或以 > 90的交角穿越走 滑断层时,主要承受压力,其可能的破坏模式 包括局部屈曲和梁式屈曲。
• 烈度X,质量好的木造房屋倒塌,多数砖石结构和 架桥结构连同基础一起遭到破坏,地面开裂,钢轨 弯曲,斜坡与堤防滑移; • 烈度XI,砖石结构几乎全部倒塌,桥梁破坏。地面 全面出现裂缝,地下埋设管道不能使用,软弱地基 发生滑移,钢轨显著弯曲。
• 烈度XII,全部遭到震灾,地面波动传播可知,地形 变动,物体被抛起来。
抗震设防烈度
• 抗震设防烈度是按国家规定的权限批准作为一个 地区抗震设防依据的地震烈度。 • 我国抗震设防范围为七、八、九度。九度以上的 地区不宜建包括油罐在内的工业设施。
5-2 场地及地基土类别的划分
震害表明,同一烈度区内,局部土质条件不同,
建筑物的破坏程度差异很大。
–对地面运动的影响:软弱地基与坚硬地基相比,前者
第五章 管道抗震设计计算
• 地震是最严重的自然灾害之一,例:
– 1923年日本关东大地震,震级7.9级,震中烈度11度,距震中90公 里的横滨市几乎被化为废墟,东京被烧掉三分之二,死亡近十万 人;
– 1960年智利大地震,震级8.9级,震中烈度11度,引起地面下沉、 滑坡塌方、火山爆发、海啸,沿海一带的城镇、港口等大都被海 浪冲走或陷入海里; – 1976年的唐山大地震,震级7.8级,震中烈度11度,唐山市房屋绝 大部分倒塌。 – 2008年的汶川大地震,震级8.0级,震中烈度11度,汶川大地震是 中国一九四九年以来破坏性最强、波及范围最大的一次地震。
应变控制
• 管道的设计允许应变和荷载组合 受拉 海底管 道 陆上管 道 荷载组 合 1% 受压 0.5%
4%
0.35t/D
可只考虑断层位 断层位移+温度+内压 移
认为管子变形为一条直线,管道的最大 应力及最大应变均在与断层的相交处, 1 国内外研究现状 并且只考虑轴向摩擦力,忽略管子的弯 三点改进:(1)把管子变形分段即用圆 曲刚度和周围土体的侧向作用力,管材 理论模型 弧和直线分别模拟在断层附近和离断层 应力-应变曲线采用三折线模型。该方 (1)Newmark-Hall模型; 考虑了管子的弯曲刚度,离断层较远的 较远的管段变形;(1)在断层附近考虑 法得到的结果偏于不安全。 管道变形不再是简单的直线而是采用弹 (2)Kennedy模型; 周围土体的侧向作用力;(3) 管材应力考虑了剪力连续的边界条件,管材应力性地基梁的变形曲线模拟,将断层附近 (3)王汝梁模型; 应变曲线采用Ramberg-Osgood模型。 应变曲线采用Ramberg-Osgood模型, 管子的变形假定为梁的挠曲线,并得出 (4)刘爱文模型。 但由于该方法同样忽略了管子的弯曲刚 提出一种可以把Newmark方法和 管道的最大应力及最大应变不一定在与 度,其计算结果多数情况下偏于保守。 存在问题:不适合管道受压情况,且不能体现 Kennedy方法作为特例包容进去的新方 断层的相交处,而可能是在断层附近某 管截面的大变形情况。 个点上的结论。 法。
s
管道穿越垂直位移为p的正断层和逆断层时,沿管道的水平分 量x、水平侧向分量y和竖直分量z分别为:
x = p co s sin y = p co s co s z = p sin
式中,p对正断层取正值, 对逆断层取负值。s对右旋 走滑断层取正值,对左旋走 滑断层取负值。
危险 地段
场地土的划分
场地土类型
坚硬场地土 中硬场地土
中软场地土 软弱场地土
土层剪切波速(m/s) vs>500
500≥vs>250
250≥vs>140 vs≤140
特征周期
近、远震 近震 远震
场地类别
I 0.20 0.25 II 0.30 0.40 III 0.40 0.55 IV 0.65 0.85
应力-应变曲线
描述管道屈服后的应力-应变特性,可采用 Ramberg-Osgood建议的关系式:
n 1 E 1 r y
r
式中, 是工程应变, 是轴拉应力,E 是弹 性模量,y 是屈服应力, n 和 r 是 RambergOsgood 参数。
• 一个6级地震释放的能量相当于一个2万吨级的原
子弹; • 地震对地面的影响程度与许多因素有关,除了震 级以外,还与震源深度、震中距等因素有关。
3、烈度
• 地震烈度是指某一个地区、地面及房屋建筑等工
程结构遭受到一次地震影响的强烈程度。
• 一次地震对于不同的地区有多个烈度,即地震烈
度。
• 震级与烈度不能混淆。
0.0000 -20000 -40000 -60000
0.0005
0.0010
横向土弹簧
-60000
垂向土弹簧
2.2 断层位移预测
管道穿越断层的相交角度为,断层倾角为。管道穿越水平位 移为s的走滑断层时,沿管道的轴向位移分量x和侧向位移分 量y 分别为: x = cos
y = - s sin
• 基本烈度是指某地区在今后一定时间内,在一般 场地条件下可能遭受的最大地震烈度。 • 按照国家地震局颁布的《中国地震烈度区划图》, 全国分为:五度、六度、七度、八度、九度共五 个区。
本地震烈度区划图上所标示的地 基本烈度震烈度值,系指在50年期限内, 一般场地条件下,可能遭遇超越 概率为10%的烈度值。
的地面卓越周期长,振幅较大,振动持续时间较长;
–对地基的稳定和变形的影响:软弱地基易产生不稳定 状态和不均匀沉降,甚至发生液化、滑坡、开裂等严
重现象,而坚硬地基则很少有这种危险;
–改变建(构)筑物的动力特性:软弱地基对上部结构 有增长周期、改变振型和增大阻尼的作用。
各类地段的划分
类型 有利 地段 不利 地段 地质、地形、地貌 坚硬土或开阔平坦均实的中硬土等 软弱土,液化土,条状突出的山嘴,高耸孤立的山丘, 非岩质的陡坡,河岸和边坡边缘,平面分布上成因、 岩性、状态明显不均匀的土层(如故河道、断层破 裂带、暗埋的塘浜沟谷及半填半挖地基) 地震时可能发生滑坡、崩塌、地陷、地裂、泥石流等 及发震断裂带上可能发生地表位错的部位
–压缩波(P波):又称纵波或疏密波,其质点的振动方 向与波的前进方向一致,可在固体或液体中传播。其特 点是周期短、振幅小。 –剪切波(S波):又称横波或等容波,其介质的振动方 向与波的前进方向垂直,仅能在固体中传播。其特点是 周期较长、振幅大。
• 压缩波比剪切波的传播速度高。
P波和S波示意
P波
压缩 未扰动介质
• 烈度V,人人可感知,多数人睡中醒来,窗玻 璃有摇动,灰泥抹面裂缝,放置不稳的器物倾 倒,电线杆、树木、塔状体的摇动有时可见, 钟表停摆;
• 烈度VI,人人受惊,跑出室外,重家具移动, 灰泥抹面有脱落,烟窗有倾倒,稍有受灾;
• 烈度VII,人人都跑出室外,质量好的建筑物 几乎不受损害,一般的则有若干受灾,质量不 好的有显著受灾。烟窗折断,人在行驶着的汽 车中也可感受到地震;
• 全世界平均每年发生5级以上的地震130次。
地震使管道破坏并产生严重的次生灾害• 地震对管道的影响:–断层–土壤液化
–地面波动
• 管道抗震的设计规定:设防地震动峰加速度为
0.1~0.15g以上(地震烈度为七度)。
5-1 工程抗震常识
1、地震波 • 地震时,地下积蓄的变形能量以波的形式释放, 从震源向四周传播。 • 地震波主要分为体波和面波。 • 体波主要有两种成分:
也可根据最大加速度来确定地震烈度
美国地震烈度表
烈度 加速度 cm/s2 烈度 加速度 cm/s2 I <1.0 VI 21~44 II 1.0~2.1 VII 44~94 III 2.1~5.0 VIII 94~202 IV 5.0~10 IX 202~432 V 10~21 X >432
基本烈度
• 砂土的粒度组成
–均匀的级配易于产生液化,就细砂和粗砂而言,细砂 的渗透性比粗砂低,细砂比粗砂更易液化。
• 砂土的密度
–疏松的砂,孔隙大,易于液化,密实的砂则抗液化。
• 砂层的有效覆盖压力
–覆盖土层越厚,就相当密闭容器的耐压强度越高,从 而减轻了砂土液化对工程结构的影响。
• 地震的烈度和持续的时间
Y X Z Ka KH
R e v e r se
S tr ik e-slip P o ssib le V e rtic a l C om ponent
N orm al
P o ssib le S trik e-slip C om ponent
P o ssib le S trik e-slip C om ponent
有限元模型
管土相互作用采用土弹簧模拟,土弹簧刚 度确定(ASCE指南) 存在问题:土弹簧刚度未考虑管沟参数及管沟 内外土壤特性不同的情况。
Z
Y X Ka KH
Kv Ka KH DL Kv