高中数学必修1《方程的根与函数的零点》说课稿

合集下载

高中数学《方程的根与函数的零点》说课稿

高中数学《方程的根与函数的零点》说课稿

高中数学《方程的根与函数的零点》说课稿:老师聘请考试《说课》学问点|考点汇总恭敬的各位考官,大家好,我是今日的X号考生,今日我说课的题目是《方程的根与函数的零点》。

教学理论认为,同学是学习的主体,老师是学习的组织者和引导者。

依据这一教学理念,本节课我将从教材分析、学情分析、教学过程等几个方面来加以解释。

一、说教材首先说说我对教材的理解。

本节课选自人教A版高中数学必修1第三章第1节。

结合同学之前所学基本初等函数的图象及性质,引入本节课的学习,不仅能让同学感触到学问之间的联系,同时也为后面学习"用二分法求方程的近似解'奠定基础。

二、说学情下面谈谈同学的状况。

之前函数与方程的大量学习为本节课打下了良好的基础,但同学并未考虑过如何推断随意一个方程是否有解。

因此在教学过程中,我会注重对同学的启发引导,引导同学从详细到抽象,从特别到普通,一步步得出结果。

三、说教学目标按照以上对教材和学情的分析,我设计了如下教学目标:(一)学问与技能理解方程的根与函数零点之间的关系,控制函数零点存在的判定办法,会推断函数零点的个数。

(二)过程与办法经受观看、思量、分析、猜测、验证的过程,提升抽象和概括能力;体验从特别到普通的认知过程,进展函数与方程思想。

(三)情感、看法与价值观感触数学学问前后间的联系,并逐步养成擅长探究的思维品质。

四、说教学重难点结合教学目标确实立,我设置本节课教学重点为:函数零点与方程的根之间的联系,利用函数性质判定零点存在。

教学难点为:利用函数性质判定零点存在的探究及应用。

五、说教法和学法为了实现教学目标,突破教学重难点,本节课我采纳启发式、探究式教学办法,意在帮忙同学通过观看,自己动手,从实践中获得学问。

六、说教学过程下面我将重点谈谈我的教学过程。

(一)引入新课首先是导入环节。

我会带领同学复习到目前为止所学过的函数都有哪些。

按照同学的举例我会提问:若将函数改写成方程,是否都可以求解?如若不能,能否推断出该方程是否有解?同学很容易发觉,对于复杂方程或未接触过的方程,是没有方法求解的,由此引发认知矛盾,进而进入本节课的学习。

《方程的根与函数的零点》 说课稿(附教学设计)

《方程的根与函数的零点》 说课稿(附教学设计)

《方程的根与函数的零点》说课稿一、教材分析普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。

第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。

本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。

本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。

由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。

方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的联系奠定基础。

二、教学目标分析本节内容包含三大知识点:一、函数零点的定义;二、方程的根与函数零点的等价关系;三、零点存在性定理。

结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

结合本节课教学主线的设计,设定本节课的过程与方法目标如下:1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

高中数学必修一《方程的根与函数的零点》说课-8页word资料

高中数学必修一《方程的根与函数的零点》说课-8页word资料

人教版高中数学必修一《方程的根与函数的零点》说课稿【教材分析】(一)教材结构与内容简析1.《方程的根与函数的零点》是人教版必修一第三章第一节的内容,是新课标新增内容,本节课的教学分为两个课时。

2.本节课起着承上启下的作用,与整章、整册综合成一个整体。

本课内容给出函数零点概念的目的是把函数与方程联系起来,把所有的中学代数问题都统一到函数的思想指导之下,从这个角度看本节课应承载建立函数与方程数学思想的任务。

函数零点的定义和函数零点存在性定理,为“用二分法求方程近似解”这一函数的应用提供理论基础,同时也要为后续“算法”的学习埋下伏笔。

3.本节课是培养学生“等价转化思想”、“数形结合思想”、“方程与函数思想”的优质载体.4. 本节课内容是近年来高考考查的重点和热点.(二)教学目标:知识与技能:领会函数零点的概念,领会方程的根与函数零点之间的关系,掌握函数零点的存在性定理。

培养学生自主发现、探究实践的能力。

过程与方法:以二次函数为载体,探究函数零点概念及零点存在性定理。

在具体到一般的认知过程中培养学生自主发现、探究实践能力,并渗透相关的数学思想。

情感态度与价值观:培养学生用联系的观点看待问题;感悟由具体到抽象、由特殊到一般的研究方法,形成严谨的科学态度。

(三)重点、难点:教学重点:①领会函数零点的概念②领会函数的零点与方程的根之间的联系;③掌握零点存在性定理.教学难点:探究发现函数零点存在性定理【教法分析】“紧扣教材,学生主体,教师主导,注重思维,注重过程”是我上课的指导思想,我借助多媒体和几何画板软件,采用“启发—探究—讨论”的教学模式,再通过具体问题的提出和解决,来激发学生的学习兴趣,激发求知欲,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

【学法分析】通过前面的学习,学生已经掌握了基本初等函数的图象和性质,具备有一定的看图识图能力。

但是利用函数的观点及应用函数的意识较薄弱。

本节课将从学生已有的经验出发,着眼于知识的形成和发展,注重学生的学习体验,精心设置一个个问题链,并以此为主线,由浅入深、循序渐进,启发学生探究,启发学生讨论。

人教版高中数学必修一方程的根与函数的零点说课稿

人教版高中数学必修一方程的根与函数的零点说课稿

必修一《方程的根与函数的零点》一、教材分析与学情分析我说课的内容是普通高中必修一第三章第一课时《方程的根与函数的零点》。

★教材地位与作用《方程的根与函数的零点》是学生在掌握了函数的概念和性质后学习的内容,它是函数性质和基本初等函数的深化与拓展,同时又是研究二次方程根的分布,以及学习二分法的理论依据,在本书中起着承前启后的作用。

通过本节课的学习,学生可以培养函数与方程、数形结合的重要数学思想以及类比的思维。

★学情:本节课的学习者是普通班学生,他们的观察、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、紧密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

二、教学目标★教学目标1.知识与技能①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程根的关系,掌握零点存在的判定条件。

②培养学生的观察能力以及类比思维、抽象概括能力。

2.过程与方法①通过观察二次函数图象,找到连续函数在某个区间上存在零点的判断方法。

②在教师的引导下,体验和感悟探究的一般过程以及由特殊到一般的思维方式。

3.情感、态度与价值观在函数与方程的联系中,体验数学中的转化思想的意义和价值。

★教学重点、难点重点:函数零点概念的理解;判定函数零点存在的方法。

难点:函数零点的个数及零点存在区间的确定。

三、教学方法与策略本节课让学生通过熟知的二次函数与二次方程的关系类比出一般方程的根与函数的零点的关系,并辅以计算器、多媒体手段,通过一定手脑结合的训练,让学生感受函数零点存在性定理的合理性。

在课堂结构上,我根据学生的认知水平,采取“仔细观察—分析研究---小组讨论---总结归纳”的方法,使学生知识的获得和知识的发生过程环环相扣,层层深入,从而顺利完成教学目标。

教 学 程 序设 计 意 图一、导入新课问题提出你能解这个方程:lnx+2x-6=0吗?你知道它有多少个解?解在什么范围?二、新知探究1.观察几个具体的一元二次方程的根及其相应的二次函数的图象:①方程0322=--x x 与函数322--=x x y ②方程0122=+-x x 与函数122+-=x x y ③方程0322=+-x x 与函数322+-=x x y探究:上述3个一元二次方程的根与其对应的二次函数的图象有什么关系?引导学生独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流。

《方程的根与函数的零点》说课稿范文(精选3篇)

《方程的根与函数的零点》说课稿范文(精选3篇)

《方程的根与函数的零点》说课稿范文(精选3篇)各位尊敬的老师,下午好。

今天我说课的题目是《方程的根与函数的零点》。

下面我将从教材的地位与作用、学情分析,教学目标与重难点分析,教法和学法指导、教学过程设计五个方面来阐述我对本节课的构思。

【教材的地位与作用】本节课是选自人教版《高中课程标准实验教科书》A版必修1第三章第一节。

函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节是函数应用的第一课,学生在系统地掌握了函数的概念及性质,基本初等函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个去件上存在零点的判定方法。

为下节“二分法求方程的近似解”和后续学习的算法提供了基础.因此本节内容具有承前启后的作用,地位重要.对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

【学情分析】1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。

对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。

【教材目标】根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:(一)认知目标:1.理解并掌握方程的根与相应函数零点的关系,学会将求方程的根的问题转化为求相应函数零点的问题;2.理解零点存在条件,并能确定具体函数存在零点的.区间.(二)能力目标:培养学生自主发现、探究实践的能力.(三)情感目标:在函数与方程的联系中体验数学转化思想的意义和价值【教材重难点】本着新课程标准的教学理念,针对教学内容的特点,我确立了如下的教学重点、难点:教学重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件及应用.教学难点:探究发现函数零点的存在性.【教法分析】充分发挥教师的主导作用和学生的主体作用.指导学生比较对照区别方程的根与函数图象与X轴的交点的方法,指导学生按顺序有重点地观察函数零点附近的函数值之间的关系的方法,并比较采用“启发—探究—讨论”式教学模式.这样的教法有利于突出重点——函数的零点与方程的根之间的联系与零点存在的判定条件及应用【教学过程】(一)创设情景,提出问题由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲.以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。

方程的根与函数的零点说课

方程的根与函数的零点说课

必修1《方程的根与函数的零点》说课一.教材分析1教学内容分析《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.函数零点是研究当函数f(x)的值为零时,相应的自变量的取值,反映在函数图象上,也就是函数图象与轴的交点横坐标.由于函数f(x)的值为零亦即f(x)=0,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程f(x)=0有解,则函数f(x)存在零点,且方程的根就是相应函数的零点,也是函数图象与轴的交点横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题.这是函数与方程关系认识的第一步.方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了“数形结合思想”及“转化与化归思想”.方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础.可见,函数零点概念在中学数学中具有核心地位.2教学目标通过本课教学,要求学生:理解并掌握方程的根与相应函数零点的关系,在此基础上,学会将求方程的根的问题转化为求相应函数零点的问题;理解零点存在性定理,并能初步确定具体函数存在零点的区间.(1).能够结合具体方程(如二次方程),说明方程的根、相应函数图象与轴的交点横坐标以及相应函数零点的关系;(2).正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点只能不止一个;(3).能利用函数图象和性质判断某些函数的零点个数;(4).能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器).3教学重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.4教学难点:准确理解零点存在性定理,并针对具体函数(或方程),能求出存在零点(或根)的区间.突破难点的方法:零点存在性定理的教学,则应引导学生观察函数图象与轴的交点的情况,来研究函数零点的情况,通过研究:①函数图象不连续;②;③,函数在区间上不单调;④,函数在区间上单调,等各种情况,加深学生对零点存在性定理的理解.二教学对象分析学生已有的认知基础是,初中学习过二次函数图象和二次方程,并且解过“当函数值为0时,求相应自变量的值”的问题,初步认识到二次方程与二次函数的联系,对二次函数图象与轴是否相交,也有一些直观的认识与体会.在高中阶段,已经学习了函数概念与性质,掌握了部分基本初等函数的图象与性质.三、预设教学对象问题1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间[a,b]上连续不断,是函数f(x)在区间[a,b]上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的困难.四.教学媒体分析本节教学目标的实现,需要借助计算机或者计算器,一方面是绘制函数图象,通过观察图象加深方程的根、函数零点以及同时函数图象与轴的交点的关系;另一方面,判断零点所在区间过程中,一些函数值的计算也必须借助计算机或计算器.由于条件限制,以教师演示为主。

《方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《方程的根与函数的零点》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析1、地位和作用“方程的根与函数的零点”是高中数学必修 1 第三章“函数的应用”中的第一节课。

本节课是在学生学习了函数的概念、性质,掌握了基本初等函数的图象和性质的基础上,进一步研究函数与方程的关系。

它不仅为后续学习用二分法求方程的近似解奠定了基础,而且体现了函数与方程的数学思想,对提高学生的数学素养具有重要意义。

2、教材内容本节课主要包括方程的根与函数零点的关系、函数零点存在性定理两部分内容。

通过具体的函数实例,引导学生观察、分析、归纳,得出方程的根与函数零点的关系,进而利用函数图象和性质,探究函数零点存在性定理。

二、学情分析1、知识基础学生已经掌握了函数的概念、图象和性质,具备了一定的数形结合思想和分析问题、解决问题的能力。

但对于函数与方程的关系,学生还缺乏系统的认识和理解。

2、学习能力高一学生思维活跃,好奇心强,但抽象思维能力和逻辑推理能力还有待提高。

在教学中,应注重引导学生自主探究、合作交流,培养学生的创新精神和实践能力。

三、教学目标1、知识与技能目标(1)理解方程的根与函数零点的关系,会判断函数零点的存在性。

(2)掌握函数零点存在性定理,并能应用定理解决相关问题。

2、过程与方法目标(1)通过对具体函数图象的观察、分析,培养学生的数形结合思想和逻辑推理能力。

(2)经历函数零点存在性定理的探究过程,体会从特殊到一般、从具体到抽象的研究方法。

3、情感态度与价值观目标(1)通过函数与方程的联系,让学生体会事物之间相互转化的辩证唯物主义观点。

(2)激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

四、教学重难点1、教学重点方程的根与函数零点的关系,函数零点存在性定理。

方程的根与函数零点的说课稿

方程的根与函数零点的说课稿

方程的根与函数零点的说课稿(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--方程的根与函数零点的说课稿方程的根与函数零点的说课稿“方程的根与函数的零点”说课稿各位老师,你们好!我说课的课题是“方程的根与函数的零点”说课内容分为六个部分,首先对教材进行简要分析一、教材分析方程的根与函数的零点是普通高中课程标准实验教科书必修数学1数学(A版)第三章第一节第一课时的内容,学生学习了基本初等函数的图象和性质以及一元二次方程根的求解方法为本节奠定了基础,本节课有着承上启下的作用,且承载建立函数与方程数学思想的任务;同时本课的内容将为下一节用二分法求方程的近似解提供了理论依据。

方程的根与函数的零点在高考中一般以选择题或填空题的形式出现,且一般与其他知识点结合起来进行考查,像20xx年全国及各省高考考查函数与导数的题目中大约有5%涉及到函数的零点,所以本节是函数的应用内容中的基础及重点之一。

二、教学目标根据上述教材分析,结合课程标准的要求,本节课的教学目标为以下三个方面:1.知识与技能目标理解函数零点的概念;领会函数零点与相应方程的关系,掌握零点的存在条件;掌握函数在某个区间上存在零点的判定方法。

2.过程与方法目标让学生经历探究函数零点与方程根的联系和函数在某区间存在零点的判别方法,使学生领悟方程与函数的区别与联系,进一步体会数形结合方法。

3.情感态度与价值观目标通过探究过程逐步形成用函数处理问题的意识。

三、教学重点、难点为了实现上述教学目标,根据上述教材分析,结合内容特点,本节课的教学重点是函数的零点与方程的根之间的联系,函数零点在某区间存在性的判定方法重点函数的零点与方程的根之间的联系,函数零点在某区间存在性的判定方法由于高中生年龄特点及现阶段的认知能力,通过函数图象的直观认识得到其中所蕴含的某种性质具有一定的难度,所以本课的教学难点是函数在某区间存在零点的判别方法。

《方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿各位评委老师,各位同仁,下午好!今天我说课的题目是《方程的根与函数的零点》,选自人教版《普通高中课程标准实验教科书》A 版必修1 第三章第一节第一课时。

下面我就教材、教法、学法、教学过程四个方面进行说课。

1 说教材1.1 教材分析。

函数与方程是中学数学的重要内容,它既是初等数学的基础,又是初等数学与高等数学的连接纽带。

无论是数学条件自身的理论研究,还是在实际生活中的应用,函数与方程都有着不可替代的作用。

从更高层次上来讲,函数的思想贯穿整个高中数学内容的始终,因此本节内容是高中数学教学中的重中之重。

1.2 目标分析。

根据上述我对教材的分析,同时考虑到高一学生现有的认知结构和认知心理特征,制定如下教学目标:1.2.1 知识与技能:①了解方程的根与函数的零点之间的关系;②结合函数图象和性质学会判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法。

1.2.2 过程与方法:①探究方程的根与函数的零点的关系;②发现在某区间上的图象连续的函数存在零点的判定方法。

1.2.3 情感、态度与价值观:①培养学生主动参与、积极探究的主体意识;②体会数形结合的数学思想,由特殊到一般的归纳思想,培养学生用新的数学语言对原有的数学现象加以概括和解决的能力。

③培养学生的辩证思维以及分析问题解决问题的能力。

1.3 重点、难点:重点:是判定函数零点存在及其个数的方法。

难点:是探究发现函数零点的存在性,利用函数单调性判断函数零点的个数。

2 说教法基于本节课内容的设计和高一学生的认知心理特征,坚持“学生主体,教师主导” 的教学原则。

本节课我借助多媒体和几何画板软件,采用“启发———探究———讨论”式教学模式,充分发挥教师的主导作用,让学生真正成为教学活动的主体。

在教学过程中,多次创设问题情境,使学生对问题加以置疑、思索,想办法解决问题,通过教师的启发点拨,在积极的双边互动中,使学生达到了解疑答难的目的。

新人教高中数学必修1 方程的根与函数的零点 说课稿

新人教高中数学必修1  方程的根与函数的零点  说课稿

方程的根与函数的零点各位老师,大家好!我是第xx组xx号考生,很高兴能够站在这里参加面试,我叫某某,毕业于某某大学某某专业,性格比较开朗,随和,能关心周围的人和事,和亲人朋友能够和睦相处,对生活充满信心,在某某公司从事某某一职,对教师这一职业非常崇敬。

我今天说课的题目是《方程的根与函数的零点》,下面,我将从教材分析、教学目标、教学重难点、教学方法、学习方法、教学过程和板书设计等方面进行说课。

一、教材分析本节内容是选自新人教A版高中数学必修1第3章第1节第1部分的内容。

函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

因此本节内容具有承前启后的作用,地位重要。

二、教学目标根据上述对教材的分析,我确定本节课的教学目标为:1、知识与技能目标:理解方程的根与函数零点之间的关系,学会函数零点存在的判定方法,理解利用函数单调性判断函数零点的个数的方法。

2、过程与方法目标:经历“类比——归纳——应用”的过程,培养学生分析问题探究问题的能力,感悟由具体到抽象的研究方法,培养学生的归纳概括能力。

3、情感、态度与价值观目标:培养学生自主探究,合作交流的能力,激发学生的学习兴趣并培养学生严谨的科学态度。

[设计意图]:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。

三、重点与难点根据本节课的知识要求和教学目标,本节课的教学重点是:零点的概念及存在性的判定;教学难点是:零点的确定。

[设计意图]:首先通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。

四、教学方法新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者,基于这一教学理念和本节课的教学目标,我采用如下的教学方法:(1)在教师指导下的引导发现教学法:通过这样的教法可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力。

关于方程的根与函数的零点说课稿

关于方程的根与函数的零点说课稿

关于方程的根与函数的零点说课稿关于方程的根与函数的零点说课稿作为一无名无私奉献的教育工作者,编写说课稿是必不可少的,说课稿有助于顺利而有效地开展教学活动。

说课稿应该怎么写才好呢?下面是小编精心整理的方程的根与函数的零点说课稿,仅供参考,大家一起来看看吧。

一、教材分析本节课选自人教版高中数学必修一第三章第一节。

是在学生学习了基本初等函数的图象和性质的基础上,引入函数零点的概念,研究函数零点与相应方程根的关系,函数零点存在的条件,及零点个数的判断方法。

为后面学习“用二分法求方程的近似解”奠定基础。

二、学情分析高中学生有丰富的想象力,乐于探索,不满足于知识的灌输,自主学习和探索新知的习惯已初步形成,有初步的数形结合的意识,但本节课对思想方法的要求较高,而学生数学探究的能力不足,因此需要教师在方法上加强指导。

三、教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能体会方程的根与函数零点之间的关系,学会函数零点存在的判定方法,会利用函数单调性判断函数零点的个数。

(二)过程与方法通过观察、思考、分析、猜想、验证的过程,体验从特殊到一般及函数与方程的思想方法,提升抽象和概括能力。

(三)情感态度与价值观通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,逐步养成勇于提问,善于探索的思维品质。

四、教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。

根据授课内容可以确定本节课的教学重点是:对函数零点概念的理解;函数零点存在性的判定。

教学难点是:探究并发现零点存在性定理及其应用。

五、教学方法新课程标准指出,教无定法,贵在得法,教师是学生学习活动的组织者、引导者和合作者,是师生关系中平等的首席,根据这一教学理念,我主要采用启发诱导式的教学方式,鼓励学生交流,并让学生运用已学知识大胆创新。

在学法的指导上,我始终将学生放在主体地位上,使学习的主要内容不是由教师灌输给学生,而是以问题的形式呈现出来,由学生自己去思考讨论,然后内化为自己的一部分。

方程的根与函数的零点教案(精选6篇)

方程的根与函数的零点教案(精选6篇)

方程的根与函数的零点教案方程的根与函数的零点教案(精选6篇)作为一名为他人授业解惑的教育工作者,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

教案应该怎么写呢?下面是小编整理的方程的根与函数的零点教案,仅供参考,欢迎大家阅读。

方程的根与函数的零点教案篇1学习目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.学习过程一、课前准备(预习教材P86~ P88,找出疑惑之处)复习1:一元二次方程 +bx+c=0 (a 0)的解法.判别式 = .当 0,方程有两根,为 ;当 0,方程有一根,为 ;当 0,方程无实根.复习2:方程 +bx+c=0 (a 0)的根与二次函数y=ax +bx+c (a 0)的图象之间有什么关系?判别式一元二次方程二次函数图象二、新课导学学习探究探究任务一:函数零点与方程的根的关系问题:① 方程的解为,函数的图象与x轴有个交点,坐标为 .② 方程的解为,函数的图象与x轴有个交点,坐标为 .③ 方程的解为,函数的图象与x轴有个交点,坐标为 .根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的 .你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zero point).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为 ;(2)函数的零点为 .小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在性定理问题:① 作出的图象,求的值,观察和的符号② 观察下面函数的图象,在区间上零点; 0;在区间上零点; 0;在区间上零点; 0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.典型例题例1求函数的零点的个数.变式:求函数的零点所在区间.小结:函数零点的求法.① 代数法:求方程的实数根;② 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.动手试试练1. 求下列函数的零点:练2. 求函数的零点所在的大致区间.三、总结提升学习小结①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在性定理知识拓展图象连续的函数的零点的性质:(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.(2)相邻两个零点之间的函数值保持同号.学习评价自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟满分:10分)计分:1. 函数的零点个数为().A. 1B. 2C. 3D. 42.若函数在上连续,且有 .则函数在上().A. 一定没有零点B. 至少有一个零点C. 只有一个零点D. 零点情况不确定3. 函数的零点所在区间为().A. B. C. D.4. 函数的零点为 .5. 若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为 .课后作业1. 求函数的零点所在的大致区间,并画出它的大致图象.2. 已知函数 .(1)为何值时,函数的图象与轴有两个零点;(2)若函数至少有一个零点在原点右侧,求值.方程的根与函数的零点教案篇2教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

方程的根与函数的零点说课稿sll

方程的根与函数的零点说课稿sll

必修一《3.1.1方程的根与函数的零点》说课稿一、教材分析《方程的根与函数的零点》是人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节的第一课时,主要内容是函数零点的概念、函数零点与相应方程根的关系,函数零点存在性定理,是一节概念课.本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础.因此本节内容具有承前启后的作用,地位至关重要.二、教学目标1、知识与技能(1)通过观察二次函数的图像,准确判断一元二次方程根的存在性及根的个数,描述函数的零点与方程的根的关系.(2)理解并会用函数在某个区间上存在零点的判定方法.2、情感、态度与价值观在函数与方程的联系中体验数形结合思想与转化思想的意义与价值,发展学生对变量数学的认识,体会函数知识的核心作用.3、重点、难点重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.难点:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.三、学情分析高一学生已经学习了函数的概念,对初等函数的性质、图象已经有了一个比较系统的认识与理解.特别是对一元二次方程和二次函数在初中的学习中已是一个重点,对这块内容已经有了很深的理解,所以对本节内容刚开始的引入有了很好的铺垫作用,但针对高一学生,刚进人高中不久,学生的动手,动脑能力,以及观察,归纳能力都还没有很全面的基础上,在本节课的学习上还是会遇到较多的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环紧扣提出问题引起学生对结论追求的愿望,将学生置于主动参与的地位.四、教法与学法在教法上,本次课采用以导学案教学,体现以学生为主体的教学方法。

在教学手段上,我一是采取多媒体课件、几何画板相结合,它既便于学生直观,节约时间,又能利用情境营造课堂氛围,引发学生的兴趣。

2023年《方程的根与函数的零点》说课稿范文(精选3篇)

2023年《方程的根与函数的零点》说课稿范文(精选3篇)

2023年《方程的根与函数的零点》说课稿范文(精选3篇)《方程的根与函数的零点》说课稿1一、本课数学内容的本质、地位、作用分析普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。

第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。

本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。

本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。

由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。

方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的'联系奠定基础。

二、教学目标分析本节内容包含三大知识点:一、函数零点的定义;二、方程的根与函数零点的等价关系;三、零点存在性定理。

结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

结合本节课教学主线的设计,设定本节课的过程与方法目标如下:1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程的根与函数的零点
一、教材地位和作用
本节课是普通高中实验教科书人教A版必修1第三章第一单元第一节,是后继学习二分法的理论准备。

学生通过了解函数零点与方程根的联系,从而把求方程根的问题转化为求函数零点的问题。

作为函数应用的第一课时,就是要让学生认识到函数与其他数学知识的联系,让学生用函数的图象这个“形”来研究方程的根这个“数”,深刻体会“以形助数”的思想方法
二、学情分析
(1)知识基础:学生已经熟练掌握一次、二次方程的求解方法,掌握了一些基本初等函数图象的画法,并能从图象中获取一定信息,这是学习本节课的知识基础。

(2)心理准备:公式法求解高次、超越方程的思维受挫是学生学习本节课的内在动机。

三、教学目标
1、知识与技能:结合具体的二次函数图象,判断二次方程根的存在性,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。

2、过程与方法:在应用函数研究方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的研究方法。

3、情感态度价值观:在求解方程根的“山穷水尽”,到研究函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。

四、教学重点、难点与关键
(1)重点:零点存在定理的发现。

(2)难点:零点存在定理的发现与准确理解。

(3)关键:引导学生运用函数的观点研究方程的根。

五、教法与学法
(一)教法设计:
本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情境——师生共同探究——形成概念结论——应用巩固提高”的教学模式,使学生在获得知识的同时,能够掌握方法、提升能力
(二)学法指导:
让学生在自主探究中,学会发现问题并解决问题,逐步形成敢于发现、敢于质疑的科学态度。

七、教学设计的几点说明
3、设计理念
本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情境——师生共同探究——形成概念结论——应用巩固提高”的教学模式,教师真正担当学习情境的创设者,学生探究中的引导者,学生学习中的合作者;而学生则成为新知识的探索者、发现者、建构者,使学生在获得知识的同时,能够掌握学习数学的思维方法、提升进一步学习新知识的能力。

相关文档
最新文档