2019年福建省泉州市永春县华侨中学自主招生数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年福建省泉州市永春县华侨中学自主招生数学试卷
一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的.
1.(4分)如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()
A.20°B.30°C.40°D.70°
2.(4分)已知关于x,y的方程组的解满足方程3x+2y=19,则m值是()A.1B.﹣1C.19D.﹣19
3.(4分)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到
4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()
A.1.4(1+x)=4.5
B.1.4(1+2x)=4.5
C.1.4(1+x)2=4.5
D.1.4(1+x)+1.4(1+x)2=4.5
4.(4分)已知某等腰三角形的腰和底分别是一元二次方程x2﹣6x+5=0的两根,则此三角形的周长是()
A.11B.7C.8D.11或7
5.(4分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()
A.B.6C.4D.5
6.(4分)如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标
为()
A.B.(5,1)C.D.(6,1)
7.(4分)若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()
A.无实数根
B.有两个正根
C.有两个根,且都大于﹣3m
D.有两个根,其中一根大于﹣m
8.(4分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()
A.B.
C.D.
9.(4分)如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()
A.﹣12B.﹣10C.﹣9D.﹣6
10.(4分)如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于F,连ED,EC,有以下结论:
①△ADE≌△BCE
②CE⊥AB
③BD=2EF
④S△BDE=S△ACE
其中正确的是()
A.①②③B.②④C.①③D.①③④
二、填空题:本题共6小题,每小题4分,共24分.
11.(4分)近似数3.60×105精确到位.
12.(4分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.13.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=时,△AMN与原三角形相似.
14.(4分)将从1开始的连续自然数按以下规律排列:
第1行1
第2行234
第3行98765
第4行10111213141516
第5行252423222120191817…
则2018在第行.
15.(4分)如图,在平面直角坐标系中,直线l1:y=x+1与x轴交于点A,与y轴交于点B,以x轴为对称轴作直线y=x+1的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点A1,A2,A3…关于x轴的对称点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1、△A3B3B2、…、△A n B n B n﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1、四边形A3B3C3B2…、四边形A n B n∁n B n﹣1的周长分别是l1、l2、l3、…、l n,则l n为(用含有n的代数式表示)
16.(4分)如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将△BEM沿着BM翻折得到△BFM.连接DF、CF,则DF+FC的最小值为.
三、解答题:本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤.
17.(8分)先化简,再求值:+(+1)÷,然后从﹣≤x≤的范围内选取一个合适的整数作为x的值代入求值.
18.(8分)某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:
(1)本次共调查了名学生;
(2)将图1的统计图补充完整;
(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.
19.(8分)如图,湿地景区岸边有三个观景台A、B、C,已知AB=700米,AC=500米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.景区规划在线段BC的中点D处修建个湖心亭,并修建观景栈道AD.求A,D间的距离.(结果精确到0.1米)
(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).
20.(8分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.
(1)求m,k,n的值;
(2)求△ABC的面积.
21.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为252m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
22.(10分)如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF交AD于点G.
(1)求证:AD2=AB•AE;
(2)若AB=3,AE=2,求的值.
23.(10分)菱形ABCD中,点P为CD上一点,连接BP.
(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.
24.(12分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.
(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;
(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.
25.(14分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象
限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,
(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积;
(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.。

相关文档
最新文档