2004全国卷四
2004年高考语文试题及答案详解(全国卷4)
2004年高考语文试题及答案详解(全国卷4)一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.《季氏将伐颛臾》一文体现孔子的政治主张是()A.以民为本,实行王道B.顺应自然,无为而治C.治国以礼,为政以德D.严刑峻法,奖励耕战2.《答李翊书》一文的主旨是()A.读书要“识古书之正伪”B.做学问要“无望其速成,无诱于势利”C.写文章要“惟陈言之务去”D.为文立言要以思想品德修养为本3.《五代史伶官传序》中所引“满招损,谦得益”二句,出自()A.《尚书》B.《论语》C.《孟子》D.《庄子》4.王安石在驳斥诬蔑新法“生事”的舆论时说:“举先王之政,以兴利除弊,不为生事。
”这种论证方法是()A.归纳法B.演绎法C.类比法D.对比法5.《郑伯克段于鄢》的叙述方式是()A.顺叙B.倒叙C.分叙D.插叙6.《李将军列传》中,李广和李蔡的对比描写,主要是为了表现李广的()A.骁勇善战B.爱护士卒C.负能使气D.不幸遭遇7.在《始得西山宴游记》中,作者先写游众山时的“觉而起,起而归”的索然乏味,再写游西山时“至无所见,而犹不欲归”的流连忘返,这种表现手法是()A.侧写B.铺垫C.对比D.暗示8.在《报刘一丈书》中,作者详写的情节是()A.作者道经权门而不入B.闻者对权门趋炎附势C.长者抱才而困难入权门D.干谒者竭力投奔权门9.构建《故都的秋》全文的中心线索是()A.浏览北京之秋的经过B.游览北京之秋的感悟C.北京之秋“色彩浓、回味永”D.与南国之秋的反复对比10.冰心在《往事》(一之十四)中,用“艳如桃李,冷若冰霜”来形容大海,所暗示的大海的一个性格特征是()A.温柔而沉静 B.超绝而威严C.神秘而有容D.虚怀而广博11.屈原《国殇》中用了比喻修辞手法的诗句是()A.车错毂兮短兵接B.旌蔽日兮敌若云C.矢交坠兮士争先D.凌余阵兮躐余行12.陶渊明《饮酒》(结庐在人境)在表现方法上的总体特点是()A.通过写景来说理B.通过写景来抒情C.融抒情、说理、写景于一体D.通过抒情来说理13.王昌龄《从军行》(其四)前三句写环境和战争的艰苦,这与最后“不破楼兰终不还”的誓言句构成()A.烘托反衬关系B.欲扬先抑关系C.正反对比关系D.象征暗示关系14.《兵车行》中点明全诗主旨的诗句是()A.县官急索租,租税从何出B.信知生男恶,反是生女好C.边庭流血成海水,武皇开边意未已D.新鬼烦怨旧鬼哭,天阴雨湿声啾啾15.提倡“文章合为时而著,歌诗合为事而作”的著名唐代诗人是()A.杜甫B.李白C.元稹D.白居易16.苏轼《前赤壁赋》行文的内在线索是()A.时间的推移B.想象的展开C.感情的变化D.事理的逻辑17.在《鹰之歌》中,作者赋予鹰和蛇以人的灵性,这种表现手法是()A.托物言志B.拟人化C.对比D.侧面烘托18.在《红楼梦》中,说过和袭人“你但凡听我一句话,也不到这个分儿”相类似话的人是()A.黛玉B.王熙凤C.王夫人D.宝钗19.《石崇与王恺争豪》故事的关键细节是()A.晋武帝是王恺的外甥B.王恺的珊瑚树高二尺许C.石崇用铁如意击碎王恺的珊瑚树D.王恺以为石崇疾己之宝20.《麦琪的礼物》的结构特点之一是“一实一虚双线并行”,其中的实线是()A.德拉因无钱给丈夫买礼物而哭泣B.德拉卖掉美发给丈夫买表链C.杰姆卖掉金表给妻子买发梳D.杰姆看到妻子剪发大为惊愕二、多项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的五个备选项中有二个至五个是符合题目要求的,请将其代码填写在题后的括号内。
2004年普通高等学校招生全国统-考试全国卷Ⅳ
2004年普通高等学校招生全国统-考试(全国卷Ⅳ)文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分300分,考试用时150分钟。
第Ⅰ卷本卷共35小题,每小题4分,共计140分。
在每题给出的四个选项中,只有一项是最符合题目要求的。
改革开放25年来,我国确立了社会主义市场经济体制,人民生活不断改善,国际政治经济地位不断提高。
回答24-26题。
24.1978年,中国国内生产总值为3624.1亿元,2003年已达到11.67万亿元。
我国国民经济取得迅速发展的根本原因是A.参与国际经济合作,扩大商品出口B.发展服务贸易,加快经济结构调整C.引进先进技术设备,增强生产能力D.以经济建设为中心,推进改革开放25.随着商品经济的发展,货币的使用越来越普遍,流通中需要的货币量决定于①待售商品的数量②商品的价格水平③货币的流通速度④居民货币持有量A.①②③B.①③④C.①②④D.②③④26.1978年,中国外汇储备为1.67亿美元,2003年已达到4033亿美元。
中国外汇储备大幅度增加的事实表明我国A.出口商品竞争能力增强B.进口商品数量明显下降C.已经成为主要的债权国D.对外支付能力越来越小2002年我国罐头总产量约为310万吨,消耗农产品原料800万吨,罐头生产的龙头企业带领1000多万从事原料种植养殖的农民闯市场,创造产值150亿元,加快了当地农民的致富步伐。
回答27-28题。
27.上述材料中农民靠小罐头致富,得益于A.农业在国民经济中的基础地位B.国家对农业生产加大投入C.农村科技知识的普及D.农业的产业化经营28.发挥本地优势,利用当地特产,发展农产品精深加工,必须把握的前提是A.大干快上,充分发挥能动性B.因地制宜,坚持从实际出发C.认清主流,坚持矛盾分析法D.依靠外援,外因起主要作用经济全球化,密切了各国之间的联系,促进了国际间的合作。
回答29-30题。
29.经济全球化在促进各国经济和文化交流的同时,也使得原来区域性的传染病成为全球性灾难的风险大大提高。
2004年高考语文试题及答案详解(全国卷4)
环境保护经济激励措施在发达国家的应用耿欣(山东大学经济学院,济南250100)环境资源作为一种公共品,往往被认为可以免费享用。
这就不可避免的产生外部不经济问题,即从事经济活动的人对环境的损害和资源的滥用没有付出相应的代价,却转嫁给社会公众来承担,而社会公众遭受环境破坏带来的损害却得不到任何补偿。
要切实解决这一矛盾,使所得收益与支付成本相对称、避免公共品消费搭便车的现象,一个有效的方法就是采用经济激励手段,通过提高利用资源、污染环境的成本,实现环境问题外部成本的内在化。
本文对一些发达国家采取的环境保护经济激励措施进行了介绍和分析,希望对我国环境保护起到一定的借鉴作用。
一、经济激励措施的种类及特点按照资源使用方式的不同,生态系统服务可划分为生态系统直接产品和生态系统支持产品。
前者是指自然生态系统产生的,直接作为原材料供人类生产、消费,直接构成商品价值的组成部分,可以通过市场定价、交易的物质资源,如生产活动中直接开发使用的矿藏、土地等自然资源。
后者指不作为原料,不具备具体物质形态,而是在经济活动过程中被外部效应影响的资源,如水和养分的循环、水土保持、适合生存的大气组成等。
不同的生态系统类型,也适用不同的经济激励措施。
(一)适用于生态系统直接产品的经济激励措施生态系统直接产品多为不可再生或再生周期很长的资源,资源有限性使其开采具有负外部效应,一个企业的使用减少了其他企业的使用,当代的使用减少了后代的使用。
由于市场不能直接为外部效应定价,因此需要政府对其加以干预,征收相应的税费。
其主要形式是:11资源税。
资源税是为保护自然生态环境、实现代际公平的可持续发展、促进或限制自然资源开发利用、根据自然资源不可再生的稀缺程度差价征收的生态税种。
根据Robert F#Conrad和R#Bryce Hool的划分,资源税可分为三种:一是产出型资源税。
它以加工后的资源或未经加工的资源(如矿产)为征税对象,从量或从价征收。
2004 年全国卷IV
2004 年全国卷Ⅳ文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分300 分,考试用时150 分钟。
第Ⅰ卷中日两国一衣带水,在历史上既有友好往来,也有冲突与战争,我们应以史为鉴,和平共处。
回答12—15 题。
12.隋唐时期,中日往来的主要港口城市是A.广州 B.明州 C.泉州D.扬州13.日本大化改新期间向唐朝学习的主要内容是①政治经济制度②建筑样式③中国姓氏④儒学A.①②③B.①②④C.②③④ D.①③④14.明代倭患最严重的地区是A.山东半岛 B.辽东半岛C.东南沿海D.珠江三角洲15.1937年日本发动全面侵华战争后,其对华经济掠夺的总方针是A.对矿业、钢铁工业等部门实行“统制”B.抢占银行,掠夺金银和现款C.控制中国的交通命脉D.将沦陷区经济变为日本的附庸经济在历史上,各民族不断交流融合,对中华文明的发展起到了重要作用。
回答16—19题。
16.西域的葡萄、石榴陆续移植内地是在A.西周时期 B.春秋战国时期C.西汉时期D.隋唐时期17.匈奴分裂为南北二部,南匈奴南下与汉人杂居发生在A.秦朝 B.西汉C.东汉D.西晋18.中国古代实行两面官(南面官和北面官)制度的政权是12.D 13.B 14.C 15.D 16.C 17.C 18.C 19.D 20.D 21.C 22.A 23. CA.北魏 B.金C.辽D.西夏19.下列关于我国民族区域自治制度的表述,不正确的是A.民族区域自治是解决民族问题的基本政策,是我国的一项基本政治制度B.其内容是在少数民族聚居区建立自治地方,设立自治机关,行使自治权C.体现民族平等、民族团结与共同发展繁荣的原则D.是在十一届三中全会以后逐步建立起来的中国的农民运动在不同历史时期带有不同的时代色彩。
回答20—23 题。
20.下列关于陈胜吴广起义的表述,不正确的是A.迫使汉初统治者采取休养生息政策 B.提出“王侯将相宁有种乎”的口号C.是中国历史上第一次大规模农民战争D.推翻了秦始皇的统治21.下列选项中,带有反抗民族压迫色彩的农民起义是A.秦末农民起义 B.隋末农民起义C.元末农民起义D.明末农民起义22.太平天国政权颁布的《天朝田亩制度》主张A.废除地主土地所有制B.发展工商业,奖励技术发明C.农副产品全部上缴国库 D.农副产品全部归农户所有23.北伐战争期间,湖南农民运动的一个重要特点是A.实行统一的土地改革政策 B.联合开明士绅支持国民革命C.建立农民的政权和武装D.将斗争矛头指向帝国主义列强.第Ⅱ卷38.(32 分)在中国近代史上,山东是列强激烈争夺的地区之一。
2004高考全国卷4文科数学试题及答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)
2004年高考试题全国卷4文科数学(必修+选修Ⅰ)(甘肃、青海、宁夏、贵州、新疆等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x yD .)0(2ln 21>=x x y3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26 B . 6 C .66 D .364. 函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为 ( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( )A .231+ B .31+ C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin21>+=A Ax y π的最小正周期为3π,则A= .15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a与b 夹角的余弦值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a a(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n SS S19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.C20.(本小题满分12分) 某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响. (Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率.21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD.22.(本小题满分14分)双曲线)0,1(12222>>=-b a by ax 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)(甘肃、青海、宁夏、贵州、新疆等地区)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21-16.2三、解答题 17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)c o s (s i n c o s 4)c o s (s i n 2ααααα++=当α为第二象限角,且415sin =α时41c o s ,0c o ss i n -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分.解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4. 依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3. 故数列{a n }的通项公式为a n =2·3n -1.(II ) .1331)31(2-=--=nnn S.1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n SS S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分.解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2 因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x y(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-.所以所求三角形的面积 .12125|25|32521=-⨯⨯=S 20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率 P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6 =0.228.(Ⅱ)这名同学至少得300分的概率 P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3) =0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析y图1图2C 问题能力.满分12分.解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8, 得.ABAD AEEO =所以 Rt △AEO ∽Rt △BAD.得∠EAO=∠ABD. 所以∠EAO+∠ADF=90°所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+by a x ,即 .0=-+ab ay bx由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离 221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cab ba ab d d s =+=+=由,542,54c cab c s ≥≥得 即 .25222c ac a ≥-于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e由于,01>>e 所以e 的取值范围是.525≤≤e。
2004年高考语文试题及答案详解(全国卷4)
2004年高考语文试题及答案详解(全国卷4)第I卷一、(18分,每小题3分)1.下面依次给出的加点字的注音,正确的一组是着想暂时和稀泥同仇敌忾A.zhu6 zhan he qiB.zhao zhan hu6 qiC. zhao zhan he kaiD.zhu6 zan huo kai2,下列词语中没有错别字的一组是A.蹂躏深邃急流勇退各行其事B.联袂赝品翻云复雨集思广益C.璀灿蛰伏明火执仗出奇制胜D.盘桓羸弱如法炮制别出心裁3.依次填入下列各句横线处的词语,最恰当的一组是①北京奥运会组委会宣布从2004年开始将先后__新的会徽和吉祥物标志。
②如果没有__过人生的酸甜苦辣,又怎么能真正懂得长辈们创业的艰难呢?③父亲虽然不是科班出身,但他在外国文学方面的造诣足以使专业人士__。
A.起用体味侧目B.起用体验刮目C.启用体味刮目D.启用体验侧目4.下列各句中,加点的成语使用不恰当的一句是A.这些年每听到亲友去世的消息,总令我无比伤感,尤其是这回相濡以沫的老伴远行,对于我这个年已九十且神经衰弱的老人,真像天塌了一样。
B.这位文学老人被誉为“农民诗人”,他最善于在田间地头和锅台灶边捕风捉影,从普通百姓的日常小事中发现劳动之乐、生活之趣和人性之美。
C.从我国目前的实际情况看,“高薪”不一定能收到“养廉”的效果,因为贪官污吏本来就是欲壑难填,并不是因为收入维持不了生计才搞腐败的。
D.一项社会调查显示,现在很多中学生在学校里见到老师都能亲切问好,而见到烧锅炉的、打扫厕所的和食堂打饭的工人师傅,却都不屑一顾。
5.下列各句中,标点符号使用正确的一句是A.我们凤凰电视台不存在“阴盛阳衰”的现象。
“凤凰”这个词本来就是阴阳结合的:“凤”是雄鸟.“凰”是雌鸟;凤凰台台标也由两只鸟组成:一只公的,一只母的。
B.人的一生中有很多时候都少不了需要通过书面向别人介绍:“我是怎样一个人?”或“我有一个怎样的方案?”这样的问题,因此现代人有更多的理由需要学好作文。
2004高考数学试题(全国4理)及答案
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年高考语文试题及答案详解(全国卷4)
夏季健康小常识夏季气温升高,人的食欲也随着发生改变,此时人的肠胃功能最弱,饮食稍有不慎就容易引发肠胃疾病。
专家提示,在这个特殊的季节,饮食上必须注意调节,该吃的适量吃,不该吃的坚决不能吃,所谓病从口入,夏季要把好开口关,吃出健康。
■多吃苦味食物在一日三餐中,注意多吃些苦味的食物。
苦味的食物虽然味道上不是那么适口,不过却是暑日的健康食品。
苦味食物中所含的生物碱具有消暑清热、促进血液循环、舒张血管等药理作用。
三伏天气里吃些苦瓜、苦菜,或者饮用一些啤酒、茶水、咖啡、可可等苦味饮料,不但能清除人内心的烦恼、提神醒脑,而且可以增进食欲、健脾利胃。
■注意补充维生素高温季节,人体新陈代谢加快,容易缺乏各种维生素。
此时,可以选择性地定量补充一些维生素,最好是食物补充,可以选择一些富含维生素和钙的食物,如西瓜、黄瓜、番茄、豆类及其制品、动物肝肾、虾皮等,也可以饮用一些果汁。
■别忘补盐补钾夏天出汗多,体内丧失的盐分就比较多。
所以要注意多吃些咸味的食物,以补充体内所失盐分,达到身体所需的平衡。
此外,出汗多也会导致体内的钾离子丧失过多,具体的症状是人体倦怠无力、食欲不振等。
新鲜蔬菜和水果中含有较多的钾,因此可以酌情有控制地吃一些草莓、杏子、荔枝、桃、李等水果,而蔬菜中的青菜、大葱、芹菜、毛豆等含钾也很丰富。
茶叶中含有比较多的钾,夏天的时候多喝茶,既可以消暑,又能补钾,可谓一举两得。
■暑天宜清补夏天的饮食应该以清补、健脾、祛暑化湿为原则,应该选择具有清淡滋阴功效的食物,如鸭肉、鲫鱼、虾、瘦肉、食用蕈类(香菇、蘑菇、平菇、银耳等)、薏米等。
■多吃解暑药粥夏天不适合大补,夏天吃大补的食物容易让身体不舒服,所以羊肉不宜多吃,尤其是血压高的人。
最好是多吃蔬菜,少吃油腻,并注意多吃些可以清热降暑的食物,如绿豆粥、扁豆粥、荷叶粥、薄荷粥等“解暑药粥”。
炎热夏季,人体的食欲往往会对人的饮食产生误导,导致的结果就是满足了口感,带来了疾病。
2004 年普通高等学校招生全国统一考试(全国卷四
!""#年普通高等学校招生全国统一考试(全国卷!)数学本试卷分第"卷(选择题)和第#卷(非选择题)两部分$满分%&"分$考试时间%!"分钟$第"卷(选择题共’"分)参考公式:三角函数的和差化积公式:()*!+()*",!()*!+"!・-.(!/"!()*!/()*",!-.(!+"!・()*!/"!-.(!+-.(",!-.(!+"!・-.(!/"!-.(!/-.(",/!()*!+"!・()*!/"!正棱台、圆台的侧面积公式!台侧,%!("0+")#其中"0,"分别表示上、下底面周长,#表示斜高或母线长球体的表面积公式:!球,#$$!其中$表示球的半径一、选择题:本大题共%!小题,每小题&分,共’"分$在每小题给出的四个选项中,只有一项是符合题目要求的$%1设集合%,{(&,’)2&!+’!,%,&!!,’!!},(,{(&,’)2&!/’,",&!!,’!!},则集合%"(中元素的个数为31%41!51671#!1函数’,()*&!的最小正周期是31$!41$ 51!$71#$61(理)设数列{)*}是等差数列,且)!,/’,)8,’,!*是数列{)*}的前*项和,则31!#9!&41!#,!&51!’9!&71!&,!’(文)等比数列{)*}中,)!,:,)&,!#6,则{)*}的前#项和为318%41%!"51%’871%:!#1圆&!+’!/#&,"在点+(%,#6)处的切线方程为31&#+6’/!,"41&#+6’/#,"51&#/6’+#,"71&#/6’+!,"&1(理)函数’,;.<%!(&!/%#)的定义域是31[#/!,/%)$(%,#!]41(#/!,/%)$(%,#!)51[/!,/%)$(%,!]71(/!,/%)$(%,!)(文)记函数’,%+6/&的反函数为’,,(&),则,(%"),31!41/!51671/%’1设复数-的辐角的主值为!$6,虚部为#6,则-!,##31/!/!6)41/!6/!)##51!+!6)71!6+!)=1设双曲线的焦点在&轴上,两条渐近线为’,>%!&,则该双曲线的离心率.为#31&41&51#&!71Q不等式%92&+%296的解集为31(",!)41(/!,")$(!,#)51(/#,")71(/#,/!)$(",!):1正三棱锥的底面边长为!,侧面均为直角三角形,则此三棱锥的体积为!"#$!!#%"#&"!#$’"($!#)*"在"!"#中,!"+$,"#!+)$,!#+(,则边!#上的高为!"$#!#%"$#!$&"$#!’"$$))"(理)设函数$(%)+(%,))#,%-)(.%!.),%#{),则使得$(%)#)的自变量%的取值范围为!"(./,.#]$[*,)*]%"(./,.#]$[*,)]&"(./,.#]$[),)*]’"[.#,*]$[),)*](文)(!%.)%)0的展开式中的常数项为!")1%".)1&"#*’".#*)#"将(名教师分配到$所中学任教,每所中学至少)名教师,则不同的分配方案共有!")#种%"#(种&"$0种’"(2种第!卷(非选择题共3*分)二、填空题:本大题共(小题,每小题(分,共)0分4把答案填写在题中的横线上4)$"用平面!截半径为&的球,如果球心到平面!的距离为&#,那么截得小圆的面积与球的表面积的比值为4)("(理)函数’+567%!,$895%在区间[*,"#]上的最小值为4(文)函数’+567%.)#895%(%%!)的最大值为4)1"(理)已知函数’+$(%)是奇函数,当%#*时,$(%)+$%.)4设$(%)的反函数是’+((%),则((.2)+4(文)函数’+:9;)#(%.)!)的定义域是4)0"(理)设)是曲线’#+((%.))上的一个动点,则点)到点(*,))的距离与点)到’轴的距离之和的最小值是4(文)设)为圆%#,’#+)上的动点,则点)到直线$%.(’.)*+*的距离的最小值为4三、解答题:本大题共0小题,共<(分4解答应写出文字说明、证明过程或演算步骤4)<"(本小题满分)#分)已知!为锐角,且=>7!+)#,求567#!895!.567!567#!895#!的值4)2"(本小题满分)#分)(理)解方程(%,?).#%?+))4(文)解方程(%.#%,#.)#+*4某村计划建造一个室内面积为%&&’$的矩形蔬菜温室(在温室内,沿左、右两侧与后侧内墙各保留!’宽的通道,沿前侧内墙保留)’宽的空地(当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?三棱锥!—"#$中,侧面!"$与底面"#$垂直,!"*!#*!$*)((!)求证"#!#$;($)(理)设"#*#$"*$),求"$与平面!#$所成角的大小((文)如果"#*#$"*$),求侧面!#$与侧面!"$所成二面角的大小(设椭圆!!"%"%#!&"的两个焦点是$"(’%,()与$!(%,()(%)(),且椭圆上存在点&,使得直线&$"与直线&$!垂直*(")求实数"的取值范围;(!)设’是相应于焦点$!的准线,直线&$!与’相交于点(*若+($!++&$!+!&!’,,求直线&$!的方程*(理)已知数列{)*}的前*项和+*满足+*&!)*%(’")*,*""*(")写出数列{)*}的前,项)",)!,),;(!)求数列{)*}的通项公式;(,)证明:对任意的整数")$,有")$%")-%…%")"./*(文)设数列{)*}是公差不为零的等差数列,+*是数列{)*}的前*项和,且+!,&1+!,+$&$+!,求数列{)*}的通项公式*。
2004年高考数学试题(全国4文)及答案
2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。
2004年普通高等学校夏季招生考试理综全国卷IV
2004年普通高等学校夏季招生考试理综全国卷Ⅳ(新课程)(总分:120 考试时间:97分钟)一、选择题 ( 本大题共 8 题, 共计 48 分)1.在核反应方程式U+n Sr+Xe+k X中………………()A.X是中子,k=9B.X是中子,k=10C.X是质子,k=9D.X是质子,k=10答案:(6分) B2.如图所示,在x≤0的区域内存在匀强磁场,磁场的方向垂直于xy平面(纸面)向里。
具有一定电阻的矩形线框abcd位于xy平面内,线框的ab边与y轴重合。
令线框从t=0的时刻起由静止开始沿x轴正方向做匀加速运动,则线框中的感应电流I(取逆时针方向的电流为正)随时间t的变化图线I -t图可能是下图中的哪一个?………………………()答案:(6分) D3.一定质量的理想气体,从某一状态开始,经过一系列变化后又回到开始的状态,用W1表示外界对气体做的功,W2表示气体对外界做的功,Q1表示气体吸收的热量,Q2表示气体放出的热量,则在整个过程中一定有……………………………………………………()A.Q1-Q2=W2-W1B.Q1=Q2C.W1=W2D.Q1>Q2答案:(6分) A4.图中M是竖直放置的平面镜,镜离地面的距离可调节。
甲、乙二人站在镜前,乙离镜的距离为甲离镜的距离的2倍,如图所示。
二人略错开,以便甲能看到乙的像。
以l表示镜的长度,h表示乙的身高,为使甲能看到镜中乙的全身像,l的最小值为………………………………()A.hB.hC.hD.h答案:(6分) A5.已知:一简谐横波在某一时刻的波形图如图所示,图中位于a、b两处的质元经过四分之一周期后分别运动到a′、b′处。
某人据此做出如下判断:①可知波的周期,②可知波的传播速度,③可知波的传播方向,④可知波的波长。
其中正确的是……………………………………()A.①④B.②④C.③④D.②③答案:(6分) C6.如图,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫。
2004年高考试题——文综(全国卷4)
2004年普通高等学校招生全国统一考试(四)文综试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。
3.本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
图1是某地区土地利用现状示意图,读图1回答1~3题。
1.如果现状布局合理,则当地盛行风向可能是()A.东南风B.东北风C.南风D.西南风2.如果要布局新的居住用地,较合理的地区是()A.①B.②C.③D.④3.适宜在P点布局的是()A.钢铁厂B.造纸厂C.印染厂D.自来水厂我国沿海某省一个课外小组某日测得当地日出、日落时间分别为北京时间6:40、16:40。
据此回答4~6题。
4.该地的经度约为()A.120°E B.125°E C.115°E D.110°E5.该日可能在()A.11月B.9月C.7月D.5月A.南海海水经马六甲海峡流向印度洋B.印度洋海水经马六甲海峡流向南海C.拉普拉塔河进入枯水期D.印度河进入丰水期图2示意大气垂直分层,读图2回答7~9题。
7.图中正确表示大气层气温垂直变化的曲线是()A.①B.②C.③D.④8.对短波通信具有重要意义的电离层位于()A.Ⅰ层顶部B.Ⅱ层底部C.Ⅱ层中部D.Ⅲ层9.2003年10月我国发射的“神州5号”飞船运行轨道所在的大气层()A.气温在-50℃到20℃之间B.气温随高度增加平稳下降C.最低气温约为-80℃D.最高气温约为40℃10.四个地区中人口老龄化趋势最显著的是()A.①B.②C.③D.④11.四个地区中经济发展水平最高的是()A.①B.②C.③D.④中日两国一衣带水,在历史上既有友好往来,也有冲突与战争,我们应以史为鉴,和平共处。
2004年高考语文试题及答案详解(全国卷4)
第9部分单选题1. 以下各类媒体之中属于表示媒体的是( )。
A. 键盘 B. 图像编码C. 扫描仪D. 声音2. 以下各类媒体之中属于表现媒体的是( )。
A. RAMB. 硬盘C. 喇叭D. 双绞线3. 下面不属于表现媒体的是( )。
A. 音箱B. 打印机C. 键盘D. 光纤4. 以下各类媒体之中属于存储媒体的是( )。
A. 图像B. 光盘C. 摄像机D. 同轴电缆5. 键盘、扫描仪、显示器等属于( )。
A. 存储媒体B. 感觉媒体C. 表示媒体D. 表现媒体6. 在以下几类媒体当中,( )是指传输感觉媒体的中介媒体。
A. 表示媒体B. 存储媒体C. 表现媒体D. 传输媒体7. ( )是人们用来传递信息、交流感情最方便、最熟悉的方式之一。
A. 文本B. 图像C. 视频D. 声音8. 在计算机辅助教学中,最能体现多媒体的( )这一特性。
A. 集成性B. 智能性C. 交互性D. 多样性9. 多媒体的( )这一特性满足了人的感官对多媒体信息的需求。
A. 集成性B. 交互性C. 多样性D. 实时性10. TXT属于以下选项中( )文件的格式。
A. 文本B. 视频C. 图像D. 动画11. MOV和A VI属于以下选项中( )文件的格式。
A. 视频B. 声音C. 图像D. 动画12. BMP和JPEG属于以下选项中( )文件的格式。
A. 声音B. 图像C. 视频D. 动画13. 在数字音频回放时,需要用( )还原。
A. 数模转换器(D/A转换器)B. 数字编码器C. 数字解码器D. 模数转换器(A/D转换器)14. WORM光盘的特点是( )。
A. 可重写十万次以上B. 只读C. 可重写几千次D. 一次写,多次读15. DVD-RW光盘的特点是( )。
A. 可重写十万次以上B. 只读C. 一次写,多次读D. 可重写几千次16. 在MIDI合成器中,不曾采用过的合成技术是( )。
A. 软波表B. 硬波表C. 混合波表D. FM频率调制17. 一般来说,光盘盘片的格式化容量( )用户容量。
2004全国硕士研究生入学统一考试数学四试题及答案详解
2004年数学四试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设1ln arctan 22+-=x xxe e e y ,则1121+-==e e dx dy x .【分析】本题为基础题型,先求导函数即可.【详解】因为)1ln(21arctan 2++-=xxe x e y ,111222++-+='x x xx e e e e y , 所以,1121+-==e e dx dy x .【评注】 本题属基本题型,主要考查复合函数求导.类似例题在一般教科书上均可找到.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可. 【详解】令x - 1 = t , ⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 设⎪⎪⎪⎭⎫ ⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则 =-220042A B ⎪⎪⎪⎭⎫⎝⎛-100030003 .【分析】 将B 的幂次转化为A 的幂次, 并注意到2A 为对角矩阵即得答案. 【详解】因为⎪⎪⎪⎭⎫ ⎝⎛--=1000100012A , P A PB 200412004-=.故E EP P P A P B===--11002212004)(,=-220042A B ⎪⎪⎪⎭⎫⎝⎛-100030003.【评注】本题是对矩阵高次幂运算的考查.(5) 设()33⨯=ija A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是T)0,0,1(.【分析】利用正交矩阵的性质即可得结果. 【详解】因为 b A x 1-=, 而且()33⨯=ij a A 是实正交矩阵, 于是 1-=A A T , A 的每一个行(列)向量均为单位向量, 所以⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛===-0011312111a a a b A b A x T.【评注】本题主要考查正交矩阵的性质和矩阵的运算.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ 故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界; 如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性.(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导. (C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.[ B ]【分析】先求分段函数f (x )的变限积分⎰=xdt t f x F 0)()(,再讨论函数F (x )的连续性与可导性即可.【详解】当x < 0时,x dt x F x-=-=⎰0)1()(;当x > 0时,x dt x F x==⎰01)(,当x = 0时,F (0) = 0. 即F (x ) = |x |,显然,F (x )在(-∞ , +∞)内连续,但在x = 0点不可导. 故选(B).【评注】本题主要考查求分段函数的变限积分. 对于绝对值函数:||0x x -在0x x =处 不可导;f (x ) =||0x x x n -在0x x =处有n 阶导数,则||)!1()(0)(x x n x f n -+=.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度.(12) 设n 阶矩阵A 与B 等价, 则必须(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又A 与B 等价, 故n B r <)(, 即0||=B , 从而选 (D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于(A) 2αu . (B) 21αu - . (C) 21αu-. (D) αu -1. [ B ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(B).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.(14) 设随机变量n X X X ,,,21Λ)1(>n 独立同分布,且方差02>σ.令随机变量∑==ni i X n Y 11, 则(A) 212)(σn n Y X D +=+. (B) 212)(σnn Y X D +=-. (C) nσY X Cov 21),(=. (D) 21),(σY X Cov =. [ C ]【分析】 利用协方差的性质立即得正确答案..【详解】 由于随机变量n X X X ,,,21Λ)1(>n 独立同分布, 于是可得),(1)1,(),(11111∑∑====ni i n i i X X Cov n X n X Cov Y X Cov),(1),(11111X X Cov nX X Cov n n i i ==∑=211)(1σnX D n ==. 故正确答案为(C).【评注】本题是对协方差性质的考查, 属于基本题.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→.【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=30422044sin 212lim 2sin 41lim xxx x x x x x -=-→→. 346)4(21lim 64cos 1lim 22020==-=→→xx x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算.(17) (本题满分8分)设f (u , v )具有连续偏导数,且满足uv v u f v u f v u='+'),(),(.求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解.【分析】先求y ',利用已知关系uv v u f v u f v u='+'),(),(,可得到关于y 的一阶微分方程. 【详解】x v x ux x e x y x x f e x x f e x x f e y 222222),(),(),(2----+-='+'+-=', 因此,所求的一阶微分方程为x e x y y 222-=+'.解得 x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).【评注】 本题综合了复合函数求偏导数与微分方程,但是,求偏导数与解微分方程都是 基本题型.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. 【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=,d E EpER-=1(收益对价格的弹性).(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线y = F (x )之间的面积. 对任何t > 0,)(1t S 表示矩形-t ≤ x ≤ t ,0 ≤ y ≤ F (t )的面积. 求(I) S (t ) = S -)(1t S 的表达式;(II) S (t )的最小值.【分析】曲线y = F (x )关于y 轴对称,x 轴与曲线y = F (x )围成一无界区域,所以, 面积S 可用广义积分表示. 【详解】(I) 120202=-==+∞-∞+-⎰xxe dx e S ,t te t S 212)(-=,因此t te t S 221)(--=,t ∈ (0 , +∞). (II) 由于t e t t S 2)21(2)(---=',故S (t )的唯一驻点为21=t , 又t e t t S 2)1(8)(--='',04)21(>=''eS ,所以,eS 11)21(-=为极小值,它也是最小值.【评注】本题综合了面积问题与极值问题,但这两问题本身并不难,属于基本题型.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(Ⅰ) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ) 该方程组满足32x x =的全部解.【分析】 含未知参数的线性方程组的求解, 当系数矩阵为非方阵时一般用初等行变换法化增广矩阵为阶梯形, 然后对参数进行讨论. 由于本题已知了方程组的一个解, 于是可先由它来(部分)确定未知参数.【详解】 将T)1,1,1,1(--代入方程组,得μλ=.对方程组的增广矩阵A 施以初等行变换, 得⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫ ⎝⎛++=1212)12(2001131012011422302112011λλλλλλλλλλA ,(Ⅰ) 当21≠λ时,有 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→2121100212101001001A , 43)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,21,21,0(0-=为其一个特解,对应的齐次线性方程组的基础解系为 Tη)2,1,1,2(--=,故方程组的全部解为T Tk ηk ξξ)2,1,1,2()0,21,21,0(0--+-=+= (k 为任意常数).当21=λ时,有⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000113102121101A , 42)()(<==A r A r ,故方程组有无穷多解,且T ξ)0,0,1,21(0-=为其一个特解,对应的齐次线性方程组的基础解系为 Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=, 故方程组的全部解为T T T k k ηk ηk ξξ)2,0,2,1()0,1,3,1()0,0,1,21(2122110--+-+-=++=(21,k k 为任意常数).(Ⅱ) 当21≠λ时,由于32x x =,即 k k -=+-2121,解得 21=k , 故方程组的解为T T T ξ)1,0,0,1()2,1,1,2(21)0,21,21,1(-=--+-= .当21=λ时, 由于32x x =,即 121231k k k =--, 解得 212141k k -=,故方程组的全部解为 T T T k k ξ)2,0,2,1()0,1,3,1)(2141()0,0,1,21(22--+--+-=T T k )2,21,21,23()0,41,41,41(2---+-=, (2k 为任意常数).【评注】:(1) 含未知参数的线性方程组的求解是历年考试的重点, 几乎年年考, 务必很好掌握.(2) 对于题(Ⅱ), 实际上就是在原来方程组中增加一个方程, 此时新的方程组当21≠λ时有惟一解, 当21=λ时有无穷多解. (3) 在题(Ⅱ)中,当21=λ时,解得12221k k -=,方程组的全部解也可以表示为T T k ξ)4,1,1,3()1,0,0,1(1-+-=, (1k 为任意常数).(21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若T α)0,1,1(1=, T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(Ⅰ) 求A 的另一特征值和对应的特征向量; (Ⅱ) 求矩阵A . 【分析】 由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】 (Ⅰ) 因为621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个.由题设知T α)0,1,1(1=,Tα)1,1,2(2=为A 的属于特征值6的线性无关特征向量.又A 的秩为2,于是0||=A ,所以A 的另一特征值03=λ.设03=λ所对应的特征向量为Tx x x α),,(321=,则有 01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x得基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).(Ⅱ) 令矩阵),,(21αααP =,则⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以1066-⎪⎪⎪⎭⎫ ⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661******** ⎪⎪⎪⎭⎫ ⎝⎛--=422242224. 【评注】 这是一个有关特征值和特征向量的逆问题, 即已知矩阵的部分特征值和特征向量,要求另一部分特征值, 特征向量和矩阵. 这在历年考研题中还是首次出现.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P ,则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型.(23) (本题满分13分)设随机变量X 在区间)1,0(上服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(Ⅰ) 随机变量X 和Y 的联合概率密度; (Ⅱ) Y 的概率密度; (Ⅲ) 概率}1{>+Y X P .【分析】正确理解已知条件, 即条件密度是求解本题的关键. 【详解】 (Ⅰ) X 的概率密度为⎩⎨⎧<<=其他,,,010,1)(x x f X在)10(<<=x x X 的条件下,Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,,,00,1)|(|x y x x y f X Y当10<<<x y 时,随机变量X 和Y 的联合概率密度为 xx y f x f y x f X Y X 1)|()(),(|== 在其它点),(y x 处,有0),(=y x f ,即⎪⎩⎪⎨⎧<<<=.x y x y x f 其他,,010,1),((Ⅱ) 当10<<y 时,Y 的概率密度为⎰⎰-===+∞∞-1ln 1),()(y Y y dx xdx y x f y f ; 当0≤y 或1≥y 时,0)(=y f Y .因此⎩⎨⎧<<-=.y y y f Y 其他,,010,ln )((Ⅲ) ⎰⎰⎰⎰->+==>+xx Y X dy xdx dxdy y x f Y X P 112111),(}1{ 2ln 1)12(121-=-=⎰dx x .【评注】本题考查了二维连续型随机变量的边缘概率密度, 条件概率密度, 联合概率密度的相互关系,以及二维连续型随机变量取值于一个区域的概率的计算,属于综合性题型.。
卷42004年高考试题全国
2004年高考试题全国卷4理科数学(必修+选修Ⅱ)(甘肃、青海、宁夏、贵州、新疆等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( ) A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交 C .如果m n m ,//,αα⊂、n 共面,那么n m //D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y xB .16822=+y x C .1222=+y xD .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为 ( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 . 15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18.(本小题满分12分) 求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率.20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x 将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)(甘肃、青海、宁夏、贵州、新疆等地区)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时 41c o s ,0c o s s i n-=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去y图1当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0)图2C所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得AE=23,又知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90°所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以 及综合运用的能力.满分14分.(Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而 ,3,2,1,==n n x n π.)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=e q 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++=),21(1-+++=n nq q q π),11()21(),2(122n nn n n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ从而).11(1nnn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年普通高等学校招生全国统一考试
理科综合能力测试(新、老课程)
1.某种病毒已侵入人体细胞内,机体免靶细胞发挥的免疫作用是()A.体液免疫B.细胞免疫C.自身免疫D.非特异性免疫
2.下列关于光合作用和呼吸作用的叙述,错误
..的是()A.光合作用和呼吸作用都包括一系列氧化还原反应
B.光合作用和呼吸作用必须在有水的条件下进行
C.光合作用的全部反应是呼吸作用全部反应的逆转
D.光合作用和呼吸作用都是能量转化过程
3.列下关于实验的描述,正确的是()A.将在蔗糖溶液中已发生质壁分离的洋葱表皮细胞转到更高浓度的蔗糖溶液中,则发生质壁分离复原
B.将斐林试剂加入到蔗糖溶液中,加热后出现砖红色沉淀
C.将肝脏研磨液煮沸冷却后,加入到过氧化氢溶液中立即出现大量气泡
D.将双缩脲试剂加入到蛋清稀释液中,溶液变成紫色
4.肺炎双球菌中的S型具有多糖类荚膜,R型则不具有。
下列叙述错误
..的是()A.培养R型活细菌时加S型细菌的多糖类物质,能产生一些具荚膜的细菌
B.培养R型活细菌时加S型细菌DNA的完全水解产物,不能产生具荚膜的细菌
C.培养R型活细菌时加S型细菌的DNA,能产生具荚膜的细菌
D.培养R型活细菌时加S型细菌的蛋白质,不能产生具荚膜的细菌
5.一个池塘有生产者(浮游植物)、初级消费者(植食性鱼类)、次级消费者(肉食性鱼类)和分解者(微生物)。
其中生产者固定的全部能量为a,流入初级消费者、次级消费者和分解者的能量依次为b、c、d,下列表述正确的是()A.a=b+d B.a>b+d C.a<b+d D.a<c+d
30.(15分)
为了验证促进有丝分裂物质对细胞分裂的促进作用,将小鼠的肝细胞悬浮液分成等细胞数的甲、乙两组,在甲组的培养液中加入3H标记的胸腺嘧啶脱氧核苷(3H-TdR);乙组中加
入等剂量的3H-TdR并加入促进有丝分裂物质。
培养一段时间后,分别测定甲、乙两组细胞
..的总放射性强度。
据此回答下列问题:
(1)细胞内3H-TdR参与合成的生物大分子是_________,该种分子所在的细胞结构名称是____________、___________。
(2)乙组细胞的总放射性强度比甲组的_________,原因是___________________________ ________________________________________________________________。
(3)细胞利用3H-TdR合成生物大分子的过程发生在细胞周期的_______期。
(4)在上述实验中选用3H-TdR的原因是_________________________________。
31.(20分)
回答下面的(1)—(2)题。
(1)下表是豌豆杂交组合的实验统计数据
据上表回答:
①上述两对相对性状中,显性性状为_________、_________。
②写出每一杂交组合中两个亲本植株的基因型,以A和a分别株高的显、隐性基因,B 和b分别表示花色的显、隐性基因。
甲组合为_________ × _________
乙组合为_________ × _________
丙组合为_________ × _________
丁组合为_________ × _________
戊组合为_________ × _________
③为最容易获得双隐性个体,应采用的杂交组合是__________。
(2)假设某一种酶是合成豌豆红花色素的关键酶,则在基因工程中,获得编码这种酶的基因的两条途径是_____________________________________和人工合成基因。
如果已经得到能翻译成该酶的信使RNA,则利用该信使RNA获得基因的步骤是______ _______________________,然后__________________________。
1—5 BCDAB
30.(20分)
(1)DNA,细胞核(或染色体)、线粒体
(2)高,乙组中有促进细胞分裂的物质,促进了细胞的分裂,摄取的3H—TdR比甲组多。
(3)间
(4)细胞的增殖有DNA的合成,而3H—TdR是合成DNA的原料,其放射性强度可被测定。
31.(22分)
(1)①高茎红花
②
甲组合:AaBb×aaBb
乙组合:AaBb×Aabb
丙组合:AABb×aaBb
丁组合:AaBB×aabb
戊组合:Aabb×aaBb
③戊组合
(2)从供体细胞的DNA分子直接分离基因;
以该信使RNA为模板,反转录成互补的单链DNA;在酶的作用下合成双链DNA。