材料成形技术

合集下载

材料成型方法

材料成型方法

材料成型方法绪论“材料成型方法”是材料成型及控制工程专业学生的一门重要的技术基础课程,主要研究机器零件的常用材料和材料成形方法,即从选择材料到毛坯或零件成形的综合性课程。

通过本课程的学习,可获得常用工程材料及材料成形工艺的知识,培养学生工艺分析的能力,了解现代材料成形的先进工艺、技术和发展趋势,为后续课程学习和工作实践奠定必要的基础。

材料是科学与工业技术发展的基础。

先进的材料已成为当代文明的主要支柱之一。

人类文明的发展史,是一部学习利用材料、制造材料、创新材料的历史。

如果查看一下诺贝尔物理、化学奖的获得者,不难发现20世纪的物理学家和化学家们曾对材料科学做过一系列的贡献。

Laue(1914)发现X光晶体衍射,Guillaume(1920)发现合金中的反常性质,Bridgeman (1946)发现高压对材料的作用,Schockley、Bardeen、Brattain(1956)三人发现了半导体晶体管,Landau(1962)的物质凝聚态理论,Townes(1964)发现导致固体激光的出现,Neel(1970)发现材料的反铁磁现象,Anderson、Mott、van Vleck(1977)研究了非晶态中的电子性状,Wilson(1982)对相变的研究成功,Bednorz、Müller(1987)发现了30°K 的超导氧化物,Smaller、Kroto(1996)发现C-60,Kilby(2000)发明第一块芯片,上述物理领域的诺贝尔获奖者的不少工作是直接针对材料的。

至于化学家们,可以举出Giauque (1949)研究低温下的物性,Staudinger(1953)研究高分子聚合物,Pauling(1954)研究化学键,Natta、Ziegler(1963)合成高分子塑料,Barton、Hassel(1969)研究有机化合物的三维构象,Heegler、Mcdermild、白川英树(2000)三人发现导电高分子。

材料成形原理

材料成形原理

名词解释1、凝固:是物质由液相转变为固相的过程,是液态成形技术的核心问题,也是材料研究和新材料开发领域共同关注的问题。

2、均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也称“自发形核” 。

非均质形核:依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。

3、粗糙界面:界面固相一侧的点阵位置只有约50%被固相原子所占据,形成坑坑洼洼、凹凸不平的界面结构。

大多数金属界面属于这种结构。

光滑界面:界面固相一侧的点阵位置几乎全部为固相原子所占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

非金属及化合物大多属于这种。

4、外生生长:晶体自型壁生核,然后由外向内单向延伸的生长方式。

内生生长:等轴枝晶在熔体内部自由生长的方式5、沉淀脱氧:是指溶解于液态金属中的脱氧剂直接和熔池中的[FeO]起作用,使其转化为不溶于液态金属的氧化物,并脱溶沉淀转入熔渣中的一种脱氧方式扩散脱氧:在熔池尾部,随着温度的下降,液态金属中过饱和的氧化铁会向熔渣中扩散6、裂纹:在应力与致脆因素的共同作用下,使材料的原子结合遭到破坏,在形成新界面时产生的缝隙裂纹热裂:是铸件处于高温状态时形成的裂纹类缺陷。

凝固裂纹(结晶裂纹):金属凝固结晶末期,在固相线附近发生的晶间开裂现象冷裂纹:是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹7、塑性:材料受力破坏前可承受最大塑性变形的能力。

塑性指标:1、拉伸试验(断后伸长率和断面收缩率越大说明塑性越好)2、压缩试验3、扭转试验。

8、主平面:切应力为零的平面;主应力:主平面上的正应力:主方向:主平面的法线方向,亦即主应力的方向;主切应力平面:使切应力达到极大值的平面称为主切应力平面;主切应力:主切应力平面上所作用的切应力称为主切应力9、屈服准则(也称塑性条件或塑性方程):质点进入塑性状态时,各应力分量之间满足的关系屈雷斯加(T resca)屈服准则(又称最大剪应力准则):材料(质点)中的最大剪应力达到某一临界值时,材料发生屈服,该临界值取决于材料在变形条件下的性质,而与应力状态无关密塞斯(mises)屈服准则:当受力物体内质点应力偏张量的第2不变量I2 达到某一临界值时,材料发生屈服,该临界值取决于材料在变形条件下的性质,而与应力状态无关。

材料成型基础

材料成型基础

1、金属液态成形技术:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成形方法称为液态成形。

简称铸造。

2、充型能力:液态合金充满铸型型腔,获得形状完整,轮廓清晰铸件的能力。

衡量充型能力可用所能形成的铸件最小壁厚。

充型能力的好与差,首先取决于铸造合金的流动性;同时又受到外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。

3、流动性:液态金属本身的流动能力。

衡量流动性一般采用螺旋试样长度。

金属的种类、成分、结晶特征及其它物理性能,决定了流动性4、收缩:金属液态、凝固及固态冷却过程中发生体积减少的现象。

5、铸件在冷却和凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的地方出现孔洞。

容积大而比较集中的孔洞称为缩孔;细小而分散的孔洞称为缩松。

6、缩孔形成条件:金属在恒温或较窄的温度范围内结晶,铸件由表及里逐层凝固。

缩松形成条件:金属结晶温度范围较宽,呈体积凝固方式(糊状凝固)。

7、铸件在凝固和随后的冷却过程中,固态收缩受到阻碍而引起的内应力,称为铸造应力。

热应力、相变应力、机械阻碍应力8、偏析:铸件(尤其是厚壁铸件)凝固后截面上不同部位,以至晶粒内部,产生化学成分不均匀的现象。

偏析产生的原因是由于各种铸造合金在结晶过程中发生了溶质再分配的结果。

9、熔炼:固态炉料按比例装入熔炉加热熔化,通过一系列冶金反应,转化成具有一定化学成分和温度符合铸造成形要求的液态金属。

10、金属熔化后,液态金属通过浇注系统充填铸型型腔的过程称为浇注过程。

11、浇注系统:铸型中液态金属流入铸型型腔的通道。

12、砂型铸造:以粘土砂为主要造型材料13、特种铸造:通过改变铸型材料、浇注方法、充型形式、凝固条件等形成的铸造技术14、金属固态塑性成形:在外力作用下,使金属材料产生预期的塑性变形,以获得所需的形状、尺寸和力学性能的毛坯或零件的加工方法。

15、金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得优质毛坯或零件的难易程度。

工程材料与成形技术基础

工程材料与成形技术基础

工程材料与成形技术基础工程材料是指用于工程结构和设备制造的材料,包括金属材料、非金属材料和复合材料等。

而成形技术则是指将原材料加工成所需形状和尺寸的工艺技术。

工程材料与成形技术是工程制造的基础,对于提高产品质量、降低成本、提高生产效率具有重要意义。

首先,工程材料的选择对产品的性能和质量有着至关重要的影响。

不同的工程材料具有不同的物理、化学和力学性能,因此在工程设计中需要根据产品的使用环境和要求来选择合适的材料。

例如,在高温环境下需要使用耐热材料,而在腐蚀性环境中需要使用耐腐蚀材料。

因此,工程材料的选择需要综合考虑材料的性能、成本和加工工艺等因素。

其次,成形技术对产品的成型质量和生产效率有着直接影响。

成形技术包括铸造、锻造、冲压、焊接等多种工艺,每种工艺都有其适用的材料和产品类型。

在实际生产中,需要根据产品的形状、尺寸和要求来选择合适的成形技术,并结合材料的性能和加工工艺来进行生产。

例如,在金属材料的成形过程中,需要考虑材料的塑性变形性能、热处理工艺和成形设备的选型等因素。

此外,工程材料与成形技术的发展也在不断推动着工程制造技术的进步。

随着材料科学和加工技术的不断发展,新型工程材料和先进成形技术不断涌现,为工程制造提供了更多的选择和可能。

例如,复合材料的应用和先进成形技术的发展,使得产品的轻量化、高强度化和精密化成为可能,推动了航空航天、汽车制造、船舶制造等领域的发展。

综上所述,工程材料与成形技术是工程制造的基础,对产品的质量、成本和生产效率有着重要的影响。

在工程设计和生产中,需要充分考虑材料的选择和成形技术的应用,以实现产品的性能优化和工艺优化。

同时,工程材料与成形技术的不断发展也为工程制造技术的进步提供了新的动力和可能,推动着工程制造向着更高质量、更高效率和更环保的方向发展。

金属材料八大成形工艺

金属材料八大成形工艺

金属材料八大成形工艺
(6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中 冷却凝固而获得铸件的一种成型方法。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁 合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
金属材料八大成形工艺
金属材料八大成形工艺
(3)挤压 挤压:坯料在三向不均匀压应力作用下,从模具的孔口或 缝隙挤出使之横截面积减小长度增加,成为所需制品的加 工方法叫挤压,坯料的这种加工叫挤压成型Байду номын сангаас 应用:主要用于制造长杆、深孔、薄壁、异型断面零件。
金属材料八大成形工艺
(4)拉拔 拉拔:用外力作用于被拉金属的前端,将金属坯料从小于 坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品 的一种塑性加工方法。 应用:拉拔是金属管材、棒材、型材及线材的主要加工方 法。
金属材料八大成形工艺
(10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属, 不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的 铸件连续不断地从结晶器的另一端拉出,它可获得任意长或特 定的长度的铸件。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合 金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
金属材料八大成形工艺
(4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下 充填铸型,并在压力下结晶以形成铸件的方法.。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。
金属材料八大成形工艺
(5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填 充铸型而凝固成形的一种铸造方法。 应用:离心铸造最早用于生产铸管,国内外在冶金、矿山、交 通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工 艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、 内燃机缸套和轴套等铸件的生产最为普遍。

材料成形三要素材料成形发展

材料成形三要素材料成形发展

材料成形三要素材料成形发展
材料成形是指通过给予材料外力或能量,改变材料的形状、组织结构和性能的工艺方法。

材料成形的三个要素是:材料、成形工艺和成形设备。

1.材料:材料是进行成形的基础,能够发挥一定的塑性和变形能力。

成形材料通常包括金属、塑料、陶瓷等。

不同材料具有不同的成形性能和特点,所以在进行成形过程中需要选择合适的材料。

2.成形工艺:成形工艺是指通过给予材料外力或能量,使其发生形变并获得所需形状的工艺方法。

常见的成形工艺包括压力成形、挤压成形、拉伸成形、旋转成形等。

不同的成形工艺适用于不同的材料和形状要求。

3.成形设备:成形设备是具备一定性能和功能的设备,用于实施成形工艺。

常见的成形设备包括压力机、挤压机、拉伸机等。

不同的成形设备具有不同的工作原理和操作方法,可以根据成形需求选择合适的设备。

随着科技的发展,材料成形技术也得到了不断的改进和创新。

新材料的开发和成形工艺的改进,使得材料成形在航空航天、汽车制造、电子设备等领域得到了广泛应用。

例如,金属成形工艺的发展促进了轻量化汽车的生产,塑料成形技术的进步使得电子产品更加小巧轻便。

材料成形的发展不仅提高了产品的质量和性能,也极大地推动了工业的发展。

工程材料与成形技术基础

工程材料与成形技术基础

工程材料与成形技术基础
工程材料与成形技术基础
工程材料是指用于各种工程应用的材料,包括金属、塑料、陶瓷、复合材料等。

工程材料的特性决定着其适合的应用范围以及需要采取
何种成形技术来加工。

在选择和应用材料时,需考虑各项性能指标,
包括强度、硬度、韧性、耐腐蚀性、耐热性、导热性、导电性等。

工程材料的成形技术可分为两大类:热成形与冷成形。

热成形包
括锻造、轧制、挤压等,该类成形技术以高温、高压作用为主,可改
变材料的晶粒状态、结构和形状,从而提高材料的机械性能。

冷成形
包括拉伸、冲压、剪切、折弯等,该类成形技术以低温、低压作用为主,主要用于薄板、薄壁、小件等细密零部件的制造。

在应用材料时,需要根据其特性选择合适的成形技术进行加工,
以达到理想的效果。

例如,在生产中需要使用成本低廉、加工强度高
的材料,可以选择钢铁、铜、铝等金属材料,并采用锻造、挤压等热
成形技术进行加工。

而在制造精密零部件时,需要使用耐磨耗、耐腐
蚀性能好的材料,可以选择高强度塑料或钛合金等,并采用拉伸、冲
压等冷成形技术进行加工。

总之,工程材料与成形技术基础是工程领域中极为重要的一个方面。

只有深入了解各种材料的特性和成形技术的特点,才能在实践中
选择和应用合适的材料和成形技术,从而提高产品质量、降低生产成本。

材料成形技术基础

材料成形技术基础
材料成形技术广泛应用于汽车零部件的制造和车身 成形。
电子制造
材料成形技术在电子设备的封装和连接中起着重要 作用。
航空航天
艺术雕塑
材料成形技术用于制造航空航天部件和航天器结构。 材料成形技术被艺术家用于创作各种雕塑作品。
材料成形技术的挑战与发展趋势
1 高性能材料
随着科技的进步,材料成形技术需要适应高性能材料的特性和要求。
材料成形技术基础
材料成形技术是制造业中最常用的加工技术之一,它涉及到各种成形工艺、 成形材料以及成形工艺流程。
成形技术定义
成形技术是通过施加力或应用热量将原始材料转化为所需形状和尺寸的加工方法。
主要成形技术分类
1 压力成形技术
将材料置于模具中,并施加压力使其变形, 如冲压、铸造等。
2 热成形技术
2 节能环保
开发符合节能环保要求的成形工艺和材料,减少资源消耗和环境污染。
3 数字化制造
利用数字化技术实现材料成形过程的自动化和智能化。
3
成形操作
按照成形工艺要求进行操作,施加力或应用热量使材料变形。
常见的成形材料
金属
如铝、钢等,用于制造汽车零部件、电子设备等。
塑料
如聚乙烯、聚丙烯等,广泛用于塑料制品的生产。
陶瓷
如瓷器、陶器等,用于制作装饰品、器皿等。
复合材料
如碳纤维增强复合材料,用于制造航空航天部件。
材料成形技术的应用领域
汽车制造
通过加热材料使其变软或熔化,然后形成所 需形状,如热压、热挤压等。
3 凝固成形技术
通过材料凝固过程中的相变来实现成形,如 注射成型、凝胶成型等。
4 仿生如3D打印、 模具复制等。
成形工艺流程
1

先进金属复合材料成形技术

先进金属复合材料成形技术

先进金属复合材料成形技术
先进金属复合材料成形技术是指利用先进的工艺和设备对金属复合材料进行成形加工的技术。

金属复合材料是由金属基体和增强材料(如纤维增强材料)组成的复合材料。

相比于传统的单一金属材料,金属复合材料具有更高的强度、刚度和耐热性能。

然而,由于其复杂的结构和成分,金属复合材料的成形加工相对困难。

先进金属复合材料成形技术主要包括以下几个方面:
1. 粉末冶金成形技术:通过将金属粉末与增强材料混合,然后经过高温和高压的成形过程,使其熔合并固化成型。

这种成形技术适用于复杂形状和大尺寸的金属复合材料制品。

2. 金属复合材料锻造技术:利用锻机对金属复合材料进行锻造成型。

锻造可以改变材料的内部组织结构和形状,从而提高其力学性能和耐热性能。

3. 金属复合材料挤压技术:通过在金属复合材料中施加高压,使其通过模具的通道流动并成形。

挤压成形技术适用于长条形的金属复合材料制品。

4. 金属复合材料注射成型技术:利用注射机将金属复合材料融化后注入模具中进行成型。

注射成型技术可以制造出高精度和复杂形状的金属复合材料制品。

以上是几种常见的先进金属复合材料成形技术,通过这些技术的应用,可以制造出更高性能、更复杂的金属复合材料制品,满足不同领域对于材料强度和耐热性能的要求。

材料成形原理

材料成形原理

材料成形原理
材料成形原理是指通过施加力或热加工等手段,对材料进行改变形状和结构的过程。

材料成形的目的是根据需求,使材料获得所需的形状、尺寸和性能。

在材料成形过程中,有许多基本原理和方法。

其中,最常用的方法之一是塑性变形。

塑性变形是指在材料的应力超过了其屈服强度时,材料会发生永久形变的现象。

在塑性变形中,材料会发生晶格结构的变化和甩锻变形等现象,从而使其形状和性能发生改变。

另一种常见的材料成形原理是热变形。

热变形是指在高温下对材料施加力的过程。

高温下,材料的塑性和可变形性均增加,因此可以通过施加力对材料进行形状改变。

热变形方法包括热轧、热挤压、热拉伸等,这些方法在材料制造和加工中被广泛应用。

此外,还有其他一些成形原理,如冷加工和粉末冶金等。

冷加工是指在常温下对材料进行塑性变形的过程。

冷加工可以通过锻造、拉伸、折弯等方法来改变材料的形状和结构。

粉末冶金是指通过将金属或非金属粉末制备成的坯料进行成形的一种方法。

粉末冶金方法通常包括压制、烧结、热处理等步骤,可以制备出具有特定形状和性能的零件。

总之,材料成形原理是通过对材料施加力或热加工等手段,使材料发生形状和结构上的改变。

各种成形原理和方法在材料加
工与制造中都起着重要的作用,为实现不同形状、尺寸和性能的材料需求提供了技术支持。

材料成形技术基础

材料成形技术基础

材料成形技术基础
材料成形技术是指通过某种手段将材料制造成所需形状和尺寸的工艺技术。

它是制造业中最常用的一种技术之一,广泛应用于金属、塑料、陶瓷等材料的制造过程中。

材料成形技术主要分为热成形、冷成形、粉末冶金和塑性加工四大类。

热成形技术是指在材料高温状态下进行成形的工艺。

它可以分为热轧、锻造、热挤压等多种方法。

热成形技术能够改善材料的可塑性,提高材料的密度和力学性能,并且可以生产出大尺寸、高精度的零件。

冷成形技术是指在材料常温状态下进行成形的工艺。

它可以分为冷轧、拉伸、冷挤压等多种方法。

冷成形技术可以减小材料的尺寸误差,提高材料的表面质量和机械性能,并且可以生产出高强度、高硬度的零件。

粉末冶金技术是指将金属粉末或非金属粉末通过成型和烧结工艺制造成零件的工艺。

粉末冶金技术可以用于制造复杂形状、高精度的零件,具有高效节能、无需切削或减少切削量等优点。

塑性加工技术是指将材料通过塑性变形进行成形的工艺。

塑性加工技术包括挤压、拉伸、冲压、弯曲等多种方法。

塑性加工技术可以生产出形状复杂、精度高的零件,同时还能够提高材料的强度和硬度。

以上四种材料成形技术都具有各自的特点和适用范围,并在不同领域中发挥着重要作用。

材料成形技术的发展不仅可以提高材料的加工效率和质量,还能够满足不同行业对材料性能和形状的需求,促进工业制造的进步和发展。

材料成形和加工的前沿技术

材料成形和加工的前沿技术

材料成形和加工的前沿技术材料成形和加工一直是制造业的核心技术,随着科技的不断进步,前沿技术也在不断涌现。

近年来,一些新的材料成形和加工技术引起了人们的关注,本文将对其中的一些进行介绍。

一、增材制造技术增材制造技术,又称三维打印技术,是近年来的一项热门技术。

通过数字化制造技术和材料的逐层堆叠形成三维物体,这种技术具有迅速生产可定制化产品、减少制造成本、降低材料浪费、提高设计自由度等优点。

增材制造已经广泛应用于医学、航空、汽车、电子等领域,同时也适用于各种材料,包括金属、陶瓷、塑料等。

二、高速成形技术高速成形技术是一种新型的增材制造技术,可以在几分钟内生产出金属、塑料或陶瓷零件。

其主要原理是利用强大的激光或电子束来熔化金属或塑料等材料,然后通过控制激光束或电子束来形成复杂的三维结构。

高速成形技术的主要应用领域包括医疗器械、电子设备、航空航天、汽车制造、模具制造等领域。

其优点是精度高、速度快、材料利用率高。

三、激光冷喷涂技术激光冷喷涂技术是一种先进的涂装技术,利用激光加热粉末材料,再通过高速气流喷射到被涂物体表面,形成一层均匀的涂层。

与传统的喷涂技术相比,激光冷喷涂技术具有成本低、效率高、环保、涂装厚度可控等优点,广泛应用于军事、航空航天、建筑、能源等领域。

四、表面处理技术表面处理技术是一种将材料表面进行处理,以提高其性能的技术。

主要包括喷砂、抛光、电镀、硬化、涂层等多种方法。

其中,纳米涂层技术是一种新兴的表面处理技术。

纳米涂层可以使被涂物体表面具有防腐、耐磨、耐高温、防紫外线等特性,广泛应用于汽车、航空航天、能源等领域。

总之,材料成形和加工技术的不断进步,为现代制造业提供了强大的技术支持。

未来,我们可以期待这些技术的更广泛应用,以及更多新技术的不断涌现。

工程材料及成形技术基础

工程材料及成形技术基础

工程材料及成形技术基础工程材料是工程技术的基础,它直接关系到产品的性能、质量和使用寿命。

工程材料的选择和应用对产品的设计、制造和使用具有重要的影响。

工程材料及成形技术基础是工程技术人员必须掌握的基础知识之一,本文将对工程材料及成形技术基础进行介绍。

首先,工程材料包括金属材料、非金属材料和复合材料。

金属材料主要包括钢铁、铝、铜、镁等,具有良好的导电性、导热性和机械性能,广泛应用于机械制造、建筑结构等领域。

非金属材料包括塑料、橡胶、陶瓷、玻璃等,具有较好的耐腐蚀性、绝缘性和轻质化特性,广泛应用于化工、电子、航空航天等领域。

复合材料是由两种或两种以上的材料组合而成,具有综合性能优良的特点,广泛应用于航空航天、汽车制造等高端领域。

其次,成形技术是指将原材料通过加工、成型、焊接等工艺,制成所需形状和尺寸的工艺技术。

常见的成形技术包括锻造、铸造、焊接、切割、冲压等。

锻造是利用模具将金属材料加热至一定温度后,通过冲击或挤压使其产生塑性变形,获得所需形状和尺寸的工艺技术。

铸造是将熔化的金属倒入模具中,冷却后得到所需形状和尺寸的工艺技术。

焊接是利用熔化的金属或非金属材料填充材料,将两个或两个以上的材料连接在一起的工艺技术。

切割是利用切割设备将原材料切割成所需形状和尺寸的工艺技术。

冲压是利用模具将金属材料冲压成所需形状和尺寸的工艺技术。

最后,工程材料及成形技术基础的学习和掌握对工程技术人员具有重要的意义。

只有深入了解和掌握工程材料的种类、性能、加工工艺等知识,才能更好地进行产品设计、制造和使用。

同时,只有熟练掌握成形技术,才能更好地实现对材料的加工和成型,提高产品的生产效率和质量。

总之,工程材料及成形技术基础是工程技术人员必须掌握的基础知识之一,它直接关系到产品的性能、质量和使用寿命。

通过对工程材料及成形技术基础的学习和掌握,可以更好地进行产品设计、制造和使用,提高产品的竞争力和市场占有率。

希望本文能够对工程技术人员的学习和工作有所帮助。

材料成形技术基础知识点总结

材料成形技术基础知识点总结

材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。

常见的成形方法包括压力成形、热成形、热力复合成形等。

不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。

2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。

常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。

这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。

3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。

常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。

热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。

4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。

常见的热力复合成形技术包括焊接、热压焊、热胶合等。

这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。

5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。

工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。

工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。

6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。

工具设计包括毛坯设计、凸模设计、模具结构设计等。

材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。

7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。

常用的监测和控制技术包括传感器、自动控制系统等。

这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。

材料成形技术

材料成形技术

1.流动控制精锻成形原理为()。

(6.0分)A.通过金属流动的控制,使坯料静水压力σm的提高,而提高其塑性成形能力,从而使难充满部位成形,进而获得尺寸精确的锻件。

B.通过提高模具精度实现精锻。

C.通过增加坯料温度,以增加金属流动性,从而获得精锻件。

我的答案:A √答对2.与切削加工比较,下列哪个选项不是材料成形方法的优点。

(6.0分)A.材料利用率高B.生产效率高C.产品性能好D.精度高我的答案:D √答对3.精锻件所能达到的尺寸精度为();表面粗糙度为()。

(6.0分)A.0.1mm;Ra12.5μmB.0.5mm;Ra12.5μmC.0.5mm;Ra6.3μmD.0.2mm;Ra6.3μm我的答案:B √答对4.()不是流动方向的控制方式。

(6.0分)A.阻尼法B.涡流法C.减压法我的答案:B √答对5.在仪表和家用电器中,塑性成形件占()。

(6.0分)A.60%B.70%C.80%D.90%我的答案:D √答对1.先进制造技术的发展优势有()。

(8.0分))A.常规制造技术的优化B.新型加工方法的发展C.工艺设计由经验走向定量分析D.信息技术与工艺技术紧密结合。

我的答案:ABD ×答错2.下列哪些选项是材料科学与工程的基本要素(8.0分))A.材料的成分与结构B.材料的性质C.材料的制备与加工D.材料的使用性能我的答案:ABD ×答错3.21世纪材料成形技术的发展趋势有()。

(8.0分))A.精密成形B.材料制备与成形一体化C.复合成形D.数字化成形E.自动化F.绿色清洁生产我的答案:BCEF ×答错4.下列选项中哪些属于流动控制精锻成形方式。

()(8.0分))A.流动方向B.流动距离C.成形力D.流动速度我的答案:ACD ×答错5.智能锻造的特点为()。

(8.0分))A.自学习B.自适应C.自调整我的答案:ABC √答对1.一般来说,锻件比铸件的机械性能好。

材料成型及控制技术

材料成型及控制技术

材料成型及控制技术材料成型及控制技术材料成型及控制技术是一门涉及材料科学和工程的综合学科,研究如何通过特定的工艺方法将原始材料加工成所需的形状和结构。

它在制造业中起着至关重要的作用,能够满足不同领域的材料需求。

一、材料成型技术材料成型技术的主要目标是通过加工过程改变材料的形状和结构,以达到特定的性能要求。

常见的材料成型技术包括铸造、锻压、挤压、拉伸、压力成形、注塑成型等。

1. 铸造铸造是一种常用的材料成型技术,通过将熔融的金属或合金注入到预制的模具中,经过冷却和固化后得到所需形状的零件。

铸造工艺适用于大批量生产和复杂形状的制造。

2. 锻压锻压是通过将金属材料置于高温下,施加巨大的压力使其产生塑性变形和压制成所需形状的一种加工方法。

锻压工艺可以提高材料的机械性能,广泛应用于汽车、航空航天等领域。

3. 挤压挤压是通过将金属材料置于锭模中,通过外力的作用使其产生连续挤出的过程,得到所需形状的材料。

挤压工艺常用于制造铝型材、铜管等。

4. 拉伸拉伸是通过将材料置于拉伸设备中,施加拉力使其产生塑性变形并延伸成所需形状。

拉伸工艺常用于制造金属丝材料,广泛应用于电子、电器等行业。

5. 压力成形压力成形是通过将材料置于模具中,在受到压力的同时产生塑性变形并得到所需形状的加工方法。

压力成形工艺常用于塑料、橡胶等非金属材料的制造。

6. 注塑成型注塑成型是一种将热塑性塑料通过注射设备注入模具中,经过冷却后实现快速成型的工艺。

注塑成型技术广泛应用于日常用品、汽车零部件等领域。

二、材料成型控制技术材料成型控制技术是为了保证成型过程中材料的质量和性能,对成型工艺进行精确的控制和调节。

成型控制技术包括温度控制、压力控制、速度控制、质量检测等。

1. 温度控制在材料成型过程中,温度是一个重要的参数。

通过控制加热设备、冷却设备等对材料的温度进行调节,以确保材料在适宜的温度范围内进行成型,避免出现质量问题。

2. 压力控制在不同的材料成型工艺中,压力是一个至关重要的控制参数。

材料成型

材料成型

2.3 铸件的结晶组织控制
一次结晶:液态金属在熔点(液相线)附近由液态转变为固态晶 体的过程。 二次结晶:固态下的相变过程。 一、液态金属的结晶过程
形核和长大两个过程
二、铸件的结晶组织 宏观组织:铸态晶粒的形成、大小、取向和分布;
微观组织:晶粒内部的结构形式,如树枝晶、包状晶等 亚结构形态。
● 铸件宏观结晶组织
成分过冷理论缺陷: 很难理解非均质形核所需要的微小过冷度为什么会迟到柱状 晶区已充分长大以后才能形成。其次,该理论无法解释有关内部 等轴晶形成的实验 现象。
●激冷形成的晶核卷入理论
在浇注的过程中及凝固的初 期,激冷等轴晶游离促使等 轴晶形成。浇注温度低可以 使柱状晶区变窄而扩大等轴 晶区。
液态金属进入铸型时形成的有力晶粒
二)内部柱状晶区的形成
紧贴铸型表面稳定的凝固壳层一旦形 成,柱状晶就直接由表面细等轴晶凝 固层某些晶粒为基底向内生长,发展 成由外向内生长的柱状晶区。 枝晶主干取向与热流方向平行的枝晶 生长迅速 。这个互相竞争淘汰的晶 体生长过程称为晶体的择优生长。
柱状晶区开始于稳定凝固壳层的产生,而结束于内部等 轴晶区的形成。如果在界面前沿始终保持较窄小的成分过 冷区,前方没有新的晶核形成,则柱状晶可一直延伸到铸 件中心。如果界面前方能形核长大,它们与柱状晶相遇, 柱状晶的长大就停止,而在内部形成新的等轴晶区。
1.本课程是一门体系较为笼统,知识点多而分散的课程, 因此在学习中应注意抓好课程的主线。
对于每一类材料成型工艺而言,其内容基本上都是围绕着“工艺 原理—成型方法—成型工艺设计—工件的结构工艺性”这样一条主线 而展开的。按照主线对知识点进行整理,将有利于在学习中保持清醒 的思路,有利于对本课程内容的整体把握。

成形制造技术介绍

成形制造技术介绍

成形制造技术介绍成形制造技术是一种以材料为基础,通过特定的加工方法,将材料加工成特定形状和尺寸的技术。

成形制造技术在工业生产中占有重要地位,广泛应用于汽车制造、航空航天、电子设备等领域。

本文将介绍成形制造技术的基本原理和常见的成形加工方法,以及其在工业生产中的应用。

成形制造技术的基本原理是通过施加力量对材料进行加工,使材料的形状和尺寸发生变化。

成形制造技术主要分为塑性成形、压力成形和去除成形三类。

首先介绍塑性成形技术。

塑性成形技术是利用材料在一定温度和应力条件下的塑性变形特性进行加工,常见的塑性成形工艺包括锻造、压铸和挤压等。

其中锻造是将金属材料放在模具中,通过施加压力使其产生塑性变形,最终得到所需的形状和尺寸。

压铸是将熔化的金属注入模具中,等待其凝固后取出成品。

挤压是将金属材料置于挤压机中,通过挤压力使其变形成所需形状的工艺。

这些塑性成形工艺在制造行业中广泛应用,可以高效地生产出各种零部件和产品。

其次介绍压力成形技术。

压力成形技术是通过加压对材料进行加工,使其填充模具腔室并形成所需形状的加工方法。

压力成形技术主要包括冷冲压、热冲压和深冲压等。

冷冲压是利用冲床对金属材料进行加工,常用于生产汽车车身零部件等。

热冲压则是在一定温度下对金属材料进行加工,以提高金属的塑性变形能力。

深冲压是将金属材料冲压成深层次的形状,常用于生产各种金属容器和零部件。

这些压力成形工艺能够高效地生产出各种金属零部件,具有高精度和高效率的特点。

最后介绍去除成形技术。

去除成形技术是通过去除材料使其形成所需的形状和尺寸的加工方法,主要包括数控加工、激光切割和电火花加工等。

数控加工是利用数控机床对材料进行精细加工,能够生产出高精度的零部件。

激光切割是利用激光对金属材料进行切割,具有高速、高效的特点。

电火花加工是利用电脉冲在导电材料上进行加工,常用于加工复杂零部件和模具。

这些去除成形工艺能够满足对零部件形状和尺寸精度要求高的需求,具有高精度和复杂形状加工的优势。

材料成型技术

材料成型技术
材料成型技术
在材料成型技术中,我们将探讨常见的成型技术、热成型技术、冷成型技术 和塑性成型技术,以及它们在不同应用领域的发展趋势。
成型技术概述
1
定义
成型技术是通过对材料施加力或热量,使其在一定条件下通过形成过程,得到所需形状 的制造方法。
2
重要性
成型技术使我们能够生产各种复杂形状的产品,满足不同行业的需求。
热压力成型
真空成型
利用高温和压力使材料变形,以 获得高强度和高精度的制造方法。
利用真空吸引材料在模具表面形 成所需形状的制造方法。
热注塑成型
在高温环境中注入熔化的材料, 通过冷却和固化得到制品。
冷成型技术
1
冷压力成型
利用冷态材料施加的压力将其塑性变形,得到所需形状。
2
冷挤压
通过将冷态材料推入模具中的孔槽,然后将其冷却和固化,形成连续的截面形状。
3
常见成型方法
• 注塑成型 • 挤出成型 • 压力成型
常见的成型技术
注塑成型
将熔融的材料注入模具中, 经过冷却固化,得到所需形 状的制造方法。
挤出成型
通过将材料推入模具中的孔 槽,然后将其冷却和固化, 形成连续的截面形状。
压力成型
将材料置于模具中,并通过 施加压力将其强制塑形,得 到所需形状。
热成型技术
航空航天
成型技术在航空航天领域中被用于制造飞机零 件、导弹外壳等。
电子设备
成型技术被应用于生产电子设备外壳、线路板 等。
医疗器械
成型技术被用于制造医疗器械,如人工关节、 牙套等。
成型技术的发展趋势
3D 打印
开启了快速成型的新纪元,能够 制造出高度个性化的产品。
纳米技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档