中考数学复习 图形的认识

合集下载

(浙江专用)201x年中考数学总复习 第四章 图形的认识 4.4 多边形与平行四边形(试卷部分)

(浙江专用)201x年中考数学总复习 第四章 图形的认识 4.4 多边形与平行四边形(试卷部分)
3
3
3
(2)如图,由题意可知,△BAC≌△DEC(SAS),∴∠BAC=∠DEC,AC=EC,又∵AF=FE,FC=FC,∴
△ACF≌△ECF(SSS),∴∠CAF=∠CEF,∴∠BAC+∠CAF=∠DEC+∠CEF,即∠BAF=∠DEF=
120°.∴∠AFE=(6-2)×180°-120°×5=120°.
整理课件
)
2.(2015丽水,5,3分)一个多边形的每个内角均为120°,则这个多边形是 (
A.四边形
B.五边形
C.六边形
D.七边形
答案 C 解法一:∵多边形的每个内角均为120°,
∴每个外角的度数是180°-120°=60°.
∵多边形的外角和是360°,
∴这个多边形的边数是360÷60=6.故选C.
上的格点数,S表示多边形的面积.如图1,a=4,b=6,S=4+ 1 ×6-1=6.
2
(1)请在图2中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积;
(2)请在图3中画一个格点三角形,使它的面积为 7 ,且每条边上除顶点外无其他格点.
2
图1
图2
整理课件
图3
解析 (1)画法不唯一,如图①或图②,图①②中的格点正方形的面积分别为9,5.
(2)画法不唯一,如图③,图④.
整理课件
考点二 平行四边形的性质
1.(2017丽水,7,3分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是 (
A. 2
B.2
C.2
2
D.4
答案 C ∵四边形ABCD是平行四边形,
∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,

中考数学复习《多边形与平行四边形》

中考数学复习《多边形与平行四边形》

证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.

2023中考九年级数学分类讲解 - 第七讲 图形初步认识(含答案)(全国通用版)

2023中考九年级数学分类讲解 - 第七讲  图形初步认识(含答案)(全国通用版)

第七讲 图形初步认识专项一 点、线、面、角知识清单1. 两个基本事实:(1)两点确定一条直线;(2)两点之间,线段最短.2. 线段的中点:如图1,B 是线段AC 的中点,则AB=BC= .图1 图23. 线段的和与差:如图2,在线段AC 上取一点B ,则AB+BC= ;AB=AC- ;BC= .4. 角的定义:具有 的两条射线组成的几何图形叫做角,角也可以看作是一条射线绕其端点旋转而形成的几何图形.5. 1周角= º,1平角= º,1直角= º;1º= ′,1′= ″.6. 如果两个角之和等于 ,那么这两个角互为余角(互余);如果两个角之和等于 ,那么这两个角互为补角(互补).同角(或等角)的余角 ;同角(或等角)的补角 . 考点例析例1 互不重合的A ,B ,C 三点在同一直线上,已知AC =2a +1,BC =a +4,AB =3a ,这三点的位置关系是( ) A. 点A 在B ,C 两点之间 B. 点B 在A ,C 两点之间 C. 点C 在A ,B 两点之间D. 无法确定分析:分三种情况讨论:①点A 在B ,C 之间;②点B 在A ,C 之间;③点C 在A ,B 之间.再根据a>0判断. 例2 已知∠α=25°30′,则它的余角为( ) A. 25°30′B. 64°30′C. 74°30′D. 154°30′分析:根据“互为余角的两个角之和为90 º”直接计算即可. 跟踪训练1. 如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( ) A. aB. bC. cD. d① ②第1题图 第2题图第4题图2. 小光准备从A 地去往B 地,打开导航、显示两地距离为37.7 km ,但导航提供的三条可选路线长分别为45 km ,50 km ,51 km (如图).能解释这一现象的数学知识是( ) A. 两点之间,线段最短B. 垂线段最短C. 三角形两边之和大于第三边D. 两点确定一条直线3. 已知线段AB =4,在直线AB 上作线段BC ,使得BC =2.若D 是线段AC 的中点,则线段AD 的长为( ) A. 1B. 3C. 1或3D. 2或34.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图①所ABC ABC示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图②是由边长为4的正方形分割制作的七巧板拼摆而成的“叶问蹬”图,则图中抬起的“腿”(即阴影部分)的面积为()A. 3B. 72C. 2D.525.74°19′30″=°.6.若∠A=34°,则∠A的补角的度数是.专项二相交线知识清单1. 对顶角定义:两角有一个公共顶点,且两角的两边互为反向延长线,具有这种位置关系的两个角互为对顶角.举例:如图,∠1与∠3,∠2与∠4,∠5与,∠6与∠8.性质:对顶角.2. 三线八角(如图)同位角:∠1与∠5,∠2与,∠3与∠7,∠4与.内错角:∠2与∠8,∠3与.同旁内角:∠2与∠5,∠3与.3. 垂线定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,它们的交点叫做.性质:①在同一平面内,过一点有且只有直线与已知直线垂直;②垂线段最短.考点例析例 1 如图1,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD的度数是.图1 图2分析:根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,利用∠AOE+∠COE+∠BOC=180°求得∠BOC的度数,再由对顶角相等求得∠AOD的度数.例2 如图2,设P是直线l外一点,PQ⊥l,垂足为Q,T是直线l上的一个动点,连接PT,则()A. PT≥2PQB. PT≤2PQC. PT≥PQD. PT≤PQ分析:根据垂线段最短即可得到结论.跟踪训练1. 如图,与∠1是内错角的是()A. ∠2B. ∠3C. ∠4D. ∠5第1题图 第2题图 第3题图 第4题图 2. 如图,直线a ,b 相交于点O ,∠1=110°,则∠2的度数是( ) A. 70°B. 90°C. 110°D. 130°3. 如图,下列两个角是同旁内角的是( ) A. ∠1与∠2B. ∠1与∠3C. ∠1与∠4D. ∠2与∠44. 如图,点O 在直线AB 上,OC ⊥OD .若∠AOC =120°,则∠BOD 的度数为( ) A. 30°B. 40°C. 50°D. 60°专项三 平行线知识清单1. 定义:在同一平面内, 的两条直线叫做平行线.2. 公理:经过直线外一点,有且只有 直线与这条直线平行. 推论:如果a ∥b ,c ∥a ,那么 .3. 性质与判定:考点例析例1 如图1,直线l 1∥l 2,直线l 3交l 1于点A ,交l 2于点B ,过点B 的直线l 4交l 1于点C .若∠3=50°,∠1+∠2+∠3=240°,则∠4的度数是( ) A. 80°B. 70°C. 60°D. 50°图1 图2分析:根据“两直线平行,同旁内角互补”得∠1+∠3=180°,从而得到∠2的度数,再求得∠3+∠2的度数.利用“两直线平行,同旁内角互补”得到∠4对顶角的度数,从而得到∠4的度数.例2 (鞍山)如图2,直线a ∥b ,将一个含30°角的三角尺按图中所示的位置放置.若∠1=24°,则∠2的度数为( ) A. 120°B. 136°C. 144°D. 156°分析:过60°角的顶点作c ∥a ,如图所示.根据平行线的性质,先求出∠4的度数,进而求得∠3的度数.再由“两直线平行,同旁内角互补”求得∠2的度数.归纳:将三角尺放在平行线中,三角尺中各内角的度数是隐含条件,结合平行线的性质,把所求角度转化为已知角同旁内角__________ 两直线平行 判定性质 内错角____________ 两直线平行 判定 性质 同位角____________ 两直线平行 判定 性质度或隐含角度的和或差.跟踪训练1. 某同学的作业如下框:如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.第1题图其中※处填的依据是()A. 两直线平行,内错角相等B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,同旁内角互补2. 如图,AM∥BN,∠ACB=90°,∠MAC=35°,则∠CBN的度数是()A. 35°B. 45°C. 55°D. 65°第2题图第3题图第4题图3. 如图,AB∥CD,∠1=45°,∠2=35°,则∠3的度数为()A. 55°B. 75°C. 80°D. 105°4. 一块含30°角的直角三角尺和直尺如图放置.若∠1=146°33′,则∠2的度数为()A. 64°27′B. 63°27′C. 64°33′D. 63°33′5. 将一副三角尺如图所示摆放,则∥,理由是.第5题图6. 如图,AB∥CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F,求证:∠DEF=∠F.第6题图专项四线段垂直平分线与角平分线知识清单1. 线段的垂直平分线性质:线段垂直平分线上的点到线段两端点的相等.判定:到线段两端点距离相等的点在该线段的上.2. 角平分线定义:从一个角的顶点引一条射线,把这个角分成两个的角,这条射线叫做这个角的平分线.性质:角平分线上的点到角两边的距离.判定:角内部到角两边距离相等的点在上.考点例析例1如图1,在△ABC中,AC=4,∠A=60°,∠B=45°,边BC的垂直平分线DE交AB于点D,连接CD,则AB的长为.图1 图2分析:根据线段垂直平分线的性质得到DB=DC,进而可得∠DCB=∠B.利用三角形的外角性质得到∠ADC=90°.由含30°角的直角三角形的性质求出AD,再利用勾股定理求出DC,进而求得AB.归纳:有线段垂直平分线就有等腰三角形,这样不仅有两组相等线段,还有两组相等的角,一组垂直关系.例2 如图2,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A. 8 B. 7.5 C. 15 D. 无法确定分析:过点D作DE⊥BC于点E,如图2所示.根据角平分线的性质得到DE=DA=3,然后利用三角形的面积公式计算.跟踪训练1.如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,连接AE.若AE=4,EC=2,则BC的长是()A. 2B. 4C. 6D. 8第1题图第2题图2.如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A. 10.5B. 12C. 15D. 183.如图,在□ABCD中,AD=4,对角线BD=8,分别以点A,B为圆心,大于12AB的长为半径画弧,两弧相交于点E,F,作直线EF,交对角线BD于点G,连接GA,GA恰好垂直于边AD,则GA的长是()A. 2 B. 3 C. 4 D. 5第3题图第4题图第5题图第6题图4. 如图,AD是△ABC的角平分线.若∠B=90°,BD D到AC的距离是.5. 如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若BC=4,DE=1.6,则BD的长为.6.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E.若CD=3,BD=5,则BE的长为.专项五命题、定理与反证法知识清单1. 命题:判断的语句,叫做命题;命题由和两部分组成,可写成“”的形式.命题分为真命题和命题.判断一个命题为假命题,只需举出一个反例即可.2. 定理:经过推理论证,可以作为推理依据的命题叫做定理.3. 互逆命题和互逆定理:在两个命题中,如果第一个命题的条件是第二个命题的,而第一个命题的结论是第二个命题的,那么这两个命题叫做互逆命题.如果一个定理的逆命题能被证明是命题,那么就叫它是原定理的逆定理.4. 反证法:在证明一个命题时,人们有时先假设命题,从这样的假设出发,经过推理得出和已知条件,或者与定义、基本事实、定理等,从而得出假设命题不成立,即所求证的命题正确. 这种证明方法叫做反证法.考点例析例1 下列命题是真命题的是()A. 正六边形的外角和大于正五边形的外角和B. 正六边形的每一个内角为120°C. 有一个角是60°的三角形是等边三角形D. 对角线相等的四边形是矩形分析:由多边形的外角和都是360º对选项A作出判断;根据多边形的内角和公式及正多边形各内角度数相等对选项B作出判断;利用等边三角形的判定、矩形的判定对选项C,D作出判断.例2 能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A. -1B. x+1C. x=D. x分析:当x2是有理数时,就是反例,所以应求出各选项中x2的值,再判断.归纳:要判断一个命题是真命题,必须经过推理论证;要判断一个命题是假命题,只需举一个反例即可.跟踪训练1.下列命题中,假命题是()A. 直角三角形斜边上的中线等于斜边的一半B. 等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合C. 若AB=BC,则B是线段AC的中点D. 三角形三条边的垂直平分线的交点叫做这个三角形的外心2. 下列命题中,假命题是()A. 两组对边平行的四边形是平行四边形B. 三个角是直角的四边形是矩形C. 四条边相等的四边形是菱形D. 有一个角是直角的平行四边形是正方形3.下列命题:的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;③天气预报明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形.其中真命题的个数是()A. 0 B. 1 C. 2 D. 34. 用反证法证明“在△ABC中,若∠A>∠B>∠C,则∠A>60°”时,应先假设()A. ∠A=60°B. ∠A<60°C. ∠A≠60°D. ∠A≤60°5.下列命题中,真命题的个数为.①所有的正方形都相似;②所有的菱形都相似;③边长相等的两个菱形相似;④对角线相等的两个矩形相似.6. 写出命题“全等三角形对应边相等”的逆命题:.专项六尺规作图知识清单1. 在几何中,把只能使用和这两种工具作图的方法称为尺规作图.2. 五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角;③作角的平分线;④作线段的垂直平分线;⑤过一个点(这个点在直线上或直线外)作已知直线的垂线.考点例析例1 如图1,已知直线l1∥l2,直线l3分别与l1,l2交于点A,B.请用尺规作图法,在线段AB上求作一点P,使点P到l1,l2的距离相等.(保留作图痕迹,不写作法)图1 图2分析:作线段AB的垂直平分线得到线段AB的中点,则该中点即为所求作的点P.解:例2 请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图2,∠O及其一边上的两点A,B,求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.分析:先在∠O的内部作∠DAB=∠O,再过点B作AD的垂线,垂足为C.解:跟踪训练1. 如图,已知直线AB和AB上一点C,过点C作直线AB的垂线,步骤如下:第一步:以点C为圆心,以任意长为半径作弧,交直线AB于点D,E;第二步:分别以点D,E为圆心,以a为半径画弧,两弧交于点F;第三步:作直线CF,直线CF即为所求.下列关于a的说法正确的是()A. a≥12DE的长 B. a≤12DE的长 C. a>12DE的长 D. a<12DE的长第1题图第2题图2. 如图,在△ABC中,∠BAC=70°,∠C=40°,分别以点A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A. 30°B. 40°C. 50°D. 60°3. 如图,在Rt△ABC中,∠ACB=90°,D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.①②第3题图第4题图4.已知△ABC和△CDE都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图①,当BC=CD时,作△ABC的中线BF;(2)如图②,当BC≠CD时,作△ABC的中线BG.专项七平行线中的转化思想知识清单转化思想就是把陌生的问题转化为熟悉的问题,把复杂的问题转化为简单的问题.利用转化思想可以解决平行线中的“折线问题”,转化方法为过折点作平行线,把折角转化为两角的和或者差,图形转化为两条直线平行,利用平行线的性质解答.考点例析例如图,AB∥CD,EF⊥CD于点F.若∠BEF=150°,则∠ABE的度数为()A. 30°B. 40°C. 50°D. 60°分析:过点E作EG∥AB,如图所示.由垂直的定义,得∠EFD=90°,利用平行线的性质得∠GEF的度数,结合∠BEF=150°得到∠BEG的度数,再根据平行线的性质得∠ABE的度数.跟踪训练1. 如图,将一块含有60°角的直角三角尺放置在两条平行线上.若∠1=45°,则∠2的度数为()A. 15°B. 25°C. 35°D. 45°第1题图第2题图第3题图第4题图2. 一把直尺与一块直角三角尺按图中方式摆放.若∠1=47°,则∠2的度数为()A. 40°B. 43°C. 45°D. 47°3. 一副三角尺如图所示放置,两三角尺的斜边互相平行,每个三角尺的直角顶点都在另一个三角尺的斜边上,则图中∠α的度数为()A. 45°B. 60°C. 75°D. 85°4. 如图,一束太阳光线平行照射在放置于地面的正六边形上.若∠1=19°,则∠2的度数为()A. 41°B. 51°C. 42°D. 49°参考答案专项一点、线、面、角例1 A 例2 B1. A2. A3. C4. A5. 74.3256. 146°专项二相交线例1 60 例2 C1. C2. C3. B4. A专项三平行线例1 B 例2 C1. C2. C3. C4. B5. BC ED 内错角相等,两直线平行6. 证明:因为AB∥CD,所以∠DCF=∠B.因为∠B=∠D,所以∠DCF=∠D.所以AD∥BC.所以∠DEF=∠F.专项四线段垂直平分线与角平分线例1 2+例2 B1. C2. C3. B4.5. 2.46. 4专项五命题、定理与反证法例1 B 例2 C1. C2. D3. B4. D5. 16. 三组对应边相等的两个三角形全等专项六尺规作图例1 如图1,点P即为所求作.图1 图2例2 如图2,Rt△ABC即为所求作.1. C2. A3. (1)解:如图,AE即为所求作.①②第3题图第4题图(2)证明:因为AE平分∠BAC,所以∠CAE=∠DAE.在△ACE和△ADE中,AC=AD,∠CAE=∠DAE,AE=AE,所以△ACE≌△ADE(SAS). 所以∠ADE=∠C=90°.所以DE⊥AB.4. 解:(1)如图①,线段BF即为所求作.(2)如图②,线段BG即为所求作.专项七平行线中的转化思想例 D1. A2. B3. C4. A。

中考数学复习第四章图形的初步认识与三角形第17讲等腰三角形与直角三角形

中考数学复习第四章图形的初步认识与三角形第17讲等腰三角形与直角三角形

12
【思路点拨】 本题考查等腰三角形的性质.根据等腰三角形的性质和三角形 的内角和即可得到结论.
第一部分 教材同步复习
13
1.(2017海南)已知△ABC的三边长分别为4,4,6,在△ABC所在平面
内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样
的直线最多可画__________条. A.3
第一部分 教材同步复习
6
(2)在 Rt△ABC 中,∠ACB=90°,∠A=30°,BC=1,则 AB 边上的中线长为
A.1
B.2
(A )
C.1.5
D. 3
(3)已知直角三角形中 30°角所对的直角边为 2 cm,则斜边的长为
(B )
A.2 cm
B.4 cm
C.6 cm
D.8 cm
第一部分 教材同步复习
周长:c=a+b+c;
周长、 面积
面积:SRt△ABC=12ab=12ch(其中
a,b
为两个直角边,c
为斜边,h
为斜边上
的高)
第一部分 教材同步复习
知识点四 等腰直角三角形的判定与性质
【回顾】
(1)等腰直角三角形的直角边为 2,则斜边的长为
A. 2
B.2 2
C.1
D.2
1 (2)等腰直角三角形的斜边长 2,则它的面积为___2_______.
第一部分 教材同步复习
8
(1)有一个角为⑤___9_0_°_____的三角形是直角三角形;
判 (2)勾股定理逆定理:如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么 定 这个三角形是直角三角形;
(3)一条边的中线等于这条边的一半的三角形是直角三角形;

中考数学总复习第一编教材知识梳理篇第四章图形的初步认识与三角形、四边形第二节三角形的基本概念及全等三

中考数学总复习第一编教材知识梳理篇第四章图形的初步认识与三角形、四边形第二节三角形的基本概念及全等三

第二节三角形的根本概念及全等三角形,怀化七年中考命题规律)年份题型题号考察点考察内容分值总分2021解答17全等三角形全等三角形的判定及其性质882021 解答17三角形中位线利用三角形的中位线的性质得条件,证三角形全等882021选择5全等三角形以等腰梯形为背景,判断三角形全等3填空15三角形内外角关系利用三角形的内外角关系求角362021选择5三角形中位线以测量池塘为背景,利用三角形中位线的性质得33到两点间的距离2021解答19全等三角形以等腰梯形为背景证三角形全等10填空11三角形中位线以平行四边形为背景,利用三角形中位线的性质求线段的长度3132021选择2三角形内外角的关系利用三角形的外角及内角的关系比拟大小33命题规律纵观怀化七年中考,“三角形的根本概念及全等三角形〞这一考点其余各年都有考察,根本概念考察层次偏低,全等三角形考察中等,其中,三角形内外角关系考察2次,三角形中位线考察3次,全等三角形考察3次.命题预测预计2021年怀化中考会以三角形中的重要线段,三主要考察对象,全等三角形的判定与性质也会在解答题中考察.,怀化七年中考真题及模拟)三角形的内外角关系(2次)1.(2021怀化中考)如下图,∠A,∠1,∠2的大小关系是( B)A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠1(第1题图)(第2题图)2.(2021怀化中考)如图,在△ABC中,∠A=30°,∠B=50°,延长BC 到D,那么∠ACD=__80°__.三角形的中位线(3次)3.(2021怀化中考)如图,为测量池塘边A,B两点的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点D,E,且DE=14 m,那么A,B间的距离是( C)A.18 m B.24 m C.28 m D.30 m(第3题图)(第4题图)4.(2021怀化中考)如图,在▱ABCD中,AD=8,点E,F分别是BD,CD 的中点,那么EF=__4__.全等三角形(3次)5.(2021怀化中考)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC及BD相交于点O,那么以下判断不正确的选项是( B)A.△ABC≌△DCB B.△AOD≌△COBC .△ABO ≌△DCOD .△ADB ≌△DAC(第5题图)(第6题图)6.(2021怀化二模)如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上.添加以下条件,不能判定△POC≌△POD 的选项是( D )A .PC ⊥OA ,PD ⊥OB B .OC =OD C .∠OPC =∠OPD D .PC =PD7.(2021怀化学业考试指导)一个等腰三角形的两边长分别为2与5,那么它的周长为( C )A .7B .9C .12D .9或128.(2021鹤城模拟)三角形的两边长分别为3与6,第三边的长是方程x 2-6x +8=0的一个根,那么这个三角形的周长是( D )A .2或4B .11或13C .11D .139.(2021芷江模拟)在△ABC 中,∠ABC =30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( D )A .3个B .4个C .5个D .6个10.(2021怀化考试说明)如图,D 为△ABC 内一点,CD 平分∠ACB,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE,假设AC =5,BC =3,那么BD 的长为( D )A .2.5B .1.5C .2D .111.(2021怀化中考)如图,在等腰梯形ABCD 中,点E 为底边BC 的中点,连接AE ,DE.求证:AE =DE.证明:∵四边形ABCD 为等腰梯形,∴AB =DC ,∠B =∠C,∵E 为BC 的中点,∴BE =CE ,∴△ABE ≌△DCE(SAS ),∴AE =DE.12.(2021怀化中考)如图,AD =BC ,AC =BD. (1)求证:△ADB≌△BCA;(2)OA 及OB 相等吗?假设相等,请说明理由.证明:(1)在△ADB 与△BCA 中,⎩⎪⎨⎪⎧AD =BC ,AC =BD ,AB =BA ,∴△ADB ≌△BCA(SSS );(2)OA =OB.理由如下:∵△ADB≌△BCA,∴∠DBA =∠CAB,即∠OAB=∠OBA,∴OA =OB.13.(2021怀化一模)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D,∠B =∠C,求证:AB =DC.证明:∵BE=CF ,∴BF =CE ,又∵∠A=∠D,∠B =∠C,∴△ABF ≌△DCE ,∴AB =DC.14.(2021洪江模拟)△ABN 与△ACM 的位置如下图,AB =AC ,AD =AE ,∠1=∠2.求证:(1)BD =CE ;(2)∠M=∠N.证明:(1)∵在△ABD 与△ACE中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE ,∴BD =CE ;(2)∵△ABD≌△ACE,∴∠ADB =∠AEC.又∵∠MDO=∠ADB,∠NEO =∠AEC,∴∠MDO =∠NEO.∵∠MOD=∠NOE,∴180°-∠MDO-∠MOD=180°-∠NEO-∠NOE,∴∠M =∠N.考点清单)三角形分类及三边关系1.三角形分类 (1)按角分类锐角三角形直角三角形钝角三角形(2)按边分类两条边相等的三角形 三边相等的三角形 三边互不相等的三角形 __等腰__三角形__等边__三角形不等边三角形2.三边关系:三角形任意两边之与__大于__第三边,任意两边之差小于第三边,如图,__a +b__>c ,|a -b|<__c__.3.判断几条线段能否构成三角形:运用三角形三边关系判定三条线段能否构成三角形,并不一定要列出三个不等式,只要两条较短的线段长度之与大于第三条线段的长度即可判断这三条线段能构成一个三角形.三角形内角与定理及内外角关系4.内角与定理:三角形的内角与等于__180°__.5.内外角关系:三角形的一个外角__等于__及它不相邻的两个内角之与.三角形的一个外角大于任何一个与它不相邻的内角.三角形中的四条重要线段四线定义性质 图形中线连接一个顶点及它对边中点的线段BD =DC高线从三角形一个顶点到它对边所在直线的垂线段AD⊥BC,即∠ADB=∠ADC=90°续表角平分线一个内角的平分线及这个角的对边相交,顶点及交点之间的线段∠1=∠2中位线连接三角形两边中点的线段DE∥BC且DE=12BC全等三角形及其性质6.定义:能完全重合的两个三角形叫做全等三角形.7.性质:(1)全等三角形的对应边__相等__,对应角__相等__.(2)全等三角形的对应线段(角平分线、中线、高线、中位线)相等,对应__周长__相等,对应面积__相等__.全等三角形的判定8.三角形全等的判定类型图形条件是否全等形成结论一般三角形的判定A1B1=A2B2,B1C1=B2C2,A1C1=A2C2是__SSS__∠B1=∠B2,B1C1=B2C2,∠C1=∠C2是ASA ∠B1=是AAS∠B 2, ∠C 1=∠C 2, A 1C 1=A 2C 2 A 1B 1=A 2B 2, ∠B 1=∠B 2, B 1C 1=B 2C 2 是 __SAS __续表直角 三角 形的 判定A 1B 1=A 2B 2,A 1C 1=A 2C 2,是__HL __【方法技巧】证明三角形全等的思路判定三角形全等⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧两边⎩⎪⎨⎪⎧找夹角→SAS 找直角→HL 或SAS找另一边→SSS 一边和一角⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS 边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS 找夹边的另一角→ASA 找边的对角→AAS两角⎩⎪⎨⎪⎧找夹边→ASA找任一边→AAS,中考重难点突破)三角形三边关系【例1】(2021 洪江模拟)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.假设调整木条的夹角时不破坏此木框,那么任意两个螺丝间距离的最大值为( )A .5B .6C .7D .10【解析】4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,那么三边长为5、4、6;5-4<6<5+4,能构成三角形,此时两个螺丝间的最大距离为6;②选3+4、6、2作为三角形,那么三边长为2、7、6;6-2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,那么三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;④选6+2、3、4作为三角形,那么三边长为8、3、4;而3+4<8,不能构成三角形,此种情况不成立.综上所述,任意两个螺丝间距离的最大值为7. 【学生解答】C1.(2021岳阳中考)以下长度的三根小木棒能构成三角形的是( D ) A .2 cm ,3 cm ,5 cm B .7 cm ,4 cm ,2 cm C .3 cm ,4 cm ,8 cm D .3 cm ,3 cm ,4 cm三角形的内角与外角关系【例2】(2021原创)如图,CD 是△ABC 外角∠ACE 的平分线,AB ∥CD ,∠A =50°,那么∠B 的大小是( )A .50°B .60°C .40°D .30°【解析】∵AB∥CD,∴∠A =∠ACD=50°,又∵CD 是△ABC 外角∠ACE 的平分线,∴∠ACD =∠DCE=50°,∴∠ACE =2∠ACD=100°,由三角形内外角关系可得∠B +∠A=∠ACE,∴∠B =∠ACE -∠A =100°-50°=50°.【学生解答】A2.(2021乐山中考)如图,CE 是△ABC 的外角∠ACD 的平分线,假设∠B=35°,∠ACE =60°,那么∠A=( C )A .35°B .95°C .85°D .75°三角形中重要线段的应用【例3】在△ABC 中,D 为AB 的中点,E 为AC 上一点,CE =13AC ,BE ,CD 交于点O ,BE =5 cm ,那么OE =________cm .(例3题图)(例3题解图)【解析】如解图,过D 作DF∥BE,那么DF 就是三角形ABE 的中位线,∴DF =12BE ,AF =EF ,又∵CE =13AC ,∴CE =EF ,∴OE 就是三角形CDF 的中位线,∴OE =12DF =14BE =1.25 cm .【学生解答】1.253.(2021枣庄中考)如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C′处,P 为直线AD 上的一点,那么线段BP 的长不可能是( A )A .3B .4C .5.5D .10全等三角形的证明及性质【例4】如图,点D 为等腰Rt △ABC 内一点,∠CAD =∠CBD=15°,E 为AD 延长线上的一点,,且DC =DM ,试探究线段ME 及BD 的数量关系,并说明理由.【解析】连接MC ,先证△BDC≌△ADC,再证△ADC≌△EMC.【学生解答】解:如图,连接MC ,在等腰Rt △ABC 中,∵∠CAD =∠CBD=15°,∴∠BAD =∠ABD=45°-15°=30°,∴BD =AD ,又AC =BC ,∴△BDC ≌△ADC(SSS ),∴∠DCA =∠DCB=45°,∠EDC =∠DAC+∠DCA=15°+45°=60°.∵DC =DM ,∴△MDC 是等边三角形,即CM =CD ,又∵∠EMC=180°-∠DMC=180°-60°=120°,∠ADC =180°-∠MDC =180°-60°=120°,∴∠EMC =∠ADC.又∵CE=CA ,∴∠DAC =∠CEM =15°,∴△ADC ≌△EMC(AAS ),∴ME =AD =DB ,∴ME =BD.4.(2021南京中考)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABO ≌△ADO ,以下结论:①AC⊥BD;②CB=CD ;③△ABC≌△ADC;④DA =DC ,其中正确结论的序号是__①②③__.图形旋转中全等三角形的判定及性质【例5】(2021 苏州中考)如图,在Rt △ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF.(1)求证:△BCD≌△FCE;(2)假设EF∥CD,求∠BDC 的度数.【解析】(1)由旋转的性质可得:CD =CE ,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE.(2)由(1)可知△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC 的度数.【学生解答】解:(1)∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°,又∵∠ACB =90°,∴∠BCD =90°-∠ACD=∠FCE,在△BCD 与△FCE中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE,CD =CE ,∴△BCD ≌△FCE(SAS );(2)第 11 页 由(1)可知△BCD≌△FCE ,∴∠BDC =∠E ,∵EF ∥CD ,∴∠E =180°-∠DCE=90°,∴∠BDC =90°.5.(2021怀化三模)如图,在Rt △ABC 中,∠ABC =90°,点D 在边AB 上,使DB =BC ,过点D 作EF⊥AC,分别交AC 于点E ,交CB 的延长线于点F.求证:AB =BF.提示:证Rt △ABC ≌Rt △FBD 即可.6.(2021淄博中考)如图,△ABC,AD 平分∠BAC 交BC 于点D ,BC 的中点为M ,ME ∥AD ,交BA 的延长线于点E ,交AC 于点F.求证:(1)AE =AF ;(2)BE =12(AB +AC). 证明:(1)∵AD 平分∠BAC,∴∠BAD =∠CAD.∵AD∥EM,∴∠BAD =∠AEF ,∠CAD =∠AFE ,∴∠AEF =∠AFE ,∴AE =AF ;(2)过点C 作CG∥EM,交BA 的延长线于点G ,∴∠AGC =∠AEF,∠ACG =∠AFE.∵∠AEF =∠AFE,∴∠AGC =∠ACG,∴AG =AC.∵BM=CM ,EM ∥CG ,∴BE =EG ,∴BE =12BG =12(BA +AG)=12(AB +AC).。

精品 中考数学一轮综合复习 第07课 图形认识、相交线与平行线

精品 中考数学一轮综合复习 第07课 图形认识、相交线与平行线

中考数学一轮复习第07课 图形认识、相交线与平行线知识点:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧,两直线平行,两直线平行,两直线平行平行线判定平行公理推论:平行公理:定义:平行线:三线八角:对顶角:邻补角:两条直线的位置关系:相交线定理:补角:余角:余角与补角度换算成都、分、秒:度、分、秒换算度:单位换算:角的换算角的表示方法定义:角的认识:线段:射线:直线:方法:立方体展开图对面识别:展开图不能拼成立方体三视图:图形认识课堂同步:1.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为()A.5B.4C.3D.2第1题图第2题图第3题图2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是()A.文B.明C.奥D.运3.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )A.6B.8C.12D.244.如果一个角的补角是1200,那么这个角的余角是( )A.30°B.60°C.90°D.150°5.如图所示,点A、 B、C是直线l上的三个点,图中共有线段的条数是( )A.1B.2C.3D.46.若∠α的补角是420,∠β的余角是520,则∠α和∠β的大小关系是( )A.∠α>∠βB.∠α<∠βC.∠α=∠βD.不能确定7.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()A.∠1B.∠2C.∠4D.∠5第7题图第8题图第9题图8.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55º,则∠BOD的度数是()A.35ºB.55ºC.70ºD.110º9.如图所示,已知∠AOC=∠BOD=∠780,∠BOC=350,则∠AOD等于( )A.113°B.121°C.156°D.86°10.如图所示,已知O是直线AB上一点,∠1=400,OD平分∠BOC,则∠2的度数是( )A.20°B.25°C.30°D.70011.如图,已知AB ∥CD,BE 平分∠ABC,且交CD 于D 点,∠CDE=1500,则∠C 为( )A.120°B.150°C.135°D.110°第10题图 第11题图 第12题图12.如图已知直线a ∥b,∠1=400,∠2=600,则∠3等于( )A.100°B.60°C.40°D.2013.如图,已知AB ∥CD ,则图中与∠1互补的角有( )A.2个B.3个C.4个D.5个第13题图 第14题图 第15题图14.如图,l ∥m ,∠1=1150,∠2=950,则∠3=( )A.120°B.130°C.140°D.150°15.如图l 1∥l 2,l 3⊥l 4,∠1=42°,那么∠2的度数为( )A.48°B.42°C.38°D.21016.如图,直线l 1∥l 2,∠1=400,∠2=750,则∠3等于( )A.55°B.60°C.65°D.70°第16题图 第17题图 第18题图17.图中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角,关于这七个角的度数关系,下列正确的是( )A.742∠∠∠+=B.613∠∠∠+=C.︒∠∠∠180641=++D.︒∠∠∠360532=++18.如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( )A.0180=∠+∠+∠γβαB.0180=∠+∠-∠γβαC.0180=∠-∠+∠γβαD.0270=∠+∠+∠γβα19.如图,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )A.180°B.360°C.540°D.720°第19题图 第20题图 第21题图20.如图,OP ∥QR ∥ST ,则下列各式中正确的是( )A.∠1+∠2+∠3=180°B.∠1+∠2-∠3=900C.∠1-∠2+∠3=900D.∠2+∠3-∠1=180°21.一根直尺EF 放在三角板300的角∠BAC 上,与两边AC ,AB 交于M 、N.那么∠CME+∠BNF 是( )A.150°B.180°C.135°D.不能确定22.如图,O 为直线AB 上一点,∠COB=26°30′,则∠1= 度.23.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______24.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是25.一个画家有14个棱长为1米的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为26.已知两个角的和等于850,它们的差等于260,则这两个角分别是________27.8点30分时,钟表的时针与分针的夹角为 °.28.将一张矩形纸片折叠成如图所示的形状,则 ABC=__________度.第28题图 第29题图29.如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=350,∠P=900,则∠3=30.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为 .第30题图第31题图第32题图31.将一副直角三角板如图放置,使含300角的三角板的段直角边和含450角的三角板的一条直角边重合,则∠1的度数为___________32.如图,等边△ABC的边长为6,AD是BC边上的中线,P是AD上的动点,E是AC边上中点.,PC+PE的最小值为33.如图,在锐角AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.34.填空:(1)用度、分、秒表示54.120= .(2)32°44′24″等于度.(3)133°22′43″÷3= .35.如图,已知AC=CD=DB,AC=2AM,BN=12BM,如果MN=5cm,求AB、CN的长.36.如图所示,OB、OC是∠AOD内任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,用α、β表示∠AOD.37.如图,AD平分∠BAC.点F在BD上.FE∥AD交AB于G.交CA的延长线于E,求证:∠AGE=∠E.38.如图,在三角形ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC.试说明∠1=∠2.39.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,求证:∠B=∠C.40.如图,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.第07课图形认识、相交线与平行线测试题日期:月日满分:100分时间:20分钟姓名:得分:1.将一个正方体沿某些棱展开后,能够得到的平面图形是()2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山第2题图第3题图第4题图第5题图3.将棱长是1cm的小正方体组成如图所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm24.如图,是由几个相同小正方体搭成的几何体的三视图,则搭成这个几何体小正方体的个数是()A.5B.6C.7D.85.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3B.4C.12D.166.下列说法正确的是( )A.直线AB与直线BA不是同一条直线B.线段AB与线段BA不是同一条线段C.射线OA与射线AO不是同一条射线D.射线OA与射线AO是同一条射线7.300角的余角是( )A.30°角B.60°角C.90°角D.150°角8.经过任意三点中的两点共可以画出的直线条数是()A.一条或三条B.三条C.两条D.一条9.一个角比它的余角小150,这个角是( )A.37.5°B.75°C.60°D.65°10.如图,直线AB 与直线CD 相交于点O,E 是AOD ∠内一点,已知OE ⊥AB,︒=∠45BOD ,则COE ∠的度数是( ) A.︒125 B.︒135 C.︒145 D.︒155第10题图 第11题图 第12题图11.将一副三角板按图中的方式叠放,则角α等于( )A.750B.600C.450D.30012.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=30o 时,∠BOD 的度数是( ).A.60oB.120oC.60o 或 90oD.60o 或120o13.如图,l ∥m ,∠1=1150,∠2=950,则∠3=( )A.120°B.130°C.140°D.150°14.如图,能与∠α构成同旁内角的角有( )A.1个B.2个C.5个D.4个15.如图,△ABC 中,∠C=900,AC=3,点P 是边BC 上的动点,则AP 长不可能...是( ) A.2.5 B.3 C.4 D.516.如图,直线DE 交∠ABC 的边BA 于点D,若DE ∥BC,∠B=700,则∠ADE 的度数是第16题图第17题图第18题图第19题图17.如图,已知∠1=∠2=∠3=620,则∠4=18.将一副三角板摆放成如图所示,图中∠1=度.19.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOD=1000,则∠AOE=_____.20.如图,AB和CD都是直线,∠AOE=900,∠3=∠FOD,∠1=27020/,求∠2、∠3的度数.21.如图,已知AB∥CD,EF分别交AB,CD于G,H,GM,HN分别平分∠AGF,∠EHD.试说明GM∥HN.。

初中数学中考[图形的认识]第4讲相似三角形(教师版)

初中数学中考[图形的认识]第4讲相似三角形(教师版)

【知识梳理】【方法技巧】1、判定三角形相似的基本思路:一是条件中若有一组等角,可再找一组等角(找相等的角时注意挖掘公共角、对顶角、同角的余角或者同角的补角)或找夹这组等角的两组对应边成比例;二是条件中若有两组对应边成比例,可找夹角相等或计算第三组对应边的比,考虑三组对应边成比例(具体方法如下:首先把三角形的边分别按照从小到大的顺序排列,找出两个三角形的对应边;再分别计算小、中、大边的比,最后看三个比是否相等)。

2、解决圆中的相似问题时,要充分运用圆周角定理,圆心角、弧、弦的关系定理,切线的性质等找出角之间的关系,进而利用相似三角形的判定定理及性质求解。

3、相似三角形的基本模型:(1)“A ”字型(2)“X ”字型(3)“K ”字型(4)旋转型:符合旋转型的两个三角形,常用“两边成比例及夹角相等”来证明相似BBB CB C CQ DBA(5)母子型:在“母子三角形”中,应用公共边可得到关于三条线段的乘方式,由此可证明相似问题中的等积式。

4、位似图形必须同时满足两个条件:(1)两个图形是相似图形(2)两个图形的每组对应顶点的连线都经过同一点5、关于位似的警示点:(1)位似图形一定是相似图形,但是相似图形不一定是位似图形(2)位似图形可能在位似中心的同侧,也可能在位似中心的两侧,因此作一个图形关于某点的位似图形往往有两个。

如图: O A B C D OA B CD D CB AC D B A6、在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).【考点突破】考点1、基本概念与定理例1、如果2x=3y(x、y均不为0),那么下列各式中正确的是()A.=B.=3 C.=D.=变式1、已知=,那么的值为()A.B.C.D.变式2、下列各组中的四条线段成比例的是()A.1cm、2cm、20cm、30cm B.1cm、2cm、3cm、4cmC.5cm、10cm、10cm、20cm D.4cm、2cm、1cm、3cm例2、△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16变式1、已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.变式2、如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:6例3、如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.变式1、如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c 于点D,E,F,若=,则=()A.B.C.D.1例4、如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.变式1、如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.∠C=∠E B.∠B=∠ADE C.D.例5、在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A.B.C.D.变式2、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.考点2:位似例1、在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC 的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A.B.C.D.变式1、如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.变式2、如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A.1B.2C.3D.4例2、已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6cm2,△A′B′C′的周长是△ABC的周长一半.则△ABC的面积等于()A.24cm2B.12cm2C.6cm2D.3cm2变式1、如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1B.2C.4D.8考点3:相似的应用例1、小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米变式1、如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=4米,CA=2米,则树的高度为()A.6米B.4.5米C.4米D.3米例2、如图,为了估计河的宽度,在河的对岸选定一个目标点A,在近岸取点B,C,D,E,使点A,B,D 在一条直线上,且AD⊥DE,点A,C,E也在一条直线上且DE∥BC.如果BC=24m,BD=12m,DE=40m,则河的宽度AB约为()A.20m B.18m C.28m D.30m变式1、如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2cm,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.15变式2、如图,在河两岸分别有A、B两村,现测得A、B、D在一条直线上,A、C、E在一条直线上,BC∥DE,DE=90米,BC=70米,BD=20米,则A、B两村间的距离为()A.50米B.60米C.70米D.80米变式3、为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是()A.75米B.25米C.100米D.120米考点3、常见相似模型例1、如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④ D.①②③⑤变式1、如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C.=D.=例2、如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC等于()A.2 B.3 C.4 D.5变式1、如图,PA切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则PA的长为.例3、如图,在△ABC中,∠C=60°,以分别交AC,BC于点D,E,已知圆O的半径为.则DE的长为.变式1、如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.9例4、如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE变式1、如图,边长为4的正方形ABCD中有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若BF=1,则小正方形的边长为()A.B.C.D.变式2、如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD(填:“≌”或“~”)(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.例5、如图,在△ABC中,AB=AC,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=α,DE 交AC于点E.写出相似三角形________________.变式1、等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别交边AB、AC于点E、F.(1)如图1,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x 的函数关系式,并写出自变量x的取值范围;(2)如图2,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.例6、如图,在Rt△ABC中,CD是边AB上的高,若AC=4,AB=10,则AD的长为()A.B.2 C.D.3变式1、如图,△ABC中,∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则CD= .变式2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是,AC 的长是.例7、如图,矩形EFHG的边GH在△ABC边BC上,其他两个顶点分别在边AB、AC上,已知△ABC 的边BC=120cm,BC边上的高AD为80cm;求:(1)当矩形EFHG是正方形时,求这个正方形的边长;(2)设EG的长为x cm,x为何值时,矩形EFHG的面积最大?并求面积的最大值.变式1、如图,锐角△ABC中,BC=6,S△ABC=12,两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y,则y与x 的函数图象大致是()A.B.C.D.【分层训练】<A组>1.△ABC∽△DEF,且相似比为2:1,△ABC的面积为8,则△DEF的面积为()A.2 B.4 C.8 D.162.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.75cm,115cm B.60cm,100cm C.85cm,125cm D.45cm,85cm3.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值为()A.B.5 C.或5 D.无数个4.如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C、D、E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(4,2) B.(6,0) C.(6,3) D.(6,5)5.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米6.我们在制作视力表时发现,每个“E”形图的长和宽相等(即每个“E”形图近似于正方形),如图,小明在制作视力表时,测得l1=14cm,l2=7cm,他选择了一张面积为4cm2的正方形卡纸,刚好可以剪得第②个小“E”形图.那么下面四张正方形卡纸中,能够刚好剪得第①个大“E”形图的是()A.面积为8cm2的卡纸B.面积为16cm2的卡纸C.面积为32cm2的卡纸D.面积为64cm2的卡纸7.如图,四边形ABCD各顶点的坐标分别为A(2,6),B(4,2),C(6,2),D(6,4),在第一象限内,画出以原点为位似中心,相似比为的位似图形A1B1C1D1,并写出各点坐标.8.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).<B组>1.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA 水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个2.九年级某班开展数学活动,活动内容为测量如图所示的电杆AB的高度.在太阳光的照射下,电杆影子的一部分(BE)落在地面上,另一部分(EF)落在斜坡上,站在水平面上的小明的影子为DG,已知斜坡的倾角∠FEH=30°,CD=1.6m,DG=0.8m,BE=2.1m,EF=1.7m,则电杆的高约为m.(精确到0.1,参考数据:,)3.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm 的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.4.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)5.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.参考答案【考点突破】考点1、基本概念与定理例1、解:∵2x=3y,∴=,∴选项A不正确;∵2x=3y,∴=,∴==3,∴选项B正确;∵2x=3y,∴=,∴==,∴选项C不正确;∵2x=3y,∴=,∴==,∴∴选项D不正确.故选:B.变式1、解:∵=,∴设a=2k,则b=3k,则原式==.故选B.变式2、解:A.1×30≠2×20,故本选项错误;B.3×2≠1×4,故本选项错误;C.5×20=10×10,故本选项正确;D.4×1≠3×2,故本选项错误;故选C.例2、解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.变式1、解:∵△ABC∽△DEF,△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选:A.变式2、解:∵在梯形ABCD中,AD∥BC,而且S△ACD:S△ABC=1:2,∴AD:BC=1:2;∵AD∥BC,∴△AOD~△BOC,∵AD:BC=1:2,∴S△AOD:S△BOC=1:4.故选:B.例3、解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.变式1、解:∵a∥b∥c,∴==.故选B.例4、解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.变式1、解:∵∠1=∠2,∴∠DAE=∠BAC,A、添加∠C=∠E,可用两角法判定△ABC∽△ADE,故本选项错误;B、添加∠B=∠ADE,可用两角法判定△ABC∽△ADE,故本选项错误;C、添加=,可用两边及其夹角法判定△ABC∽△ADE,故本选项错误;D、添加=,不能判定△ABC∽△ADE,故本选项正确;故选D.例5、解:三角形纸片ABC中,AB=8,BC=4,AC=6.A、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B、=,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D、==,对应边===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选:D.变式2、解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为。

初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)

初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)

初中数学中考复习考点知识与题型专题讲解专题15 图形的基本认识【知识要点】考点知识一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。

常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。

⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。

常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。

平面图形是存在于一个平面上的图形。

立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。

2、性质不同。

根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。

由构成原理可知平面图形是构成立体图形的基础。

3、观察角度不同。

平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。

4、具有属性不同。

平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。

立方体图形平面展开图三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。

考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。

(2)能根据三视图描述基本几何体或实物原型。

展开图:正方体展开图(难点)。

正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。

⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

组成几何图形元素的关系:点动成线,线动成面,面动成体。

考点知识二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。

经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。

2021届中考数学总复习:图形的认识初步-精练精析(1)及答案解析

2021届中考数学总复习:图形的认识初步-精练精析(1)及答案解析

图形的性质——图形认识初步1一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或69.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是_________ cm2(结果保留π).11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是_________ .12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= _________ °.13.计算:50°﹣15°30′=_________ .14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=_________ °.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是_________ .16.已知∠A=43°,则∠A的补角等于_________ 度.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.19.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=_________ ;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.图形的性质——图形认识初步1参考答案与试题解析一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.点评:只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.考点:几何体的展开图;截一个几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.点评:考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.考点:展开图折叠成几何体.分析:根据展开图折叠成几何体,可得正方体,A,B是同一棱的两个顶点,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,正确将展开图折叠成几何体是解题关键,难度不大.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功 C 考D.祝考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A. 3 B.2 C.3或5 D.2或6考点:两点间的距离;数轴.专题:压轴题.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C 在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60πcm2(结果保留π).考点:几何体的表面积.分析:直接利用圆柱体侧面积公式求出即可.解答:解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.点评:此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是 3 .考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.专题:规律型.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= 45 °.考点:角的计算;翻折变换(折叠问题).分析:根据四边形ABCD是矩形,得出∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,再根据∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,得出∠EBD+∠DBF=45°,从而求出答案.解答:解:∵四边形ABCD是矩形,根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,∴∠EBD+∠DBF=45°,即∠EBF=45°,故答案为:45°.点评:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道基础题.13.计算:50°﹣15°30′=34°30′.考点:度分秒的换算.专题:计算题.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解答:解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65°,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是∠BOC.考点:余角和补角.分析:因为是一幅三角尺,所以∠AOB=∠COD=90°,再利用∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,同角的余角相等,可知与∠AOD 始终相等的角是∠BOC.解答:解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∴∠AOD=∠BOC.故答案为:∠BOC.点评:本题主要考查了余角和补角.用到同角的余角相等.16.已知∠A=43°,则∠A的补角等于137 度.考点:余角和补角.分析:根据补角的和等于180°计算即可.解答:解:∵∠A=43°,∴它的补角=180°﹣43°=137°.故答案为:137.点评:本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.考点:几何体的表面积;由三视图判断几何体.专题:几何综合题.分析:由已知三视图可以确定为四棱柱,首先得到棱柱底面菱形的对角线长,则求出菱形的边长,从而求出它的侧面积和体积.解答:解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm.∴菱形的边长为cm,棱柱的侧面积=×4×8=80(cm2).棱柱的体积=×3×4×8=48(cm3).点评:此题考查的是几何体的表面积及由三视图判断几何体,关键是先判断几何体的形状,然后求其侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.考点:比较线段的长短.分析:点M的线段AB中点,AM=MB,点P是线段MB的中点,所以MP=PB,由此可得:AM=2MP,所以AP=3MP.解答:解:∵P是MB中点∴MB=2MP=6cm又AM=MB=6cm∴AP=AM+MP=6+3=9cm.点评:本题考点:线段中点的性质,线段的中点将线段分成两个相等的线段,根据题意和图形得出各线段之间的关系,AP=AM+MP得出,然后结合已知条件求出AM和MP的长度,从而求出线段AP的长度.19如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.考点:专题:正方体相对两个面上的文字;二元一次方程的解.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.3与a是相对,5﹣x与y+1相对,y与2x﹣5相对.解答:解:根据题意,得(4分)解方程组,得x=3,y=1.(6分)点评:注意运用空间想象能力,找出正方体的每个面相对的面20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.考点:两点间的距离.分析:先根据D为AC的中点,DC=14cm求出AC的长,再根据BC=AB得出AB=AC,由此可得出结论.解答:解:∵D为AC的中点,DC=14cm,∴AC=2CD=28cm.∵BC=AB,∴AB=AC=×28=cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.考点:两点间的距离.分析:根据BC=2AB,AC=6cm,得出AB,BC的长,再由AD=DB,BE:EF:FC=1:1:3,得出BD,DE,EF的长,即可得出答案.解答:解:∵BC=2AB,AC=6cm,∴AB=2cm,BC=4cm,∵AD=DB,∴AD=BD=1cm,∵BE:EF:FC=1:1:3,∴BE=EF=BC=×4=cm,∴DE=BD+BE=1+=cm,DF=BD+BE+EF=1++=cm.点评:本题考查了两点之间的距离,注意各线段之间的联系是解题的关键.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.考点:角平分线的定义.专题:证明题.分析:利用∠AOB+∠BOC=180°,由OE、OF分别是∠AOB和∠BOC的平分线,求出∠EOB+∠BOF=90°,即可得出结论.解答:解:∵∠AOB+∠BOC=180°,∵OE、OF分别是∠AOB和∠BOC的平分线,∴∠AOE=∠EOB,∠BOF=∠FOC,∵∠AOE+∠EOB+∠BOF+∠FOC=180°,∴∠EOB+∠BOF=90°,∴OE⊥OE.点评:本题主要考查了角平分线及垂线,解题的关键是利用角平分线求解.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.考点:角平分线的定义.分析:根据角平分线的性质,可得∠BOE的大小,根据角的和差,可得∠BOD的大小,根据角平分线的性质,可得答案.解答:解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.点评:本题考查了角平分线的定义,利用了角平分线的性质,角的和差.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=40°;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.考点:角平分线的定义.分析:(1)设∠CON=∠BON=x°,∠MOC=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,由∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°=80,可得∠MON=∠MOB+∠NOB,即可求解.(2)由∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON 可得结论.解答:解:(1)∵ON平分∠BOC,∴∠CON=∠BON,设∠CON=∠BON=x°,∠MOB=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,又∵OM平分∠AOC∴∠AOM=∠COM=2x°+y°,∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°∵∠AOB=80°∴2(x+y)°=80°,∴x°+y°=40°∴∠MON=∠MOB+∠NOB=x°+y°=40°故答案为:40°.(2)2∠MON=∠AOB.理由如下:∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON.点评:本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.。

7.1图形认识初步(分类精讲)·数学中考分类精粹

7.1图形认识初步(分类精讲)·数学中考分类精粹

何 体 是 ( ).
A.三 棱 柱
B.三 棱 锥
C.四 棱 柱
D.四 棱 锥
A.2 C.4
(1)
(第 6 题 ) B.3 D.5
(2)
7.(2012������黑龙江鸡 西 )小 亮 为 今 年 参 加 中 考 的 好友 小 杰 制 作 了 一 个 正 方 体 礼 品 盒 (如 图),六个面上各 有 一 个 字,连 起 来 就 是 “预 祝中 考 成 功 ”,其 中 “预 ”的 对 面 是 “中 ”, “成”的 对 面 是 “功 ”,则 它 的 平 面 展 开 图 可 (第7题) 能 是 ( ).
(第 11题 )
A.南 偏 西 60°
B.南 偏 西 30°
C.北 偏 东 60°
D.北 偏 东 30°
12.(2012������ 山 东 济 宁)如 图,B 处 在 A 处 的 南 偏 西 45°方 向,
(第 20 题 )
21.(2012������广东广州)已知∠ABC=30°,BD 是 ∠ABC 的 平 分 线 ,则 ∠ABD= 度 .
C 处在A处的南 偏 东 15°方 向,C 处 在B 处 的 北 偏 东 80° 方向,则∠ACB 等于( ).
8.(2012������四川广安)如图是一个 正 方 体 的 表 面 展 开 图,则 原 正 方
体中与“建”字所在的面相对的面上标的字是( ).
A.美
B.丽
C.广
D.安
(第 12 题 )
第七章 相交线与平行线
§7.1 图形认识初步
1.认 识 点 、线 、面 、体 ;能 识 别 线 段 、角 等 基 本 图 形 . 2.会比较、估计 角 的 大 小,能 进 行 度、分、秒 及 角 度

中考数学命题研究第一编教材知识梳理篇第四章图形的初步认识与三角形、四边形第六节矩形、菱形、正方形精试

中考数学命题研究第一编教材知识梳理篇第四章图形的初步认识与三角形、四边形第六节矩形、菱形、正方形精试

第六节矩形、菱形、正方形,贵阳五年中考命题规律)年份题型题号考察点考察内容分值总分2021解答18正方形的性质以正方形为背景考察全等三角形的判定,直角三角形的判定10解答22菱形的性质在直角坐标系中,以菱形为背景考察反比例函数、一次函数的有关知识10202021 解答18菱形菱形的性质及判定10102021解答18菱形菱形的性质及判定10102021解答20菱形利用菱形的性质:(1)1010定.命题预测预计2021年中考,特殊的平行四边形内容仍为重点考察内容,且以解答题形式出现,平时训练要加大对性质及判定的训练力度.,贵阳五年中考真题及模拟)菱形的性质及判定(4次)1.(2021贵阳22题10分)如图,在平面直角坐标系中,菱形OBCD的边OB 在x轴上,反比例函数y=x k(x>0)的图象经过菱形对角线的交点A,且及边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.解:(1)∵反比例函数y=x k的图象经过点A,A点的坐标为(4,2),∴2=4k,∴k =8.∴反比例函数的表达式为y=x8;(2)过点A作AM⊥x轴于点M,过点C作CN ⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,那么BC=x,BN=8-x,在Rt△CNB中,x2-(8-x)2=42,解得x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=k1x+b,直线BC过点B(5,0),C(8,4),∴8k1+b=4,5k1+b=0,解得:,20∴直线BC的表达式为yx2=-1,∵点F在第一象限,∴点F =34x-320,根据题意得方程组,8解此方程组得:,4y2=-8,的坐标为F(6,34).2.(2021 贵阳18题10分)如图,在Rt△ABC中,∠ACB=90°,D为AB 的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)假设∠B=60°,BC=6,求菱形ADCE的高.(计算结果保存根号)解:(1)∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=BD=AD,∴平行四边形ADCE是菱形;(2)如图,过点D作DF⊥CE,垂足为点F,那么DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形.∵CE∥AB,∴∠BCE=120°,∴∠DCE=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=3.3.(2021贵阳18题10分)如图,在Rt△ABC中,∠ACB=90°,D,E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF.(1)求证:四边形ADCF是菱形;(2)假设BC=8,AC=6,求四边形ABCF的周长.解:(1)∵将△ADE绕点E旋转180°得到△CFE.∴AE=CE,DE=FE,∴四边形ADCF为平行四边形.∵点D,E是AB及AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°即BC⊥AC,∴DF⊥AC,∴平行四边形ADCF为菱形;(2)∵在Rt△ABC中,BC=8,AC=6,∴AB=10.∵点D是AB 边上的中点,∴AD=5.∵四边形ADCF为菱形,∴AF=FC=AD=5,∴C四边形=8+10+5+5=28.ABCF4.(2021贵阳20题10分):如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.解:(1)连接AC,∵四边形ABCD为菱形,∴BD垂直平分AC,∴AE=EC;(2)点F是线段BC的中点,理由如下:易得△ABC是等边三角形,∴∠BAC=60°,∵AE=EC,∠CEF=60°,∴∠EAC=21∠BAC=30°,∴AF是△ABC 的角平分线,∵AF交BC于点F,∴AF是△ABC边BC上的中线,∴点F是线段BC的中点.正方形的性质(2次)5.(2021贵阳模拟卷②15题)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形局部的面积从左向右依次记为S1,S2,S3,……,S n,那么S n的值为__24n-5__.(用含n的代数式表示,n为正整数) 6.(2021贵阳21题10分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC与CD上.(1)求证:CE=CF;(2)假设等边三角形AEF的边长为2,求正方形ABCD的周长.解:(1)易证△ABE≌△ADF,∴BE=DF,又BC=DC,∴BC-BE=DC-DF,∴CE=CF;(2)连接AC,交EF于G点,易得AC⊥EF,EC=,设BE=x,那么AB=x+,在Rt△ABE中,(x+)2+x2=4,∴x=26,∴AB=26+=26,∴正方形的周长为2+2.7.(2021 贵阳适应性考试)如图,E,F是菱形ABCD对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)假设∠DAB=60°,AD=6,AE=DE,求菱形BEDF的周长.解:(1)∵菱形ABCD,∴AB=AD,对角线AC平分∠BAD,∴∠BAE=∠DAE,又∵AE=AE,∴△ABE≌△ADE,∴BE=ED.连接BD交AC于点O,那么OD=OB,OA=OC,∵AE=CF,∴OA-AE=OC-CF,∴OE=OF,∴四边形BEDF为平行四边形,∴▱BEDF为菱形;(2)在菱形ABCD中,连接BD交于AC于O点,∴DB⊥AC,又∵∠DAB=60°,∴∠DAE=30°,∠ADB=60°,∵AD=6,∴在Rt△ADO中,DO=21AD=3,∵AE=ED,∴∠DAE=∠ADE,∠ADE=∠EDO=30°,在Rt△DEO中,可求得DE=2,∴菱形BEDF 的周长为8.,中考考点清单)矩形的性质及判定1.定义:把有一个角是直角的平行四边形叫做矩形.如图(1).2.性质文字描述字母表示[参考图(1)](1)对边平行且相等AD綊BC,AB綊CD(2)四个内角都是直角__∠DAB__=∠ABC=∠BCD =∠CDA=90°(3)两条对角线相等且互相平分AC=__BD__,OA=OC=OB=OD(4)矩形既是中心对称图形,也是轴对称图形3.判定文字描述字母表示[参考图(1)](1)有一个角是直角的平行四边形是矩形假设四边形ABCD是平行四边形,且∠BAD=90°,那么四边形ABCD是矩形(2)有三个角是直角的四边形是矩形假设∠BAD=∠ABC=∠BCD=90°,那么四边形ABCD是矩形(3)对角线相等的平行四边形是矩形假设AC=__BD__,且四边形ABCD是平行四边形,那么四边形ABCD是矩形菱形的性质及判定(高频考点)4.定义:把有一组邻边相等的平行四边形叫做菱形.如图(2) 5.性质文字描述字母表示[参考图(2)](1)菱形的四条边都相等AB=__BC__=CD=DA(2)对角相等∠DAB=∠DCB,∠ADC=__∠ABC__(3)两条对角线互相垂直,且每条对角线平分一组对角__AC__⊥BD,∠DAC=∠CAB =∠DCA=∠ACB,∠ADB=∠BDC=∠ABD=∠DBC(4)菱形既是中心对称图形,也是轴对称图形6.判定文字描述字母表示[参考图(2)](1)有一组邻边相等的平行四边形是菱形假设四边形ABCD是平行四边形,且AD=AB,那么四边形ABCD是菱形(2)四条边相等的四边形是菱形假设AB=BC=CD=DA,那么四边形ABCD是菱形(3)两条对角线互相垂直的平行四边形是菱形假设AC⊥BD,且四边形ABCD 是平行四边形,那么四边形ABCD是菱形正方形的性质及判定7.定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.如图(3)8.性质文字描述字母表示[参考图(3)](1)四条边都相等即AB=BC=CD=DA(2)四个角都是90°即∠ABC=∠ADC=∠BCD=∠BAD=90°(3)对角线互相垂直平分且相等即AC⊥__BD__,OA=OC=OD=OB(4)对角线平分一组对角∠DAC=∠CAB=∠DCA=∠ACB=∠ADB=∠BDC=∠ABD=∠DBC=45°(5)正方形既是中心对称图形,也是轴对称图形9.判定文字描述字母表示[参考图(3)](1)一组邻边相等且有一个角是直角的平行四边形叫做正方形假设四边形ABCD是平行四边形,且AB=BC,∠ADC=90°,那么四边形ABCD是正方形(2)有一个角是直角的__菱形__是正方形假设∠ABC=90°且四边形ABCD是菱形,那么四边形ABCD是正方形(3)有一组邻边相等的矩形是正方形假设AB=BC,且四边形ABCD 是矩形,那么四边形ABCD是正方形(4)对角线互相垂直平分且相等的四边形是正方形假设四边形ABCD中,AC⊥BD,AC平分BD,BD平分AC,AC=BD,那么四边形ABCD是正方形,中考重难点突破)矩形的有关计算【例1】(2021天津中考)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′,DC相交于点E,那么以下结论一定正确的选项是( ) A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AED.AE=CE【解析】由折叠的性质得:∠CAB′=∠∵AB∥CD,∴∠ACD=∠CAB=∠CAB′,∴AE=CE.【学生解答】D1.(2021海南中考)如图,矩形ABCD的顶点A,C分别在直线a,b上,且a ∥b,∠1=60°,那么∠2的度数为( C )A.30°B.45°C.60°D.75°,(第1题图)) ,(第2题图))2.(2021南充中考)如图,对折矩形纸片ABCD,使AB及DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展开纸片后∠DAG的大小为( C )A.30°B.45°C.60°D.75°3.(2021巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,那么∠E=__15__°.菱形的性质及判定【例2】(2021南充中考)如图,菱形ABCD的周长是8 cm,AB的长是________cm.【解析】菱形的四边形相等,故AB=8÷4=2(cm).【学生解答】24.(2021无锡中考)以下性质中,菱形具有而矩形不一定具有的是( C )A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直5.(2021雅安中考)如图,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,那么四边形ABCD的周长为( A )A.52 cm B.40 cmC.39 cm D.26 cm6.(2021遵义中考)在▱ABCD中,,使▱ABCD成为菱形,以下给出的条件不正确的选项是( C )A.AB=AD B.AC⊥BDC.AC=BD D.∠BAC=∠DAC7.(2021苏州中考)如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)AC=8,BD=6,求△ADE的周长.解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB =90°.又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)∵∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.正方形的性质及判定【例3】(2021广东中考)如图,正方形ABCD的面积为1,那么以相邻两边中点的连线EF为边的正方形EFGH的周长为( )A. B.2C.+1 D.2+1【解析】由题意可知,正方形ABCD的边长为1,那么CE=CF=21.由勾股定理,得EF==)21=22,故正方形EFGH的周长为2.【学生解答】B8.(2021益阳中考)以下判断错误的选项是( D )A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形9.(2021陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,假设M,N是AD上的两点,连接MO,NO,并分别延长交边BC于M′,N′两点,那么图中全等三角形共有( C )A.2对B.3对C.4对D.5对,(第9题图)) ,(第10题图))10.(2021西宁中考)如图,正方形ABCD的边长为3,E,F分别是AB,BC 边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.假设AE=1,那么FM的长为__25__.。

2025年中考数学一轮复习:图形的初步认识(附答案解析)

2025年中考数学一轮复习:图形的初步认识(附答案解析)

第1页(共22页)2025年中考数学一轮复习:图形的初步认识
一.选择题(共10小题)
1.如图,OA 是北偏东30°方向的一条射线,若∠BOA =90°,则OB 的方位角是(

A .西北方向
B .北偏西30°
C .北偏西60°
D .西偏北60°
2.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是(

A .和
B .谐
C .社
D .会
3.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为(
)A .4B .6C .12D .8
4.计算机层析成像(CT )技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是(
)。

(沪科版)中考数学总复习课件【第15讲】图形的初步认识

(沪科版)中考数学总复习课件【第15讲】图形的初步认识

第15讲┃图形的初步认识
3.三线八角
名称 关键点回顾
直线a,b被直线l所截,构成八个角(如图):
图形
同位角 内错角
∠1和∠5,∠4和∠8,∠2和∠6,∠3和∠7是同位角 ∠2和∠8,∠3和∠5是内错角
同旁内角
∠5和∠2,∠3和∠8是同旁内角
第15讲┃图形的初步认识
经典示例
例2 [2014·河南] 如图 15 -8, 直线 AB , CD 相交于点 O,
第15讲
图形的初步认识
┃考点梳理与跟踪练习 ┃ 核心考点一 相关知识 1.直线、线段的性质 一 条直线,并且只有______ 一 条直线; (1)经过两点有________ 两直线相交,有且只有________ 个交点. 一 线段 最短. (2)两点之间的所有连线中,________ 2.线段的中点 线段、角的相关概念和性质
第15讲┃图形的初步认识
9. [2014·厦门] 已知直线 AB , CB, l 在同一平面内, 若 AB⊥l, 垂足为 B,CB⊥l,垂足也为 B,则符合题意的图形可以是( C )
图 15 -10
第15讲┃图形的初步认识
10. [2014·贺州] 如图 15-11,OA⊥OB, 若∠1=55 °, 则∠2 的度数是( A )
第15讲┃图形的初步认识
核心练习
11. [2014·合肥四模] 如图 15-13,直线 a∥b,a, b 被 AB , AC 所截,∠1=70 °,∠2=40 °,则∠BAC= ( D )
A.40° B.50° C.60° D.70°
图 15 -13
第15讲┃图形的初步认识
12. [2013·桐城区二模] 如图 15-14,把一块含有 30 °角的 直角三角板的两个顶点放在直尺的对边上, 如果∠1= 20°, 那么∠2 的度数为( D )

2019教育山东专版版中考数学总复习第四章图形的认识41线角相交线与平行线试卷部分课件0917210数学

2019教育山东专版版中考数学总复习第四章图形的认识41线角相交线与平行线试卷部分课件0917210数学

3.(2014济宁,3,3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的 是 ( ) A.两点确定一条直线 B.垂线段最短 C.两点之间线段最短 D.三角形两边之和大于第三边
答案 C
4.(2018日照,2,4分) 一个角是70°39',则它的余角的度数是
.
答案 19°21'
A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME 答案 D A选项,因为AB∥CD,所以∠EMB=∠END(两直线平行,同位角相等),所以A中结论 正确;B选项,因为AB∥CD,所以∠BMN=∠MNC(两直线平行,内错角相等),所以B中结论正确;C 选项,因为AB∥CD,所以∠CNH=∠APH,又因为∠APH与∠BPG是对顶角,所以∠APH=∠ BPG,故∠CNH=∠BPG,所以C中结论正确;D选项,由条件推不出∠DNG=∠AME,故D选项中结 论错误,所以本题选择D. 思路分析 有关平行线的试题,一般需要利用平行线的性质实现角的转化,再结合题目中的其 他条件进行求解.
2.(2018聊城,4,3分) 如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=9 5°,∠CDE=25°,则∠DEF的度数是 ( )
A.110° B.115° C.120° D.125° 答案 C 如图,延长FE交CD于点G,因为AB∥EF,所以∠DGF=∠DCB=95°,所以∠DEF=∠ DGF+∠CDE=95°+25°=120°,故选C.
A.48° B.40° C.30° D.24° 答案 D ∵AB∥CD,∠BAE=48°,∴∠DFE=48°. ∵CF=EF,∴∠C=∠E.又∵∠C+∠E=∠DFE,∴2∠C=48°,解得∠C=24°,故选D.

河南中考数学 平面图形的认识(二)压轴解答题

河南中考数学 平面图形的认识(二)压轴解答题

河南中考数学平面图形的认识(二)压轴解答题一、平面图形的认识(二)压轴解答题1.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(1)如(图1),当AE⊥BC时,求证:DE∥AC(2)若∠C=2∠B,∠BAD=x°(0<x<60)①如(图2),当DE⊥BC时,求x的值.②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.2.如图,四边形ABCD中,AD∥BC,∠BDC=∠BCD,DE⊥DC交AB于E.(1)求证:DE平分∠ADB;(2)若∠ABD的平分线与CD的延长线交于F,设∠F=α.①若α=50°,求∠A的值;②若∠F<,试确定α的取值范围.3.如图1,直线CB∥OA,∠A=∠B=120°,E ,F在BC上,且满足∠FOC =∠AOC,并且OE 平分∠BOF.(1)求∠AOB及∠EOC的度数;(2)如图2,若平行移动AC,那么∠OCB: ∠OFB的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;4.己知AB∥CD,点E在直线AB,CD之间。

(1)如图①,试说明:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿射线CD平移至FG。

①如图②,若∠AEC=90°,FH平分∠DFG,求∠AHF的度数;②如图③,若FH平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由。

5.如图,现有一块含有30°的直角三角板ABC,且l1∥l2,其中∠ABC=30°。

(1)如图(1),当直线l1 和l2分别过三角板ABC的两个顶点时,且∠1=35°,则∠2=________°(2)如图(2),当∠ADE=80°时,求∠GFB的度数。

(3)如图(3),点Q是线段CD上的一点,当∠QFC=2∠CFN时,请判断∠ADE和∠QFG的数量关系,并说出理由。

2020年中考数学一轮复习基础考点及题型全覆盖专题15 图形的初步认识(知识点串讲)(解析版)

2020年中考数学一轮复习基础考点及题型全覆盖专题15 图形的初步认识(知识点串讲)(解析版)

专题15 图形的初步认识考点总结【思维导图】【知识要点】知识点一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。

常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。

⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。

常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。

平面图形是存在于一个平面上的图形。

立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。

2、性质不同。

根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。

由构成原理可知平面图形是构成立体图形的基础。

3、观察角度不同。

平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。

4、具有属性不同。

平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。

立方体图形平面展开图1.(2019·陕西中考模拟)下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【答案】B【详解】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.2.(2018·河北中考模拟)下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.【答案】B【详解】试题解析:A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,可得B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中,有一个圆,故D选项错误.故选B.3.(2015·北京中考模拟)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【答案】B【详解】根据三棱柱的展开图的特点进行解答即可:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误。

2023福建近三年数学中考考点

2023福建近三年数学中考考点

2023福建近三年数学中考考点福建近三年数学中考考点空间与图形A:图形的认识:1:点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

3视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧,扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2:角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

③将线段的两端无限延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

3:相交线与平行线角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的认识目录第32课时圆的有关性质第33课时直线与圆的位置关系第34课时圆与圆的位置关系第35课时圆弧、扇形和圆锥的计算问题第六单元图形的认识(二)第32课时圆的有关性质|考点聚焦|考点1 圆的有关概念1.圆是平面内到一个的距离等于的所有点组成的图形,叫做圆心,叫做半径.圆也可以看成是平面内一个动点绕一个定点旋转一周所形成的图形.2.连结圆上任意两点的线段叫做;经过圆心的弦叫做;圆上任意两点间的部分叫;大于半圆的弧叫做;小于半圆的弧叫做.考点2 点和圆的位置关系如果圆的半径是,,点到圆心的距离为d,那么:1. ;2;3.考点3 确定圆的条件1.过已知一点可作个圆,过已知两点可作个圆,过不在同一条直线上的三点可作个圆,这个圆叫做三角形的圆,这个三角形叫这个圆的三角形.2.外接圆的圆心叫做三角形的外心,它是三角形的交点.锐角三角形的外心在三角形的部,直角三角形的外心是的中点,钝角三角形的外心在三角形的部.考点4 圆的对称性圆是一个特殊的对称图形,它既是轴对称图形,任意一条所在的直线都是它的对称轴,又是中心对称图形,是它的对称中心;圆还是旋转对称图形,即圆绕旋转任意角度,都能与自身重合.考点5 垂径定理垂径定理:垂直于弦的平分这条弦,并且平分弦所对的两条.【点拨】(1)平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;(4)圆的两条平行弦所夹的弧相等.考点6 圆心角、弧、弧之间的关系在同一个圆中,如果圆心角相等,那么它们所对的弧,所对的弦也.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【注意】本定理提供了圆心角、弧、弦、弦心距之间关系的转化方式,是圆的相关性质的核心内容.应用圆心角、弧、弦的关系时,前提条件是“在同圆或等圆中”.考点7 圆心角与圆周角圆心角定理:圆心角的度数和它所对的弧的度数相等;圆周角定理:(1)一条弧所对的圆周角等于它所对的的一半;(2) 弧或弧所对的圆周角相等;同圆或等圆中,的圆周角所对的弧相等;(3)半圆(或直径)所对的圆周角是角;90°的圆周角所对的弦是.|归类示例|归类示例命题角度:1. 确定圆的圆心、半径2.三角形的外接圆的圆心的性质例1【2010 河北】如图32-1所示,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点PB.点QC.点RD.点M[解析] 圆心既在AB的中垂线上又在BC的中垂线上,由图可以看出圆心应该是点Q 。

类型之二 垂径定理及其推论命题角度:1. 垂径定理的应用2.垂径定理的推论的应用例2 高速公路的隧道和桥梁最多.如图32-2是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA 等于 ( )A.5米B.7米 c .537米 D. 737米 [解析]这是一道关于垂径定理的题目,主要体现了半径、半弦、弦心距和拱高之间的关系,利用这四个量构造直角三角形,使用勾股定量解决线段之间的关系。

在直角三角形ADO 中,设AO=x ,AD=5,OD=7-x ,由勾股定理得x 2=52+(7-x)2,解方程得x=737 ○方○法○点○析 垂直于弦的直径及其推论是证明两线段相等、两条弧相等及两直线垂直的重要依据之一,在有关弦长、弦心距的计算中常添加垂直于弦的直径.类型之三 圆心角、弧、弦之间的关系命题角度:在同圆或等圆中,圆心角、弧、弦之间的关系例3[2011 济宁]如图32-3,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连结BD、CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.○方○法○点○析等弧所对的弦相等,但等弦所对的弧不一定相等.类型之四圆周角定理及推论命题角度:1. 利用圆心角与圆周角的关系求圆周角或圆心角度数2.直径所对的圆周角或圆周角为直角的圆的相关计算例4[2011 哈尔滨]如图32-4,BC是⊙O的弦,圆周角∠BAC =50°,则∠OCB的度数是度.[解析]由圆周角定理得∠BOC=2∠BAC=100°,再由OA=OB,得∠OBC=∠OCB=40°。

○方○法○点○析圆周角定理及其推论建立了圆心角、弦、弧、圆周角之间的关系,最终实现了圆中的角(圆心角和圆周角)的转化,从而为研究圆的性质提供了有力的工具和方法.类型之五直线型图形与圆的性质的综合运用命题角度:1. 在圆中寻找两角之间的关系2.在圆中寻找相似三角形与全等三角形例5[2011 桂林]如图32-5,在锐角△ABC中,AC是最短边,以AC中点O为圆心,AC为直径作⊙O,交BC于E,过D作OD∥BC 交⊙O于D,连结AE、AD、DC.○方○法○点○析(1)注意从圆的有关性质的角度发现结论,不能只从直线型图形的角度寻找结论;(2)三角形的中线把这个三角形分成了面积相等的两个三角形.第33课时直线与圆的位置关系1.在同一平面内,直线与圆的位置关系有:,,.2.判定直线与圆的位置关系有以下方法:(1)定义法:从直线与圆的公共点的个数入手进行判定,其关系如下:直线l与⊙O 公共点l与⊙O相离;直线l与⊙O有公共点l与⊙O相切;直线l与⊙O有公共点l与⊙O相交.(2)d、r比较法:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l与⊙O的位置关系与d、r的关系如下:l与⊙O ;l与⊙O ;l与⊙O .考点2 圆的切线性质和判定1. 性质:圆的切线垂直于过的半径.2.圆的切线的判定方法(1)和圆有公共点的直线是圆的切线;(2)如果圆心到一条直线的距离等于,那么这条直线是圆的切线;(3)若一条直线经过半径的外端并且于这条半径,那么这条直线是圆的切线.考点3 三角形的内切圆1. 定义与三角形各边都相切的圆叫三角形的,这个三角形叫做圆的外切三角形,三角形的内切圆的圆心叫做三角形的,内切圆的圆心是三角形的交点.2.性质如图33-1所示,⊙I内切于△ABC,切点分别为D、E、F,则有下列结论:(1)AI、B1、CI分别平分△ABC的三个内角;(2)点I到△ABC三边的距离相等,即ID=IE=IF.|归类示例|类型之一直线和圆的位置关系的判定命题角度:1. 定义法判定直线和圆的位置关系2.d、r比较法判定直线和圆的位置关系例1[2011 成都]已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是( )A.相交B.相切 C.相离 D.无法确定[解析] ⊙O的面积为9πcm2,所以圆的半径r=3cm,而点O到直线l的距离d=π,∴d>r,所以直线l与⊙O相离。

○方○法○点○析在判断直线与圆的位置关系的时候可以根据定义法,也可以利用圆心到直线的距离与圆的半径的大小关系进行比较,在判断其关系时要结合题目的已知条件选择正确的方法.类型之二圆的切线性质命题角度:1. 已知圆的切线得出结论2.利用圆的切线的性质进行有关的计算或证明例2[2011 大连]如图33-2,AB是⊙O的直径,CD是⊙O的切线,切点为C,BE⊥CD,垂足为E,连结AC、BC.(1)△4BC的形状是,理由是;(2)求证:BC平分LABE;O)若∠A=60°,OA=2,求CE的长.○方○法○点○析遇切线,常添加过切点的半径,运用切线的性质定理.类型之三圆的切线的判定方法命题角度:1.利用圆心到一条直线的距离等于圆的半径,判定这条直线是圆的切线2.利用一条直线经过半径的外端,且垂直于这条半径,判定这条直线是圆的切线例3 [2011 衡阳]如图33-3,△ABC内接于⊙O,CA=CB,CD∥AB,且与OA的延长线交于点D.(1)判断CD与⊙O的位置关系,并说明理由;(2)若∠ACB=120°,OA=2,求CD的长.○方○法○点○析要分清直线和圆的公共点是已知还是未知,再选择判定方法.类型之四三角形的内切圆命题角度:1.三角形的内切圆的定义2.求三角形的内切圆的半径例4[2011 遵义]如图33-4,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为.[解析]将三角形的一个顶点与圆心连结,再过圆心作顶点所在边的垂线,如图,BD等于边长的一半,∠DBO=30°。

在三角形DOB 中,∠BDO=90°,∠DBO=30°,∠BOD=60°,且BD=1,解直角3。

三角形得OD=3|回归教材|教材母题[湖南教育版九下P81B组T1]设菱形ABCD的两条对角线相交于点O,证明:如果圆O与AB相切,那么圆O与菱形的其他各边也相切.证明:如图33-5,若圆O与AB相切于点E,连结OE,过点O 作OF⊥AD。

∵四边形ABCD是菱形,∴AC平分∠DAB,∵圆O与AB相切于点E,∴OE⊥AB。

又∵OF⊥AD,∴OE=OF。

∴圆O与AD相切。

同理可证圆O与BC、CD相切。

【点析】当己知直线和圆有公共点时,连结圆心和公共点,利用判定定理证明直线和圆相切;当未知直线和圆有公共点时,过圆心作直线的垂线段,利用"d=r”证明.中考变式[2009 南川]如图33-6,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.[解析]过点O作AC的垂线OE,并连结OD,则OD⊥AB,通过证明△OBD≌△OCE,得到OE=OD,所以OE是圆的半径,所以可以得到AC是⊙O的切线,切点是E。

证明:连结OD,过点O作OE⊥AC于E点。

∵AB切⊙O于D,∴OD⊥AB。

∴∠ODB=∠OEC=90°又∵O是BC的中点,∴OB=OC∵AB=AC,∴∠B=∠C,∴△OBD≌△OCE,∴OE=OD,即OE是⊙O的半径,∴AC与⊙O相切。

繁34课时圆与圆的位量关系|考点聚焦|考点1 圆和圆的位置关系在平面上,两圆的位置关系有且只有7种:、、、、内含但不同心、内含且同心、重合.考点2 圆和圆的位置关系的判别1. 方法一:根据两目的公共点的个数确定(1)当两个圆没有公共点时,如果一个圆上点都在另一个圆的外部,这两个圆;如果其中一个圆的点都在另一个圆的内部,这两个圆位置关系是.(2)当两个圆有唯一的公共点,除这点外,一个圆上的其他各点都在另一个圆外,则这两个圆;当两个圆有唯一的公共点,除这点外,其中一个圆的其他各点都在另一个圆的内部,则这两个圆.(3)如果两个圆有两个公共点,则这两个圆.(4)如果两个圆有两个以上的公共点,则这两个圆。

相关文档
最新文档