NCP1402
MCP1401_02中文数据资料
图 2-10: 静态电流-温度关系曲线
Input Threshold (V)
2.2
2.1
VHI
2
1.9
1.8
1.7
VLO
1.6
1.5
4
6
8 10 12 14 16 18
Supply Voltage (V)
图 2-11: 输入阈值-电源电压关系曲线
Quiescent Current (mA)
1.2
1.0
30 VDD = 12V
26
22
tRISE tFALL
Time (ns)
18
14
10 -40 -25 -10 5 20 35 50 65 80 95 110 125
Temperature (oC)
图 2-3: 上升和下降时间-温度关系曲线
Propagation Delay (ns)
44 43 42 41 40 39 38 37 36
MCP1401/02 器件可由 4.5V 至 18V 的单电源供电,且 可轻松地在不到 19 ns(典型值)的时间内对 470 pF 的 栅极电容进行充放电。 在导通和关断状态下,均可提供 足够低的阻抗,以确保即使有很大的瞬态信号也不会影 响 MOSFET 的预期状态。
只要在其功率和电压范围内,任何情况下这些器件都很 难闭锁。 当接地端出现幅度小于等于 5V (任何极性) 的噪声尖峰时,这些器件也不会损坏。它们能承受大小 在 500 mA 内的反向电流灌入其输出端,而不会损坏或 出现逻辑颠倒。 此外,所有引脚都被充分地保护,能承 受最高为 3 kV (HBM)和 400V (MM)的静电放电 (Electro-static Discharge, ESD)。
焊接件丝印参照表
107
芯片 LM4040DIM3-2.5
108
芯片 S818A33AMC
109
芯片 74HC4052D
110
ISMB5934BT3
111
B0505LS-1W
DC 模块
24PIN-QEN SOT-23 5PIN SO-16 2PIN
b0505ls
MORNSUN SILABS
TI SII NXP
MICRODC
SO-8
MAXIM
87
芯片 74HC14D
14PIN
NXP
88
芯片 AD8628ART
5PIN
AD
89
芯片 IRF7416
8PIN
IRF
90
芯片 AD712JR
SO-8
ADI
91
芯片 ADUM1400CRW
16PIN
AD
92
芯片 MAX1680
8PIN
MAXIM
93
芯片 TL431ACDBZR
SOT-23
8PIN
166
芯片 OP2347
8PIN
167
芯片 OPA2227
8PIN
168
芯片 TL061
8PIN
169
芯片 ADM101E
10PIN
170
芯片 TPS76950DBVT
5PIN
171
芯片 TPS76350
5PIN
172
芯片 C8051F064
100PIN
173
C8051F069
174
芯片 OPA350
ALTERA
69
芯片 IS62WV5128BLL-55H1I
品类采购策略 及填写指导
• 左图着重分析历史和未来的需求量,聚焦下阶段采购工作重点
关键发现:
• Xx • Xx • Xx
• 右图着重分析需求规格及整合机会。识别重点规格。若品类规格较多, 是否有整合的必要性和机会。若本品类规格并不多,或不适宜做规格整 合,可分析不同规格的具体差异。
潜在机会点: • 确保数字清楚,准确,不重不漏。 • Xx • 说明图表中信息的来源和数字的单位。• Xx • “关键发现”应从图中来,“潜在机会• (X风x险)点”应与“发现”合逻辑
8/2/1999 8/3/1999 8/4/1999 8/5/1999 8/6/1999 8/9/19998/10/19998/11/1999 8/1/2000 8/2/2000 8/3/2000 8/4/2000 8/7/2000 8/8/2000 8/9/20008/10/2000 8/1/2001 8/2/2001 8/3/2001 8/6/2001 8/7/2001 8/8/2001 8/9/20018/10/2001
进而制定买方的策略。
11
内容
0. 品类概要 1. 品类内部档案 2. 品类外部档案 3. 品类采购现状 4. 品类采购策略 5. 采购策略实施方案
12
2.1 行业结构(1/3)
行业总体情况
行业总体规模
行业总体规模
行业前十名市场份额
名称 XXX XXX
份额 15% 12%
xx品类行业兼并市重场组整合趋势
ABS Polystyrene Polypropylene Polycarbonate All Sub Categories
60% 2000
2001
2002
2003
2004 2005
Years
NCP1402
NCP1402200 mA, PFM Step−Up Micropower Switching RegulatorThe NCP1402 series are monolithic micropower step−up DC to DC converter that are specially designed for powering portable equipment from one or two cell battery packs.These devices are designed to start−up with a cell voltage of 0.8 V and operate down to less than 0.3V. With only three external components, this series allow a simple means to implement highly efficient converters that are capable of up to 200 mA of output current at V in = 2.0 V, V OUT = 3.0 V.Each device consists of an on−chip PFM (Pulse Frequency Modulation) oscillator, PFM controller, PFM comparator, soft−start, voltage reference, feedback resistors, driver, and power MOSFET switch with current limit protection. Additionally, a chip enable feature is provided to power down the converter for extended battery life.The NCP1402 device series are available in the Thin SOT−23−5 package with five standard regulated output voltages. Additional voltages that range from 1.8 V to 5.0 V in 100 mV steps can be manufactured.Features•Extremely Low Start−Up V oltage of 0.8 V•Operation Down to Less than 0.3 V•High Efficiency 85% (V in = 2.0 V, V OUT = 3.0 V, 70 mA)•Low Operating Current of 30 m A (V OUT = 1.9 V)•Output V oltage Accuracy ±2.5%•Low Converter Ripple with Typical 30 mV•Only Three External Components Are Required•Chip Enable Power Down Capability for Extended Battery Life •Micro Miniature Thin SOT−23−5 PackagesTypical Applications•Cellular Telephones•Pagers•Personal Digital Assistants (PDA)•Electronic Games•Portable Audio (MP3)•Camcorders•Digital Cameras•Handheld InstrumentsORDERING INFORMATIONSee detailed ordering and shipping information in the ordering information section on page 3 of this data sheet.Figure 1. Typical Step−Up Converter ApplicationV OUTV inOUT2NC 3GND4LX 5Figure 2. Representative Block DiagramPIN FUNCTION DESCRIPTIONSORDERING INFORMATIONNOTE: The ordering information lists five standard output voltage device options. Additional device with output voltage ranging from 1.8 V to 5.0 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability.ABSOLUTE MAXIMUM RATINGSNOTES:1.This device series contains ESD protection and exceeds the following tests:Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22−A114.Machine Model (MM) ±200 V per JEDEC standard: JESD22−A115.2.The maximum package power dissipation limit must not be exceeded.P D+T J(max)*T AR q JAtch−up Current Maximum Rating: ±150 mA per JEDEC standard: JESD78.4.Moisture Sensitivity Level: MSL 1 per IPC/JEDEC standard: J−STD−020A.SET6.CE pin is integrated with an internal 10 MΩ pull−up resistor.1006080402001.9604020V O U T , O U T P U T V O L T A G E (V )I O , OUTPUT CURRENT (mA)Figure 3. NCP1402SN19T1 Output Voltage vs.Output Current Figure 4. NCP1402SN30T1 Output Voltage vs.Output Current6.05.04.03.01.0V O U T , O U T P U T V O L T A G E (V )Figure 7. NCP1402SN30T1 Efficiency vs.Output Current I O , OUTPUT CURRENT (mA)Figure 8. NCP1402SN50T1 Efficiency vs.Output CurrentI O , OUTPUT CURRENT (mA)E F F I C I E N C Y (%)I O , OUTPUT CURRENT (mA)2.0801001201401601802000604020801001201401601802002.060402080100120140160180200604020801001201401601802001006080402002.0V O U T , O U T P U T V O L T A G E (V )1.65.25.15.04.94.84.7V O U T , O U T P U T V O L T A G E (V )Figure 13. NCP1402SN30T1 OperatingCurrent 1 vs. Temperature TEMPERATURE (°C)Figure 14. NCP1402SN50T1 OperatingCurrent 1 vs. TemperatureTEMPERATURE (°C)I D D 1, O P E R A T I N G C U R R E N T 1 (m A )2.11.71.81.9−50250−255075100−50250−255075100−506.5255.50−25t o n , S W I T C H O N T I M E (µs )5.0TEMPERATURE (°C)Figure 15. NCP1402SN19T1 Switch On Timevs. Temperature Figure 16. NCP1402SN30T1 Switch On Timevs. Temperature7.06.56.05.55.04.5t o n , S W I T C H O N T I M E (µs )Figure 19. NCP1402SN30T1 Minimum SwitchOff Time vs. Temperature TEMPERATURE (°C)Figure 20. NCP1402SN50T1 Minimum SwitchOff Time vs. TemperatureTEMPERATURE (°C)t o f f , M I N I M U M S W I T C H O F F T I M E (µs )7.5TEMPERATURE (°C)6.07.05075100−5025−255075100−5025−255075100−5025−2550751001.51.61.41.31.71.82502301902101701509060D M A X , M A X I M U M D U T Y C Y C L E (%)401007060905040Figure 25. NCP1402SN30T1 LX Pin On−StateCurrent vs. Temperature TEMPERATURE (°C)Figure 26. NCP1402SN50T1 LX Pin On−StateCurrent vs. TemperatureTEMPERATURE (°C)100507080−5025−255075100−5025−255075100D M A X , M A X I M U M D U T Y C Y C LE (%)80I L X , L X P I N O N −S T A T E C U R R E N T (m A )0.80.20.01.00.40.63.02.51.01.50.50.00.80.2V L X L I M , V L X V O L T A G E L I M I T (V )0.0V L X L I M , V L X V O L T A G E L I M I T (V )Figure 31. NCP1402SN30T1 Switch−onResistance vs. Temperature TEMPERATURE (°C)Figure 32. NCP1402SN50T1 Switch−onResistance vs. TemperatureTEMPERATURE (°C)R D S (o n ), S W I T C H −O N R E S I S T A N C E (Ω)1.00.40.6−5025−255075100−5025−2550751002.00.80.4V s t a r t /V h o l d , S T A R T U P /H O L D V O L T A G E (V )0.0Figure 37. NCP1402SN30T1 Startup/HoldVoltage vs. Output Current 1.00.20.6Figure 38. NCP1402SN50T1 Startup/HoldVoltage vs. Output Current0.80.4V s t a r t /V h o l d , S T A R T U P /H O L D V O L T A G E (V )0.01.00.20.6I O , OUTPUT CURRENT (mA)405030206010708090100I O , OUTPUT CURRENT (mA)V s t a r t /V h o l d , S T A R T U P /H O L D V O L T A G E (V )405030206010708090100Figure 39. NCP1402SN19T1 Operating Waveforms (Medium Load)Figure 40. NCP1402SN19T1 Operating Waveforms (Heavy Load)Figure 41. NCP1402SN30T1 Operating Waveforms (Medium Load)Figure 42. NCP1402SN30T1 Operating Waveforms (Heavy Load)Figure 43. NCP1402SN50T1 Operating Waveforms (Medium Load)Figure 44. NCP1402SN50T1 OperatingWaveforms (Heavy Load)V OUT = 1.9 V, V in = 1.2 V, I O = 30 mA, L = 47 m H, C OUT = 68 m F1.V LX, 1.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div2 m s/divV OUT = 3.0 V, V in = 1.2 V, I O = 30 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div5 m s/divV OUT = 3.0 V, V in = 1.2 V, I O = 70 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/divV OUT = 1.9 V, V in = 1.2 V, I O = 70 mA, L = 47 m H, C OUT = 68 m F1.V LX, 1.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div5 m s/div2 m s/div2 m s/divV OUT = 5.0 V, V in = 1.5 V, I O = 30 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div2 m s/divV OUT = 5.0 V, V in = 1.5 V, I O = 60 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/divFigure 45. NCP1402SN19T1 Load TransientResponse Figure 46. NCP1402SN19T1 Load TransientResponseFigure 47. NCP1402SN30T1 Load TransientResponse Figure 48. NCP1402SN30T1 Load TransientResponseFigure 49. NCP1402SN50T1 Load TransientResponse Figure 50. NCP1402SN50T1 Load TransientResponseV in = 1.2 V, L = 47 m H, C OUT = 68 m F1.V OUT = 1.9 V (AC coupled), 100 mV/div2.I O = 0.1 mA to 80 mAV in = 1.2 V, L = 47 m H, C OUT = 68 m F1.V OUT = 1.9 V (AC coupled), 100 mV/div2.I O = 80 mA to 0.1 mAV in = 2.4 V, L = 47 m H, C OUT = 68 m F1.V OUT = 5.0 V (AC coupled), 100 mV/div2.I O = 0.1 mA to 80 mAV in = 2.4 V, L = 47 m H, C OUT = 68 m F1.V OUT = 5.0 V (AC coupled), 100 mV/div2.I O = 80 mA to 0.1 mAV in = 1.5 V, L = 47 m H, C OUT = 68 m F1.V OUT = 3.0 V (AC coupled), 100 mV/div2.I O = 0.1 mA to 80 mAV in = 1.5 V, L = 47 m H, C OUT = 68 m F1.V OUT = 3.0 V (AC coupled), 100 mV/div2.I O = 80 mA to 0.1 mA60V r i p p l e , R I P P L E V O L T A G E (m V )Figure 55. NCP1402SNXXT1 Pin On−stateCurrent vs. Output Voltage Figure 56. NCP1402SNXXT1 Switch−OnResistance vs. Output Voltage80204010060V r i p p l e , R I P P L E V O L T A G E (m V )0802040100V OUT , OUTPUT VOLTAGE (V)134256V OUT , OUTPUT VOLTAGE (V)I L X , L X P I N O N −S T A T E C U R R E N T (m A )134252201002601401803006125321I i n (n o l o a d ), N O L O A D I N P U T C U R R E N T (µA )V in , INPUT VOLTAGE (V)Figure 57. NCP1402SNXXT1 No Load InputCurrent vs. Input Voltage Figure 58. NCP1402SNXXT1 Maximum OutputCurrent vs. Input Voltage150V in , INPUT VOLTAGE (V)25507510045612345DETAILED OPERATING DESCRIPTIONOperationThe NCP1402 series are monolithic power switching regulators optimized for applications where power drain must be minimized. These devices operate as variable frequency, voltage mode boost regulators and designed to operate in continuous conduction mode. Potential applications include low powered consumer products and battery powered portable products.The NCP1402 series are low noise variable frequency voltage−mode DC−DC converters, and consist of soft−start circuit, feedback resistor, reference voltage, oscillator, PFM comparator, PFM control circuit, current limit circuit and power switch. Due to the on−chip feedback resistor network,the system designer can get the regulated output voltage from 1.8 V to 5 V with a small number of external components. The operating current is typically 30 m A (V OUT = 1.9 V), and can be further reduced to about 0.6 m A when the chip is disabled (V CE < 0.3 V).The NCP1402 operation can be best understood by examining the block diagram in Figure 2. PFM comparator monitors the output voltage via the feedback resistor. When the feedback voltage is higher than the reference voltage, the power switch is turned off. As the feedback voltage is lower than reference voltage and the power switch has been off for at least a period of minimum off−time decided by PFM oscillator, the power switch is then cycled on for a period of on−time also decided by PFM oscillator, or until current limit signal is asserted. When the power switch is on, current ramps up in the inductor, storing energy in the magnetic field. When the power switch is off, the energy in the magnetic field is transferred to output filter capacitor and the load. The output filter capacitor stores the charge while the inductor current is high, then holds up the output voltage until next switching cycle.Soft StartThere is a soft start circuit in NCP1402. When power is applied to the device, the soft start circuit pumps up the output voltage to approximately 1.5 V at a fixed duty cycle, the level at which the converter can operate normally. What is more,the start−up capability with heavy loads is also improved.Regulated Converter Voltage (V OUT )The V OUT is set by an internal feedback resistor network.This is trimmed to a selected voltage from 1.8 to 5.0 V range in 100 mV steps with an accuracy of $2.5%.Current LimitThe NCP1402 series utilizes cycle−by−cycle current limiting as a means of protecting the output switch MOSFET from overstress and preventing the small value inductor from saturation. Current limiting is implemented by monitoring the output MOSFET current build−up during conduction, and upon sensing an overcurrent conduction immediately turning off the switch for the duration of the oscillator cycle.The voltage across the output MOSFET is monitored and compared against a reference by the VLX limiter. When the threshold is reached, a signal is sent to the PFM controller block to terminate the power switch conduction. The current limit threshold is typically set at 350 mA.Enable / Disable OperationThe NCP1402 series offer IC shut−down mode by chip enable pin (CE pin) to reduce current consumption. An internal pull−up resistor tied the CE pin to OUT pin by default i.e. user can float the pin CE for permanent “On”.When voltage at pin CE is equal or greater than 0.9 V , the chip will be enabled, which means the regulator is in normal operation. When voltage at pin CE is less than 0.3 V , the chip is disabled, which means IC is shutdown.Important: DO NOT apply a voltage between 0.3 V and 0.9 V to pin CE as this is the CE pin’s hyteresis voltagerange. Clearly defined output states can only be obtained by applying voltage out of this range.APPLICATIONS CIRCUIT INFORMATIONFigure 59. Typical Application Circuit V OUT m FV inStep−up Converter Design EquationsNCP1402 step−up DC−DC converter designed to operate in continuous conduction mode can be defined by:*NOTES:I PK−Peak inductor currentI min−Minimum inductor currentI O−Desired dc output currentI Omax−Desired maximum dc output currentI L−Average inductor currentV in−Nominal operating dc input voltageV OUT−Desired dc output voltageV F−Diode forward voltageV S−Saturation voltage of the internal FET switchD Q−Charge stores in the C OUT during charging upV ripple−Output ripple voltageESR−Equivalent series resistance of the output capacitorM−An empirical factor, when V OUT≥ 3.0 V,M = 8 x 10−6, otherwise M = 5.3 x 10−6. EXTERNAL COMPONENT SELECTIONInductorThe NCP1402 is designed to work well with a 47 m H inductor in most applications. 47 m H is a sufficiently low value to allow the use of a small surface mount coil, but large enough to maintain low ripple. Low inductance values supply higher output current, but also increase the ripple and reduce efficiency. Note that values below 27 m H is not recommended due to NCP1402 switch limitations. Higher inductor values reduce ripple and improve efficiency, but also limit output current.The inductor should have small DCR, usually less than 1 W to minimize loss. It is necessary to choose an inductor with saturation current greater than the peak current which the inductor will encounter in the application.DiodeThe diode is the main source of loss in DC−DC converters. The most importance parameters which affect their efficiency are the forward voltage drop, V F, and the reverse recovery time, t rr. The forward voltage drop creates a loss just by having a voltage across the device while a current flowing through it. The reverse recovery time generates a loss when the diode is reverse biased, and the current appears to actually flow backwards through the diode due to the minority carriers being swept from the P−N junction. A Schottky diode with the following characteristics is recommended:Small forward voltage, V F < 0.3 VSmall reverse leakage currentFast reverse recovery time/ switching speedRated current larger than peak inductor current,I rated > I PKReverse voltage larger than output voltage,V reverse > V OUTInput CapacitorThe input capacitor can stabilize the input voltage and minimize peak current ripple from the source. The value of the capacitor depends on the impedance of the input source used. Small ESR (Equivalent Series Resistance) Tantalum or ceramic capacitor with value of 10 m F should be suitable.Output CapacitorThe output capacitor is used for sustaining the output voltage when the internal MOSFET is switched on and smoothing the ripple voltage. Low ESR capacitor should be used to reduce output ripple voltage. In general, a 47 uF to 68 uF low ESR (0.15W to 0.30 W ) Tantalum capacitor should be appropriate. For applications where space is a critical factor, two parallel 22 uF low profile SMD ceramic capacitors can be used.An evaluation board of NCP1402 has been made in the size of 23 mm x 20 mm only, as shown in Figures 60 and 61.Please contact your ON Semiconductor representative for availability. The evaluation board schematic diagram, the artwork and the silkscreen of the surface−mount PCB are shown below:20 mmFigure 61. NCP1402 PFM Step−Up DC−DC Converter Evaluation Board Artwork (Component Side)23 mm23 mmComponents SupplierPCB Layout HintsGroundingOne point grounding should be used for the output power return ground, the input power return ground, and the device switch ground to reduce noise as shown in Figure 62, e.g. :C2 GND, C1 GND, and U1 GND are connected at one point in the evaluation board. The input ground and output ground traces must be thick enough for current to flow through and for reducing ground bounce.Power Signal TracesLow resistance conducting paths should be used for the power carrying traces to reduce power loss so as to improveefficiency (short and thick traces for connecting the inductor L can also reduce stray inductance), e.g. : short and thick traces listed below are used in the evaluation board:1.Trace from TP1 to L12.Trace from L1 to Lx pin of U13.Trace from L1 to anode pin of D14.Trace from cathode pin of D1 to TP2Output CapacitorThe output capacitor should be placed close to the output terminals to obtain better smoothing effect on the output ripple.V inGNDV outGND10 Figure 62. NCP1402 Evaluation Board Schematic DiagramPACKAGE DIMENSIONSSOT23−5(TSOP−5, SC59−5)SN SUFFIX CASE 483−02ISSUE CNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4. A AND B DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.DIM MIN MAX MIN MAX INCHES MILLIMETERS A 2.90 3.100.11420.1220B 1.30 1.700.05120.0669C 0.90 1.100.03540.0433D 0.250.500.00980.0197G 0.85 1.050.03350.0413H 0.0130.1000.00050.0040J 0.100.260.00400.0102K 0.200.600.00790.0236L 1.25 1.550.04930.0610M 0 10 0 10 S 2.50 3.000.09850.1181____ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further noticeto any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION。
NCP5422中文资料
Flyback, High-Voltage Power Switching Regulators with Integrated Switch
Internally Fixed Frequency PWM, without Dynamic Self Supply (DSS) Current Mode Fixed Frequency PWM with DSS NCP1000, NCP1001, NCP1002 NCP1010, NCP1011, NCP1012, NCP1013, NCP1014, NCP1027
Non-Isolated Topologies
Buck (Step Down) Boost (Step Up) Multi Topology (Step-Up, Down, or Inverting) Micro-Power, Low Voltage Buck (Step Down) Micro-Power, Low Voltage Boost (Step Up) Charge Pump Converters
Power Factor Correction Controllers
Single Stage Flyback, Continuous Conduction Mode (CCM) Boost Pre-Regulator, CCM Follower Boost Pre-Regulator, CCM Boost Pre-Regulator, Critical or Boundary Conduction Mode (BCM) Follower Boost Pre-Regulator, BCM Boost Pre-Regulator, BCM or Discontinuous Conduction Mode (DCM) Combo PFC+PWM, DCM or BCM NCP1651 NCP1650 NCP1653 MC33262, MC34262, MC33368 MC33260 NCP1601 NCP1603
武汉力源信息技术服务 NCP1402稳压器 说明书
NCP1402 系列产品采用逐周限流的方法保护输出开关 MOSFET 防止过大应力且避免低值电感饱和。 通过在导通进行时监控输出 MOSFET 电流的建立情况实现电流限制,在检测到过流导通时立即在振荡器 周期内关断开关。
2
武汉力源信息技术服务有限公司
免费电话:800 -8808051
图 25 NCP1402SN30T1 的 LX 脚接通状态电流与 温度的关系
图 26 NCP1402SN50T1 的 LX 开关接通状态电流 与温度的关系
2
武汉力源信息技术服务有限公司
免费电话:800 -8808051
图 27 NCP1402SN19T1 的VLX电压极限与温度的 关系
特点
0.8V 的极低启动电压 可以在低于 0.3V 的电压下工作 85%的高转换效率(Vin=2.0V,VOUT=3.0V, 70mA) 30μA的低工作电流(VOUT=1.9V) 输出电压精度为±2.5% 低转换器纹波,典型值为 30mV 仅需三个外接元件 具有芯片使能掉电功能可延长电池的使用寿 命 微型纤薄 SOT-23-5 封装
每个器件都含有一个片内脉冲频率调制(PFM)振荡器、脉冲频率调制控制器、脉冲频率调制比较器、 软启动功能、基准电压、反馈电阻器、驱动器以及带电流限制保护功能的功率 MOSFET 开关。此外,该系 列产品还具有芯片使能特性可以让转换器掉电以延长电池的使用寿命。
NCP1402 系列器件的封装形式为薄型 SOT-23-5,有 5 种标准的稳定输出电压。此外还可以制造其它 输出电压在 1.8V 至 5.0V 范围内(间隔为 100mV)的器件。
PD=[TJ(max)—TA]/RθJA 3.闭锁电流极限:±150mA,根据 JEDEC 标准:JESD78。
NCP1402
(o t 1 V)的 工 作 电 流 ,输 出 V u= . 9 MS ET和 电流 限制 电路 , OF 内部 结 构如 可 被 固定 于使 能状 态 。
所 1 ~ .V 的升 压 电压 , 出电 流容 量 图 1 示 。 . 50 9 输
NC 1 0 内置 软启 动 电 路 , P4 2 能将 施 加 于 芯 片上 的 电压 在 固 定 占空 因数 上使输 出电 压泵送 至 1 V的电平 上, . 5 使 变换 器可 以正常 操作 。 片 最低 启动 电 芯
( )能 将低 至 08 的 电池 电压 升 止 。 3 .V 若反 馈 电压低 于 参考 电 压 ,一 旦 CE脚 上 的 电压低 于 03 '芯 压,MOS E 则 由截 止 轮 -V FT
片则进 入关 闭 模式 。
转 到 导通 , 部 电感 器 中的 外
() P1 0 4 NC 4 2系列 的 5 型号 分 别 电流 增加 。在 MOS E 个 F T关 带 1 T1 7 、3 T1 3 和 5 T1 断 时, 电感 器 中 的贮 能传 9 、2 T1 0 、3 T1 0 在
压仅 为 08 , 启 动 时 间约 2 。 .V 软 ms
NC 4 2启 动之后 ,MOS ET开始 开 P1 0 F 关运 行,最 大 占空 比 D… 为 7 ~8 %, 0 5
I ( +f ( 一 )
2
主要 特点
NC 10 P 4 2系列 的主要 特点 如下 :
维普资讯
An o al eDe i e vc s
N 1 0 P 2系列 P 升压 D ・ C 4 M F D e C变换 器
NCP 0 e i sP 1 2 S re FM e ・ 4 St p- DC・ Up - DC nv re s Co e t r
NCP1402系列
NCP1402系列PFM升压DC-DC变换器主要特点NCP1402系列的主要特点如下:(1)采用微型5脚TSOP封装(引脚排列见图1),其中脚CE(脚1)提供赋能或关闭,脚OUT(脚2)用作施加电源电压和监视输出电压,脚LX(脚5)是内部MOSFET漏极,脚GND(脚6)接地,脚NC(脚3)未连接。
(2)履行低噪声可变化频率电压模式DC-DC升压操作。
(3)能将低至0.8V的电池电压升压,一旦CE脚上的电压低于0.3V,芯片则进入关闭模式。
(4)NCP1402系列的5个型号分别带19T1、27T1、30T1、33T1和50T1后缀,输出电压分别为1.9V、2.7V、3.0V、3.3V和5.0V,精度不大于 2.5%,纹波仅约30mV,系统效率达85%。
工作原理NCP1402系列器件在芯片上集成了软启动电路、反馈电阻器、参考电压、PFM振荡器、PFM比较器、PFM控制器、MOS栅极驱动器、功率开关MSOFET和电流限制电路,内部结构如图1所示。
NCP1402在连续传导模式(CCM)下随可变化频率操作,执行电压型DC-DC升压调整。
输出电压经反馈电阻通过PFM比较器监测。
当反馈电压高于参考电压时,功率开关(MOSFET)截止。
若反馈电压低于参考电压,MOSFET 则由截止轮转到导通,外部电感器中的电流增加。
在MOSFET关断时,在电感器中的贮能传递到输出滤波电容器和负载。
当电感器流过大电流时,在输出电容器中存储电荷,尔后停止输出电压,直到下一个开关周期启动为止。
芯片CE脚提供使能/截止功能。
当VCE≥0.9V时,芯片被赋能,进入正常操作。
如果VCE<0.3V,芯片关闭,仅消耗非常小的电流。
若CE脚浮置,IC也可被固定于使能状态。
NCP1402内置软启动电路,能将施加于芯片上的电压在固定占空因数上使输出电压泵送至1.5V的电平上,使变换器可以正常操作。
芯片最低启动电压仅为0.8V,软启动时间约2ms。
替代NCP1400方案
XC9502 替代 MAX1672
XC6367C503MR替代MAX608
XC6365A303ER替代MAX1920
XC6366CxxxER替代MAX1920
XC9213B103VR替代MAX1684
XC9302 替代 MAX711
XC6368CxxxMR替代TC110
XC6209 替代 FAN2500S
XC6206 替代 ILC7062CP
XC62HR 替代 ILC7070HCM
XC6204 替代 ILC7080AIM5
XC6204 替代 ILC7081AIM5
XC6204 替代 ILC7082AIM5
XC62KN 替代 ILC7362CM
XC6203 替代 LT1117CST
XC9111系列的最大工作频率是100kHz。(在轻负载的情况下, XC9111系列的最大工作频率可达到180kHz。)
XC9111系列的C和D型提供了CE引脚,可在不需要升压工作时,使芯片停止工作,以降低功耗。
XC9111系列的E和F型提供了VDD和VOUT引脚,使芯片的电源电压和输出电压分开。
XC9111系列应用在便携通讯设备可极大地延长电池寿命。
XC9111系列的A和C和E型内置了N沟道的开关管,其外部电路只用一个电感线圈,一个二极管和电容就可进行升压工作。
当用于大电流输出时,可用XC9111系列的B和D和F型,这两种型号可外接三极管。
XC9111系列的输出电压是内部设定的,其范围是从1.5V 到7.0V,间隔是100mV(精度:±2.5%)。
深圳市泰德兰电子有限公司-专业销售日本TOREX|台湾Axelite产品。
笔记本常用供电芯片大全
笔记本常用供电芯片大全笔记本常用供电芯片大全线性稳压块:2951、LP2951、m5236、2950、AAT3200、AAT3680、AME8824、AMS1505、APL5912、APL5913、G9338、SC1565、MAX8863、MIC5205、SI9183、开机芯片:东芝TMP87PM48U、TMP48U、TMP87PH48UIBM:TB6805F、TB6806F、TB6807F TB6808F、TB62501F、、BD4175KV、 I/O芯片:PC97338、PC87391、PC87392、pc87393、SMSC系列:FDC37N869、FDC37N958、FDC37N972、LPC47N227/217、LPC47N252 LPC47N253、LPC47N254 LPC47N354LPC47N267键盘芯片:H8C/2471、H8/3434、H8/3431、H8S/2116VPC87541 PC87570、PC87591 PC87594 PC97551 PC97554键盘芯片:具有开机功能:H8/3434、H8/3437、H8/2147、H8/2149、H8/2161、H8/2168、PC87570、PC87591、H8S/XXX 、M38857、M38867、M38869 系统供电芯片:ISL6228 ISL6232MAX1630 MAX1631、MAX1632、MAX1633、MAX1634、MAX1635、MAX17003E、MAX1901、MAX1902、MAX1904、MAX1977、MAX1999、MAX785、MAX786、MAX8734、LTC1628、LT3728L、 LT3728LX、SB3052、SC1402、SC1403、SC1404、SC2450、、TPS51020、TPS51120〈MAX1631、MAX1634、MAX1904 可互换〉〈MAX1632、MAX1635、MAX1902 可互换〉〈MAX786、SB3052 可互换_老机型〉〈MAX8734、MAX1999可互换〉SC1402 (与MAX1632一样)IBM R40用LTC1628(与MAX1632差不多)索尼常用MAX785(奔2机器)辅助供电芯片:ADP3160、ADP3167、ADP3168、APW7057、APW7060ISL6224、ISL6225、ISL6227、IPM6220A、MAXl540、MAXl541、MAX1623、MAX1626、MAX1627、MAX1644、MAX1710、MAX1711、MAXl712、MAX1714、MAX1715、MAX1717、MAX1718、MAX1809、MAX1844、MAX1845、MAX1992、MAXl993、MAX8505、MAX8550、MAX8632、MAX8743、MAX8794、SC1470、SC1474、SC1476、SC1485、SC1486、SCl486A、SC470、SI786LG、G2996、SWC1486、TPS51116、TPS51117、TPS51120、TPS51124、TPS54610、TPS54672、CPU供电芯片:ADP3166、ADP3170、ADP3180、ADP3181、ADP3203、ADP3421、AIC1567、ISL6215、ISL6218、ISL6223、ISL6227、ISL6260、ISL6262、LTC1436、LTC1736、LTC1709、LTC3716、LTC3735、MAX1532、MAX1710、MAX1711、MAX1712、MAX1714、MAX1717、MAX1718、MAX1830、MAXl831、MAX1897、MAX1907、MAX1987、MAX1988、MAX798、MAX8760、MAX8770、MAX8771、MAX8774、SC451、SC452、SC1474、SC1476、供电芯片搭配使用:ADP3203/ADP3415、ADP3205+ADP3415、ADP3410+ADP3421、ADP3410+ADP3422、ADP3207+ADP3419、ADP3208+ADP3419电池充/放电控制芯片:AAI3680、ADP3801、ADP3806BQ24700、BQ2470l、BQ24702、BQ24703、DS2770、ISL6251、M61040FP、MAXl644 MAX1645、MAX1647、MAX1648、MAX745、MAX1736 MAX1772、MAX1773、MAX1870 MAX1873、MAX1908、MAX1909、MAX745、MAX8724、MAX8725、MAX8765、MB3878、MB3879、MB3887、MB39A126PFV、LT1505G、LTl505、LTC4008、TC490/591、TL494、TL594、OZ983、OZ985、笔记本电池电量检测芯片:BQ2040、BQ2060CPU温度控制芯片:MAX1617、MAX1020A、AD1020、AD1021、AD1030、AD1030A、AD1031、CM8500、MAX1989、AD1020A、MAX6654、ADM1032、G781、LM26、网卡芯片:RTL8100、RTL8139、Intel-DA82562ET、RC82540、3COM、BCM440、BCM5702KBGA、88E8001、88E8055、82562EZ网卡隔离器:LF8423、LF-H80P、H-0023、H0024/42、H0019、ATPL-119(内部是线圈,非电路)声卡芯片:ES1921、ESS1980S、STAC9704、AU8810、4299-JQ、4297-JQ、AD1885、AD1984、8552TS、8542TS、CS4239-KQ、AD1981、AD1981B、ADl888、ADl981、AD1986、ALC200、ALC201A、ALC202、ALC203、ALC258、ALC262、ALC655、ALC658、ALC660、ALC861、ALC880、ALC883、CMl9738、CS4205、CX20468、CX20549、CX20561 PT2353、(没声音,杂音,声小,查功放芯片)(开机时,没有声音,无声卡设备,查声卡芯片)音频功放芯片:APA2020、TPA0142、TPA0312、TPA6017、TPA0202、LM4835、LM4838、LM4861、LM4863、LM4880、LM4881、LM4882、LM4911、MAX9710、MAX9750、MAX9751、MAX9755、MAX9789、MAX9790、ESS1980S、8552TS、8542TS、TPA0302、AU8810 、BA7786、AN1294、AN12941、AN12942B、AN12943、G1420、PC卡信号芯片:R5C551、R5C552、R5C476、R54472、R5C593、SN0301520、PCIXXX、PC卡供电芯片:TPS2205、TPS2206、TPS2216、TPS2211、TPS2224、PU2211、M2562A、M2563A、M2564A、OZ2206、超级I/O:PC8394TIO芯片:PC系列:PC87591S(VPCQ01)、PC 87591L(VPC01)、PC97317IBWPC87393 VGJ、PC87591E-VLB、PC87591E (-VPCI01)/(VPCQ01)、PC97551-VPC、PC87570-ICC/VPC、PC87391VGJ、PC8394T、PC87392、PC87541L、PC87541VPC87591E-VLB、TB系列:TB62501F、TB62506F、TB6808F、ENE系列:KB3910QB0、KB910SFC1、KB3910SF、KB910QF、KB910QB4、KB910LQF、KB910LQFA1其它系列:IT8510E、PS5130、W83L950D、LPC47N249-AQQ、PCI4510、LPC47N253-AQQ、LPC47N250-SD、LPC47N252-SG、LPC47N254-AQQ、(1)管理串口、并口、软驱、I/O:PC97338、MB87392、(2)管理键盘、鼠标、且带开机功能:H8/3437、H8。
芯片替代方案
芯片替代方案特瑞仕以激光修整法及0.1V台的电压设定±1%的高精度技术为基础,提供优良的封装产品。
特瑞仕的产品不光能对应封装形式的小型化,轻量化和薄型化的要求,而且可使客户更加自由地进行电路设计。
这些小型封装产品因为可减少外接部品,所以应用领域正不断扩大。
同时输出电流达到数安培的DC/DC转换器及产业用的中高电压领域的产品也正不断得到充实。
特瑞仕一直以市场分析能力和智力预测市场的需求,专业生产对应时代要求的电源IC。
长年从事并精通数码机器必不可少的模拟设计的工程师,正在进行其他公司所没有的独特的企划,开发和设计。
深圳市泰德兰电子有限公司是日本TOREX(特瑞仕)半导体在中国的授权一级代理商。
品牌TOREX芯片XC6221直接替代MAX8510EXKTOREX-XC6221带ON/OFF开关兼容低ESR电容的高速电压调整器TOREX-XC6221详细说明:XC6221系列是具有高精度, 低噪音, 高速度, 兼容低ESR电容, 采用CMOS工艺生产的低压差LDO电压调整器,内部包括参考电压源电路,误差放大器电路,过流保护电路和相位补偿电路。
XC6221系列可通过在使能端端子输入低电平信号使芯片工作于待机状态。
在该状态下,XC6221B/D系列可通过芯片内部电路实现输出端电容自动放电的功能,使得输出端电压VOUT迅速恢复到Vss。
XC6221系列的输出电压可在0.80~5.00V范围内,利用激光微调技术,可实现以0.05V为间隔自由选择。
XC6221系列内部的Fold Back 电路可提供过流和短路保护。
该系列还具有低功耗(TYP.25uA)和低压差的优点(80mV@100mA,VOUT(T)=3.0V),兼容低ESR的陶瓷电容。
当选用超小型的USP-4,USPN-4封装时,可进一步减少在电路板上面所需要的面积尺寸。
TOREX-XC6221特点:最大输出电流200mA 限流250mA TYP.输入输出电压差80mV@ IOUT=100mA VOUT=3.0V工作电压范围1.6V~6.0V输出电压范围0.80V~5.00V(0.05V间隔)精度±2% (VOUT≧1.50V)(标准),±30mV (VOUT≦1.45V)(标准),±1% (VOUT≧2.00V)(高精度),±20mV (VOUT≦1.95V)(高精度)低功耗25uA (TYP.)电源抑制比70db @ 1kHz封装SOT-25, SSOT-24, USP-4, USPN-4以下是TOREX型号可完全替代其他品牌的产品:TOREX品牌TOREX品牌XC9206 替代LT1616ES6 XC6204 替代TPS79318DBVRG4 XC9206 替代LTC1701 XC6210 替代TPS796XC9207 替代LTC1701 XC6221 替代TPS799XC9213B103VR 替代LT1776 XC6210 替代TVL1117XC9213B103VR 替代LT1976 XC6202 替代UA78L05AIPKXC9221 替代LTC1772 XC6202 替代UA78LXC9223B082AR 替代LTC1773 XC6202 替代UA78LXC9223B082AR 替代LTC3411 XC6202 替代UA78LXC9301A333MR 替代LTC3531 XC6202 替代UA78LXC9302 替代LTC3531 XB1117 替代TLV1117XC9236 替代MAX1733 XC6201 替代UA78LXC9237 替代MAX1733 XC6211 替代TPS731XC9103 替代MAX1722 XC62E 替代TPS799XC9105 替代MAX1722 XC6419 替代TPS71936XC9129 替代MAX1947 XC6406 替代TPS71936XC9201 替代MAX1652 XC6411 替代TPS71936XC9502 替代MAX1672 XC6412 替代TPS71936XC6367C503MR 替代MAX608 XC6415 替代TPS71936XC6368C 替代MAX608 XC6601 替代TPS721XC9104B095 替代MAX1722 XC6501 替代TPS732XC6365A303ER 替代MAX1920 XC6203 替代REG1117AXC6366C 替代MAX1920 XC6202 替代TL750LXC9213B103VR 替代MAX1684 XC6221 替代TPS721XC9301 替代MAX711 XC6215 替代TPS72118XC9302 替代MAX711 XC62KN 替代TPS723XC9128 替代MAX1947 XC6210 替代TPS731XC9235 替代MAX1733 XC6204 替代TPS760XC9221 替代MIC2193 XC6202 替代TK711XC9221A09AMR 替代MIC4690 XC6202 替代TK715XC9223B082AR 替代MIC3838 XC6501 替代TK637XC9220 替代MIC2193 XC6211 替代TK111XC9224 替代MIC3838 XC6206 替代TK116XC6368 替代TC110 XC6204 替代TK716XC9201 替代TC105 XC6221 替代SiP21110XC6372 替代TC115 XC6204 替代Si9183DTXC6366 替代TC105 XC6204 替代Si9184DTXC9235 替代LM3674 XC6202 替代ZMRXCM517 替代LM2717 XC6202 替代ZMRXC9208 替代LM3677 XC6202 替代ZMRXC9210 替代LM2650 XC6202 替代ZMRXC6371 替代LM2703 XC6204B 替代ZXCLXC9119D10AMR 替代LM2703 XC6202 替代S-813XC6365A303ER 替代LM3677 XC6209 替代S-814AXC9206A18MR 替代LM3677 XC6209 替代S-814AXC9207A18MR 替代LM3677 XC6209 替代S-814BXC9213B103VR 替代LM2594 XC6204B182MR 替代S-817B18AMC-CWH-T2 XC9213B103VR 替代LM2676 XC6215P152GR 替代S-817A15APFXC9213B103VR 替代LM2737 XC6206 替代S-817BXC9301 替代LM2716 XC6206 替代S-817BXC9302 替代LM2716 XC6209 替代S-818AXC9235 替代NCP1522 XC6221 替代S-1112BXC9236 替代NCP1522 XC6403 替代S-8750XC9237 替代NCP1522 XC6204 替代S-L2980AXC9103 替代NCP1406 XC6402 替代S-1701AXC9105 替代NCP1406 XC6402 替代S-1701AXC9106 替代NCP1403 XC6403/04 替代S-1701AXC9107 替代NCP1403 XC6403/04 替代S-1701AXC9201 替代NCP1550 XC6405 替代S-1701AXC9210 替代NCP1508 XC6405 替代S-1701AXC9111 替代NCP1400 XC6201 替代S-812CXC9104 替代NCP1406 XC6404 替代S-1701AXC911950AMR 替代NCP1402 XC6404 替代S-1701AXC9303 替代BD9300 XC6212 替代S-814AXC9103 替代R1210N XC6213 替代S-814AXC9105 替代R1210N XC6203/XC6206 替代S-1206XC9106 替代RH5RH XC6218 替代S-1206XC9107 替代RH5RH XC6203P332FR 替代SPX1129M3-3.3 XC9111 替代RN5RK XC6210 替代SP6205EM5XC9208 替代R5220 XC6202 替代LP2950XC9502 替代R1282D002A XC6204 替代TPS761XC9504 替代R1280D002X XC6204 替代TPS763XC9509 替代RP901 XC6204 替代TPS764XC9510 替代R5212D XC6204 替代TPS769XC9511 替代RP901 XC6221 替代TPS770XC6371 替代RH5RH XC6204 替代TPS789XC6371 替代RH5RH XC6209 替代TPS79118XC6373 替代RH5RH XC62EP 替代RN5RGXC9104 替代R1210N XC62H 替代RN5RGXC9110C501MR 替代RN5RK XC6419 替代R5325XC9236 替代RP500 XB1086 替代RN5RGXC9106 替代ST5R00 XC6411 替代R5325XC9107 替代ST5R00 XC6412 替代R5325XC6372 替代S-8324 XC6202 替代L78LXC6372 替代S-8328 XC6202 替代L78LXC6373 替代S-8324 XC6202 替代L78LXC9128 替代SP6648 XC6202 替代L78LXC9129 替代SP6648 XC6203 替代LD1117SXC9128 替代TPS61030 XC6204 替代LD2979MXC9128 替代TPS61010 XC6202 替代LD2979ZXC9236 替代TPS6220 XC6204 替代LD2980ABMXC9237 替代TPS6220 XC6201 替代LD2980ABUXC9103 替代TPS61040 XC6204 替代LD2980ACMXC9105 替代TPS61040 XC6201 替代LD2980ACUXC9129 替代TPS61010 XC6204 替代LD2981ABMXC9201 替代TL494 XC6201 替代LD2981ABUXC9208 替代TPS62202 XC6204 替代LD2981ACM XCM517 替代TPS62400 XC6201 替代LD2981ACUXC9224 替代TPS62040 XC6202 替代LEXC9104 替代TPS61040 XC6202 替代LM2931AZ/BZ XC9104 替代TPS61081DRCR XC6216 替代L4938XC6365B105MR 替代TPS62204 XE6216 替代L4938XC6365B105MR 替代TPS62202DBV XC6701B 替代L4938XC6365B105MR 替代TPS62203DBV XC6701D 替代L4938XC6366 替代TPS62203 XCM406 替代LDRXC9207A18MR 替代TPS62202 XC62KN 替代S-802XC9223B082AR 替代TPS62040 XC6202 替代S-812CXC9236 替代TL2575 XC6206 替代S-812CXC9206A18MR 替代TPS62202 XC6206 替代S-812CXC9122 替代TK11880 XC6206 替代S-812CXC9121 替代TK11880 XC6206 替代S-812CXC9120 替代TK11880 XC6202 替代S-813XC9210 替代SiP12201 XC6204 替代LP3985IM5XC9119 替代YB1508 XC62H 替代NCP584HSNXC6401 替代CAT6221 XC62E 替代NCP584HSNXC6206 替代S1F78100Y2H0 XC6404 替代NCP400FCT2G XC6217 替代FAN2502S XB1086 替代LM317MBDTRK XC6219 替代FAN2502S XC6202 替代LM2931CDXC62H 替代FAN2502S XC6202 替代LM2931ZXC62E 替代FAN2502S XC6202 替代LP2950XB1085 替代KA78 XC6202 替代LP2950CZXB1086 替代KA78 XB1086 替代MC33269DTRK XC6205 替代FAN2502S XC6203 替代MC33275STXC6212 替代FAN2500S XC6204 替代MC33761XC6213 替代FAN2500S XC6206 替代MC78FCXC6203 替代FAN1117AS XC6203 替代MC78LCXC6209 替代FAN2500S XC6202 替代MC78LXC6204 替代FAN2502S XC6204 替代MC78PCXC6204 替代FAN2504S25 XC6206 替代MC78RCXC6204 替代FAN2508S XC6217 替代NCP584HSNXC6206 替代ILC7062CM XC6203 替代SC5201-1GSTR3XC6206 替代ILC7062CP XC6402 替代NCP400FCT2G XC62HR 替代ILC7070HCM XC6403/04 替代NCP400FCT2G XC6204 替代ILC7080AIM5 XC6405 替代NCP400FCT2G XC6204 替代ILC7081AIM5 XC6401 替代NCP583XVXC6204 替代ILC7082AIM5 XC6214 替代MC78LCXC62KN 替代ILC7362CM XC6219 替代NCP584HSN XC62KN 替代ILC7362CM XC6219 替代BAXC62KN 替代ILC7362CP XC6219 替代BA0XC6202 替代KA78L XC6206 替代RE5REXC62KN 替代MC79 XC6206 替代RH5RLXC6203 替代RC1117S XC6206 替代RE5RLXC6207 替代FAN2502S XC6206 替代RE5RLXC6215 替代ILC7062CP XC6401CH 替代LP3988IMX XCM406 替代TLE4476 XC6403DH 替代LP3988IMFXC6212 替代IRU1205 XC6210B122DR 替代LP3990TLXC6213 替代IRU1205 XC6210B122DR 替代LP3990MFXC6209 替代IRU1205 XC6221A182MR 替代LP3990MFXC6210 替代IRU1205 XC6202 替代LM2931AZXC6211 替代IRU1205 XC6214 替代LM1117MPX XC6221 替代IRU1205 XC6419 替代LP5996XC6203 替代LT1117CST XC6411 替代LP5996XC6203 替代LT1117IST XC6412 替代LP5996XC6202 替代LT1118CST XC6415 替代LP5996XC6202 替代LT1118IST XB1086 替代LM1086CSXC6203 替代LT1121CST XB1117 替代LM1117SXC6203 替代LT1121IST XB1117 替代LM1117MPX XC6202 替代LT1129CST XC6203 替代LM1117MPX XC6202 替代LT1129IST XC6202 替代LM2936ZXC62KN 替代LT1175CS8 XB1117 替代LM340SXC6202 替代LT1461ACS8 XC6202 替代LM340LAZXC6202 替代LT1521CS8 XC6202 替代LM3480IM3XC6202 替代LT1521CST XC6203 替代LM3940IMP-3.3 XC6202 替代LT1521IST XC6202 替代LM78LXC6204 替代LT1761ES5 XC6404 替代LMS5258MF XC6204 替代LT1964ES5 XC6202 替代LP2950XC6204 替代LTC1844ES5 XC6204 替代LP2978XC6203 替代LT1117CST XC6204 替代LP2980AIM5 XC6207 替代LT1761ES5 XC6204 替代LP2980IM5XC6217 替代LT1761ES5 XC6204 替代LP2980IM5X XC6219 替代LT1761ES5 XC6204 替代LP2981AIM5 XC6205 替代MAX8877EUK XC6204 替代LP2981IM5XC6212 替代MAX1598EZK XC6204 替代LP2982AIM5 XC6213 替代MAX1598EZK XC6204 替代LP2982IM5XC6210 替代MAX8877EUK XC6204 替代LP2985AIM5XC6211 替代MAX8877EUK XC6204 替代LP2985IM5 XC6217 替代MAX8877EUK XC6204 替代LP3984IBP XC6219 替代MAX8877EUK XC6403 替代LP3982 XC62H 替代MAX8877EUK XC6204 替代LP3985IBL XC6209 替代MAX1598EZK XC6415 替代MIC5371 XC6210B252MR 替代MAX1792EUA25 XCM406 替代MIC5264 XC6210B332MR 替代MAX1792EUA33 XC8101 替代MIC94060 XC6402 替代MAX1818EUT XC6601 替代MCP1727 XC6210B33MR 替代MAX1818EUT33 XC6213 替代TC1014 XC6221 替代MAX8510EXK XC6212 替代TC1014 XC6401 替代MAX8559 XC62KN 替代TC59XC6209 替代MAX8863TEUK XC62KN 替代TC59XC6209 替代MAX8867EUK XC62EP 替代TC57XC6405 替代MAX8875EUK XC6206 替代TC55RP XC6204 替代MAX8877EUK XC6206 替代TC55RP XC6207 替代MAX8878EUK XC6206 替代TC55RP XC6401 替代MAX8882EUT XC6203 替代TC1264 XC6209 替代MAX8887EZK XC6207 替代TC1014 XC6207 替代MIC5203 XC6217 替代TC1014 XC6214 替代MIC39100 XC6206 替代MCP1700T XC6202 替代LP2950-02BZ XC6209 替代TC1014 XC6202 替代LP2950-03BZ XC6209 替代TC1015 XC6203 替代MIC2920A XC6209 替代TC1185 XC6202 替代MIC2950-05BZ XC6203 替代TC1262 XC6202 替代MIC2950-06BZ XC6204 替代LX8211 XC6202 替代MIC2954-02BZ XC6215 替代MC78LC00 XC6202 替代MIC2954-03BZ XC6210 替代MC78M00 XB1117 替代MIC37100 XC6204 替代MIC5245 XC6203 替代MIC39100 XC6204 替代MIC5247 XC6204 替代MIC5203 XC6221 替代MIC5253 XC6204 替代MIC5207 XC6221 替代MIC5255 XC6202 替代MIC5207 XC6221 替代MIC5259 XC6203 替代MIC5209 XC6204 替代MIC5305 XC6214 替代MIC5209 XC6419 替代MIC5371 XC6204 替代MIC5219 XB1086 替代MIC39100 XB1117 替代MIC5239 XC6205 替代MIC5203 XC6412 替代MIC5371 XC6411 替代MIC5371。
STM32和STM8医疗方案
模块
STM8 Serial
模块
STM32F101RBT6 (ARM Cortex M3)
ISL21009 (Vref)
AMP AMP
心电 呼吸 传感器 传感器
键盘 扫描
报警 输出
ISL21009 (Vref)
AMP AMP
声音 输出
血氧饱 和度传
感器
血压 传感器
IC选型 监护仪采集模块
• 单片机:STM32、STM8系列 • 电源:LD1117XX33、TPS7133 、TPS76333 、
7、电压基准:REF30xx,REF02,ISL21009/7、ISL60002、LM385:ADC变换的外部基准。
8、 仪表运放:INA126/128/129,INA333,ISL28470:应用于心电信号的前级放大。如PCB板尺寸受限,客户会 考虑,否则会用3只运放组成一只仪表运放,虽然性能稍差,但成本降低很多。竞争对手包括:AD620、 AD623、AD8221/2。一般全导联心电图机需8只仪表放大器,三导联需3只仪表放大器。部分客户会采用多 选一的模拟开关,切换导联信号,各导联信号共用一个放大处理电路。
4. ICL3232、HIN202、MAX202/232,MAX3232:预留串口。
5. 心电图机的大部分IC:可直接应用于监护仪的心电模块。
6. DC/DC变换ISL6440/1、ISL8201M,TPS5130:如客户采用FPGA/ CPLD,需多路电源输出。
7. 大电流LDO:NCP1117、NCP630、TPS75933、TPS796XX, ISL80101/2/3等。
心电图(ECG)
● 由于心脏不断地进行有节奏的收缩和舒张活动,血液才能 在闭锁的循环系统中不停地流动。心脏在机械性收缩之前 ,首先产生电激动。心肌激动所产生的微小电流可经过身 体组织传导到体表,使体表不同部位产生不同的电位。如 果在体表放置两个电极,分别用导线联接到心电图机(即 精密的电流计)的两端,它会按照心脏激动的时间顺序, 将体表两点间的电位差记录下来,形成一条连续的曲线, 这就是心电图。
碳黑金属酞菁原位生高价铁氧降解有机污染物
松的降解率仍达到 95% ꎻ过氧化物模拟酶在双氧水的作用下产生对水体有机污染物降解起主要作用的高价
铁氧活性种ꎬ而羟基自由基起次要作用ꎻ经过 60 min 反应ꎬ该催化体系将地塞米松降解为对环境不存在二次
污染的小分子有机酸ꎮ 该仿生催化体系的构筑为仿生催化材料在工业废水中的应用提供了新视角ꎮ
关键词:碳黑ꎻ金属酞菁ꎻ高价铁氧活性种ꎻ降解ꎻ有机污染物
溶液加入 到 40 mL 的 样 品 瓶 中ꎬ 加 入 0 . 025 g∕L
的 FePcCl16  ̄Py ̄CB、7 . 5 mmol∕L 的 H 2 O 2 ꎬ 在 室 温
( 25 ℃ ) 的条件下反应 60 min 后测试样品瓶中的
DXMS 的降解率ꎬ 为 第 1 次 实 验ꎮ 随 后 向 第 1 次
实验材料:十六氯铁酞菁( FePcCl16 ) ꎬ实验室制
收稿日期:2023 04 27 网络出版日期:2023 08 04
基金项目: 浙 江 省 访 问 工 程 师 项 目 ( FG2022321 ) ꎻ 嘉 兴 市 应 用 性 基 础 研 究 项 目 ( 2023AY11019 ) ꎻ 嘉 兴 职 业 技 术 学 院 重 点 项 目
浓盐酸( HClꎬ质量分数 37% ) 、氢氧化钠( NaOHꎬ分
析纯) 、四氢呋喃( THFꎬ分析纯) 、地塞米松( DXMSꎬ
护下ꎬ回流并且机械搅拌 24 hꎻ然后采用 THF、去离
FePcCl16  ̄Py ̄CBꎬ即过氧化物模拟酶ꎮ
分析纯) 、异丙醇 ( IPAꎬ分析纯) 、对苯醌 ( p ̄BQꎬ分
( 如染料、抗生素等) ꎬ因而ꎬMPc ̄H2 O2 体系的作用
机理与芬顿体系的作用机理极为相似
[3 ̄4]
ꎮ 人们发
NCP1402SN33T1G资料
NCP1402
200 mA, PFM Step−Up Micropower Switching Regulator
The NCP1402 series are monolithic micropower step−up DC to DC converter that are specially designed for powering portable equipment from one or two cell battery packs.These devices are designed to startup with a cell voltage of 0.8 V and operate down to less than 0.3 V. With only three external components, this series allow a simple means to implement highly efficient converters that are capable of up to 200 mA of output current at Vin = 2.0 V, VOUT = 3.0 V.
1
March, 2006 − Rev. 7
Publication Order Number: NCP1402/D
元器件交易网
NCP1402
Vin
CE
LX
1
5
OUT NCP1402
2
NC
GND
3
4
VOUT
Figure 1. Typical Step−Up Converter Application
ABSOLUTE MAXIMUM RATINGS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NCP1402200 mA, PFM Step−Up Micropower Switching RegulatorThe NCP1402 series are monolithic micropower step−up DC to DC converter that are specially designed for powering portable equipment from one or two cell battery packs.These devices are designed to start−up with a cell voltage of 0.8 V and operate down to less than 0.3V. With only three external components, this series allow a simple means to implement highly efficient converters that are capable of up to 200 mA of output current at V in = 2.0 V, V OUT = 3.0 V.Each device consists of an on−chip PFM (Pulse Frequency Modulation) oscillator, PFM controller, PFM comparator, soft−start, voltage reference, feedback resistors, driver, and power MOSFET switch with current limit protection. Additionally, a chip enable feature is provided to power down the converter for extended battery life.The NCP1402 device series are available in the Thin SOT−23−5 package with five standard regulated output voltages. Additional voltages that range from 1.8 V to 5.0 V in 100 mV steps can be manufactured.Features•Extremely Low Start−Up V oltage of 0.8 V•Operation Down to Less than 0.3 V•High Efficiency 85% (V in = 2.0 V, V OUT = 3.0 V, 70 mA)•Low Operating Current of 30 m A (V OUT = 1.9 V)•Output V oltage Accuracy ±2.5%•Low Converter Ripple with Typical 30 mV•Only Three External Components Are Required•Chip Enable Power Down Capability for Extended Battery Life •Micro Miniature Thin SOT−23−5 PackagesTypical Applications•Cellular Telephones•Pagers•Personal Digital Assistants (PDA)•Electronic Games•Portable Audio (MP3)•Camcorders•Digital Cameras•Handheld InstrumentsORDERING INFORMATIONSee detailed ordering and shipping information in the ordering information section on page 3 of this data sheet.Figure 1. Typical Step−Up Converter ApplicationV OUTV inOUT2NC 3GND4LX 5Figure 2. Representative Block DiagramPIN FUNCTION DESCRIPTIONSORDERING INFORMATIONNOTE: The ordering information lists five standard output voltage device options. Additional device with output voltage ranging from 1.8 V to 5.0 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability.ABSOLUTE MAXIMUM RATINGSNOTES:1.This device series contains ESD protection and exceeds the following tests:Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22−A114.Machine Model (MM) ±200 V per JEDEC standard: JESD22−A115.2.The maximum package power dissipation limit must not be exceeded.P D+T J(max)*T AR q JAtch−up Current Maximum Rating: ±150 mA per JEDEC standard: JESD78.4.Moisture Sensitivity Level: MSL 1 per IPC/JEDEC standard: J−STD−020A.SET6.CE pin is integrated with an internal 10 MΩ pull−up resistor.1006080402001.9604020V O U T , O U T P U T V O L T A G E (V )I O , OUTPUT CURRENT (mA)Figure 3. NCP1402SN19T1 Output Voltage vs.Output Current Figure 4. NCP1402SN30T1 Output Voltage vs.Output Current6.05.04.03.01.0V O U T , O U T P U T V O L T A G E (V )Figure 7. NCP1402SN30T1 Efficiency vs.Output Current I O , OUTPUT CURRENT (mA)Figure 8. NCP1402SN50T1 Efficiency vs.Output CurrentI O , OUTPUT CURRENT (mA)E F F I C I E N C Y (%)I O , OUTPUT CURRENT (mA)2.0801001201401601802000604020801001201401601802002.060402080100120140160180200604020801001201401601802001006080402002.0V O U T , O U T P U T V O L T A G E (V )1.65.25.15.04.94.84.7V O U T , O U T P U T V O L T A G E (V )Figure 13. NCP1402SN30T1 OperatingCurrent 1 vs. Temperature TEMPERATURE (°C)Figure 14. NCP1402SN50T1 OperatingCurrent 1 vs. TemperatureTEMPERATURE (°C)I D D 1, O P E R A T I N G C U R R E N T 1 (m A )2.11.71.81.9−50250−255075100−50250−255075100−506.5255.50−25t o n , S W I T C H O N T I M E (µs )5.0TEMPERATURE (°C)Figure 15. NCP1402SN19T1 Switch On Timevs. Temperature Figure 16. NCP1402SN30T1 Switch On Timevs. Temperature7.06.56.05.55.04.5t o n , S W I T C H O N T I M E (µs )Figure 19. NCP1402SN30T1 Minimum SwitchOff Time vs. Temperature TEMPERATURE (°C)Figure 20. NCP1402SN50T1 Minimum SwitchOff Time vs. TemperatureTEMPERATURE (°C)t o f f , M I N I M U M S W I T C H O F F T I M E (µs )7.5TEMPERATURE (°C)6.07.05075100−5025−255075100−5025−255075100−5025−2550751001.51.61.41.31.71.82502301902101701509060D M A X , M A X I M U M D U T Y C Y C L E (%)401007060905040Figure 25. NCP1402SN30T1 LX Pin On−StateCurrent vs. Temperature TEMPERATURE (°C)Figure 26. NCP1402SN50T1 LX Pin On−StateCurrent vs. TemperatureTEMPERATURE (°C)100507080−5025−255075100−5025−255075100D M A X , M A X I M U M D U T Y C Y C LE (%)80I L X , L X P I N O N −S T A T E C U R R E N T (m A )0.80.20.01.00.40.63.02.51.01.50.50.00.80.2V L X L I M , V L X V O L T A G E L I M I T (V )0.0V L X L I M , V L X V O L T A G E L I M I T (V )Figure 31. NCP1402SN30T1 Switch−onResistance vs. Temperature TEMPERATURE (°C)Figure 32. NCP1402SN50T1 Switch−onResistance vs. TemperatureTEMPERATURE (°C)R D S (o n ), S W I T C H −O N R E S I S T A N C E (Ω)1.00.40.6−5025−255075100−5025−2550751002.00.80.4V s t a r t /V h o l d , S T A R T U P /H O L D V O L T A G E (V )0.0Figure 37. NCP1402SN30T1 Startup/HoldVoltage vs. Output Current 1.00.20.6Figure 38. NCP1402SN50T1 Startup/HoldVoltage vs. Output Current0.80.4V s t a r t /V h o l d , S T A R T U P /H O L D V O L T A G E (V )0.01.00.20.6I O , OUTPUT CURRENT (mA)405030206010708090100I O , OUTPUT CURRENT (mA)V s t a r t /V h o l d , S T A R T U P /H O L D V O L T A G E (V )405030206010708090100Figure 39. NCP1402SN19T1 Operating Waveforms (Medium Load)Figure 40. NCP1402SN19T1 Operating Waveforms (Heavy Load)Figure 41. NCP1402SN30T1 Operating Waveforms (Medium Load)Figure 42. NCP1402SN30T1 Operating Waveforms (Heavy Load)Figure 43. NCP1402SN50T1 Operating Waveforms (Medium Load)Figure 44. NCP1402SN50T1 OperatingWaveforms (Heavy Load)V OUT = 1.9 V, V in = 1.2 V, I O = 30 mA, L = 47 m H, C OUT = 68 m F1.V LX, 1.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div2 m s/divV OUT = 3.0 V, V in = 1.2 V, I O = 30 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div5 m s/divV OUT = 3.0 V, V in = 1.2 V, I O = 70 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/divV OUT = 1.9 V, V in = 1.2 V, I O = 70 mA, L = 47 m H, C OUT = 68 m F1.V LX, 1.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div5 m s/div2 m s/div2 m s/divV OUT = 5.0 V, V in = 1.5 V, I O = 30 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/div2 m s/divV OUT = 5.0 V, V in = 1.5 V, I O = 60 mA, L = 47 m H, C OUT = 68 m F1.V LX,2.0 V/div2.V OUT, 20 mV/div, AC coupled3.I L, 100 mA/divFigure 45. NCP1402SN19T1 Load TransientResponse Figure 46. NCP1402SN19T1 Load TransientResponseFigure 47. NCP1402SN30T1 Load TransientResponse Figure 48. NCP1402SN30T1 Load TransientResponseFigure 49. NCP1402SN50T1 Load TransientResponse Figure 50. NCP1402SN50T1 Load TransientResponseV in = 1.2 V, L = 47 m H, C OUT = 68 m F1.V OUT = 1.9 V (AC coupled), 100 mV/div2.I O = 0.1 mA to 80 mAV in = 1.2 V, L = 47 m H, C OUT = 68 m F1.V OUT = 1.9 V (AC coupled), 100 mV/div2.I O = 80 mA to 0.1 mAV in = 2.4 V, L = 47 m H, C OUT = 68 m F1.V OUT = 5.0 V (AC coupled), 100 mV/div2.I O = 0.1 mA to 80 mAV in = 2.4 V, L = 47 m H, C OUT = 68 m F1.V OUT = 5.0 V (AC coupled), 100 mV/div2.I O = 80 mA to 0.1 mAV in = 1.5 V, L = 47 m H, C OUT = 68 m F1.V OUT = 3.0 V (AC coupled), 100 mV/div2.I O = 0.1 mA to 80 mAV in = 1.5 V, L = 47 m H, C OUT = 68 m F1.V OUT = 3.0 V (AC coupled), 100 mV/div2.I O = 80 mA to 0.1 mA60V r i p p l e , R I P P L E V O L T A G E (m V )Figure 55. NCP1402SNXXT1 Pin On−stateCurrent vs. Output Voltage Figure 56. NCP1402SNXXT1 Switch−OnResistance vs. Output Voltage80204010060V r i p p l e , R I P P L E V O L T A G E (m V )0802040100V OUT , OUTPUT VOLTAGE (V)134256V OUT , OUTPUT VOLTAGE (V)I L X , L X P I N O N −S T A T E C U R R E N T (m A )134252201002601401803006125321I i n (n o l o a d ), N O L O A D I N P U T C U R R E N T (µA )V in , INPUT VOLTAGE (V)Figure 57. NCP1402SNXXT1 No Load InputCurrent vs. Input Voltage Figure 58. NCP1402SNXXT1 Maximum OutputCurrent vs. Input Voltage150V in , INPUT VOLTAGE (V)25507510045612345DETAILED OPERATING DESCRIPTIONOperationThe NCP1402 series are monolithic power switching regulators optimized for applications where power drain must be minimized. These devices operate as variable frequency, voltage mode boost regulators and designed to operate in continuous conduction mode. Potential applications include low powered consumer products and battery powered portable products.The NCP1402 series are low noise variable frequency voltage−mode DC−DC converters, and consist of soft−start circuit, feedback resistor, reference voltage, oscillator, PFM comparator, PFM control circuit, current limit circuit and power switch. Due to the on−chip feedback resistor network,the system designer can get the regulated output voltage from 1.8 V to 5 V with a small number of external components. The operating current is typically 30 m A (V OUT = 1.9 V), and can be further reduced to about 0.6 m A when the chip is disabled (V CE < 0.3 V).The NCP1402 operation can be best understood by examining the block diagram in Figure 2. PFM comparator monitors the output voltage via the feedback resistor. When the feedback voltage is higher than the reference voltage, the power switch is turned off. As the feedback voltage is lower than reference voltage and the power switch has been off for at least a period of minimum off−time decided by PFM oscillator, the power switch is then cycled on for a period of on−time also decided by PFM oscillator, or until current limit signal is asserted. When the power switch is on, current ramps up in the inductor, storing energy in the magnetic field. When the power switch is off, the energy in the magnetic field is transferred to output filter capacitor and the load. The output filter capacitor stores the charge while the inductor current is high, then holds up the output voltage until next switching cycle.Soft StartThere is a soft start circuit in NCP1402. When power is applied to the device, the soft start circuit pumps up the output voltage to approximately 1.5 V at a fixed duty cycle, the level at which the converter can operate normally. What is more,the start−up capability with heavy loads is also improved.Regulated Converter Voltage (V OUT )The V OUT is set by an internal feedback resistor network.This is trimmed to a selected voltage from 1.8 to 5.0 V range in 100 mV steps with an accuracy of $2.5%.Current LimitThe NCP1402 series utilizes cycle−by−cycle current limiting as a means of protecting the output switch MOSFET from overstress and preventing the small value inductor from saturation. Current limiting is implemented by monitoring the output MOSFET current build−up during conduction, and upon sensing an overcurrent conduction immediately turning off the switch for the duration of the oscillator cycle.The voltage across the output MOSFET is monitored and compared against a reference by the VLX limiter. When the threshold is reached, a signal is sent to the PFM controller block to terminate the power switch conduction. The current limit threshold is typically set at 350 mA.Enable / Disable OperationThe NCP1402 series offer IC shut−down mode by chip enable pin (CE pin) to reduce current consumption. An internal pull−up resistor tied the CE pin to OUT pin by default i.e. user can float the pin CE for permanent “On”.When voltage at pin CE is equal or greater than 0.9 V , the chip will be enabled, which means the regulator is in normal operation. When voltage at pin CE is less than 0.3 V , the chip is disabled, which means IC is shutdown.Important: DO NOT apply a voltage between 0.3 V and 0.9 V to pin CE as this is the CE pin’s hyteresis voltagerange. Clearly defined output states can only be obtained by applying voltage out of this range.APPLICATIONS CIRCUIT INFORMATIONFigure 59. Typical Application Circuit V OUT m FV inStep−up Converter Design EquationsNCP1402 step−up DC−DC converter designed to operate in continuous conduction mode can be defined by:*NOTES:I PK−Peak inductor currentI min−Minimum inductor currentI O−Desired dc output currentI Omax−Desired maximum dc output currentI L−Average inductor currentV in−Nominal operating dc input voltageV OUT−Desired dc output voltageV F−Diode forward voltageV S−Saturation voltage of the internal FET switchD Q−Charge stores in the C OUT during charging upV ripple−Output ripple voltageESR−Equivalent series resistance of the output capacitorM−An empirical factor, when V OUT≥ 3.0 V,M = 8 x 10−6, otherwise M = 5.3 x 10−6. EXTERNAL COMPONENT SELECTIONInductorThe NCP1402 is designed to work well with a 47 m H inductor in most applications. 47 m H is a sufficiently low value to allow the use of a small surface mount coil, but large enough to maintain low ripple. Low inductance values supply higher output current, but also increase the ripple and reduce efficiency. Note that values below 27 m H is not recommended due to NCP1402 switch limitations. Higher inductor values reduce ripple and improve efficiency, but also limit output current.The inductor should have small DCR, usually less than 1 W to minimize loss. It is necessary to choose an inductor with saturation current greater than the peak current which the inductor will encounter in the application.DiodeThe diode is the main source of loss in DC−DC converters. The most importance parameters which affect their efficiency are the forward voltage drop, V F, and the reverse recovery time, t rr. The forward voltage drop creates a loss just by having a voltage across the device while a current flowing through it. The reverse recovery time generates a loss when the diode is reverse biased, and the current appears to actually flow backwards through the diode due to the minority carriers being swept from the P−N junction. A Schottky diode with the following characteristics is recommended:Small forward voltage, V F < 0.3 VSmall reverse leakage currentFast reverse recovery time/ switching speedRated current larger than peak inductor current,I rated > I PKReverse voltage larger than output voltage,V reverse > V OUTInput CapacitorThe input capacitor can stabilize the input voltage and minimize peak current ripple from the source. The value of the capacitor depends on the impedance of the input source used. Small ESR (Equivalent Series Resistance) Tantalum or ceramic capacitor with value of 10 m F should be suitable.Output CapacitorThe output capacitor is used for sustaining the output voltage when the internal MOSFET is switched on and smoothing the ripple voltage. Low ESR capacitor should be used to reduce output ripple voltage. In general, a 47 uF to 68 uF low ESR (0.15W to 0.30 W ) Tantalum capacitor should be appropriate. For applications where space is a critical factor, two parallel 22 uF low profile SMD ceramic capacitors can be used.An evaluation board of NCP1402 has been made in the size of 23 mm x 20 mm only, as shown in Figures 60 and 61.Please contact your ON Semiconductor representative for availability. The evaluation board schematic diagram, the artwork and the silkscreen of the surface−mount PCB are shown below:20 mmFigure 61. NCP1402 PFM Step−Up DC−DC Converter Evaluation Board Artwork (Component Side)23 mm23 mmComponents SupplierPCB Layout HintsGroundingOne point grounding should be used for the output power return ground, the input power return ground, and the device switch ground to reduce noise as shown in Figure 62, e.g. :C2 GND, C1 GND, and U1 GND are connected at one point in the evaluation board. The input ground and output ground traces must be thick enough for current to flow through and for reducing ground bounce.Power Signal TracesLow resistance conducting paths should be used for the power carrying traces to reduce power loss so as to improveefficiency (short and thick traces for connecting the inductor L can also reduce stray inductance), e.g. : short and thick traces listed below are used in the evaluation board:1.Trace from TP1 to L12.Trace from L1 to Lx pin of U13.Trace from L1 to anode pin of D14.Trace from cathode pin of D1 to TP2Output CapacitorThe output capacitor should be placed close to the output terminals to obtain better smoothing effect on the output ripple.V inGNDV outGND10 Figure 62. NCP1402 Evaluation Board Schematic DiagramPACKAGE DIMENSIONSSOT23−5(TSOP−5, SC59−5)SN SUFFIX CASE 483−02ISSUE CNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4. A AND B DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.DIM MIN MAX MIN MAX INCHES MILLIMETERS A 2.90 3.100.11420.1220B 1.30 1.700.05120.0669C 0.90 1.100.03540.0433D 0.250.500.00980.0197G 0.85 1.050.03350.0413H 0.0130.1000.00050.0040J 0.100.260.00400.0102K 0.200.600.00790.0236L 1.25 1.550.04930.0610M 0 10 0 10 S 2.50 3.000.09850.1181____ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further noticeto any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION。