长方体和正方体的表面积-PPT课件
合集下载
长方体和正方体表面积ppt课件
正方体表面积=棱长×棱长×6
这些方法之间有联系吗?
①长方体表面积=长×宽×2+长×高×2+宽×高×2 ②长方体表面积=(长×宽+长×高+宽×高)×2 ③长方体表面积=底面周长×高+长×宽×2
正方体表面积=棱长×棱长×6
这些方法之间有联系吗?
(长+宽)×2×高
①长方体表面积=长×宽×2+长×高×2+宽×高×2 ②长方体表面积=(长×宽+长×底高面+周宽长××高高)×2 ③长方体表面积=底面周长×高+长×宽×2
玩一玩
把一个长6厘米、宽3厘米、高2厘米的长方体木块锯成 两个小长方体,表面积会增加多少?
6厘米
2厘米 3厘米
你有什么收获?
设计一个能正好放进两个大小形状完全一样
的长方体(如右图)的纸盒表,这面个积纸怎盒么的算用?料面积
至少是多少? 表面积=长×宽×2+长×高×2+宽×高×2
求物体的表面积,要先判断求几个面,根为据什不同么的这实际么情算况来?进行计算。
因为长方体相对的面面积相等,正方体6个面面积相等。
实际怎么用?
先思考物体有几个面,再根据实际情况来进行计算。
方法1:5×4+5×3×2+4×3×2-4.5 =20+30+24-4.5 =69.5(m2)
方法2:(5+4)×2×3+5×4-4.5 =54+20-4.5 =69.5(m2)
地面不用铺墙纸, 还要将门窗减掉。
方法3:5×4×2+5×3×2+4×3×2-5×4-4.5 =40+30+24-20-4.5 =69.5(m2)
这些方法之间有联系吗?
①长方体表面积=长×宽×2+长×高×2+宽×高×2 ②长方体表面积=(长×宽+长×高+宽×高)×2 ③长方体表面积=底面周长×高+长×宽×2
正方体表面积=棱长×棱长×6
这些方法之间有联系吗?
(长+宽)×2×高
①长方体表面积=长×宽×2+长×高×2+宽×高×2 ②长方体表面积=(长×宽+长×底高面+周宽长××高高)×2 ③长方体表面积=底面周长×高+长×宽×2
玩一玩
把一个长6厘米、宽3厘米、高2厘米的长方体木块锯成 两个小长方体,表面积会增加多少?
6厘米
2厘米 3厘米
你有什么收获?
设计一个能正好放进两个大小形状完全一样
的长方体(如右图)的纸盒表,这面个积纸怎盒么的算用?料面积
至少是多少? 表面积=长×宽×2+长×高×2+宽×高×2
求物体的表面积,要先判断求几个面,根为据什不同么的这实际么情算况来?进行计算。
因为长方体相对的面面积相等,正方体6个面面积相等。
实际怎么用?
先思考物体有几个面,再根据实际情况来进行计算。
方法1:5×4+5×3×2+4×3×2-4.5 =20+30+24-4.5 =69.5(m2)
方法2:(5+4)×2×3+5×4-4.5 =54+20-4.5 =69.5(m2)
地面不用铺墙纸, 还要将门窗减掉。
方法3:5×4×2+5×3×2+4×3×2-5×4-4.5 =40+30+24-20-4.5 =69.5(m2)
长方体正方体表面积和体积ppt(共21张PPT)
长方体的体积=长×宽×高 V=abh
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?
长方体和正方体的表面积ppt-课件
复习与巩固练习
通过练习题和实际案例,加深对长方 体和正方体表面积计算的理解和应用 。
对比不同类型的多面体,总结其表面 积的计算方法,提高解决实际问题的 能力。
感谢您的观看
THANKS
长方体和正方体的表面积 ppt-课件
目录
• 引言 • 长方体的表面积 • 正方体的表面积 • 对比与总结
01
引言
主题简介
主题背景
长方体和正方体是日常生活中常 见的几何形状,了解它们的表面 积在实际应用中有广泛的应用。
主题内容
本课件将介绍长方体和正方体的 表面积计算方法,并通过实例演 示如何应用。
03
正方体的表面积
正方体的定义与特性
总结词
正方体是一种特殊的长方体,其六个面都是正方形。
详细描述
正方体的所有棱长都相等,每个面都是正方形,且相对的两个面完全相同。
正方体表面积的计算公式
总结词
正方体表面积的计算公式是6 × 边长 ^2。
详细描述
正方体有六个面,每个面的面积是边 长^2,因此,正方体的总表面积是6 × 边长^2。
学习目标
掌握长方体和正方体 的表面积计算公式。
了解表面积在日常生 活和工作中的实际应 用。
能够根据实际情况选 择合适的公式进行计 算。
02
长方体的表面积
长方体的定义与特性
定义
长方体是一种具有六个面的几何体,每个面都是一个矩形。
特性
长方体的对面平行且相等,相对的棱平行且相等,有三组不 同的边。
长方体表面积的计算公式
不同点
长方体的三个维度(长、宽、高)都可能不同,而正方体的三个维度都相等。因此,正方体的表面积 计算公式更为简单,为边长的平方乘以6。
五年级下册数学课堂课件--长方体与正方体表面积人教版(38张)
宽、高
已知,利用长方体的表面积公式即可求解
【解答】解:5×5×2+5×20×4 =50+400 =450(平方厘米) 答:做一只这样的纸盒至少需要硬纸450平方厘米.
17
走进生活,解决问题
一个长方体的长是宽的3倍,高是宽的2倍.已知这个长方体的长是 12厘米,求长方体的表面积.
18
走进生活,解决问题
(2)要使割后的表面积之和最小,沿平行6×8面切割,这 样表面积 就会增加两个原来长方体的最小的面,由此把原来 长方体的表面积 加上增加的面积就是切割后的长方体表面积之 25
切把一拼个问长16题厘米,宽6厘米,高8厘米的大长方体切成两个小长方
体,这两个小长方体的表面积的和最大是多少平方厘米,最小是 多少?
22
走进生活,解决问题
有个长方体铁盒,它的高与宽相等.如果长缩短15厘米,就成为表面积 是54平方厘米的正方体,这个长方体盒的宽是长的几分之几?
【解答】解:54÷6=9(平方厘米),
因为3×3=9平方厘米,
所以正方体的棱长为3厘米,
则长方体的长为3+15=18厘米,宽为3厘米,
3÷18=16.
答:这个长方体盒的宽是长的1.
走进生活,解决问题
纸盒厂加工一批装工具的纸盒,盒长20厘米,宽和高都是5厘米, 做一只这样的纸盒至少需要硬纸多少平方厘米?
16
走进生活,解决问题
纸盒厂加工一批装工具的纸盒,盒长20厘米,宽和高都是5厘米,做一只这样 的纸盒至少需要硬纸多少平方厘米?
【分析】求制作这样一个纸盒积,实际上是求纸盒的表面积,长方体的长、
2.一个正方体的木料,它的底面积是10cm ,把它横截成4段,表面积增加 ( )。
青岛版小学数学五年级上册《长方体和正方体的表面积》课件
1、
4
6厘米
厘 米 5厘米
可以分别求出相对面的面积再相加,也可以先求出一组相邻面的面积
1、 6×4×2+5×4×2+6×5×2 =48+40+60 = 148(平方厘米) (6×4+5×4+6×5)×2
2、 50×30×2+20×30×2+50×20×2 =3000+1200+2000
= 6200(平方厘米) (50×30+50×20+20×30)×2 =(1500+1000+600)×2 =3100×2
长方体和正方体的表面积
上 左
前
长
后 下
高
右
宽
长方体表面积 前面 + 后面+ 上面 +下面 +左面 + 右面 宽×高 长×宽 宽×高+ 长×高+ +长×宽+ 长×高+
2、电脑包装箱的长是50厘米, 一个长6厘米,宽5厘 米,高4厘米的长方体纸盒, 宽是20厘米,高是30厘米, 它的表面积是多少平方厘米? 制作这样一个电脑包装箱至 少需要多少平方厘米的纸板?
=437.5(平方分米)
=240+160+75 =475(平方分米) 5×7.5=37.5(平方分米)
475-37.5=437.5(平方分米) 答: 至少需要用布 437.5平方分米。
提示:究竟计算哪些面的面积,
一定要审清题目,根据具体情况而定如果把一个长方体切分成两个小正方 体,这两个小正方体表面积的和与原 长方体的表面积相比是增加了还是减 少了?为什么?
3、化工厂要建一个长方体蓄水池,计划在蓄水池的外部涂蓝色的涂料, 在内壁及底面贴瓷砖,则涂颜色部分的面积是指( )的面积之和, 贴瓷砖的面积是指( )的面积之和,这个水池的占地面积是指 ( )的面积。(墙壁厚度忽略不计)
4
6厘米
厘 米 5厘米
可以分别求出相对面的面积再相加,也可以先求出一组相邻面的面积
1、 6×4×2+5×4×2+6×5×2 =48+40+60 = 148(平方厘米) (6×4+5×4+6×5)×2
2、 50×30×2+20×30×2+50×20×2 =3000+1200+2000
= 6200(平方厘米) (50×30+50×20+20×30)×2 =(1500+1000+600)×2 =3100×2
长方体和正方体的表面积
上 左
前
长
后 下
高
右
宽
长方体表面积 前面 + 后面+ 上面 +下面 +左面 + 右面 宽×高 长×宽 宽×高+ 长×高+ +长×宽+ 长×高+
2、电脑包装箱的长是50厘米, 一个长6厘米,宽5厘 米,高4厘米的长方体纸盒, 宽是20厘米,高是30厘米, 它的表面积是多少平方厘米? 制作这样一个电脑包装箱至 少需要多少平方厘米的纸板?
=437.5(平方分米)
=240+160+75 =475(平方分米) 5×7.5=37.5(平方分米)
475-37.5=437.5(平方分米) 答: 至少需要用布 437.5平方分米。
提示:究竟计算哪些面的面积,
一定要审清题目,根据具体情况而定如果把一个长方体切分成两个小正方 体,这两个小正方体表面积的和与原 长方体的表面积相比是增加了还是减 少了?为什么?
3、化工厂要建一个长方体蓄水池,计划在蓄水池的外部涂蓝色的涂料, 在内壁及底面贴瓷砖,则涂颜色部分的面积是指( )的面积之和, 贴瓷砖的面积是指( )的面积之和,这个水池的占地面积是指 ( )的面积。(墙壁厚度忽略不计)
长方体-正方体表面积练习题ppt课件
块的长是多少厘米?
可编辑课件PPT
8
• 李阿姨用120厘米长的铁丝扎成一个长方体 的灯笼框架,要在灯笼的四周(侧面)糊 上彩纸防风,至少要用多少平方厘米的彩 纸?
可编辑课件PPT
9
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
长方体的棱长总和= 长×4+宽×4+高×4 (长+宽+高)×4
(长+宽+高)= 长方体的棱长总和÷4 正方体的棱长总和= 棱长×12 正方体的棱长= 正方体的棱长总和÷12
可编辑课件PPT
1
长方体的表面积= 上下面+前后面+左右面 上下面=长×宽×2 前后面=长×高×2 左右面=宽×高×2
正方体的表面积= 棱长× 棱长×12
02.d2mm
上下面:4×0.2×2=1.6(m²)4m
前后面:4×0.2×2=1.6(m²)
1.6+1.6=3.2( m²)
3.2×20=64( m²)
可编辑课件PPT
7
• 一个长方体的棱长和是124厘米,高是8厘 米,宽是5厘米,这个长方体的长是多少厘 米?
• 一块长方体木块被截成两块大小相等的正 方体木块。两个正方体的棱长总和比原来 长方体的棱长之和增加了m,宽8dm,高9dm,现在 要在柜台的各边都安上角铁,至少需要 多少分米长的角铁?
(长+宽+高)×4
(20+8+9)×4 = 37×4 = 148(dm)
可编辑课件PPT
3
用铁丝做一个长8cm的正方体框架,需要 铁丝多少厘米?
棱长×12 8×12=96(cm)
2023年冀教版数学五年级下册《 长方体和正方体的表面积》PPT课件
(教材P39 T2)
2. 计算下面长方体和正方体的表面积。(单位:厘米)
(1)
(2)
22
8 16 (16×8+16×22+22×8)×2 =656×2 =1312(平方厘米)
7
7 7 7×7×6 =49×6 =294(平方厘米)
(3)
5
20
3
(20×3+20×5+5×3)×2 =175×2 =350(平方厘米)
周五 周末
周四 周二 周三 周一
周一对 周二对 周三对
周四 ; 周末 ;
周五 。
探究新
如何理解?
知
5 聪聪亲手制作了一个长方体礼品盒(如下图),他要
把纸盒的表面贴上漂亮的彩纸,至少需要多少彩纸?
(单位:厘米)
求纸盒六个面
12
的总面积。
24
自己试着算一算。
上、下两个面的总面积:24×15×2=720(平方厘米) 前、后两个面的总面积:24×12×2=576(平方厘米) 左、右两个面的总面积:12×15×2=360(平方厘米) 六个面的总面积:720+576+360=1656(平方厘米)
这个礼品盒所需彩纸的表面积是:
24×15×2+24×12×2+15×12×2 = 720+576+360 =1656(平方厘米)
返回
长方体或正方体的表面积是什么? 长方体或正方体6个面的总 面积,叫做它的表面积。
返回
2厘米(高)
10厘米(长)
(1)它上、下每个面的长是__1_0_厘__米___,宽 是__6_厘__米___,面积是 60平方厘米 。
22 16 8
返回
计算长方体和正方体的表面积。(单位:厘米)
数学_长方体和正方体的表面积(2)_课件
棱长5dm
六年级数学名师课程
复习引入
高7cm 长10cm 宽6cm
棱长5dm
556 = 256 = 150(dm 2)
六年级数学名师课程
一个无盖的长方体玻璃鱼缸,长5分米,宽3 分米,高3.5分米。制作这个鱼缸至少需要 玻璃多少平方分米?
求长方体哪几个面面积的和?
六年级数学名师课程
一个无盖的长方体玻璃鱼缸,长5分米,宽3 分米,高3.5分米。制作这个鱼缸至少需要 玻璃多少平方分米?
(272.53127 )2 312.5 =(67.5837)277.5
31厘米 2.5厘米 27厘米
= 180977.5
= 1886.5(平方厘米)
六年级数学名师课程
练习2
一个用硬纸板做成的长方体影集封套,长31厘米, 宽27厘米,高2.5厘米,封套的左面不封口(如 图)。做这个封套至少需要多少平方厘米硬纸板?
前面 后面 上面 下面 右面
(272.53127 312.5 )2 -312.5 =(67.5837+77.5)2-77.5
= 1964-77.5
31厘米 2.5厘米 27厘米
= 1886.5(平方厘米)
答:做这个封套至少需要1886.5平方厘米硬纸板。
数阅
学读
使使
人人
精充
细实
;;
博会
物谈
使使
人人
六年级数学名师课程
长方体和正方体的表面积2
六年级数学名师课程
复习引入
高7cm 长10cm 宽6cm
棱长5dm
6个面的总面积
六年级数学名师课程
复习引入
高7cm
长10cm 宽6cm
(107 67 106 )2 = (70 4260)2 = 1722 = 344(cm2 )
五年级下册数学课件-3.3 长方体和正方体的表面积|人教新课标(2014秋) (共23张PPT)
第3单元 长方体和正方体
2. 长方体和正方体的表面积
第3节 长方体和正方体的表面积
一、创设活动情境,复习导入
同学们,我们已经学习 了长方体和正方体,下面请 每个小组用老师为大家准备 的这些长方形纸板做一个封 闭的长方体纸盒。比一比哪 个小组合作得最好,最先做 完。
哪个小组的同学能说 一说你们制作的长方体纸 盒的基本特征?指出它的 长、宽、高,并分别指出 和长、宽、高相等的棱。
(√ )
()
(√ )
2.亮亮家要给一个长0.75 m、 宽0.5 m、高1.6 m的简易衣柜换布 罩(如右图,没有底面)。至少 需要用布多少平方米?
0.75×1.6×2+ 0.5×1.6×2+ 0.75×0.5 =4.375(m2)
三、布置作业
教材第25页练习六第1~3题。
谢谢大家! 再见!
。2. 一份耕耘,份收获,努力越大,收获越多,奋斗!奋斗!奋斗!3. 让我们将事前的忧虑,换为事前的思考和计划吧!4. 世界上那些最容易的事情中,拖延时间最不费力5. 不管现在有多么艰辛,我们也要做个生活的舞者。6. 奋斗是万物之父。— —陶行知7. 上帝制造人类的时候就把我们制造成不完美的人,我们一辈子努力的过程就是使自己变得更加完美的过程,我们的一切美德都来自于克服自身缺点的奋斗。8. 不要被任何人打乱自己的脚步,因为没有谁会像你一样清楚 和在乎自己的梦想。9. 时间不在于你拥有多少,只在于你怎样使用10. 水只有碰到石头才能碰出浪花。11. 嘲讽是一种力量,消极的力量。赞扬也是一种力量,但却是积极的力量。12. 在我们成长的路上也会遇到一些挫折,一些困 难,那韩智华就是我们的榜样,永不认输,因为我知道挫折过后是一片晴朗的天空,瞧,成功就在挫折背后向我们招手,成功就是在努力的路上,“成功就在努力的路上”!让我们记住这句话,向美好的明天走去。13. 销售世界上 第一号的产品——不是汽车,而是自己。在你成功地把自己推销给别人之前,你必须百分之百的把自己推销给自己。14. 不要匆忙的走过一天又一天,以至于忘记自己从哪里来,要到哪里去。生命不是一场速度赛跑,她不是以数量 而是以质量来计算,知道你停止努力的那一刻,什么也没有真正结束。15. 也许终点只有绝望和失败,但这绝不是停止前行的理由。16. 有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。 17. 我颠覆了整个世界。只为了摆正你的倒影18. 好的想法是十分钱一打,真正无价的是能够实现这些想法的人。19. 伤痕是士兵一生的荣耀。20. 只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 21. 多对自己说“我能行,我一定可以”,只有这样才不会被“不可能”束缚,才能不断超越自我。22. 人生本来就充满未知,一切被安排好反而无味——坚信朝着目标,一步一步地奋斗,就会迈向美好的未来。23. 回避现实的人, 未来将更不理想。24. 空想会想出很多绝妙的主意,但却办不成任何事情。25. 无论什么思想,都不是靠它本身去征服人心,而是靠它的力量;不论靠思想的内容,而是靠那些在历史上某些时期放射出来的生命的光辉。——罗曼·罗 兰《约翰·克利斯朵夫》26. 上帝助自助者。27. 你的爸妈正在为你奋斗,这就是你要努力的理由。28. 有很多人都说:平平淡淡就福,没有努力去拼博,又如何将你的人生保持平淡?又何来幸福?29. 当事情已经发生,不要抱怨,不 要沮丧,笑一笑吧,一切都会过去的。30. 外在压力增加时,就应增强内在的动力。31. 我们每个人都应微笑面对人生,没有了怨言,也就不会有哀愁。一个人有了希望,就会对生活充满信心,只要你用美好的心灵看世界,总是以 乐观的精神面对人生。32. 勇敢的人。——托尔斯泰《袭击》33. 昨天下了雨,今天刮了风,明天太阳就出来了。34. 是的,成功不在于结果,更重要的是过程,只要你努力过,拼搏过,也许结果不一定是最好的那也走过了精彩的过 程,至少,你不会为此而后悔。35. 每一天的努力,以后只有美好的未来。每一天的坚持,换来的是明天的辉煌。36. 青年最要紧的精神,是要与命运奋斗。——恽代英37. 高峰只对攀登它而不是仰望它的人来说才有真正意义。38. 志不可立无可成之事。如无舵之舟,无衔之马,飘荡奔逸,何所底乎?--王守仁39. 拿望远镜看别人,拿放大镜看自己。40. 顽强的毅力可以征服世界上任何一座高峰。——狄更斯41. 士人第一要有志,第二要有识,第三要有恒。— —曾国42. 在我们能掌控和拼搏的时间里,去提升我们生命的质量。43. 我们不是等待未来,我们是创造未来,加油,努力奋斗。44. 人生如画,一笔一足迹,一步一脚印,有的绚丽辉煌,有的却平淡无奇。45. 脚跟立定以后,你必 须拿你的力量和技能,自己奋斗。——萧伯纳46. 一个能从别人的观念来看事情,能了解别人心灵活动的人,永远不必为自己的前途担心。
2. 长方体和正方体的表面积
第3节 长方体和正方体的表面积
一、创设活动情境,复习导入
同学们,我们已经学习 了长方体和正方体,下面请 每个小组用老师为大家准备 的这些长方形纸板做一个封 闭的长方体纸盒。比一比哪 个小组合作得最好,最先做 完。
哪个小组的同学能说 一说你们制作的长方体纸 盒的基本特征?指出它的 长、宽、高,并分别指出 和长、宽、高相等的棱。
(√ )
()
(√ )
2.亮亮家要给一个长0.75 m、 宽0.5 m、高1.6 m的简易衣柜换布 罩(如右图,没有底面)。至少 需要用布多少平方米?
0.75×1.6×2+ 0.5×1.6×2+ 0.75×0.5 =4.375(m2)
三、布置作业
教材第25页练习六第1~3题。
谢谢大家! 再见!
。2. 一份耕耘,份收获,努力越大,收获越多,奋斗!奋斗!奋斗!3. 让我们将事前的忧虑,换为事前的思考和计划吧!4. 世界上那些最容易的事情中,拖延时间最不费力5. 不管现在有多么艰辛,我们也要做个生活的舞者。6. 奋斗是万物之父。— —陶行知7. 上帝制造人类的时候就把我们制造成不完美的人,我们一辈子努力的过程就是使自己变得更加完美的过程,我们的一切美德都来自于克服自身缺点的奋斗。8. 不要被任何人打乱自己的脚步,因为没有谁会像你一样清楚 和在乎自己的梦想。9. 时间不在于你拥有多少,只在于你怎样使用10. 水只有碰到石头才能碰出浪花。11. 嘲讽是一种力量,消极的力量。赞扬也是一种力量,但却是积极的力量。12. 在我们成长的路上也会遇到一些挫折,一些困 难,那韩智华就是我们的榜样,永不认输,因为我知道挫折过后是一片晴朗的天空,瞧,成功就在挫折背后向我们招手,成功就是在努力的路上,“成功就在努力的路上”!让我们记住这句话,向美好的明天走去。13. 销售世界上 第一号的产品——不是汽车,而是自己。在你成功地把自己推销给别人之前,你必须百分之百的把自己推销给自己。14. 不要匆忙的走过一天又一天,以至于忘记自己从哪里来,要到哪里去。生命不是一场速度赛跑,她不是以数量 而是以质量来计算,知道你停止努力的那一刻,什么也没有真正结束。15. 也许终点只有绝望和失败,但这绝不是停止前行的理由。16. 有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。 17. 我颠覆了整个世界。只为了摆正你的倒影18. 好的想法是十分钱一打,真正无价的是能够实现这些想法的人。19. 伤痕是士兵一生的荣耀。20. 只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 21. 多对自己说“我能行,我一定可以”,只有这样才不会被“不可能”束缚,才能不断超越自我。22. 人生本来就充满未知,一切被安排好反而无味——坚信朝着目标,一步一步地奋斗,就会迈向美好的未来。23. 回避现实的人, 未来将更不理想。24. 空想会想出很多绝妙的主意,但却办不成任何事情。25. 无论什么思想,都不是靠它本身去征服人心,而是靠它的力量;不论靠思想的内容,而是靠那些在历史上某些时期放射出来的生命的光辉。——罗曼·罗 兰《约翰·克利斯朵夫》26. 上帝助自助者。27. 你的爸妈正在为你奋斗,这就是你要努力的理由。28. 有很多人都说:平平淡淡就福,没有努力去拼博,又如何将你的人生保持平淡?又何来幸福?29. 当事情已经发生,不要抱怨,不 要沮丧,笑一笑吧,一切都会过去的。30. 外在压力增加时,就应增强内在的动力。31. 我们每个人都应微笑面对人生,没有了怨言,也就不会有哀愁。一个人有了希望,就会对生活充满信心,只要你用美好的心灵看世界,总是以 乐观的精神面对人生。32. 勇敢的人。——托尔斯泰《袭击》33. 昨天下了雨,今天刮了风,明天太阳就出来了。34. 是的,成功不在于结果,更重要的是过程,只要你努力过,拼搏过,也许结果不一定是最好的那也走过了精彩的过 程,至少,你不会为此而后悔。35. 每一天的努力,以后只有美好的未来。每一天的坚持,换来的是明天的辉煌。36. 青年最要紧的精神,是要与命运奋斗。——恽代英37. 高峰只对攀登它而不是仰望它的人来说才有真正意义。38. 志不可立无可成之事。如无舵之舟,无衔之马,飘荡奔逸,何所底乎?--王守仁39. 拿望远镜看别人,拿放大镜看自己。40. 顽强的毅力可以征服世界上任何一座高峰。——狄更斯41. 士人第一要有志,第二要有识,第三要有恒。— —曾国42. 在我们能掌控和拼搏的时间里,去提升我们生命的质量。43. 我们不是等待未来,我们是创造未来,加油,努力奋斗。44. 人生如画,一笔一足迹,一步一脚印,有的绚丽辉煌,有的却平淡无奇。45. 脚跟立定以后,你必 须拿你的力量和技能,自己奋斗。——萧伯纳46. 一个能从别人的观念来看事情,能了解别人心灵活动的人,永远不必为自己的前途担心。
五年级下册数学_2长方体与正方体的表面积与体积人教版(39张)精品课件
(2)30×20×3÷6=1800÷6=300(分钟) 答:200分钟后水深能到达2m,300分钟后能将池塘注满水. 解:(1)30×20×2÷6=1200÷6=200(分钟)
(2)30×20×3÷6=1800÷6=300(分钟) 答:200分钟后水深能到达2m,300分钟后能将池塘注满水. 这个游泳池可装多少立方米的水? 5平方分米= ()平方厘米 先求出假山和水一共的体积:46×25×28=32200(立方厘米) 拼成的这个长方体的表面积比原来16个小正方体的表面积之和少了多少平方分米?
(2)同理,用池塘的容积,除以每分钟注水量6立方米,即可求 出注水的时 间.
29
真题训练营
2.小明家门前有一个长30m,宽20m,深3m的池塘,现在要养鱼,需 要往池塘注水,如果每分钟能注水6m3,那么多少分钟后水深能到达 2m,多少分钟后能将池塘注满水? 解:(1)30×20×2÷6=1200÷6=200(分钟)
没第?三关---实物5实0验×班25×2=2500(立方米)
6
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少?
7
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少? 解:根据长方体体积公式:长×宽×高
14
3.长方体与正方体的体积之会旧友
什么是体积:物体所占空间的大小叫做物体的体积 计量体积要用体积单位:常用的体积单位有立方厘米(cm^3)、立 方分米(dm^3)、立方米(m^3)
15
3.制胜宝典
长方体体积=长×宽×高 (V=abh)或底面积×高(V=sh) 正方体体积=棱长×棱长×棱长(V=a*a*a) • 长方体或正方体底面的面积叫做底面积
(2)30×20×3÷6=1800÷6=300(分钟) 答:200分钟后水深能到达2m,300分钟后能将池塘注满水. 这个游泳池可装多少立方米的水? 5平方分米= ()平方厘米 先求出假山和水一共的体积:46×25×28=32200(立方厘米) 拼成的这个长方体的表面积比原来16个小正方体的表面积之和少了多少平方分米?
(2)同理,用池塘的容积,除以每分钟注水量6立方米,即可求 出注水的时 间.
29
真题训练营
2.小明家门前有一个长30m,宽20m,深3m的池塘,现在要养鱼,需 要往池塘注水,如果每分钟能注水6m3,那么多少分钟后水深能到达 2m,多少分钟后能将池塘注满水? 解:(1)30×20×2÷6=1200÷6=200(分钟)
没第?三关---实物5实0验×班25×2=2500(立方米)
6
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少?
7
旧识回顾
在一个长60cm,宽30cm的水箱中放入两个大小一样的西瓜(西瓜完 全浸没),水面上升了8cm,平均每个西瓜的体积是多少? 解:根据长方体体积公式:长×宽×高
14
3.长方体与正方体的体积之会旧友
什么是体积:物体所占空间的大小叫做物体的体积 计量体积要用体积单位:常用的体积单位有立方厘米(cm^3)、立 方分米(dm^3)、立方米(m^3)
15
3.制胜宝典
长方体体积=长×宽×高 (V=abh)或底面积×高(V=sh) 正方体体积=棱长×棱长×棱长(V=a*a*a) • 长方体或正方体底面的面积叫做底面积
《长方体和正方体的表面积、体积》完整版ppt课件
21
0.4m
做一个微波炉的包装箱, 至少要用多少平方米的硬纸板?
这里要求的是这个长方 体包装箱的表面积。
上、下每个面,长_0_._7_m_,宽_0_._5_m_,面积是_0_._3_5_m__2; 前、后每个面,长_0_._7_m_,宽_0_._4_m_,面积是_0_._2_8_m__2; 左、右每个面,长_0_._5_m_,宽_0_._4_m_,面积是_0_._2_m__2_。
精选ppt课件2021
7
折叠后,哪些图形能围成左侧的正 方体?在括号中画“√”。
(√)
(√)
(×)
精选ppt课件2021
8
亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易 衣柜换布罩(如下图,没有底面)。至少需要用布多少 平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2 =0.375+1.6+2.4 =4.375(m2) 答:至少需要用布4.375m2。
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。
精选ppt课件2021
44
一根长方体木料,长5m,横截面的 面积是0.06m2。这根木料的体积是多少?
精选ppt课件2021
24
计量体积要用体积单位,常用的体积单位有: 立方厘米,立方分米和立方米。
可以分别写成cm3,dm3和m3。 (1)棱长是1cm的正方体,体积是1cm3。
一个手指尖的体积 大约是1cm3。
1cm3
(2)棱长是1dm的正方体,体积是1dm3。
人教版五年级数学下册《长方体和正方体的表面积(2)》课件
合作交流 探索新知
例1.制作尺寸如下图所示的长方体和正方体保温箱, 各需要多少平方分米的泡沫板?(单位:dm)
组内讨论:怎样计 算长方体的表面积?
想:长方体有6个面。 上、下每个面,长__6_d_m__,宽__5_d_m__,面积是_3_0__d_m_2_; 前、后每个面,长__6_d_m__,宽__4_d_m__,面积是_2_4__d_m_2_; 左、右每个面,长__5_d_m__,宽__4_d_m__,面积是_2_0__d_m_2_。
5 cm
(2) 哪些面的面积相等?
9
(高) cm(长)
4
cm(宽)
(3)
什么是长方体的表面积?
长方体6个面的总面积, 叫作它的表面积。
例1.制作尺寸如下图所示的长方体和正方体保温箱, 各需要多少平方分米的泡沫板?(单位:dm)
求需要多少平方 分米的泡沫板就 是要求什么?
求保温箱的表面积,就是计算保温箱6个面的面积之和。
一个面的面积: 5×5 ×6
棱长×棱长
=25×6
=150(平方分米)
答:制作正方体保温箱需要150平方分米的泡沫板。
小结
正方体表面积计算公式:
文字
棱长:表面积,a:棱长)
应用迁移 巩固提高
1.选一选。
(1)如图,一个长方体木箱,箱底和左侧面被虫蛀, 修理工需重新配置的两块木板的面积分别是( B )。
3 把一个棱长46 cm的正方体纸箱各面都贴上红纸,作为 捐款箱。(教材P25第6题)
(2)如果只在棱上粘贴一圈胶带纸,一卷4.5 m长的胶带纸 够用吗? 正方体的棱长总和=棱长×12 46×12=552(cm) 552 cm=5.52 m 5.52 m>4.5 m 答:一卷4.5 m长的胶带纸不够用。
五年级下册数学课件3.2.1长方体和正方体的表面积 人教版 (共13张PPT)【完美版课件】
3.2.1长方体和正方体的表面积
人教版 五年级下相对 )的面面积相等;有(12 )条棱, 相对的棱长度(相等 )。
2、相交于一个顶点的三条棱的长度分别叫做长方体的( 长 )、 (
)、宽( )。高 如图:这个长方体的长是(8cm),宽是(5cm), 高是( 6cm)。 3、正方体有( 6 )个面,每个面都是( 正方 )形,
6cm 5cm
8cm
每个的面积都( 相等 ),有( 12 )棱,它们的长度都( 相等 )。
4、思考长方体和正方体的展开图是怎样的?。
新知讲解
要沿着棱剪 开!
我展开了一个 长方体纸盒。
正方体展开 后是这样的。
把一个长方体或正方体的纸盒展开是什么形状呢?
新知讲解
把这个长方体的纸盒展开(如下图)
上 前右
左、右每个面的长=长方体的宽,宽=长方体的高; 正方体的展开图中
:每个面的边长=正方体的棱长
作业布置
1、完成书上第25页,第1、2题的作业。 2、探究生活中的长方体和正方体。
每个人都有潜在的能量,只是很容易被习惯所掩盖,被时间所迷离,被惰性所消磨。把命运寄托在自己身上,这是这个世界上最美妙的心思。为此努力,拼搏,不舍昼夜。每个人的内心都充 满了魔鬼,学会控制他。如果你还认为自己还年轻,还可以蹉跎岁月的话,你终将一事无成,老来叹息。在实现理想的路途中,必须排除一切干扰,特别是要看清那些美丽的诱惑。忍一时之 气,免百日之忧信心、毅力、勇气三者具备,则天下没有做不成的事改变自己是自救,影响别人是救人。当你感到无助的时候,还有一种坚实的力量可以依靠,那就是你自己。想过去是杂念, 想未来是妄想,最好把握当下时刻。幸福不在得到多,而在计较少。改变别人,不如先改变自己。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功, 要看他有谁相伴。同样的一瓶饮料,便利店里2块钱,五星饭店里60块,很多的时候,一个人的价值取决于所在的位置。忙碌是一种幸福,让我们没时间体会痛苦;奔波是一种快乐,让我们真 实地感受生活;疲惫是一种享受,让我们无暇空虚。10、我是世界上独一无二的,我一定会成功!成功者往往有个计划,而失败者往往有个托辞。成功者会说:“我帮你做点什么吧!而失败 者说:那不是我的事。成功三个条件:机会;自己渴望改变并非常努力;贵人相助亿万财富买不到一个好的观念;好的观念却能让你赚到亿万财富。一个讯息从地球这一端到另一端只需要 0.05秒,而一个观念从脑外传到脑里却需要一年,三年甚至十年。要改变命运,先改变观念。人生的成败往往就在于一念之差。鸟无翅膀不能飞,人无志气不成功。成功99%是心志,1%是能力。 一个人不成功是因为两个字——恐惧。一个会向别人学习的人就是一个要成功的人。人要是惧怕痛苦,惧怕种种疾病,惧怕不测的事情,惧怕生命的危险和死亡,他就什么也不能忍受了,人 格的完善是本,财富的确立是末。傲不可长,欲不可纵,乐不可极,志不可满。在人之上,要把人当人;在人之下,要把自己当人。锲而舍之,朽木不折;锲而不舍,金石可镂。真者,精诚 之至也,不精不诚,不能动人。我觉得坦途在前,人又何必因为一点小障碍而不走路呢?对时间的慷慨,成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。天下之事常成于 困约,而败于奢靡。企业家收获着梦想,又在播种着希望;原来一切辉煌只代表过去,未来永远空白。一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。你生而有 翼,为何一生匍匐前进,形如蝼蚁世界上只有想不通的人,没有走不通的路。世上那有什么成功,那只是努力的另一个代名词罢了。所谓英雄,其实是指那些无论在什么环境下都能够生存下 去的人。微笑不用本钱,但能创造财富。赞美不用花钱,但能产生气力。分享不用过度,但能倍增快乐。微笑向阳,无畏悲伤。我们不知道的事情并不等于没发生,我们不了解的事情并不代 表不存在。我们渴望成功,首先要志在成功。我要让未来的自己为现在的自己感动。想哭就哭,想笑就笑,不要因为世界虚伪,你也变得虚伪了。小鸟眷恋春天,因为它懂得飞翔才是生命的 价值。笑对人生,能穿透迷雾;笑对人生,能坚持到底;笑对人生,能化解危机;笑对人生,能照亮黑暗。学在苦中求,艺在勤中练。不怕学问浅,就怕志气短。一个细节足以改变一生。一 切成就都缘于一个梦想和毫无根据的自信。永远不要嘲笑你的教师无知或者单调,因为有一天当你发现你用瞌睡来嘲弄教师实际上很愚蠢时,你在社会上已经碰了很多钉子了。幽默胜过直白, 话少胜过多言;坦率胜过伪装,自然胜过狡辩;心静何来多梦,苦索不如随缘。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。最可怕的不是有人比你优秀,而是比你优秀的人 还比你更努力。最有希望的成功者,并不是才干出众的人而是那些最善利用每一时机去发掘开拓的人。昨天如影——记住你昨天的挫折和失败的教训;今天如画快乐和幸福的人生要靠你自己 去描绘;明天如梦——珍惜今天,选择好自己的目标,努力地为自己的明天去寻求和拼搏。不曾扬帆,何以至远方。不论你在什么时候开始,重要的是开始之后就不要轻言放弃。不去耕耘,不 去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要盘算太多,要顺其自然。该是你的终会得到。成大事不在于力量多少,而在能坚持多久。成为一个 成功者最重要的条件,就是每天精力充沛的努力工作,不虚掷光阴。从未跌倒算不得光彩,每次跌倒后能再战起来才是最大的荣耀。脆弱的心灵创伤太多,追求才是愈合你伤口最好的良药。 挫折经历的太少,所以总是把一些琐碎的小事看得很重。当你知道你不在是你的时候,你才是真正的你!漫无目的的生活就像出海航行而没有指南针。人生多一份感恩,就多一份美化。所有 的豪言都收起来,所有的呐喊都咽下去。成功六机握机当你握着两手沙子时,一定就拿不到地上那颗珍珠了。快乐在满足中求,烦恼多从欲中来。人若有志,万事可为。为明天做准备的最好 方法,就是要集中你所有的智慧,所有的热诚,把今天的事情做得尽善尽美。在茫茫沙漠,唯有前进时的脚步才是希望的象征。在我们了解什么是生命之前,我们已将它消磨了一半。这个世 界既不是有钱人的世界,也不是有权人的世界,它是有心人的世界。这个世界上任何奇迹的产生都是经过千辛万苦的努力而得的,首先承认自己的平凡,然后用千百倍的努力来弥补平凡。真 正的导者,其厉害之处不在于能指
人教版 五年级下相对 )的面面积相等;有(12 )条棱, 相对的棱长度(相等 )。
2、相交于一个顶点的三条棱的长度分别叫做长方体的( 长 )、 (
)、宽( )。高 如图:这个长方体的长是(8cm),宽是(5cm), 高是( 6cm)。 3、正方体有( 6 )个面,每个面都是( 正方 )形,
6cm 5cm
8cm
每个的面积都( 相等 ),有( 12 )棱,它们的长度都( 相等 )。
4、思考长方体和正方体的展开图是怎样的?。
新知讲解
要沿着棱剪 开!
我展开了一个 长方体纸盒。
正方体展开 后是这样的。
把一个长方体或正方体的纸盒展开是什么形状呢?
新知讲解
把这个长方体的纸盒展开(如下图)
上 前右
左、右每个面的长=长方体的宽,宽=长方体的高; 正方体的展开图中
:每个面的边长=正方体的棱长
作业布置
1、完成书上第25页,第1、2题的作业。 2、探究生活中的长方体和正方体。
每个人都有潜在的能量,只是很容易被习惯所掩盖,被时间所迷离,被惰性所消磨。把命运寄托在自己身上,这是这个世界上最美妙的心思。为此努力,拼搏,不舍昼夜。每个人的内心都充 满了魔鬼,学会控制他。如果你还认为自己还年轻,还可以蹉跎岁月的话,你终将一事无成,老来叹息。在实现理想的路途中,必须排除一切干扰,特别是要看清那些美丽的诱惑。忍一时之 气,免百日之忧信心、毅力、勇气三者具备,则天下没有做不成的事改变自己是自救,影响别人是救人。当你感到无助的时候,还有一种坚实的力量可以依靠,那就是你自己。想过去是杂念, 想未来是妄想,最好把握当下时刻。幸福不在得到多,而在计较少。改变别人,不如先改变自己。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功, 要看他有谁相伴。同样的一瓶饮料,便利店里2块钱,五星饭店里60块,很多的时候,一个人的价值取决于所在的位置。忙碌是一种幸福,让我们没时间体会痛苦;奔波是一种快乐,让我们真 实地感受生活;疲惫是一种享受,让我们无暇空虚。10、我是世界上独一无二的,我一定会成功!成功者往往有个计划,而失败者往往有个托辞。成功者会说:“我帮你做点什么吧!而失败 者说:那不是我的事。成功三个条件:机会;自己渴望改变并非常努力;贵人相助亿万财富买不到一个好的观念;好的观念却能让你赚到亿万财富。一个讯息从地球这一端到另一端只需要 0.05秒,而一个观念从脑外传到脑里却需要一年,三年甚至十年。要改变命运,先改变观念。人生的成败往往就在于一念之差。鸟无翅膀不能飞,人无志气不成功。成功99%是心志,1%是能力。 一个人不成功是因为两个字——恐惧。一个会向别人学习的人就是一个要成功的人。人要是惧怕痛苦,惧怕种种疾病,惧怕不测的事情,惧怕生命的危险和死亡,他就什么也不能忍受了,人 格的完善是本,财富的确立是末。傲不可长,欲不可纵,乐不可极,志不可满。在人之上,要把人当人;在人之下,要把自己当人。锲而舍之,朽木不折;锲而不舍,金石可镂。真者,精诚 之至也,不精不诚,不能动人。我觉得坦途在前,人又何必因为一点小障碍而不走路呢?对时间的慷慨,成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。天下之事常成于 困约,而败于奢靡。企业家收获着梦想,又在播种着希望;原来一切辉煌只代表过去,未来永远空白。一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。你生而有 翼,为何一生匍匐前进,形如蝼蚁世界上只有想不通的人,没有走不通的路。世上那有什么成功,那只是努力的另一个代名词罢了。所谓英雄,其实是指那些无论在什么环境下都能够生存下 去的人。微笑不用本钱,但能创造财富。赞美不用花钱,但能产生气力。分享不用过度,但能倍增快乐。微笑向阳,无畏悲伤。我们不知道的事情并不等于没发生,我们不了解的事情并不代 表不存在。我们渴望成功,首先要志在成功。我要让未来的自己为现在的自己感动。想哭就哭,想笑就笑,不要因为世界虚伪,你也变得虚伪了。小鸟眷恋春天,因为它懂得飞翔才是生命的 价值。笑对人生,能穿透迷雾;笑对人生,能坚持到底;笑对人生,能化解危机;笑对人生,能照亮黑暗。学在苦中求,艺在勤中练。不怕学问浅,就怕志气短。一个细节足以改变一生。一 切成就都缘于一个梦想和毫无根据的自信。永远不要嘲笑你的教师无知或者单调,因为有一天当你发现你用瞌睡来嘲弄教师实际上很愚蠢时,你在社会上已经碰了很多钉子了。幽默胜过直白, 话少胜过多言;坦率胜过伪装,自然胜过狡辩;心静何来多梦,苦索不如随缘。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。最可怕的不是有人比你优秀,而是比你优秀的人 还比你更努力。最有希望的成功者,并不是才干出众的人而是那些最善利用每一时机去发掘开拓的人。昨天如影——记住你昨天的挫折和失败的教训;今天如画快乐和幸福的人生要靠你自己 去描绘;明天如梦——珍惜今天,选择好自己的目标,努力地为自己的明天去寻求和拼搏。不曾扬帆,何以至远方。不论你在什么时候开始,重要的是开始之后就不要轻言放弃。不去耕耘,不 去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要盘算太多,要顺其自然。该是你的终会得到。成大事不在于力量多少,而在能坚持多久。成为一个 成功者最重要的条件,就是每天精力充沛的努力工作,不虚掷光阴。从未跌倒算不得光彩,每次跌倒后能再战起来才是最大的荣耀。脆弱的心灵创伤太多,追求才是愈合你伤口最好的良药。 挫折经历的太少,所以总是把一些琐碎的小事看得很重。当你知道你不在是你的时候,你才是真正的你!漫无目的的生活就像出海航行而没有指南针。人生多一份感恩,就多一份美化。所有 的豪言都收起来,所有的呐喊都咽下去。成功六机握机当你握着两手沙子时,一定就拿不到地上那颗珍珠了。快乐在满足中求,烦恼多从欲中来。人若有志,万事可为。为明天做准备的最好 方法,就是要集中你所有的智慧,所有的热诚,把今天的事情做得尽善尽美。在茫茫沙漠,唯有前进时的脚步才是希望的象征。在我们了解什么是生命之前,我们已将它消磨了一半。这个世 界既不是有钱人的世界,也不是有权人的世界,它是有心人的世界。这个世界上任何奇迹的产生都是经过千辛万苦的努力而得的,首先承认自己的平凡,然后用千百倍的努力来弥补平凡。真 正的导者,其厉害之处不在于能指
长方体正方体的认识课件ppt课件
物流运输 在物流运输中,长方体和正方体常被用作货物的装载单元, 通过合理的空间利用和堆放方式,提高运输效率和降低成 本。
艺术设计
长方体和正方体也是艺术设计中常用的元素之一,通过对 其进行变形、组合、叠加等操作,可以创造出丰富多样的 艺术效果和视觉冲击力。
06
练习题与课堂互动环节
判断题练习
正方体的六个面都是正 方形。
THANK YOU
感谢聆听
建筑结构
在建筑结构中,长方体和正方 体常被用作承重结构的基本单 元,如梁、柱、楼板等,其坚 固耐用的特性保证了建筑物的 安全性。
建筑装饰
长方体和正方体也被广泛应用 于建筑装饰中,如门窗、隔断、 装饰画等,通过不同的材质和 颜色搭配,营造出丰富多彩的 室内环境。
包装设计领域应用实例分析
包装容器
长方体和正方体是包装设计中常 用的容器形状,如纸箱、木箱、 塑料盒等,其规整的形态便于堆 放和运输,同时也方便消费者携
长方体与正方体关系
长方体与正方体都属于六面体 的范畴。
正方体是长方体的一种特殊情 况,当长方体的长、宽、高都 相等时,就变成了正方体。
长方体和正方体在几何性质上 有很多相似之处,如都有6个面、 12条棱、8个顶点等。但在一些 特定的性质上,如面的形状和 大小、棱的长度等,两者又有 所不同。
02
长方体与正方体性质探究
计算长方体水池的容积、长方体木块的体积等。
正方体体积公式推导及应用
1 2
正方体体积公式 V = a^3
公式推导 正方体每个面都是正方形,面积相等,因此体积 等于一个面的面积乘以高(即边长)。
3
应用举例 计算正方体骰子的体积、正方体砖块的体积等。
复杂组合图形体积计算方法
艺术设计
长方体和正方体也是艺术设计中常用的元素之一,通过对 其进行变形、组合、叠加等操作,可以创造出丰富多样的 艺术效果和视觉冲击力。
06
练习题与课堂互动环节
判断题练习
正方体的六个面都是正 方形。
THANK YOU
感谢聆听
建筑结构
在建筑结构中,长方体和正方 体常被用作承重结构的基本单 元,如梁、柱、楼板等,其坚 固耐用的特性保证了建筑物的 安全性。
建筑装饰
长方体和正方体也被广泛应用 于建筑装饰中,如门窗、隔断、 装饰画等,通过不同的材质和 颜色搭配,营造出丰富多彩的 室内环境。
包装设计领域应用实例分析
包装容器
长方体和正方体是包装设计中常 用的容器形状,如纸箱、木箱、 塑料盒等,其规整的形态便于堆 放和运输,同时也方便消费者携
长方体与正方体关系
长方体与正方体都属于六面体 的范畴。
正方体是长方体的一种特殊情 况,当长方体的长、宽、高都 相等时,就变成了正方体。
长方体和正方体在几何性质上 有很多相似之处,如都有6个面、 12条棱、8个顶点等。但在一些 特定的性质上,如面的形状和 大小、棱的长度等,两者又有 所不同。
02
长方体与正方体性质探究
计算长方体水池的容积、长方体木块的体积等。
正方体体积公式推导及应用
1 2
正方体体积公式 V = a^3
公式推导 正方体每个面都是正方形,面积相等,因此体积 等于一个面的面积乘以高(即边长)。
3
应用举例 计算正方体骰子的体积、正方体砖块的体积等。
复杂组合图形体积计算方法
《长方体和正方体的认识》PPT课件
包装设计应用
包装容器
长方体和正方体是常见的 包装容器形状,如纸箱、 木箱等,用于装载和保护 物品。
节约空间
在物流运输和仓储过程中 ,使用长方体和正方体形 状的包装可以更有效地利 用空间,降低成本。
美观实用
长方体和正方体的包装设 计可以实现美观与实用的 平衡,提升产品的整体形 象和市场竞争力。
其他领域应用
02
长方体和正方体性质探究
长方体性质
01
长方体有6个面,每个面 都是矩形,相对的两个 面完全相同。
02
长方体有12条棱,其中 4条长、4条宽、4条高 ,分别对应三组相对的 面。
03
长方体有8个顶点,每个 顶点由3条棱相交而成。
04
长方体的对角线相等, 且互相平分。
正方体性质
01
02
03
04
正方体是特殊的长方体,它的 6个面都是正方形,且每个面
正方体表面积公式推导
正方体表面积 = 6 × 边长^2
公式推导:正方体有6个面,每个面的面积都是边长×边长。因为正方体所有面都 相等,所以表面积计算公式为上述公式。
实例分析与计算
实例1
一个长方体的长、宽、高分别为5cm、 3cm、2cm,求其表面积。
实例2
一个正方体的边长为4cm,求其表面积。
计算
根据长方体表面积公式,表面积 = 2 × (5cm × 3cm + 5cm × 2cm + 3cm × 2cm) = 2 × (15cm^2 + 10cm^2 + 6cm^2) = 2 × 31cm^2 = 62cm^2。
计算
根据正方体表面积公式,表面积 = 6 × 4cm^2 = 96cm^2。
《长方体和正方体的认识》PPT课件
正方体性质
正方体具有长方体的所有性质;此外, 正方体的每个面都是中心对称和轴对 称的图形;正方体的体对角线长度等 于棱长的根号3倍。
03
长方体和正方体表面积计算
表面积概念引入
表面积定义
长方体或正方体六个面的面积之和。
与体积的区别
表面积是物体外部的大小,体积是物 体内部空间的大小。
为什么要学习表面积
空间想象力培养方法
观察实物模型
通过观察实物模型,了解几何体的形状、结构 和空间位置关系。
绘制三视图
通过绘制几何体的三视图(主视图、俯视图、 左视图),培养空间想象力和图形表达能力。
制作几何体模型
通过动手制作几何体模型,加深对几何体形状 和结构的理解。
实际应用场景举例
机械制造领域
在机械制造中,需要运用几何体 知识来设计和制造各种零部件和 机器设备,如发动机、齿轮等。
正方体体积计算公式推导
引导学生理解正方体的特点,即长、 宽、高都相等。
让学生通过具体计算,掌握正方体体 积的计算方法。
通过实例演示,推导出正方体体积的 计算公式:体积 = 边长 × 边长 × 边 长。
空间观念培养方法
通过观察实物和图形,培养学生的空间想象力。 引导学生通过动手操作,理解物体的空间位置和关系。
长方体与正方体的关系
01
正方体是长方体的特例,当长方体的长、宽、高都相等时,就
变成了正方体。
相似性质
02
长方体和正方体都有六个面、十二条棱和八个顶点;它们的对
面都是平行且相等的;它们的角都是直角。
不同之处
03
长方体的长、宽、高可以不相等,而正方体的长、宽、高必须
相等。
其他相似几何体介绍
正方体具有长方体的所有性质;此外, 正方体的每个面都是中心对称和轴对 称的图形;正方体的体对角线长度等 于棱长的根号3倍。
03
长方体和正方体表面积计算
表面积概念引入
表面积定义
长方体或正方体六个面的面积之和。
与体积的区别
表面积是物体外部的大小,体积是物 体内部空间的大小。
为什么要学习表面积
空间想象力培养方法
观察实物模型
通过观察实物模型,了解几何体的形状、结构 和空间位置关系。
绘制三视图
通过绘制几何体的三视图(主视图、俯视图、 左视图),培养空间想象力和图形表达能力。
制作几何体模型
通过动手制作几何体模型,加深对几何体形状 和结构的理解。
实际应用场景举例
机械制造领域
在机械制造中,需要运用几何体 知识来设计和制造各种零部件和 机器设备,如发动机、齿轮等。
正方体体积计算公式推导
引导学生理解正方体的特点,即长、 宽、高都相等。
让学生通过具体计算,掌握正方体体 积的计算方法。
通过实例演示,推导出正方体体积的 计算公式:体积 = 边长 × 边长 × 边 长。
空间观念培养方法
通过观察实物和图形,培养学生的空间想象力。 引导学生通过动手操作,理解物体的空间位置和关系。
长方体与正方体的关系
01
正方体是长方体的特例,当长方体的长、宽、高都相等时,就
变成了正方体。
相似性质
02
长方体和正方体都有六个面、十二条棱和八个顶点;它们的对
面都是平行且相等的;它们的角都是直角。
不同之处
03
长方体的长、宽、高可以不相等,而正方体的长、宽、高必须
相等。
其他相似几何体介绍