ed与ae结合
2021年上海中考数学母题讲次13 动态几何题-(教师版)
专题13动态几何题【母题来源1】(2019•上海中考真题)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么△EDF的正切值是.【答案】由折叠可得AE=FE,△AEB=△FEB,由折叠的性质以及三角形外角性质,即可得到△AEB=△EDF,进而得到tan△EDF=tan△AEB==2.【解析】解:如图所示,由折叠可得AE=FE,△AEB=△FEB=△AEF,△正方形ABCD中,E是AD的中点,△AE=DE=AD=AB,△DE=FE,△△EDF=△EFD,又△△AEF是△DEF的外角,△△AEF=△EDF+△EFD,△△EDF=△AEF,△△AEB=△EDF,△tan△EDF=tan△AEB==2.故答案为:2.【母题来源2】(2017•上海中考真题)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF△AB,那么n的值是.【答案】分两种情形讨论,分别画出图形求解即可.【解析】解:△如图1中,EF△AB时,△ACE=△A=45°,△旋转角n=45时,EF△AB.△如图2中,EF△AB时,△ACE+△A=180°,△△ACE=135°△旋转角n=360﹣135=225,△0<n<180,△此种情形不合题意,故答案为45【母题来源3】(2016•上海中考真题)如图所示,梯形ABCD中,AB△DC,△B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且△AGE=△DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【答案】(1)作DH△AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则△AGE=△GAE,则判断G点与D点重合,即ED=EA,作EM△AD于M,如图1,则AM=AD=,通过证明Rt△AME△Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE 时,则△AGE=△AEG,可证明AE=AD=15,(3)作DH△AB于H,如图2,则AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG△△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF△△EGA,于是利用相似比可表示出x和y的关系.【解析】解:(1)作DH△AB于H,如图1,易得四边形BCDH为矩形,△DH=BC=12,CD=BH,在Rt△ADH中,AH===9,△BH=AB﹣AH=16﹣9=7,△CD=7;(2)△EA=EG时,则△AGE=△GAE,△△AGE=△DAB,△△GAE=△DAB,△G点与D点重合,即ED=EA,作EM△AD于M,如图1,则AM=AD=,△△MAE=△HAD,△Rt△AME△Rt△AHD,△AE:AD=AM:AH,即AE:15=:9,解得AE=;△GA=GE时,则△GAE=△AEG,△△AGE=△DAB,而△AGE=△ADG+△DAG,△DAB=△GAE+△DAG,△△GAE=△ADG,△△AEG=△ADG,△AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH△AB于H,如图2,则AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,△△AGE=△DAB,△AEG=△DEA,△△EAG△△EDA,△EG:AE=AE:ED,即EG:x=x:,△EG=,△DG=DE﹣EG=﹣,△DF△AE,△△DGF△△EGA,△DF:AE=DG:EG,即y:x=(﹣):,△y=(9<x<).1、抓住图形运动后角度和长度等性质的特点;2、寻找几何模型突破点;3、主要有以下几点思路:数量关系突破:1、勾股定理(比较初级,实用);2、锐角三角比;3、相似;角度关系突破:平行,全等,相似,其他几何性质;4、分类讨论多种情况(可以以某一种情况切入),记得验证是否均满足题意,有些需要舍去;5、综合分析法,从已知和结果同时出发往中间靠(也就是寻找第3点的突破点)。
中考数学压轴题60例(选择题)
. . . .中考数学选择题压轴题一、选择题1.将正方形 ABCD 绕点 A 按逆时针方向旋转 30°,得正方形 AB 1C 1D 1,B 1C 1 交 CD 于点 E ,AB= ,则四边形 AB 1ED 的内切圆半径为( )A B C D考点:三角形的内切圆与内心;正方形的性质;旋转的性 质.专题: 压轴题.分析:作∠DAF 与∠AB 1G 的角平分线交于点 O ,则 O 即为该圆的圆心,过 O 作 OF ⊥AB 1,AB= ,再根据直角三角形的性质便可求出 OF 的长,即该四边形内切圆的圆心.解答:解:作∠DAF 与∠AB 1G 的角平分线交于点 O ,过 O 作 OF ⊥AB 1,】则∠OAF=30°,∠AB 1O=45°,故 OA ,设 B 1F=x ,则 AF= ﹣x ,故( ﹣x)2+x 2=(2x)2,解得 或 (舍去),∴四边形AB1ED 的内切圆半径为.故选:B.2.如图,四边形ABCD 中,∠C=50°,∠B=∠D=90°,E、F 分别是BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( )A 50°B 60°C 70°D 80°解答:解:作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于E,交CD 于F,则A′A″即为△AEF的周长最小值.作DA 延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.本题考查的是轴对称﹣最短路线问题,涉及到平面3.如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F,连接B′D,则B′D 的最小值是( )A 2 ﹣2B 6C 2 ﹣2D 4考点:翻折变换(折叠问题).专题:压轴题.分析:当∠BFE=∠DEF,点B′在DE 上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E 即为所求.解答:解:如图,当∠BFE=∠DEF,点B′在DE 上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥FD,∴EB′=EB,∵E 是AB 边的中点,AB=4,∴AE=EB′=2,∵AB=6,∴DE= =2 ,∴DB′=2﹣2.故选:A.点评:本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D 的值最小,是解决问题的关键.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是( )相同.如果5 是方程M 的一个根,那是方程N 的一个根,,B ;利用一元二次方程的解的定义判断C 与D . 解答: 解:A 、如果方程 M 有两个相等的实数根,那么△=b 2 ﹣4ac=0,所以方程 N 也有两个相等的实数根,结论正确,不符合题意; B 、如果方程 M 的两根符号相同,那么方程 N 的两 根符号也相同,那么 >0,所以 a 与c 符号相同, >0,所以方程 N 的两根符号也相同结论正确,不符合题意;C 、如果 5 是方程 M 的一个根,那么 25a+5b+c=0, 两边同时除以 25,c+b+a=0,所 是方程 N 的一个根,结论正确,不符合题意;D 、如果方程 M 和方程 N 有一个相同的根,那么 ax 2+bx+c=cx 2+bx+a ,(a ﹣c)x 2=a ﹣c ,由 a ≠c ,得 x 2=1 x=±1 ,结论错误,符合题意; 故选:D .本题考查了一元二次方程根的情况与判别式△的关5.如图,坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t),AB∥x 轴,矩形A′B′C′D′与矩形ABCD 是位似图形,点O 为位似中心,点A′,B′分别是点A,B 的对应点,=k.已知关于x,y 的二元一次方(m,n 是实数)无解,在以m,n 为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于( )A B 1 C ...D ., ,: 压轴题. : 首先求出点 A′的坐标为(k ,kt),再根据关于 x ,y 的二 元一次方 (m ,n 是实数)无解,可得 mn=3,且 n≠1;然后根据以 m ,n 为坐标(记为(m ,n)的所有的点中,有且只有一个点落在矩形 A′B′C′D′的边上,可得反比例函数 的图象只经过点 A′或 C′;最后分两种情况 讨论:(1)若反比例函数 的图象经过点 A′时;(2)若反 比例函数 的图象经过点 C′时;求出 k•t 的值等于多少即可. : 解:∵矩形 A′B′C′D′与矩形 ABCD 是位似图形=k 顶点 A 的坐标为(1,t),∴点 A′的坐标为(k ,kt),∵关于 x ,y 的二元一次方(m ,n 是实数)无解∴mn=3,且 n≠1,即 (m≠3), ∵以 m ,n 为坐标(记为(m ,n)的所有的点中,有且只有一个点落在矩形 A′B′C′D′的边上,∴反比例函数 的图象只经过点 A′或 C′,由,可得mnx ﹣3x+4=3n+1,(1)若反比例函数的图象经过点A′,得kt=1.(2)若反比例函数的图象经过点C′,6.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )A ①②④B ③④C ①③④D ①②....:压轴题.:①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a、b、c 的符号;②根据对称轴求出b=﹣a;③把x=2 代入函数关系式,结合图象判断函数值与0 的大小关系;④求出点(0,y1)关于直线的对称点的坐标,根据对称轴即可判断y1和y2的大小.:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y 轴的正半轴于一点,∴c>0,∵对称轴是直线,∴﹣,∴b=﹣a>0,∴abc<0.故①正确;,7.如图,在△ABC 中,AB=CB ,以 AB 为直径的⊙O 交 AC 于点 D .过点 C 作 CF ∥AB ,在 CF 上取一点 E ,使 DE=CD ,连接 AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③ = ;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )∴a+b=0, 故②正确;③把 x=2 代入 y=ax 2+bx+c 得:y=4a+2b+c , ∵抛物线经过点(2,0), ∴当 x=2 时,y=0,即 4a+2b+c=0. 故③错误;④∵(0,y 1)关于直线 的对称点的坐标是(1,y 1),∴y 1=y 2. 故④正确;综上所述,正确的结论是①②④. 故选:A 点评:本题考查了二次函数的图象和系数的关系的应用,注意:当 a >0 时,二次函数的图象开口向上,当 a <0 时 二次函数的图象开口向下.A ①②B ①②③C ①④D ①②④....∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC 不能确定为直角三角形,∴∠1 不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E 在以AC 为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE 为⊙O 的切线,所以④正确.故选:D.8.如图,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是( )A 25°B 30° .., 、、C 35° .D 40° .考点: 轴对称-最短路线问题. 专题: 压轴题.分析:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD 分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN MN ,由对称的性质得出 PM=CM ,OP=OC ,∠COA=∠POA ;PN=DN ,OP=OD ,∠DOB=∠POB ,得出∠ AOB=∠COD ,证出△OCD 是等边三角形,得出∠ COD=60°,即可得出结果.解答:解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ∴PM=DM ,OP=OD ,∠DOA=∠POA ; ∵点 P 关于 OB 的对称点为 C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=∠COD , ∵△PMN 周长的最小值是 5cm , ∴PM+PN+MN=5, ∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.9.如图,在边长为2 的正方形ABCD 中剪去一个边长为1 的小正方形CEFG,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A B C D....动时间t 之间的函数关系图象大致是( ).. . .C D;,A B考点: 动点问题的函数图象. 专题: 压轴题. 分析: 首先根据 Rt △ABC 中∠C=90°,∠BAC=30°,AB=8, 分别求出 AC 、BC ,以及 AB 边上的高各是多少;然后根据图示,分三种情况:(1)当 0≤t ≤2 时;(2)当 2 时 (3)当 6<t≤8 时;分别求出正方形 DEFG 与△ABC 的重合部分的面积 S 的表达式,进而判断出正方形 DEFG 与 △ABC 的重合部分的面积 S 与运动时间 t 之间的函数关 系图象大致是哪个即可. 解答: 解:如图 1,CH 是 AB 边上的高,与 AB 相交于点 H∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8× =4 ,BC=AB×sin30°=8× =4, ∴CH=AC×,AH= ,(1)当 0≤t≤2 时, S= =t 2;(2)当 2 时,S=﹣=t2[t2﹣4 t+12]=2t﹣2(3)当6<t≤8 时,S=[(t﹣2 )•tan30°]×[6 ﹣(t﹣2 ×[ (8﹣t)•tan60°]×(t﹣6)=[]×[ ﹣t+2 ×[ ﹣t ]×(t﹣6)=﹣t2+2t+4 t2 ﹣30=﹣t2 ﹣26综上,可得S=∴正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是A 图象.故选:A., 11.如图所示,MN 是⊙O 的直径,作 AB ⊥MN ,垂足为点 D ,连接 AM ,AN ,点 C 为 上一点,且 = ,连接 CM ,交 AB 于点 E ,交 AN 于点 F ,现给出以下结论:①AD=BD ;②∠MAN=90°;③ = ;④∠ACM+∠ANM=∠ MOB ;⑤AE=MF . 其中正确结论的个数是()C 4D 5 . .考点: 圆周角定理;垂径定理. 专题: 压轴题. 分析: 根据 AB ⊥MN ,垂径定理得出①③正确,利用 MN 是直径得出②正确 = = ,得出④正确,结合②④得出 ⑤正确即可. 解答: 解:∵MN 是⊙O 的直径,AB ⊥MN ,∴AD=BD , = ,∠MAN=90°(①②③正确) ∵ = , ∴ = = ,∴∠ACM+∠ANM=∠MOB(④正确) ∵∠MAE=∠AME ,∴AE=ME ,∠EAF=∠AFM , ∴AE=EF ,A 2 .B 3 .,∴AE=MF(⑤正确). 正确的结论共 5 个. 故选:D .12.在平面直角坐标系中,点 A ,B 的坐标分别为(﹣3,0), (3,0),点 P 在反比例函数 的图象上,若△PAB 为直角三角形,则满足条件的点 P 的个数为( ) A 2 个 B 4 个 C 5 个 D 6 个 . . .., ;:压轴题. : 分类讨论:①当∠PAB=90°时,则 P 点的横坐标为﹣3 根据反比例函数图象上点的坐标特征易得P 点有1 个 ②当∠APB=90°,设 ),根据两点间的距离公式和勾股定理可得(x+3)2+()2+(x ﹣3)2+()2=36,此时 P 点 有 4 个,③当∠PBA=90°时,P 点的横坐标为 3,此时 P 点有 1 个.: 解:①当∠PAB=90°时,P 点的横坐标为﹣3,把 x=﹣3 代入 得 ,所以此时 P 点有 1 个;②当∠APB=90°,设 P(x ),PA 2=(x+3)2+()2,PB 2=(x﹣3)2+()2,AB2=(3+3)2=36,因为PA2+PB2=AB2,所以)2+(x﹣3)2+()2=36,整理得x4﹣9x2+4=0,所以,或,所以此时P 点有4 个,③当∠PBA=90°时,P 点的横坐标为3,把x=3 代入y=得,所以此时P 点有1 个;综上所述,满足条件的P 点有6个.故选:D.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数(k 为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B 两点,与y 轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是( )A 4B 3C 2D 1....:压轴题;数形结合.:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y 轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x 轴的交点个数得到b2﹣4ac >0,加上a<0,则可对②进行判断;利用OA=OC 可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,两边除以c 则可对③进行判断;设A(x1,0) B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x 轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到,于是,则可对④进行判断.:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y 轴的右侧,∴b>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x 轴有2 个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B 两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.14.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y 和x,则y 与x 的函数图象大致是( )A BC D....考点:函数的图象.专题:压轴题.分析:立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=4x,再得出图象即可.解答:解:正方形的边长x,y﹣x=2x,∴y 与x 的函数关系式为x,故选:B.点评:本题考查了一次函数的图象和综合运用,解题的关键是从x 等于该立方体的上底面周长,从而得到关系式.15.如图,△ABC,△EFG 均是边长为2 的等边三角形,点D 是边BC、EF 的中点,直线AG、FC 相交于点M.当△EFG 绕点D 旋转时,线段BM 长的最小值是( )A 2﹣B +1CD ﹣1. . . .., 考点:旋转的性质;四点共圆;线段的性质:两点之间线段最短;等边三角形的性质;勾股定理;相似三角形的 判定与性质. 专题: 压轴题. 分析: 取 AC 的中点 O ,连接 AD 、DG 、BO 、OM ,如图,易证△DAG ∽△DCF ,则有∠DAG=∠DCF ,从而可得 A 、D 、C 、M 四点共圆,根据两点之间线段最短可得BO≤BM+OM ,即 BM≥BO ﹣OM ,当 M 在线段 BO 与该圆的交点处时,线段 BM 最小,只需求出 BO 、OM 的值,就可解决问题.解答:解:AC 的中点 O ,连接 AD 、DG 、BO 、OM ,如图 ∵△ABC ,△EFG 均是边长为 2 的等边三角形,点 D 是边 BC 、EF 的中点, ∴AD ⊥BC ,GD ⊥EF ,DA=DG ,DC=DF , ∴∠ADG=90°﹣∠CDG=∠FDC ,=, ∴△DAG ∽△DCF ,∴∠DAG=∠DCF .∴A 、D 、C 、M 四点共圆.根据两点之间线段最短可得:BO≤BM+OM ,即BM≥BO ﹣OM ,当 M 在线段 BO 与该圆的交点处时,线段 BM 最小 此时,BO= = = AC=1,则 BM=BO ﹣OM= ﹣1. 故选:D .点评:本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点 M 的运动轨迹是解决本题的关键.16.如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边 AC 沿 CE 翻折,使点 A 落在 AB 上的点 D 处;再将边 BC 沿 CF 翻折,使点 B 落在 CD 的延长线上的点 B′处,两条折痕与斜边 AB 分别交于点 E 、F ,则线段 B′F 的长为( )C D . ., A .B .考点: 翻折变换(折叠问题). 专题: 压轴题.分析:首先根据折叠可得 CD=AC=3,B′C=BC=4,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB然后求得△ECF 是等腰直角三角形,进而求得,ED=AE,从而求得,在Rt△B′DF 中,由勾股定理即可求得B′F的长.解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE= ,∴DF=EF﹣ED=,∴B′F=.故选:B.定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关 键.17.已知二次函数 y=ax 2+bx+c+2 的图象如图所示,顶点为(﹣ 1,0),下列结论:①abc <0;②b 2﹣4ac=0;③a >2;④4a ﹣ 2b+c >0.其中正确结论的个数是( )A 1B 2C 3D 4 .. . .,考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析: ①首先根据抛物线开口向上,可得 a >0;然后根据对称轴在 y 轴左边,可得 b >0;最后根据抛物线与 y 轴的交点在 x 轴的上方,可得 c >0,据此判断出 abc >0 即可.②根据二次函数y=ax 2+bx+c+2 的图象与x 轴只有一个交点,可得△=0,即 b 2﹣4a(c+2)=0,b 2﹣4ac=8a >0据此解答即可.③首先根据对称轴 =﹣1,可得 b=2a ,然后根据 b 2﹣4ac=8a ,确定出 a 的取值范围即可.④根据对称轴是 x=﹣1,而且 x=0 时,y >2,可得 x= ﹣2 时,y >2,据此判断即可.:解:∵抛物线开口向上,∴a>0,∵对称轴在y 轴左边,∴b>0,∵抛物线与y 轴的交点在x 轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2 的图象与x 轴只有一个交点,∴△=0,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;18.如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF⊥CD 交AB 于点F,DE ⊥CD 交AB 于点E,G 为半圆弧上的中点.当点C 在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y 与x 的函数关系的图象大致是( )A B C D....考点:动点问题的函数图象.专题:压轴题.分析:根据弦CD 为定长可以知道无论点C 怎么运动弦CD 的弦心距为定值,据此可以得到函数的图象.解答:解:作OH⊥CD 于点H,∴H 为CD 的中点,∵CF⊥CD 交AB 于F,DE⊥CD 交AB 于E,∴OH 为直角梯形的中位线,∵弦CD 为定长,∴CF+DE=y 为定值,故选:B.点评:本题考查了动点问题的函数图象,解题的关键是化动为静.19.如图,△ABC 中,AB=AC,D 是BC 的中点,AC 的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A 1 对B 2 对C 3 对D 4 对在△ABD 和△ACD 中,,在△AOE 和△COE 中,,在△BOD 和△COD 中,,在△AOC 和△AOB 中,,∴△AOC ≌△AOB ;故选:D .点评:本题考查的是全等三角形的判定方法;这是一道考试常 见题,易错点是漏掉△ABO ≌△ACO ,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.20.二次函数 y=ax 2+bx+c(a≠0)的图象如图所示,下列结论: ①2a+b >0;②abc <0;③b 2﹣4ac >0;④a+b+c <0;⑤4a ﹣ 2b+c <0,其中正确的个数是( )B 3C 4D 5 . . .考点: 二次函数图象与系数的关系.专题: 压轴题.分析: 由抛物线开口向下得到 a <0,由对称轴在 x=1 的右侧得到 >1,于是利用不等式的性质得到 2a+b >0; 由 a <0,对称轴在 y 轴的右侧,a 与 b 异号,得到 b >0,抛物线与 y 轴的交点在 x 轴的下方得到 c <0,于 是 abc >0;抛物线与 x 轴有两个交点,所以△=b 2﹣4ac >0;由 x=1 时,y >0,可得 a+b+c >0;由 x=﹣2 时 y <0,可得 4a ﹣2b+c <0.解答: 解:①∵抛物线开口向下,A 2.∴a<0,∵对称轴>1,∴2a+b>0,故①正确;②∵a<0,﹣>0,∴b>0,∵抛物线与y 轴的交点在x 轴的下方,∴c<0,∴abc>0,故②错误;③∵抛物线与x 轴有两个交点,∴△=b2﹣4ac>0,故③正确;④∵x=1 时,y>0,∴a+b+c>0,故④错误;⑤∵x=﹣2 时,y<0,∴4a﹣2b+c<0,故⑤正确.故选:B.点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,a<0开口向下;对称轴为直线,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c<0,抛物线与y 轴的交点在x 轴的下方;当△=b2﹣4ac>0,抛物线与x 轴有两个交点.21.如图,▱ABCD 的对角线AC、BD 交于点O,AE 平分∠BAD 交BC 于点E,且∠ADC=60°,AB= BC,连接OE.下列结论:①∠CAD=30°;②S ▱ABCD =AB•AC ;③OB=AB ;④ OE=BC ,成立的个数有( )A 1 个B 2 个C 3 个D 4 个. . . .,考点: 平行四边形的性质;等腰三角形的判定与性质;等边三 角形的判定与性质;含 30 度角的直角三角形. 专题:压轴题. 分析: 由四边形 ABCD 是平行四边形,得到∠ABC=∠ ADC=60°,∠BAD=120°,根据 AE 平分∠BAD ,得到 ∠BAE=∠EAD=60°推出△ABE 是等边三角形,由于 AB=BC ,得到 BC ,得到△ABC 是直角三角形, 于是得到∠CAD=30°,故①正确;由于 AC ⊥AB ,得到S ▱ABCD =AB•AC ,故②正确,根据 BC ,OB=BD且 BD >BC ,得到 AB≠OB ,故③错误;根据三角形的中位线定理得到 AB ,于是得到 BC ,故④正确.解答: 解:∵四边形 ABCD 是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE 平分∠BAD ,∴∠BAE=∠EAD=60°∴△ABE 是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.22.如图,正方形ABCD 的边长为6,点E、F 分别在AB,AD 上,若CE=3 ,且∠ECF=45°,则CF 的长为( )A 2B 3C D解:如图,延长FD 到G,使DG=BE;连接CG、EF;∵四边形ABCD 为正方形,在△BCE 与△DCG 中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF 与△ECF 中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3 ,CB=6,∴BE= =3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF= = ,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF= = =2 ,故选:A.点评本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.23.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B 两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3 有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x<4 时,有y2<y1,其中正确的是( )A ①②③B ①③④C ①③⑤D ②④⑤....:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1 时,二次函数有最大值,∴方程ax2+bx+c=3 有两个相等的实数根,所以③正确;∵抛物线与x 轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以④错. . . . 误;∵抛物线 y 1=ax 2+bx+c 与直线 y 2=mx+n(m≠0)交于A(1,3),B 点(4,0)∴当 1<x <4 时,y 2<y 1,所以⑤正确.故选:C .点评: 本题考查了二次项系数与系数的关系:对于二次函数y=ax 2+bx+c(a≠0),二次项系数 a 决定抛物线的开口方向和大小:当 a >0 时,抛物线向上开口;当 a <0 时抛物线向下开口;一次项系数 b 和二次项系数 a 共同决定对称轴的位置:当 a 与 b 同号时(即 ab >0),对称轴在 y 轴左; 当 a 与 b 异号时(即 ab <0),对称轴在 y 轴右.(简称:左同右异);常数项 c 决定抛物线与 y 轴交点:抛物线与 y 轴交于(0,c);抛物线与 x 轴交点个数由△决定:△=b 2﹣4ac >0 时,抛物线与 x 轴有 2 个交点;△=b 2﹣4ac=0 时,抛物线与 x 轴有 1 个交点;△=b 2﹣4ac <0 时,抛物线与 x 轴没有交点.24.在同一平面直角坐标系中,函数 y=ax 2+bx 与 y=bx+a 的图象可能是( )A B C D,考点: 二次函数的图象;一次函数的图象. 专题: 压轴题.分析: 首先根据图形中给出的一次函数图象确定 a 、b 的符号,221111: 解:A 、对于直线 y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线 y=ax 2+bx 来说,对称轴 x= ﹣<0,应在 y 轴的左侧,故不合题意,图形错误.B 、对于直线 y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线 y=ax 2+bx 来说,图象应开口向下故不合题意,图形错误.C 、对于直线 y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线 y=ax 2+bx 来说,图象开口向下,对 称轴 位于 y 轴的右侧,故符合题意,D 、对于直线 y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线 y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误. 故选:C . 此主要考查了一次函数、二次函数图象的性质及其应用. . . . , 再作△B 2A 3B 3 与△B 2A 2B 1 关于点 B 2 成中心对称,如此作下去, 则△B 2n A 2n+1B 2n+1(n 是正整数)的顶点 A 2n+1 的坐标是( )A (4n ﹣1,B (2n ﹣1,C (4n+1,D (2n+1,) ) ) )考点: 坐标与图形变化-旋转.专题: 压轴题;规律型.分析: 首先根据△OA 1B 1 是边长为 2 的等边三角形,可得 A 1 的坐标为(1 ),B 1 的坐标为(2,0);然后根据中心对称的性质,分别求出点 A 2、A 3、A 4 的坐标各是多少;最后总结出 A n 的坐标的规律,求出 A 2n+1 的坐标是多少 即可.解答: 解:∵△OA 1B 1 是边长为 2 的等边三角形,∴A 1 的坐标为(1, ),B 1 的坐标为(2,0),∵△B 2A 2B 1 与△OA 1B 1 关于点 B 1 成中心对称,∴点 A 2 与点 A 1 关于点 B 1 成中心对称,∵2×2 ﹣1=3,2×0 ﹣ =﹣ ,∴点 A 2 的坐标是(3,﹣ ),∵△B 2A 3B 3 与△B 2A 2B 1 关于点 B 2 成中心对称,∴点 A 3 与点 A 2 关于点 B 2 成中心对称,∵2×4 ﹣3=5,2×0 ﹣(﹣ )= ,∴点 A 3 的坐标是(5, ),∵△B 3A 4B 4 与△B 3A 3B 2 关于点 B 3 成中心对称,∴点 A 4 与点 A 3 关于点 B 3 成中心对称,∵2×6 ﹣5=7,2×0 ﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1 ﹣1,3=2×2 ﹣1,5=2×3 ﹣1,7=2×3 ﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n 为奇数时,A n的纵坐标是,当n 为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n 是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.点评:此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.26.如图,AD 是△ABC 的角平分线,则AB:AC 等于( )A BD:CDB AD:CDC BC:AD D BC:AC....考点:角平分线的性质.专题:压轴题.分析:先过点B 作BE∥AC 交AD 延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可=,而利用AD 时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.:解:如图过点B 作BE∥AC 交AD 延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD 是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.此题考查了角平分线的定义、相似三角形的判定和性27.如图,在钝角△ABC 中,分别以 AB 和 AC 为斜边向△ABC 的外侧作等腰直角三角形 ABE 和等腰直角三角形 ACF ,EM 平分∠AEB 交 AB 于点 M ,取 BC 中点 D ,AC 中点 N ,连接 DN 、DE 、DF .下列结论 S 四边形 ABDN ;③DE=DF ;④DE ⊥DF .其中正确的结论的个数是( )C 3 个D 4 个 . .,, A 1 个.B 2 个 . 考点: 全等三角形的判定与性质;等腰直角三角形;三角形 中位线定理. 专题: 压轴题. 分析: ①首先根据 D 是 BC 中点,N 是 AC 中点 N ,可得 DN 是△ABC 的中位线,判断出 ;然后判断出 EM=,即可判断出 EM=DN ; ②首先根据 DN ∥AB ,可得△CDN ∽ABC ;然后根据DN=, 可 得 S △ABC , 所 以 S 四 边 形 ABDN 据此判断即可.③首先连接MD 、FN ,判断出DM=FN ,∠EMD=∠DNF 然后根据全等三角形判定的方法,判断出△EMD ≌△ DNF ,即可判断出 DE=DF ., . ④首先判断 ,DM=FA ,∠EMD=∠EAF 根据相似计三角形判定的方法,判断出△EMD ∽△∠ EAF ,即可判断出∠MED=∠AEF ,然后根据∠MED+ ∠AED=45°,判断出∠DEF=45°,再根据 DE=DF ,判 断出∠DFE=45°,∠EDF=90°,即可判断出 DE ⊥DF:解:∵D 是 BC 中点,N 是 AC 中点, ∴DN 是△ABC 的中位线,∴DN ∥AB ,且 ;∵三角形 ABE 是等腰直角三角形,EM 平分∠AEB 交 AB 于点 M ,∴M 是 AB 的中点,∴EM=,又 ,∴EM=DN ,∴结论①正确;∵DN ∥AB ,∴△CDN ∽ABC ,∵DN=,∴S △CDN =S △ABC ,∴S △CDN =S 四边形 ABDN ,∴结论②正确;如图1,连接MD、FN,,∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM∥AC,且;∵三角形ACF 是等腰直角三角形,N 是AC 的中点,∴FN=,又,∴DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN 是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD 和△DNF 中,,∴△EMD≌△DNF,∴DE=DF,∴结论③正确;如图2,连接MD,EF,NF,,∵三角形ABE 是等腰直角三角形,EM 平分∠AEB,∴M 是AB 的中点,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴,∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM∥AC,且;∵三角形ACF 是等腰直角三角形,N 是AC 的中点,∴FN=,∠FNA=90°,∠FAN=∠AFN=45°,又,∴DM=FN=FA,∵∠EMD=∠EMA+∠AMD=90°+ ∠AMD,∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+ ∠AMD∴∠EMD=∠EAF,在△EMD 和△∠EAF 中,∴△EMD∽△∠EAF,∴∠MED=∠AEF,。
2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案
北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。
2021-2022学年苏科新版七年级数学下7.2探索平行线的性质最新试题同步练习课时作业含答案解析
2022年7.2探索平行线的性质一.选择题(共15小题)1.(2021春•澧县期末)如图,AF∥BE∥CD,若∠1=40°,∠2=50°,∠3=120°,则下列说法正确的是()A.∠F=100°B.∠C=140°C.∠A=130°D.∠D=60°2.(2021春•南京期末)如图,AB∥CD,BC平分∠ABD,若∠1=65°,则∠2的度数是()A.65°B.60°C.55°D.50°3.(2021•庐阳区校级模拟)如图,将直尺与30°角的三角尺叠放在一起,若∠1=55°,则∠2的大小是()A.65°B.70°C.75°D.80°4.(2021春•醴陵市期末)如图,下列结论不正确的是()A.若∠2=∠C,则AE∥CD B.若AD∥BC,则∠1=∠BC.若AE∥CD,则∠1+∠3=180°D.若∠1=∠2,则AD∥BC5.(2021秋•东西湖区期中)如图,已知长方形纸片ABCD,点E,H在AD边上,点F,G 在BC边上,分别沿EF,GH折叠,使点B和点C都落在点P处,若∠EFB+∠HGC=116°,则∠IPK的度数为()A.129°B.128°C.127°D.126°6.(2021春•盐城期末)如图,在长方形纸片ABCD中,AD∥BC,将长方形纸片沿BD折叠,点A落在点E处,DE交边BC于点F,若∠ADB=20°,则∠DFC等于()A.30°B.60°C.50°D.40°7.(2021春•高新区月考)如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为()A.75°B.35°C.110°D.40°8.(2021春•金乡县期末)如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD∥CB;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE;其中正确的是()A.①②B.①③④C.①②④D.①②③④9.(2021春•莱阳市期末)如图,AE平分∠BAC,BE⊥AE于点E,ED∥AC,∠BAE=34°,那么∠BED=()A.134°B.124°C.114°D.104°10.(2021春•工业园区校级月考)如图,将一张长方形的纸片沿折痕EF翻折,使点C、D 分别落在点M、N的位置,且∠BFM=∠EFM,则∠AEN的度数为()A.45°B.36°C.72°D.18°11.(2021•金坛区模拟)如图,已知a∥b,m∥n,若∠1=70°,则∠2的度数是()A.100°B.110°C.120°D.130°12.(2021•常州一模)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=44°时,∠1的大小为()A.56°B.46°C.36°D.34°13.(2021•阜宁县二模)如图,已知AB∥CD,CE平分∠ACD,且∠A=120°,则∠1=()A.45°B.60°C.40°D.30°14.(2021•焦作模拟)如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°15.(2021•建湖县二模)如图,在4×4的正方形网格中,记∠ABF=α,∠FCH=β,∠DGE =γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共18小题)16.(2020秋•滨海县期末)如图,把一张长方形纸条ABCD沿EF折叠,若∠AEG=64°,则∠DEF=°.17.(2021•射阳县二模)将一副直角三角板如图摆放,点D落在AC边上,BC∥DF,则∠1=°.18.(2021•阜宁县模拟)如图,已知直线AB、CD被直线AE所截,AB∥CD,∠2=130°,则∠1=.19.(2021•姑苏区校级二模)如图,已知AB∥CD,∠1=∠2,若∠A=100°,则∠3=.20.(2021•常州二模)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是.21.(2021春•江宁区月考)如图,AB∥CD,CB平分∠ACD,若∠BCD=25°,则∠A的度数为.22.(2021春•常熟市期中)如图,直线a∥b,∠1=110°,则∠2的度数是°.23.(2021春•海淀区校级期末)如图,将一张长方形纸片沿EF折叠后,点D落在BC上的点D'处,点C落在点C'处.若∠DEF=62°,则∠C'FD'=°.24.(2021•姑苏区校级一模)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=27°,则∠2=°.25.(2021春•嘉兴期末)如图,将一张长方形纸条ABCD沿EF折叠,若∠EFG=47°,则∠BGP=.26.(2021春•无锡期末)已知AB∥CD,P是平面内一点,作PE⊥AB,垂足为E,F为CD 上一点,且∠PFD=130°,则∠EPF的度数是.27.(2021春•东台市月考)平面内∠A和∠B的两边互相平行,且∠A=40°,则∠B=.28.(2021春•金坛区期末)若∠A与∠B的一组边平行,另一组边垂直,且∠A﹣2∠B=15°,则∠B的度数为.29.(2021春•玄武区校级期中)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.现有下列五个式子:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β,在这五个式子中,可以表示成∠AEC的度数的是.(请填序号)30.(2021春•大丰区月考)如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=58°,射线GP⊥EG于点G,则∠PGF =°.31.(2021春•天宁区校级月考)“浏阳河弯过九进有,五十里水路到湘江.”如图所示,某段河水流经B,C,D三点拐弯后与原来流向相同,若∠ABC=6∠CDE,∠BCD=4∠CDE,则∠CDE=.32.(2021秋•吴江区月考)如图把一个长方形纸片沿EF折叠后,点D、C分别落在D'、C'处,∠AED'=40°,则∠BFC′=.33.(2021春•鼓楼区校级月考)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣6|+(b﹣1)2=0.若射线AM绕点A顺时针先转动15秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动秒时,射线AM与射线BQ互相平行.三.解答题(共6小题)34.(2021秋•肇源县期末)完成下面的证明如图,点B在AG上,AG∥CD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.求证:∠F=90°.证明:∵AG∥CD(已知)∴∠ABC=∠BCD()∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCD∵CF平分∠BCD(已知)∴∠BCF=∠FCD()∴=∠BCF(等量代换)∴BE∥CF()∴=∠F()∵BE⊥AF(已知)∴=90°()∴∠F=90°.35.(2020秋•米易县期末)庚子年初,突如其来的疫情,给我们的生活按下了“暂停键”,春季开学延期.我市各学校积极响应教育局“停课不停学”的号召,实行线上教学.王老师发现他的电脑桌支架形状正好与他最近所讲授的数学知识有关,于是,数学课上王老师提出如下问题:如图是电脑桌支架的截面示意图,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.请你用所学知识证明:AD∥BC.36.(2021秋•农安县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.37.(2021秋•农安县期末)已知直线AB∥CD,P为平面内一点,连接P A、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠P AB、∠CDP、∠APD之间的数量关系为.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠P AN+∠P AB=∠APD,求∠AND的度数.38.(2020秋•石狮市期末)已知AB∥CD,点E是AB,CD之间的一点.(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴PE∥CD(),∴∠BAE=∠1,∠DCE=∠2(),∴∠BAE+∠DCE=+(等式的性质).即∠AEC,∠BAE,∠DCE之间的数量关系是.(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.①若∠AEC=74°,求∠AFC的大小;②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.39.(2021秋•农安县期末)如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)2022年7.2探索平行线的性质参考答案与试题解析一.选择题(共15小题)1.(2021春•澧县期末)如图,AF∥BE∥CD,若∠1=40°,∠2=50°,∠3=120°,则下列说法正确的是()A.∠F=100°B.∠C=140°C.∠A=130°D.∠D=60°【解答】解:∵BE∥CD,∴∠2+∠C=180°,∠3+∠D=180°,∵∠2=50°,∠3=120°,∴∠C=130°,∠D=60°,∵AF∥BE,∠1=40°,∴∠A=180°﹣∠1=140°,∠F的值无法确定.故选:D.2.(2021春•南京期末)如图,AB∥CD,BC平分∠ABD,若∠1=65°,则∠2的度数是()A.65°B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=65°,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选:D.3.(2021•庐阳区校级模拟)如图,将直尺与30°角的三角尺叠放在一起,若∠1=55°,则∠2的大小是()A.65°B.70°C.75°D.80°【解答】解:∵∠3=60°,∠1=55°,∴∠1+∠3=115°,∵AD∥BC,∴∠1+∠3+∠2=180°,∴∠2=180°﹣(∠1+∠3)=180°﹣115°=65°.故选:A.4.(2021春•醴陵市期末)如图,下列结论不正确的是()A.若∠2=∠C,则AE∥CD B.若AD∥BC,则∠1=∠BC.若AE∥CD,则∠1+∠3=180°D.若∠1=∠2,则AD∥BC【解答】解:A:∵∠2=∠C,由同位角相等两直线平行,可得AE∥CD,故A正确,B:∵AD∥BC,∴∠1=∠2,而∠2和∠B不一定相等,故B错误,C:∵AE∥CD,由两直线平行同旁内角互补,可得:∠1+∠3=180°,故C正确,D:∵∠1=∠2,由内错角相等两直线平行,可得:AD∥BC,故D正确.故选:B.5.(2021秋•东西湖区期中)如图,已知长方形纸片ABCD,点E,H在AD边上,点F,G 在BC边上,分别沿EF,GH折叠,使点B和点C都落在点P处,若∠EFB+∠HGC=116°,则∠IPK的度数为()A.129°B.128°C.127°D.126°【解答】解:∵四边形ABCD是长方形,∴∠B=∠C=90°,由折叠可知:∠IPF=∠B=90°,∠KPG=∠C=90°,EF,GH分别是∠BFP和∠CGP的角平分线,∴∠PFE=∠BFE,∠PGH=∠CGH,∴∠PFE+∠PGH=∠BFE+∠CGH=116°,∴∠BFP+∠CGP=2(∠BFE+∠CGH)=232°,∴∠PFG+∠PGF=360°﹣(∠BFP+∠CGP)=360°﹣232°=128°,∴∠FPG=180°﹣(∠PFG+∠PGF)=180°﹣128°=52°,∴∠IPK=360°﹣∠IPF﹣∠KPG﹣∠FPG=360°﹣90°﹣90°﹣52°=128°.故选:B.6.(2021春•盐城期末)如图,在长方形纸片ABCD中,AD∥BC,将长方形纸片沿BD折叠,点A落在点E处,DE交边BC于点F,若∠ADB=20°,则∠DFC等于()A.30°B.60°C.50°D.40°【解答】解:由折叠的性质得∠ADB=∠EDB,∴∠ADF=2∠ADB,∵∠ADB=20°,∴∠ADF=2×20°=40°,∵AD∥BC,∴∠DFC=∠ADF=40°,故选:D.7.(2021春•高新区月考)如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为()A.75°B.35°C.110°D.40°【解答】解:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠B+∠BEF=180°,∠D+∠DEF=180°,∵∠B=75°,∠D=35°,∴∠BEF=180°﹣∠B=180°﹣75°=105°,∠DEF=180°﹣∠D=180°﹣35°=145°,∴∠BED=∠DEF﹣∠BEF=145°﹣105°=40°,故选:D.8.(2021春•金乡县期末)如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD∥CB;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE;其中正确的是()A.①②B.①③④C.①②④D.①②③④【解答】解:∵∠BAC=∠ACD=90°,且∠ABC=∠ADC,∴AB∥CD且∠ACB=∠CAD,∴BC∥AD,∴四边形ABCD是平行四边形.∴答案①正确;∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D,而∠D=∠ABC,∴∠ACE=∠D=∠ABC,∴答案②正确;又∵∠CEF+∠CBF=90°,∠AFB+∠ABF=90°,∵BE平分∠ABC,∴∠ABF=∠CBF,∠AFB=∠CFE,∴∠CEF=∠AFB=∠CFE,∴答案④正确;∵∠ECD=∠CAD,∠EBC=∠EBA,∴∠ECD+∠EBC=∠CFE=∠BEC,∴答案③正确.故选:D.9.(2021春•莱阳市期末)如图,AE平分∠BAC,BE⊥AE于点E,ED∥AC,∠BAE=34°,那么∠BED=()A.134°B.124°C.114°D.104°【解答】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°﹣34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°﹣146°﹣90°=124°,故选:B.10.(2021春•工业园区校级月考)如图,将一张长方形的纸片沿折痕EF翻折,使点C、D 分别落在点M、N的位置,且∠BFM=∠EFM,则∠AEN的度数为()A.45°B.36°C.72°D.18°【解答】解:设∠MFB=x°,则∠MFE=∠CFE=2x°,∵x+2x+2x=180,∴x=36,∴∠MFE=72°=∠CFE,∵AD∥BC,∴∠AEF=∠CFE=72°,又∵NE∥MF,∴∠AEN=180°﹣72°﹣72°=36°.故选:B.11.(2021•金坛区模拟)如图,已知a∥b,m∥n,若∠1=70°,则∠2的度数是()A.100°B.110°C.120°D.130°【解答】解:∵m∥n,∴∠1+∠3=180°,∵∠1=70°,∴∠3=180°﹣∠1=110°,∵a∥b,∴∠2=∠3=110°,故选:B.12.(2021•常州一模)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=44°时,∠1的大小为()A.56°B.46°C.36°D.34°【解答】解:∵直尺的对边互相平行,∠2=44°,∴∠2=∠3=44°,∵∠1+∠3=90°,∴∠1=46°,故选:B.13.(2021•阜宁县二模)如图,已知AB∥CD,CE平分∠ACD,且∠A=120°,则∠1=()A.45°B.60°C.40°D.30°【解答】解:∵AB∥CD,∴∠1=∠DCE,∠A+∠ACD=180°,又∵∠A=120°,∴∠ACD=60°,∵CE平分∠ACD,∴∠ACE=∠DCE=∠ACD=30°,∴∠1=30°,故选:D.14.(2021•焦作模拟)如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°【解答】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.15.(2021•建湖县二模)如图,在4×4的正方形网格中,记∠ABF=α,∠FCH=β,∠DGE =γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ【解答】解:由图知,∠FBG<45°,∴α=∠ABF=180°﹣45°﹣∠FBG>90°;由图知,∠DGF=45°,∠EGH=45°,∴γ=∠DGE=180°﹣∠DGF﹣∠EGH=180°﹣45°﹣45°=90°,由图知,∠MCH<45°,∠BCF=45°,∴β=∠FCH=180°﹣∠BCF﹣∠MCH=180°﹣45°﹣∠MCH<90°,∴β<γ<α,故选:B.二.填空题(共18小题)16.(2020秋•滨海县期末)如图,把一张长方形纸条ABCD沿EF折叠,若∠AEG=64°,则∠DEF=58°.【解答】解:∵∠AEG=64°,∴∠DEG=180°﹣∠AEG=116°,由折叠得:EF平分∠DEG,∴∠DEF=∠DEG=58°,故答案为:58°.17.(2021•射阳县二模)将一副直角三角板如图摆放,点D落在AC边上,BC∥DF,则∠1=105°.【解答】解:如图,根据题意得,∠EDF=45°,∵BC∥DF,∠B=60°,∴∠2=∠B=60°,∴∠1=∠2+∠EDF=60°+45°=105°,故答案为:105.18.(2021•阜宁县模拟)如图,已知直线AB、CD被直线AE所截,AB∥CD,∠2=130°,则∠1=50°.【解答】解:如图:∵∠2=130°,∴∠3=180°﹣∠2=50°,∵AB∥CD,∴∠1=∠3=50°.故答案为:50°.19.(2021•姑苏区校级二模)如图,已知AB∥CD,∠1=∠2,若∠A=100°,则∠3=40°.【解答】解:∵AB∥CD,∴∠A+∠ACD=180°,∠2=∠3,∴∠ACD=180°﹣∠A=180°﹣100°=80°,又∵∠1=∠2,∴∠2=40°,∴∠3=∠2=40°.故答案为:40°.20.(2021•常州二模)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是122°.【解答】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故答案为:122°.21.(2021春•江宁区月考)如图,AB∥CD,CB平分∠ACD,若∠BCD=25°,则∠A的度数为130°.【解答】解:∵AB∥CD,∠BCD=25°,∴∠ABC=∠BCD=25°,∵CB平分∠ACD,∴∠ACB=∠BCD=25°,∴∠A=180°﹣∠ABC﹣∠ACB=130°,故答案为:130°.22.(2021春•常熟市期中)如图,直线a∥b,∠1=110°,则∠2的度数是70°.【解答】解:∵∠1=110°,∴∠3=180°﹣∠1=70°,∵a∥b,∴∠2=∠3=70°,故答案为:70.23.(2021春•海淀区校级期末)如图,将一张长方形纸片沿EF折叠后,点D落在BC上的点D'处,点C落在点C'处.若∠DEF=62°,则∠C'FD'=56°.【解答】解:∵AD∥BC,∴∠DEF+∠EFC=180°,∠DEF=∠EFB=62°,∴∠EFC=118°,由翻折可得:∠EFC′=∠EFC=118°,∴∠C'FD'=118°﹣62°=56°,故答案为:56.24.(2021•姑苏区校级一模)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=27°,则∠2=117°.【解答】解:如图,∵∠1=27°,∠CAB=90°,∴∠BAD=∠1+∠CAB=117°,∵a∥b,∴∠2=∠BAD=117°.故答案为:117.25.(2021春•嘉兴期末)如图,将一张长方形纸条ABCD沿EF折叠,若∠EFG=47°,则∠BGP=86°.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠EFG=47°,∠BGP=∠AEP,由折叠的性质得到∠GEF=∠DEF=47°,∴∠AEP=180°﹣∠DEF﹣∠GEF=86°,∴∠BGP=86°.故答案为:86°.26.(2021春•无锡期末)已知AB∥CD,P是平面内一点,作PE⊥AB,垂足为E,F为CD 上一点,且∠PFD=130°,则∠EPF的度数是140°或40°.【解答】解:(1)点P在直线AB、CD之间,过点P作PM∥AB,∵AB∥CD,∴PM∥CD,∴∠FPM+∠PFD=180°,∵∠PFD=130°,∴∠FPM=50°,∵PE⊥AB,∴∠PEB=90°,∵PM∥AB,∴∠PEB+∠EPM=180°,∴∠EPM=90°,∴∠EPF=∠EPM+∠FPM=90°+50°=140°;(2)点P在直线AB、CD外,延长PE交CD于点M,∵PE⊥AB,∴∠PEB=90°,∵AB∥CD,∴∠PMF=∠PEB=90°,∵∠PFD=∠EPF+∠PMF,∠PFD=130°,∴∠EPF=∠PFD﹣∠PMF=40°,故答案为:140°或40°.27.(2021春•东台市月考)平面内∠A和∠B的两边互相平行,且∠A=40°,则∠B=40°或140°.【解答】解:如图1所示,∵∠A和∠B的两边互相平行,∴∠A=∠1,∠1=∠B.∴∠B=∠A=40°;如图2所示,∵∠A和∠B的两边互相平行,∴∠A=∠1,∠1+∠B=180°.∴∠B=140°;故答案为:40°或140°.28.(2021春•金坛区期末)若∠A与∠B的一组边平行,另一组边垂直,且∠A﹣2∠B=15°,则∠B的度数为75°或25°.【解答】解:如图1:∵AE∥BF,∴∠A+∠1=180°,∴∠1=180°﹣∠A,∵∠A﹣2∠B=15°,∴∠1=180°﹣(2∠B+15°)=165°﹣2∠B,∵AC⊥BC,∴∠1+∠B=90°,∴165°﹣2∠B+∠B=90°,∴∠B=75°;如图2:∵AE∥BF,∴∠A=∠1,∵∠A﹣2∠B=15°,∴∠1=2∠B+15°,∵AC⊥BC,∴∠1+∠B=90°,∴2∠B+15°+∠B=90°,∴∠B=25°;综上,∠B的度数为75°或25°.故答案为:75°或25°.29.(2021春•玄武区校级期中)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.现有下列五个式子:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β,在这五个式子中,可以表示成∠AEC的度数的是①②③⑤.(请填序号)【解答】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得∠AEC=α﹣β或β﹣α.综上所述,∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β,一共4个.故答案为:①②③⑤.30.(2021春•大丰区月考)如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=58°,射线GP⊥EG于点G,则∠PGF =61或119°.【解答】解:如图,①当射线GP⊥EG于点G时,∠PGE=90°,∵∠MFD=∠BEF=58°,∴CD∥AB,∴∠GEB=∠FGE,∵EG平分∠BEF,∴∠GEB=∠GEF=∠BEF=29°,∴∠FGE=29°,∴∠PGF=∠PGE﹣∠FGE=90°﹣29°=61°;②当射线GP′⊥EG于点G时,∠P′GE=90°,同理:∠P′GF=∠PGE+∠FGE=90°+29°=119°.则∠PGF的度数为61°或119°.故答案为:61或119.31.(2021春•天宁区校级月考)“浏阳河弯过九进有,五十里水路到湘江.”如图所示,某段河水流经B,C,D三点拐弯后与原来流向相同,若∠ABC=6∠CDE,∠BCD=4∠CDE,则∠CDE=20°.【解答】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∵∠ABC=6∠CDE,∴∠BCF=180°﹣6∠CDE,∵∠CDE=∠DCF,∴∠BCD=∠BCF+∠DCF=180°﹣6∠CDE+∠CDE=180°﹣5∠CDE,∵∠BCD=∠4CDE,∴180°﹣5∠CDE=4∠CDE,∴∠CDE=20°.故答案为:20°.32.(2021秋•吴江区月考)如图把一个长方形纸片沿EF折叠后,点D、C分别落在D'、C'处,∠AED'=40°,则∠BFC′=40°.【解答】解:由题意得:∠D′EF=∠DEF=,∠EFC=∠EFC′.∵∠AED'=40°,∴∠DED′=180°﹣∠AED'=140°.∴∠DEF==70°.∵四边形ABCD是长方形,∴AD∥BC.∴∠DEF=∠BFE=70°,∠EFC=180°﹣∠DEF=110°.∴∠EFC′=110°.∴∠BFC′=∠EFC′﹣∠BFE=110°﹣70°=40°.故答案为:40°.33.(2021春•鼓楼区校级月考)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣6|+(b﹣1)2=0.若射线AM绕点A顺时针先转动15秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动或18秒时,射线AM与射线BQ互相平行.【解答】解:∵|a﹣6|+(b﹣1)2=0;∴a=6,b=1,设射线AM再转动t秒时,射线AM、射线BQ互相平行.如图,射线AM绕点A顺时针先转动15秒后,AM转动至AM'的位置,∠MAM'=15×6°=90°,分两种情况:①当<t<15时,∠QBQ'=t°,∠M'AM″=(6t)°,∵PQ∥MN,∠BAN=45°=∠ABQ,∵∠MAM'=90°,∴∠M'AB=45°,∴∠ABQ'=45°﹣t°,∠BAM″=∠M'AM″﹣∠M'AB=(6t)°﹣45°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=(6t)°﹣45°,解得t=;②当15<t<时,∠QBQ'=t°,∠NAM″=(6t)°﹣90°,∠BAM″=45°﹣[(6t)°﹣90°]=135°﹣(6t)°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°﹣t°,∠BAM″=135°﹣(6t)°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=135°﹣(6t)°,解得t=18;综上所述,射线AM再转动秒或18秒时,射线AM、射线BQ互相平行.故答案为:或18.三.解答题(共6小题)34.(2021秋•肇源县期末)完成下面的证明如图,点B在AG上,AG∥CD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.求证:∠F=90°.证明:∵AG∥CD(已知)∴∠ABC=∠BCD(两直线平行,内错角相等)∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCD∵CF平分∠BCD(已知)∴∠BCF=∠FCD(角平分线的定义)∴∠EBC=∠BCF(等量代换)∴BE∥CF(内错角相等,两直线平行)∴∠BEF=∠F(两直线平行,内错角相等)∵BE⊥AF(已知)∴∠BEF=90°(垂直的定义)∴∠F=90°.【解答】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,即∠EBC=∠FCD,∵CF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),∴BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),∵BE⊥AF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.35.(2020秋•米易县期末)庚子年初,突如其来的疫情,给我们的生活按下了“暂停键”,春季开学延期.我市各学校积极响应教育局“停课不停学”的号召,实行线上教学.王老师发现他的电脑桌支架形状正好与他最近所讲授的数学知识有关,于是,数学课上王老师提出如下问题:如图是电脑桌支架的截面示意图,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.请你用所学知识证明:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠BAE=∠DAE,∵AB∥DC,∴∠BAE=∠CFE,∵∠CFE=∠E,∴∠BAE=∠E,∴∠E=∠DAE,∴AD∥BC.36.(2021秋•农安县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°37.(2021秋•农安县期末)已知直线AB∥CD,P为平面内一点,连接P A、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠P AB、∠CDP、∠APD之间的数量关系为∠CDP+∠P AB﹣APD =180°.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠P AN+∠P AB=∠APD,求∠AND的度数.【解答】解:(1)如图1,过点P作EF∥AB,∵∠A=50°,∴∠APE=∠A=50°,∵AB∥CD,∴EF∥CD,∴∠CDP+∠EPD=180°,∵∠D=150°,∴∠EPD=180°﹣150°=30°,∴∠APD=∠APE+∠EPD=50°+30°=80°;(2)如图2,过点P作EF∥AB,则AB∥EF∥CD,∴∠CDP=∠DPF,∠FP A+∠P AB=180°,∵∠FP A=∠DPF﹣APD,∴∠DPF﹣APD+∠P AB=180°,∴∠CDP+∠P AB﹣APD=180°,故答案为:∠CDP+∠P AB﹣APD=180°;(3)如图3,PD交AN于点O,∵AP⊥PD,∴∠APO=90°,∵∠P AN+∠P AB=∠APD,∴∠P AN+∠P AB=90°,∵∠POA+∠P AN=90°,∴∠POA=∠P AB,∵∠POA=∠NOD,∴∠NOD=∠P AB,∵DN平分∠PDC,∴∠ODN=∠PDC,∴∠AND=180°﹣∠NOD﹣∠ODN=180°﹣(∠P AB+∠PDC),由(2)得:∠CDP+∠P AB﹣APD=180°,∴∠CDP+∠P AB=180°+∠APD,∴∠AND=180°﹣(∠P AB+∠PDC)=180°﹣(180°+∠APD)=180°﹣(180°+90°)=45°.38.(2020秋•石狮市期末)已知AB∥CD,点E是AB,CD之间的一点.(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴PE∥CD(平行于同一条直线的两条直线平行),∴∠BAE=∠1,∠DCE=∠2(两直线平行,内错角相等),∴∠BAE+∠DCE=∠1+∠2(等式的性质).即∠AEC,∠BAE,∠DCE之间的数量关系是∠AEC=∠BAE+∠DCE.(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.①若∠AEC=74°,求∠AFC的大小;②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.【解答】解:(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,(2)①由(1)得:∠AEC=∠BAE+∠DCE,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAF=∠BAE,∠DCF=∠DCE,∴∠AFC=∠BAF+∠DCF=∠BAE+∠DCE=∠AEC=×74°=37°;②由①得:∠AEC=2∠AFC,∵∠AEC+∠AFC=126°,∴∠AFC=42°,∠AEC=82°,∵CG⊥AF,∴∠CGF=90°,∴∠GCF=48°,∵CE平分∠DCG,∴∠GCE=∠ECD,∵CF平分∠DCE,∴∠DCE=2∠DCF=2∠ECF,∴∠GCF=3∠DCF,∴∠DCF=16°,∴∠DCE=32°,∴∠BAE=∠AEC﹣∠DCE=52°.39.(2021秋•农安县期末)如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC.第41页(共41页)。
人教版八年级数学下册第十八章单元培优卷:《平行四边形》
单元培优卷:《平行四边形》含答案姓名:___________班级:___________考号:___________第Ⅰ卷(选择题)一.选择题1.下列结论中,矩形具有而平行四边形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对边平行2.下列条件中,不能判定▱ABCD为矩形的是()A.∠A=∠C B.∠A=∠B C.AC=BD D.AB⊥BC3.如图,D,E分别是△ABC的边AB,AC上的中点,若DE=5,则BC=()A.6 B.8 C.10 D.124.在四边形ABCD中,AC与BD相交于点O,且AD∥BC,给出下列条件:①AB∥CD;②AB=CD;③∠DAB=∠DCB;④AD=BC;⑤∠OAD=∠ODA.从中选1个作为条件,能使四边形ABCD为平行四边形的选法有()A.2种B.3种C.4种D.5种5.如图,平行四边形ABCO中的顶点O,A,C的坐标分别为(0,0),(2,3),(m,0),则顶点B的坐标为()A.(3,2+m)B.(3+m,2)C.(2,3+m)D.(2+m,3)6.矩形ABCD的边BC上有一动点E,连接AE、DE,以AE、DE为边作▱AEDF.在点E从点B移动到点C的过程中,▱AEDF的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变7.矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3.AE=,则BD=()A.2B.4C.4 D.28.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D 落在AC上的点N处,易证四边形AECF是平行四边形.当∠BAE为()度时,四边形AECF是菱形.A.30°B.40°C.45°D.50°9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2410.如图,已知在正方形ABCD中,对角线AC与BD相交于点O,AE,DF分别是∠OAD与∠ODC的平分线,AE的延长线与DF相交于点G,则下列结论:①AG⊥DF;②EF∥AB;③AB=AF;④AB=2EF.其中正确的结论是()A.①②B.③④C.①②③D.①②③④第Ⅱ卷(非选择题)二.填空题11.如图,在△APB中,∠APB=90°,AB=4,O是AB的中点,∠1=60°,则BP=.12.在平行四边形ABCD中,AC=10,BD=6,AD=a,那么a的取值范围是.13.在▱ABCD中,AB=10,BC边上的高为6,AC=3,则▭ABCD的面积为.14.如图,矩形ABCD的对角线交于点O,点E在线段AO上,且DE=DC,若∠EDO=15°,则∠DEC=°.15.如图,在平行四边形ABCD中,AB=1,∠BAD=120°,连接BD,作AE∥BD交CD的延长线于点E,过点E作EF ⊥BC交BC的延长线于点F,则EF的长是.16.如图,在菱形ABCD中,边AB=5,E,F分别在BC和AD上,若DF=1,BE=3,且此时BF=DE,则BF的长为17.如图,四边形ABCD是平行四边形,D点的纵坐标为6,CD=10,顶点A在y轴上,边BC在x轴上,设点P是边BC上(不与点B、C重合)的一个动点,则当△ABP为等腰三角形时点P的坐标是.三.解答题18.如图,在矩形ABCD中,过对角线BD中点O的直线分别交边AD,BC于点E,F.(1)求证:四边形BEDF是平行四边形;(2)若AB=3,BC=4,当四边形BEDF是菱形时,求EF的长.19.如图,在正方形ABCD中,点E在DC边上(不与点C,点D重合),点G在AB的延长线上,连结EG,交边BC 于点F,且EG=AG,连结AE,AF,设∠AED=α,∠GFB=β.(1)求α,β之间等量关系;(2)若△ADE≌△ABF,AB=2,求BG的长.20.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为8,E为OM的中点,求MN的长.21.如图,矩形ABCD中,对角线AC与BD相交于点,过点A作AN∥BD,过点B作BN∥AC,两线相交于点N.(1)求证:AN=BN;(2)连接DN,交AC于点F,若DN⊥NB于点N,求∠DOC的度数.22.在▱ABCD中,点E在CD边上,连接AE、BE,点F在AB边上,连接CF、DF,且∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,若E是CD边的中点,连接GH,在不添加任何字母和辅助线的情况下,请直接写出图中以GH为边或以GH为对角线的所有平行四边形.23.如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.(1)求证:HE=HG;(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求的值;参考答案一.选择题1. C.2. A.3. C.4. B.5. D.6. D.7. C.8. A.9. B.10. C.二.填空题11. 2.12. 2<a<8.13. 66.14. 55.15..16..17.(8,0)或(2,0)或(﹣,0).三.解答题18.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF为菱形,∴BE=DE DB⊥EF,∵AB=3,BC=4,设BE=DE=x,则AE=4﹣x,在Rt△ADE中,32+(4﹣x)2=x2,∴x=,∴DE=,∵BD==5,∴DO=BO=BD=,∴OE===,∴EF=2OE=.19.解:(1)∵四边形ABCD是正方形,∴DC∥AB,∠CBG=∠ABC=90°,∴∠AED=∠GAE,∵EG=AG,∴∠GAE=∠GEA,∴∠AED=∠AEG=α,∴∠G=180°﹣2α,∵∠BFG+∠G=90°,∴180°﹣2α+β=90°,∴α﹣β=90°;(2)∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,∠C=∠ABC=∠CBG=90°,设BF=x,∵△ADE≌△ABF,∴DE=BF,∴CE=CF=2﹣x,∴EF=2x,∠CFE=∠BFG=45°,∴BG=BF=x,∴FG==x,∵AG=EG,∴2+x=2x+x,解得,x=2﹣2,∴.20.解:(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,在△OAM和△OBN中,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为8,∴OH=HA=4,∵E为OM的中点,∴HM=8,则OM==4,∴MN=OM=8.21.解:(1)证明:∵矩形ABCD中,对角线AC与BD相交于点O,∴OA=OB,∵AN∥BD,BN∥AC,∴四边形OANB是平行四边形,∵OA=OB,∴▱OANB是菱形,∴AN=BN,(2)由(1)可知:BN=OB=OD,∴BD=2BN,∵DN⊥NB,∴∠DNB=90°,∴∠BDN=30°,∵BN∥AC,∴∠DFO=∠DNB=90°,∴∠DOF=90°﹣30°=60°,∴∠DOC=180°﹣60°=120°.答:∠DOC的度数为120°.22.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,又∵DE∥BF,∴四边形DFBE是平行四边形;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE;以GH为对角线的平行四边形有GFHE.23.(1)证明:连接AG,并延长AG交DC的延长线于M,连接EM,∵G为BC的中点,∴BG=CG,∵四边形ABCD是矩形,∴∠ABG=∠DCB=90°,∴∠ABG=∠MCG=90°,在△ABG和△MCG中,,∴△ABG≌△MCG(ASA),∴GA=GM,∵F为AE的中点,∴FA=FE,∴FG是△AEM的中位线,∴FG∥EM,∴∠HGE=∠MEC,在△DCE和△MCE中,,∴△DEC≌△MEC(SAS),∴∠DEC=∠MEC,∵∠HGE=∠MEC,∴∠HEG=∠HGE,∴HE=HG;(2)过点B作BQ⊥BP交DE于Q,则∠QBP=90°,∵AP⊥DE,四边形ABCD是矩形,∴∠APE=∠ABE=90°,∵∠APO+∠AOP+∠BAP=180°,∠EOB+∠ABE+∠BEP=180°,∠AOP=∠EOB,∴∠BEQ=∠BAP,∵∠QBP=∠ABE=90°,∴∠EBQ=∠ABP=90°﹣∠ABQ,在△ABP和△EBQ中,,∴△BEQ≌△BAP(ASA),∴BQ=BP,PA=QE,∴△PBQ是等腰直角三角形,∴PQ=PB,∴===.。
2020年中考数学复习《三角形综合》练习(含解析)
2020年中考数学复习《三角形综合》练习1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.5.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.答案与解析一.解答题(共20小题)1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.【分析】(1)根据等腰三角形的性质得到∠ECB=∠DBC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠DCB=∠EBC根据等腰三角形的判定定理即可得到OB=OC【解答】(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°﹣42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【解答】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.【分析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠F AC=90°∴∠F AB=∠F AC﹣∠BAC=30°∴∠F AB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG5.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为6.【分析】教材呈现:如图①,连结ED.根据三角形中位线定理可得DE∥AC,DE=AC,那么△DEG∽△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;结论应用:(1)如图②.先证明△BEF∽△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF=OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF =;(2)如图③,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出▱ABCD的面积=4×=6.【解答】教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴===2,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE=BC=AD,BO=BD,∴△BEF∽△DAF,∴==,∴BF=DF,∴BF=BD,∵BO=BD,∴OF=OB﹣BF=BD﹣BD=BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF=.故答案为;(2)解:如图③,连接OE.由(1)知,BF=BD,OF=BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴▱ABCD的面积=4×=6.故答案为6.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.【分析】(1)根据三角形中大角对大边,即可得到结论;(2)画出图形,写出已知,求证;过点A作直线MN∥BC,根据平行线性质得出∠MAB =∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案;(3)化简等式即可得到a2+c2=b2,根据勾股定理的逆定理即可得到结论.【解答】解:(1)∵在△ABC中,a=6,b=8,c=12,∴∠A+∠B<∠C;(2)如图,过点B作MN∥AC,∵MN∥AC,∴∠MBA=∠A,∠NBC=∠C(两直线平行,内错角相等),∵∠MBA+∠ABC+∠NBC=180°(平角的定义),∴∠A+∠ABC+∠C=180°(等量代换),即:三角形三个内角的和等于180°;(3)∵=,∴ac=(a+b+c)(a﹣b+c)=[(a2+2ac+c2)﹣b2],∴2ac=a2+2ac+c2﹣b2,∴a2+c2=b2,∴△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.【分析】(1)①根据同角的余角相等证明;②作FH⊥BC交BC的延长线于H,证明△ACD≌△DHF,根据全等三角形的性质得到DH=AC,结合图形证明即可;(2)作FG⊥BC交BC的延长线于G,证明△ACD∽△DGF,根据相似三角形的性质得到DG=2AC,证明结论.【解答】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【解答】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM=,∴AM=AD﹣DM=﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE=AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△NMA中,,∴△BME≌△NMA(ASA),∴BE=AN,∴AB+AN=AB+BE=AE=AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.【分析】(1)①根据四边形的内角和得到∠DAC+∠DBC=180°,推出∠DBC=∠EAC,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据垂直的定义得到结论;②由已知条件得到△CDE是等腰直角三角形,求得DE=CD,根据线段的和差即可得到结论;(2)如图2,在AD上截取AE=BD,连接CE,根据等腰直角三角形的性质得到∠BAC =∠ABC=45°,求得∠CBD=∠CAE,根据全等三角形的性质得到CD=CE,∠BCD =∠ACE,求得∠DCE=90°,根据线段的和差即可得到结论.【解答】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE=CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD=CD;(2)解:AD﹣BD=CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE===CD,∵DE=AD﹣AE=AD﹣BD,∴AD﹣BD=CD.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.【分析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF=EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.【解答】解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB;(2)当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=CD,∴FC=(﹣1)CD,∵△CEF为等腰直角三角形,∴EC=FC=CD,∵△ABC是等腰直角三角形,∴AB=AC=CD,∴==,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴CD=AC,AB=AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=AC﹣AC,在△EAG和△EDC中,,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴EC=CG=AC,∴=,综上所述,当∠EAC=15°时,的值为或.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.【分析】(1)只要证明EA=ED,EA=EF即可解决问题;(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE =,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题;【解答】(1)证明:如图1中,∵∠BAC=90°,∴∠EAD+∠CAE=90°,∠EDA+∠F=90°,∵∠EAD=∠EDA,∴∠EAC=∠F,∴EA=ED,EA=EF,∴DE=EF.(2)解:结论:BD=CF.理由:如图2中,在BE上取一点M,使得ME=CE,连接DM.∵DE=EF.∠DEM=∠CEF,EM=EC.∴△DEM≌△FEC,∴DM=CF,∠MDE=∠F,∴DM∥CF,∴∠BDM=∠BAC=90°,∵AB=AC,∴∠DBM=45°,∴BD=DM,∴BD=CF.(3)如图3中,过点E作EN⊥AD交AD于点N.∵EA=ED,EN⊥AD,∴AN=ND,设BD=x,则DN=,DE=AE=,∵∠B=45°,EN⊥BN.∴EN=BN=x+=,在Rt△DEN中,∵DN2+NE2=DE2,∴()2+()2=()2解得x=1或﹣1(舍弃)∴BD=1.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是AG=CF.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.【分析】(1)如图1,连接AE,根据线段垂直平分线的性质得到AE=BE,根据等腰直角三角形的性质得到∠BAE=∠B=45°,BE=EC=AE,∠BAE=∠EAC=∠C=45°,根据全等三角形的性质即可得到结论;(2)如图2,连接AE,根据等腰三角形的性质和三角形的内角和得到∠BAC=120°,根据线段垂直平分线的性质得到AE=BE,求得∠BAE=∠B=30°,根据相似三角形的性质得到,解直角三角形即可得到AG=CF;(3)①当G在DA上时,如图3,连接AE,根据线段垂直平分线的性质得到AD=BD =3,AE=BE,由三角函数的定义得到BE===4,根据相似三角形的性质得到=,过A作AH⊥BC于点H由三角函数的定义即可得到结论.②当点G在BD 上,如图4,方法同(1).【解答】解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG=CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,∴,在Rt△ACE中,∵∠C=30°,∴=sin C=,∴=,∴AG=CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B=,∴BE===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B=,cos45°=,∵>,∴∠B<45°,∴E在H的左侧,∵cos B=,∴BH=AB=×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【分析】(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;(2)如图2中,作PH⊥AC于H.利用S△PQM=S△QCN构建方程即可解决问题;(3)分两种情形:①如图3中,当点M落在QN上时,作PH⊥AC于H.②如图4中,当点M在CQ上时,作PH⊥AC于H.分别构建方程求解即可;【解答】解:(1)如图1中,作BE⊥AC于E.∵S△ABC=•AC•BE=,∴BE=,在Rt△ABE中,AE==6,∴coaA===.(2)如图2中,作PH⊥AC于H.∵P A=5t,PH=3t,AH=4t,HQ=AC﹣AH﹣CQ=9﹣9t,∴PQ2=PH2+HQ2=9t2+(9﹣9t)2,∵S△PQM=S△QCN,∴•PQ2=וCQ2,∴9t2+(9﹣9t)2=×(5t)2,整理得:5t2﹣18t+9=0,解得t=3(舍弃)或.∴当t=时,满足S△PQM=S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=HQ,∴3t=(9﹣9t),∴t=.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=QH,∴3t=(9t﹣9),∴t=,综上所述,当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN 的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相交于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE相交于点H,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG,∴△MGN是等腰直角三角形.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【分析】(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.【解答】解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,记AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,记AE与CF的交点为M,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.。
对角互补模型-2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题3对角互补模型模型1:全等形——90°对角互补模型模型2:全等形——120°对角互补模型模型3:全等形——任意角对角互补模型解题策略模型4:相似形——90°对角互补模型【例1】.(2021·全国·九年级专题练习)如图1,在四边形ABCD 中,AB=AD ,∠B+∠ADC=180°,点E ,F 分别在四边形ABCD 的边BC ,CD 上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系.(1)思路梳理将△ABE 绕点A 逆时针旋转至△ADG ,使AB 与AD 重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F ,D ,G 三点共线,易证△AFG ≌△AFE ,故EF ,BE ,DF 之间的数量关系为__; (2)类比引申如图2,在图1的条件下,若点E ,F 由原来的位置分别变到四边形ABCD 的边CB ,DC 延长线上,经典例题∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.【答案】(1)EF=BE+DF;(2)EF=DF−BE;证明见解析;(3)√5.【分析】(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,首先证明F,D,G三点共线,求出∠EAF=∠GAF,然后证明△AFG≌△AFE,根据全等三角形的性质解答;(2)将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',首先证明E',D,F三点共线,求出∠EAF=∠E'AF,然后证明△AFE≌△AFE',根据全等三角形的性质解答;(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',求出∠ECD'=90°,再根据勾股定理计算即可.【详解】解:(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,∵∠B+∠ADC=180°,∴∠FDG=180°,即点F,D,G三点共线,∵∠BAE=∠DAG,∠EAF=12∠BAD,∴∠EAF=∠GAF,在△AFG和△AFE中,{AE=AG∠EAF=∠GAFAF=AF,∴△AFG≌△AFE,∴EF=FG=DG+DF=BE+DF;(2)EF=DF−BE;证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADE'=∠ADC,即E',D,F三点共线,∵∠EAF=12∠BAD,∴∠E'AF=∠BAD−(∠BAF+∠DAE')=∠BAD−(∠BAF+∠BAE)=∠BAD−∠EAF=12∠BAD,∴∠EAF=∠E'AF,在△AEF和△AE'F中,{AE=AE′∠EAF=∠E′AFAF=AF,∴△AFE≌△AFE'(SAS),∴FE=FE',又∵FE'=DF−DE',∴EF=DF−BE;(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',∴DE=D'E.∵∠ACB=∠B=∠ACD'=45°,∴∠ECD'=90°,在Rt△ECD'中,ED'=√EC2+D′C2=√EC2+BD2=√5,即DE=√5,故答案为:√5.【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质以及勾股定理等知识,灵活运用利用旋转变换作图、掌握全等三角形的判定定理和性质定理是解题的关键.【例2】.(2019·山东枣庄·中考真题)在ΔABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=√2AM;;(2)见解析;(3)见解析.【答案】(1) AM=√2−2√33【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=√2,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=√2,,∵∠AMN=30°,∴∠BMD=180°−90°−30°=60°,∴∠BMD=30°,∴BM=2DM,由勾股定理得,BM2−DM2=BD2,即(2DM)2−DM2=(√2)2,,解得,DM=2√33∴AM=AD−DM=√2−2√3;3(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在ΔBDE和ΔADF中,{∠B=∠DAF DB=DA∠BDE=∠ADF,∴ΔBDE≌ΔADF(ASA)∴BE=AF;(3)证明:过点M作ME//BC交AB的延长线于E,∴∠AME=90°,则AE=√2AB,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在ΔBME和ΔAMN中,{∠E=∠MAN ME=MA∠BME=∠AMN,∴ΔBME≌ΔAMN(ASA),∴BE=AN,∴AB+AN=AB+BE=AE=√2AM.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.【例3】.(2022·江苏·八年级课时练习)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.请直接写出线段EF,BE,FD之间的数量关系:__________;∠BAD,(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=1∠BAD.请画出图形(除图②外),并直接写出线段EF,BE,FD之间的数量关系.2【答案】(1)EF=BE+FD;(2)成立,理由见解析;(3)图形见解析,EF=BE−FD【分析】(1)延长EB到G,使BG=DF,连接AG.证明△AGE和△AEF全等,则EF=GE,则EF=BE+DF,∠BAD.从而得出EF=GE;证明△ABE和△AEF中全等,那么AG=AF,∠1=∠2,∠1+∠3=∠2+∠3=∠EAF=12(2)思路和作辅助线的方法同(1);(3)根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE-BG=BE-DF.【详解】(1)延长EB至G,使BG=DF,连接AG,∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF,∴AG=AF,∠1=∠2,∠BAD,∴∠1+∠3=∠2+∠3=∠EAF=12∴∠GAE=∠EAF,在△GAE和△FAE中,∵{AG=AF∠GAE=∠EAFAE=AE,∴△GAE≌△FAE(SAS),∴EG=EF,∵EG=BE+BG,∴EF=BE+FD.故答案为:EF=BE+FD(2)(1)中的结论仍成立,证明:延长CB至M,使BM=DF,∵∠ABC+∠D=180°,∠1+∠ABC=180°,∴∠1=∠D,在△ABM和△ADF中,{AB=AD∠1=∠D BM=DF,∴△ABM≌△ADF(SAS),∴AF=AM,∠2=∠3,∵∠EAF=12∠BAD,∴∠2+∠4=12∠BAD=∠EAF,∴∠3+∠4=∠EAF即∠MAE=∠EAF,在△AME和△AFE中,{AM=AF∠MAE=∠EAFAB=AE,∴△AME≌△AFE(SAS),∴EF=ME,即EF=BE+BM.(3)EF=BE−FD,证明:在BE上截取BG使BG=DF,连接AG,∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF,∵在△ABG和△ADF中,{AB=AD∠ABG=∠ADFBG=DF,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF,∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD,∴∠GAE=∠EAF,在△AEG和△AEF中,{AG=AF∠GAE=∠EAFAE=AE,∴△AEG≌△AEF(SAS),∴EG=EF,∵EG=BE−BG,∴EF=BE−FD.【点睛】此题主要考查了三角形全等的判定与性质,通过全等三角形来实现线段的转换是解题关键,没有明确的全等三角形时,要通过辅助线来构建与已知和所求条件相关联的全等三角形.【例4】.(2022·全国·八年级课时练习)四边形ABCD是由等边ΔABC和顶角为120°的等腰ΔABD排成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°交两边分别交直线BC、AC于M、N,交直线AB于E、F两点.(1)当E、F都在线段AB上时(如图1),请证明:BM+AN=MN;(2)当点E在边BA的延长线上时(如图2),请你写出线段MB,AN和MN之间的数量关系,并证明你的结论;(3)在(1)的条件下,若AC=7,AE=2.1,请直接写出MB的长为.【答案】(1)证明见解析;(2)MB=MN+AN.证明见解析;(3)2.8.【分析】(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=QN,再根据AQ+AN=QN整理即可得证;(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;(3)过点M作MH∥AC交AB于G,交DN于H,可以证明△BMG是等边三角形,根据等边三角形的性质可得BM=MG=BG,根据全等三角形对应角相等可得∠QND=∠MND,再根据两直线平行,内错角相等可得∠QND=∠MHN,然后求出∠MND=∠MHN,根据等角对等边可得MN=MH,然后求出AN=GH,再利用“角角边”证明△ANE和△GHE全等,根据全等三角形对应边相等可得AE=GE,再根据BG=AB-AE-GE代入数据进行计算即可求出BG,从而得到BM的长.【详解】解:(1)证明:把△DBM绕点D逆时针旋转120°得到△DAQ,则DM=DQ,AQ=BM,∠ADQ=∠BDM,∠QAD=∠CBD=90°,∴点Q在直线CA上,∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD-∠MDN=120°-60°=60°,∴∠QDN=∠MDN=60°,∵在△MND和△QND中,{DM=DQ∠QDN=∠MDNDN=DN,∴△MND≌△QND(SAS),∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN;(2):MB=MN+AN.理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,则DN=DP,AN=BP,∵∠DAN=∠DBP=90°,∴点P在BM上,∵∠MDP=∠ADB-∠ADM-∠BDP=120°-∠ADM-∠ADN=120°-∠MDN=120°-60°=60°,∴∠MDP=∠MDN=60°,∵在△MND和△MPD中,{DN=DP∠MDP=∠MDNDM=DM,∴△MND≌△MPD(SAS),∴MN=MP,∵BM=MP+BP,∴MN+AN=BM;(3)如图,过点M作MH∥AC交AB于G,交DN于H,∵△ABC是等边三角形,∴△BMG是等边三角形,∴BM =MG =BG ,根据(1)△MND ≌△QND 可得∠QND =∠MND ,根据MH ∥AC 可得∠QND =∠MHN ,∴∠MND =∠MHN ,∴MN =MH ,∴GH =MH -MG =MN -BM =AN ,即AN =GH ,∵在△ANE 和△GHE 中,{∠QND =∠MHN∠AEN =∠GEH AN =GH,∴△ANE ≌△GHE (AAS ),∴AE =EG =2.1,∵AC =7,∴AB =AC =7,∴BG =AB -AE -EG =7-2.1-2.1=2.8,∴BM =BG =2.8.故答案为:2.8【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键,(3)作平行线并求出AN =GH 是解题的关键,也是本题的难点.一、解答题 1.(2022·陕西·西安市第三中学七年级期末)回答问题(1)【初步探索】如图1:在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,探究图中∠BAE 、∠F AD 、∠EAF 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE .连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E 、F 分别是BC 、CD 上的点,培优训练且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.∠DAB【答案】(1)∠BAE+∠F AD=∠EAF;(2)仍成立,理由见解析;(3)∠EAF=180°-12【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定△ADG≌△ABE,再判定△AEF≌△AGF,得出∠F AE=∠F AG,最后根据∠F AE+∠F AG+∠GAE=360°,推导得到2∠F AE+∠DAB=360°,即可得出结论.【详解】解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;∠DAB.(3)∠EAF=180°-12证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°-1∠DAB.2【点睛】本题属于三角形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.2.(2021·陕西·交大附中分校八年级开学考试)问题探究((1)如图①,已知∠A=45°,∠ABC=30°,∠ADC=40°,则∠BCD的大小为___________;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6.求四边形ABCD的面积;小明这样来计算.延长DC,使得CE=AD,连接BE,通过证明△ABD≌△CBE,从而可以计算四边形ABCD 的面积.请你将小明的方法完善.并计算四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的城市花园,其中AB=BC,∠ABC=60°,∠ADC=30°,DC=40米,AD=30米.请计算出对角线BD的长度.【答案】(1)115°;(2)S四边形ABCD=18;(3)对角线BD的长度为50米.【分析】(1)利用外角的性质可求解;(2)延长DC,使得CE=AD,连接BE,通过证明△ABD≌△CBE,从而可以计算四边形ABCD的面积;(2)将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,由旋转的性质可得BF=BD,AF=CD=40,∠BDC=∠BF A,由三角形内角和定理可求∠F AD=90°,由勾股定理可求解.【详解】解:(1)如图1,延长BC交AD于E,∵∠BCD=∠BED+∠D,∠BED=∠A+∠ABC,∴∠BCD=∠A+∠ABC +∠D =45°+30°+40°=115°,故答案为:115°;(2)延长DC,使得CE=AD,连接BE,在四边形ABCD中,∠ABC=∠ADC=90°,∴∠A+∠BCD=180°,∵∠BCE+∠BCD=180°,∴∠A=∠BCE,在△ABD和△CBE中,{AB=BC∠A=∠BCE AD=CE,∴△ABD≌△CBE,∴BE=BD,∠ABD=∠CBE,S△ABD=S△CBE,∵∠ABC=90°,即∠ABD+∠DBC=90°,∴∠CBE+∠DBC=90°,即∠DBE=90°,∵BD=BE=6,∠DBE=90°,∴S△BDE=12×BE×BD=18,∴S△BDE=S△CBE+S△DBC=S△ABD+S△DBC=S四边形ABCD=18;(4)如图,将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,∴△BCD≌△BAF,∠FBD=60°,∴BF=BD,AF=CD=40,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠BDA+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴DF=√AF2+AD2=√402+302=50,∴BD=50(米).答:对角线BD的长度为50米.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,添加辅助线构造全等三角形是本题的关键.3.(2021·福建三明·八年级期中)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC 的大小关系并证明.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=m,则AB与AC差是多少(用含m的代数式表示)【答案】感知:DB=DC,证明见详解;探究:DB与DC的大小关系不变,理由见详解;应用:AB与AC差是√2m.【分析】感知:根据角平分线的性质定理即可求证;探究:过点D作DE⊥AB于点E,DF⊥AC,交AC延长线于点F,根据角平分线的性质定理可得DE=DF,由题意可得∠B=∠DCF,进而可证△DEB≌△DFC,然后问题可求证;应用:过点D作DH⊥AB于点H,DG⊥AC,交AC的延长线于点G,连接AD,由题意易证△DHB≌△DGC,m,则有则有DH=DG,进而可得AG=AH,然后根据等腰直角三角形的性质可得DG=CG=DH=BH=√22AG=AH=AC+√2m,最后问题可求解.2【详解】感知:DB=DC,理由如下:∵∠B+∠C=180°,∠B=90°,∴∠B=∠C=90°,即DB⊥AB,DC⊥AC,∵AD平分∠BAC,∴DB=DC;探究:DB与DC的大小关系不变,还是相等,理由如下:过点D作DE⊥AB于点E,DF⊥AC,交AC延长线于点F,则∠DEB=∠DFC=90°,如图所示:∵AD平分∠BAC,∴DE=DF,∵∠ABD+∠ACD=180°,∠DCF+∠ACD=180°,∴∠B=∠DCF,∴△DEB≌△DFC(AAS),∴DB=DC;应用:过点D作DH⊥AB于点H,DG⊥AC,交AC的延长线于点G,连接AD,如图所示:∵∠B=45°,∠C=135°,∴∠B+∠C=180°,∵∠ACD+∠DCG=180°,∴∠B=∠DCG=45°,∵∠DHB=∠DGC=90°,DB=DC=m,∴△DHB≌△DGC(AAS),且△DHB与△DGC都为等腰直角三角形,∴DG=CG=DH=BH,由勾股定理可得DH2+BH2=DB2,∴2DH2=m2,∴DG=CG=DH=BH=√2m,2在Rt△AHD和Rt△AGD中,AD=AD,DH=DG,∴Rt△AHD≌Rt△AGD(HL),∴AG=AH=AC+√2m,2∴AB=AH+BH=AC+√2m,∴AB−AC=√2m.【点睛】本题主要考查角平分线的性质定理、全等三角形的性质与判定及勾股定理,熟练掌握角平分线的性质定理、全等三角形的性质与判定及勾股定理是解题的关键.4.(2021·辽宁大连·九年级期中)如图1,正方形ABCD中,BD是对角线,点E在AB上,点F在BC上,连接EF (EF与BD不垂直),点G是线段EF的中点,过点G作GH⊥EF交线段BD于点H.(1)猜想GH与EF的数量关系,并证明;(2)探索AE,CF,DH之间的数量关系,并证明;(3)如图2,若点E在AB的延长线上,点F在BC的延长线上,其他条件不变,请直接写出AE,CF,DH之间的数量关系.EF,理由见解析;(2)AE+CF=√2DH,理由见解析;(3)AE−CF=√2DH,理【答案】(1)GH=12由见解析【分析】(1)过H作AB,BC的垂线,分别交AB,CD,AD,BC于I,L,K,J,连接HE,HF,利用正方形的性质及角平分线的性质,证明出△HIE≌△HJF(HL),通过等量代换得出△HEF为等腰直角三角形即可得出结论;(2)由(1)中△HIE≌△HJF(HL),得EI=FJ,从而得AI=KH=HL=JC,通过等量代换计算可得AE+CF= AI+JC=2AI=2KH,根据△DKH为等腰直角三角形即可得出结论;(3)过点H作AB,BC垂线,分别交AB,BC,CD,AD于I,J,L,K,连接HE,HF,证明出△HIE≌△HJF,通过等量代换计算得DH=√2KH,再根据△DKH为等腰直角三角形即可得出结论.EF,理由如下;【详解】解:(1)GH=12过H作AB,BC的垂线,分别交AB,CD,AD,BC于I,L,K,J,连接HE,HF,∵ABCD为正方形,∴∠HBI=∠HBJ,∠HIB=∠HJB=90°,HB=HB,∴Rt△HBI≌Rt△HBJ(AAS),∴HI=HJ,∵HG垂直平分EF,∴HE=HF,∵∠HIE=∠HJF=90°,∴△HIE≌△HJF(HL),∴∠IHE=∠JHF,又∵∠IHJ=∠IHE+∠EHJ=90°,∴∠EHF=∠JHF+EHJ=90°,∴△HEF为等腰直角三角形,∵G为斜边的中点,EF.∴GH=12(2)AE+CF=√2DH,理由如下:由(1)中△HIE≌△HJF(HL),∴EI=FJ,由下图:∠A=∠AIH=∠AKH=90°,∴四边形AIHK为矩形,∴AI=KH,在△DHK中,由正方形的性质知,∠HDK=45°,∵∠HKD=90°,∴∠DHK=90°−45°=45°∴△DKH为等腰直角三角形,又∴∠D=∠HKD=∠HLD=90°,∴四边形HKDL为正方形,∴HL=KH,同理四边形HLCJ为矩形,∴HL=JC∴AI=KH=HL=JC,AE=AI+EI,CF=JC−FJ,∴AE+CF=AI+JC=2AI=2KH,在△DHK中,由正方形的性质知,∠HDK=45°,∵∠HKD=90°,∴∠DHK=90°−45°=45°∴△DKH为等腰直角三角形,∴DH=√2KH,∴AE+CF=√2DH.(3)AE−CF=√2DH,理由如下:过点H作AB,BC垂线,分别交AB,BC,CD,AD于I,J,L,K,连接HE,HF,∵HI=HJ,HE=HF,∠HIE=∠HJF=90°,∴△HIE≌△HJF,∴EI=FJ,由(2)得AI=KH=HL=JC,CF=FJ−JC,AE=AI+EI,∴AE−CF=AI+JC=2AI=2KH,由(2)可得:DH=√2KH,△DKH为等腰直角三角形,∴AE−CF=√2DH.【点睛】本题考查了正方形的性质、三角形全等的判定及性质、等腰直角三角形、解题的关键是添加适当的辅助线,掌握相关的知识点,通过等量代换的思想进行求解.5.(2020·河南洛阳·八年级期中)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.【答案】(1)见解析;(2)EF=FC+BE,见解析【分析】(1)根据题目中的条件和∠BED=∠CFD,可以证明ΔBDE≅ΔCDF,从而可以得到DE=DF;(2)作辅助线,过点D作∠CDG=∠BDE,交AN于点G,从而可以得到ΔBDE≅ΔCDG,然后即可得到DE=DG,BE=CG,再根据题目中的条件可以得到ΔEDF≅ΔGDF,即可得到EF=GF,然后即可得到EF,BE,CF具有的数量关系.【详解】解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在ΔBDE和ΔCDF中,∵{∠BED=∠CFD,∠DBE=∠DCF, BD=CD,∴ΔBDE≅ΔCDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在ΔBDE和ΔCDG中,{∠EBD=∠GCDBD=CD∠BDE=∠CDG,∴ΔBDE≅ΔCDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在ΔEDF和ΔGDF中,{DE=DG∠EDF=∠GDFDF=DF,∴ΔEDF≅ΔGDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.【点睛】本题考查全等三角形的判定、解答本题的关键是明确题意,利用数形结合的思想解答.6.(2020·江西萍乡·八年级期末)【课题研究】旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.【问题初探】线段AB绕点O顺时针旋转得到线段CD,其中点A与点C对应,点B与点D对应,旋转角的度数为α,且0°<α<180°.(1)如图①,当α=60°时,线段AB、CD所在直线夹角(锐角)为;(2)如图②,当90°<α<180°时,直线AB与直线CD所夹锐角与旋转角α存在怎样的数量关系?请说明理由;【形成结论】旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角.【运用拓广】运用所形成的结论解决问题:(3)如图③,四边形ABCD中,∠ABC=60°,∠ADC=30°,AB=BC,CD=3,BD=√19,求AD的长.【答案】(1)60°;(2)互补,理由见解析;【形成结论】相等或互补;(3)√10【分析】(1)由旋转的性质可得AB=CD,OA=OC,BO=DO,可证ΔAOB≅ΔCOD(SSS),可得∠B=∠D,由三角形内角和定理可求解;(2)由旋转的性质可得AB=CD,OA=OC,BO=DO,可证ΔAOB≅ΔCOD(SSS),可得∠B=∠D,由平角的定义和四边形内角和定理可求解;【形成结论】由(1)(2)可知对应线段所在直线的所夹锐角角与旋转角:相等或互补;【运用拓广】(3)将ΔBCD绕点B顺时针旋转60°,得到ΔBAF,连接FD,由旋转的性质可得BF=BD,AF= CD=3,由三角形内角和定理可求∠FAD=90°,由勾股定理可求解.【详解】解:(1)如图1,延长DC交AB于F,交BO于E,∵α=60°,∴∠BOD=60°,∵线段AB绕点O顺时针旋转得线段CD,∴AB=CD,OA=OC,BO=DO,∴ΔAOB≅ΔCOD(SSS),∴∠B=∠D,∵∠B=∠D,∠OED=∠BEF,∴∠BFE=∠EOD=60°,故答案为:60°;(2)直线AB与直线CD所夹锐角角与旋转角α互补,理由如下:如图2,延长AB,DC交于点E,∵线段AB绕点O顺时针旋转得线段CD,∴AB=CD,OA=OC,BO=DO,∴ΔAOB≅ΔCOD(SSS),∴∠ABO=∠D,∵∠ABO+∠EBO=180°,∴∠D+∠EBO=180°,∵∠EBO+∠E+∠D+∠BOD=360°,∴∠E+∠BOD=180°,∴直线AB与直线CD所夹锐角角与旋转角α互补.形成结论由(1)(2)(3)可知:旋转图形中,当旋转角小于平角时,对应线段所在直线的所夹锐角角与旋转角:相等或互补.故答案为:相等或互补.运用拓广(3)如图3,将ΔBCD绕点B顺时针旋转60°,得到ΔBAF,连接FD,延长FA,DC交于点E,∴旋转角∠ABC=60°,∵ΔBCD≅ΔBAF,∴∠AED=∠ABC=60°,AF=CD=3,BD=BF,∵∠ADC=30°,∴∠FAD=∠AED+∠ADC=90°,又∵∠FBD=∠ABC=60°,BF=BD,∴ΔBFD是等边三角形,∴BF=BD=DF,∴在RtΔDAF中,AD=√DF2−AF2=√19−9=√10.【点睛】本题是几何变换综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.7.(2021··九年级专题练习)如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为H.证明:DE+AD=2√3CH.【答案】见解析【分析】如图,延长BA到点F,使AF=DE,连接CF、CD,根据四边形的内角和和邻补角互补可得∠CAF=∠CED,进而可根据SAS证明△AFC≌△EDC,可得CF=CD,∠ACF=∠ECD,进一步即可求得∠FCD=120°,然后利用等腰三角形的性质和解直角三角形的知识即可证得结论.【详解】证明:如图,延长BA到点F,使AF=DE,连接CF、CD,∵∠ACB+∠ADE=180°,∴∠CAD+∠CED=360°−180°=180°,∵∠CAD+∠CAF=180°,∴∠CAF=∠CED,∵AC=EC,AF=ED,∴△AFC≌△EDC,∴CF=CD,∠ACF=∠ECD,∴∠FCD=∠ACF+∠ACD=∠ECD+∠ACD=∠ACB=120°,∵CF=CD,CH⊥DF,∴FH=DH=12DF=12(DE+AD),∠HCD=12∠FCD=60°,∴tan∠HCD=DHCH=√3,∴DH=√3CH,∴DE+AD=2DH=2√3CH.【点睛】本题考查了四边形的内角和、全等三角形的判定和性质、等腰三角形的性质和解直角三角形等知识,正确添加辅助线、灵活应用上述知识是解题的关键.8.(2020·湖南湘西·中考真题)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFC≌△BFE,可得出结论,他的结论就是_______________;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B 点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70°,试求此时两舰艇之间的距离.【答案】EF=AE+CF.探究延伸1:结论EF=AE+CF成立.探究延伸2:结论EF=AE+CF仍然成立.实际应用:210海里.【分析】延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,可得BG=BE,∠CBG=∠ABE,再证明△BGF≌△BEF,可得GF=EF,即可解题;探究延伸1:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,可得BG=BE,∠CBG=∠ABE,再证明△BGF≌△BEF,可得GF=EF,即可解题;探究延伸2:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,可得BG=BE,∠CBG=∠ABE,再证明△BGF≌△BEF,可得GF=EF,即可解题;实际应用:连接EF,延长AE,BF相交于点C,然后与探究延伸2同理可得EF=AE+CF,将AE和CF的长代入即可.【详解】解:EF=AE+CF理由:延长FC到G,使CG=AE,连接BG,在△BCG和△BAE中,{BC=BA∠BCG=∠BAE=90°CG=AE,∴△BCG≌△BAE(SAS),∴BG=BE,∠CBG=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=60°,∴∠CBG+∠CBF=60°,即∠GBF=60°,在△BGF和△BEF中,{BG=BE∠GBF=∠EBFBF=BF,∴△BGF≌△BEF(SAS),∴GF=EF,∵GF=CG+CF=AE+CF,∴EF=AE+CF.探究延伸1:结论EF=AE+CF成立.理由:延长FC到G,使CG=AE,连接BG,在△BCG和△BAE中,{BC=BA∠BCG=∠BAE=90°CG=AE,∴△BCG≌△BAE(SAS),∴BG=BE,∠CBG=∠ABE,∵∠ABC=2∠MBN,∴∠ABE+∠CBF=12∠ABC,∴∠CBG+∠CBF=12∠ABC,即∠GBF=12∠ABC,在△BGF和△BEF中,{BG=BE∠GBF=∠EBFBF=BF,∴△BGF≌△BEF(SAS),∴GF=EF,∵GF=CG+CF=AE+CF,∴EF=AE+CF.探究延伸2:结论EF=AE+CF仍然成立.理由:延长FC到G,使CG=AE,连接BG,∵∠BAD+∠BCD=180°,∠BCG+∠BCD=180°,∴∠BCG=∠BAD在△BCG和△BAE中,{BC=BA∠BCG=∠BAECG=AE,∴△BCG≌△BAE(SAS),∴BG=BE,∠CBG=∠ABE,∵∠ABC=2∠MBN,∴∠ABE+∠CBF=12∠ABC,∴∠CBG+∠CBF=12∠ABC,即∠GBF=12∠ABC,在△BGF和△BEF中,{BG=BE∠GBF=∠EBFBF=BF,∴△BGF≌△BEF(SAS),∴GF=EF,∵GF=CG+CF=AE+CF,∴EF=AE+CF.实际应用:连接EF,延长AE,BF相交于点C,∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∠AOB∴∠EOF=12∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件∴结论EF= AE+CF仍然成立即EF=75×1.2+100×1.2=210(海里)答:此时两舰艇之间的距离为210海里.【点睛】本题考查了全等三角形的判定与性质.作辅助线构造全等三角形是解题的关键.9.(2019·重庆·西南大学附中八年级阶段练习)如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE =BC,CE⊥BD,CE=ED(1)已知AB=10,AD=6,求CD;(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=2√2GH+√2EG.【答案】(1)2√2;(2)证明见解析【分析】(1)由勾股定理得出BD=√AB2−AD2=8,由HL证得Rt△ADE≌Rt△BEC,得出BE=AD,则CE=ED=BD﹣BE=BD﹣AD=2,由等腰直角三角形的性质即可得出结果;(2)连接CF,易证AF=CE,AD∥CE,得出四边形AECF是平行四边形,则AE=CF,AE∥CF,得出∠CFD =∠EAD,∠CFB=∠AGF,由Rt△ADE≌Rt△BEC,得出∠CBE=∠EAD,推出∠CBE=∠CFD,证得△BCF 是等腰直角三角形,则BF=√2BC=√2CF=√2AE,∠FBC=∠BFC=45°,推出∠AGF=45°,∠AGH=60°,∠GAH=30°,则AG=2GH,得出BF=√2AE=√2(AG+EG),即可得出结论.【详解】(1)解:∵BD⊥AD,∴BD=√AB2−AD2=√102−62=8,∵CE⊥BD,∴∠CEB=∠EDA=90°,在Rt△ADE和Rt△BEC中,{AE=BC ED=CE,∴Rt△ADE≌Rt△BEC(HL),∴BE=AD,∴CE=ED=BD﹣BE=BD﹣AD=8﹣6=2,∴CD√2=CE=2√2;(2)解:连接CF,如图2所示:∵AF=DE,DE=CE,∴AF=CE,∵BD⊥AD,CE⊥BD,∴AD∥CE,∴四边形AECF是平行四边形,∴AE=CF,AE∥CF,∴∠CFD=∠EAD,∠CFB=∠AGF,由(1)得:Rt△ADE≌Rt△BEC,∴∠CBE=∠EAD,∴∠CBE=∠CFD,∵∠FBD+∠BFC+∠CFD=90°,∴∠FBD+∠BFC+∠CBE=90°,∴∠BCF=90°,∵AE=BC,∴BC=CF,∴△BCF是等腰直角三角形,∴BF=√2BC=√2CF=√2AE,∠FBC=∠BFC=45°,∴∠AGF=45°,∵∠BGH=75°,∴∠AGH=180°﹣45°﹣75°=60°,∵GH⊥AB,∴∠GAH=30°,∴AG=2GH,∴BF=√2AE=√2(AG+EG),∴BF=2√2GH+√2EG.【点睛】本题考查了等腰直角三角形的判定与性质、含30°角直角三角形的判定与性质、全等三角形的判定与性质、平行线的判定与性质、平行四边形的判定与性质等知识,熟练掌握直角三角形的性质、作辅助线构建平行四边形是解题的关键.10.(2021·全国·九年级专题练习)探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE +BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∠1+∠3=45°.即∠GAF=∠________.又AG=AE,AF=AE∴△GAF≌△________.∴_________=EF,故DE+BF=EF.(2)方法迁移:∠DAB.试如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【答案】(1)EAF、△EAF、GF;(2)DE+BF=EF.【分析】(1)利用角之间的等量代换得出∠GAF=∠F AE,再利用SAS得出△GAF≌△EAF,得出答案;(2)将△ADE顺时针旋转90°得到△ABG,再证明△AGF≌△AEF,即可得出答案;【详解】解:(1)如图①所示;根据等量代换得出∠GAF=∠F AE,利用SAS得出△GAF≌△EAF,∴GF=EF,故答案为F AE;△EAF;GF;(2)DE+BF=EF,理由如下:假设∠BAD的度数为m,将△ADE绕点A顺时针旋转,m°得到△ABG,如图,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=12m°,∴∠2+∠3=∠BAD−∠EAF=m°−12m°=12m°.∵∠1=∠2,∴∠1+∠3=12m°.即∠GAF=∠EAF.∵在△AGF和△AEF中,{AG=AE∠GAF=∠EAFAF=AF,∴△GAF≌△EAF(SAS).∴GF=EF.又∵GF=BG+BF=DE+BF,∴DE+BF=EF.【点睛】此题主要考查了全等三角形的判定和性质、以及折叠的性质和旋转变换性质等知识,证得△GAF≌△EAF是解题的关键.11.(2021·全国·八年级专题练习)我们规定:一组邻边相等且对角互补的四边形叫作“完美四边形”.(1)在①平行四边形,②菱形,③矩形,④正方形中,一定为“完美”四边形的是(请填序号);(2)在“完美”四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①如图1,求证:AC平分∠BCD;小明通过观察、实验,提出以下两种想法,证明AC平分∠BCD:想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;想法二:通过AB=AD,可将△ACD绕点A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在条直线上,从而可证AC平分∠BCD.请你参考上面的想法,帮助小明证明AC平分∠BCD;②如图2,当∠BAD=90°,用等式表示线段AC,BC,CD之间的数量关系,并证明.【答案】(1)详见解析;(2)①详见解析;②BC+CD=√2AC.【分析】(1)根据“完美四边形”的定义可以判断出正方形是完美四边形;(2)①想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;想法二:通过AB=AD,可将△ACD绕点A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在条直线上,从而可证AC平分∠BCD;②②延长CB使BE=CD,连接AE,可得△ACE为等腰三角形,因为∠BAD =90°得∠EAC=90°,由勾股定理可得AC,BC,CD之间的数量关系.【详解】(1)(1)根据“邻等对补四边形”的定义,正方形一定是“邻等对补四边形”.故答案为④.(2)想法一:延长CB使BE=CD,连接AE。
第19章几何证明压轴题专练(解析版)
第19章几何证明压轴题专练1.如图,已知△ABC 中,求证:∠A+∠B+∠C=180°证明:过BC 上一点D ,分别作________,交AB 于点E ,交AC 于点F ,因为___________________,所以∠A=______.同理∠B=______,∠C=______.因为_________________,所以_________________.因为∠EDB+∠EDF+∠FDC=180°( ),所以_________________.【难度】★★★【解析】//DE AC ,//DF AB ;//DF AB ,CFD ∠;FDC ∠,EDB ∠;//DE AC ,EDF CFD A ∠=∠=∠;平角的意义;180A B C ∠+∠+∠=︒.【总结】考查三角形内角和的证明,利用平行线得到相等角等量代换即可.2.判断下列命题的真假,若是假命题,举出反例.(1) 如果两个角的两边分别平行,那么这两个角相等;(2)有两边及第三边上的高对应相等的两个三角形全等.【难度】★★★【解析】(1)假命题,组成角的两条射线,一条方向相同,一条相反,则两角互补;(2)假命题,保持一边不变,过一个顶点作一条射线,另一个顶点向这条射线作垂线,并以这点为圆心,长于垂线长的长度为半径作圆与射线有两个交点,形成三角形一个是锐角三角形,一个是钝角三角形,满足题目条件,但两个三角形明显不全等.【总结】考查命题的真假的判断,假命题举反例即可3.写出下列命题的逆命题,判断逆命题的真假,并说明其中哪些是逆定理.(1)等腰三角形两腰上的中线相等;(2)内错角相等,两直线平行;(3)等边对等角;(4)两条平行直线被第三条直线所截,截得的同旁内角的角平分线互相垂直.【难度】★★★【解析】(1)逆命题:如果一个三角形中有两条边上的中线相等,那么这个三角形是等腰三角形,真命题,不是逆定理;(2)逆命题:两直线平行,内错角相等,真命题,是逆定理;(3)逆命题:等角对等边,真命题,是逆定理;(4)逆命题:如果两条直线被第三条直线所截,截得的一对同旁内角的角平分线互相垂直,那么这两条直线平行,真命题,不是逆定理.【总结】考查一个命题的逆命题的写法,以及对命题真假的判断.4.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC.求证:BE∥DF.【难度】★★★【解析】证明:BE 平分ABC ∠,12ABE ABC ∴∠=∠,同理12FDE ADC ∠=∠,360A ABC C ADC ∠+∠+∠+∠=︒,A C ∠=∠,3602ABC ADC A ∴∠+∠=︒-∠BED A ABE ∠=∠+∠()1113602180222BED FDE A ABC ADC A A ∴∠+∠=∠+∠+∠=∠+︒-∠=︒//BE DF ∴【总结】考查平行线的判定定理,同旁内角互补,两直线平行.5.如图,AB ∥CD ,分别探讨下面4个图形中∠BPD 、∠ABP 、∠CDP 的关系,(直接写出关系即可),并对第3个图得到的关系进行证明(至少用两种方法).【难度】★★★【答案】图1:+360BPD ABP CDP∠∠+∠=;图2:BPD CDP ABP∠=∠-∠;图3:BPD ABP CDP∠=∠+∠;图4:BPD ABP CDP∠=∠-∠.【解析】证明:方法1:延长BP交CD于点M,∴∠=∠//AB CD,ABP PMD∴∠=∠+∠=∠+∠;BPD PMD CDP ABP CDP方法2:过点作射线//∠=∠,PN AB,则有ABP BPN∴∠=∠CD PN∴,CDP DPN//AB CD,//∴∠=∠+∠=∠+∠.BPD BPN DPN ABP CDP【总结】考查平行线的性质定理和三角形外角性质的结合应用,本题中4个小题都可通过作平行或延长简单证明.6.如图,四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=CD,AE=DF.(1)求证:BF=CE;(2)当点E、F相向运动,形成图2时,BF和CE还相等吗?证明你的结论.【难度】★★★【解析】(1)证明://AD BC,,180180∴∠+∠=︒∠+∠=︒BAD ABC ADC BCD∠=∠ABC DCB∴∠=∠BAD ADC=AE DF=AE AD DF AD∴+=+,即DE AF=AB CD∴∆≅∆EDC FAB∴=BF CE(2)相等,证明:同(1)可证BAD ADC∠=∠,ED AF AB CD,==∴∆≅∆EDC FAB∴=BF CE【总结】考查等腰梯形的性质的证明,实际为后面等腰梯形性质的学习打下基础.7.如图,已知△ABD、△ACE都是等腰直角三角形,∠DAB=∠EAC=90°,判断BE和CD的位置及长度关系,并证明.【难度】★★★【答案】CDBE⊥;证明过程见解析.BE=,DC【解析】∵∠DAB=∠EAC=90°,∴BAC=+∠,∠∠EACBACDAB∠+即BAEDAC∠∠=∵AB AD DAC BAE AE AC,,=∠=∠=∴DAC△BAE≌△∴CD∠=BE=,ABEADC∠∵︒DBAADC,+CDA∠90=∠+∠∴︒DBACDA∠90ABE,即DCBE⊥.+=+∠∠【总结】考察全等三角形的判定.两个等腰直角三角形共直角顶点则可产生全等三角形.8.如图,三角形ABC 中,AC = BC ,∠ACB =90°,AD 是BC 边的中线,CE ⊥AD ,BF ⊥BC ,CF 与AB 、BF 分别相交于点E 、F ,联结DE ,求证:∠1 =∠2.【难度】★★★【解析】∵︒=∠+∠90ACF BCF ,︒=∠+∠90CAD ACF∴CAD BCF ∠=∠∵CAD BCF ∠=∠,BC AC =,CBF ACD ∠=∠∴BCF CAD ≌△△,∴F ∠=∠1,BF CD =∵BD CD =,∴BF BD =∵AC = BC ,∠ACB =90°,∴︒=∠45CBA∵︒=∠90CBF ,︒=∠45FBE∵DB BF DBE FBE BE BE =∠=∠=,,,∴F ∠=∠2∵F ∠=∠1,∴21∠=∠【总结】考察全等三角形判定以及等腰直角三角形的性质.9.已知A 、C 、E 在同一直线上,△ABC 和△CDE 都是等边三角形,M 、N 分别是AD 、BE 的中点,求证:△CMN 是等边三角形.【难度】★★★【解析】∵︒=∠=∠60ECD ACB ,∴BCD ECD BCD ACB ∠+∠=∠+∠,即ACD BCE ∠=∠.∵BC AC =,ACD BCE ∠=∠,CD EC =∴()S A S BCE ACD ..≌△△,∴AD BE =,21∠=∠∵M 、N 分别是AD 、BE 的中点,AD BE =,∴BN AM =.∵BC AC =,21∠=∠,BN AM =,∴()S A S BCN ACM ..≌△△,∴CN CM =,43∠=∠∵︒=∠+∠603MCB ,∴︒=∠+∠604MCB ,即︒=∠60MCN∵CN CM =,∴△CMN 是等边三角形.【总结】考察三角形全等三角形判定和性质以及等边三角形的性质与判定的综合运用.10.如图,在△ABC 中,108AB AC BAC =∠=,°,点D 在AC 上且BC AB CD =+.求证:BD 平分ABC ∠.【难度】★★★【解析】在BC 上截取一点E 使得BE=AB ,联结ED 、AE .∵108AB AC BAC =∠=,°,∴︒=∠=∠36C ABC .∵BC AB CD =+,BE AB =,∴EC CD =∵︒=∠36C ,∴︒=∠=∠72CED CDE∴︒=∠-︒=∠108180BAC DEB ,∴DEB BAC ∠=∠∵BE AB =, ∴BEA BAE ∠=∠∴BAE DEB BAE BAC ∠-∠=∠-∠,即DEA DAE ∠=∠,∴DE AD =.∵BE AB =,DE AD =,BD BD =,∴()S S S EBD ABD ..≌△△.∴CBD ABD ∠=∠,即BD 平分ABC ∠.【总结】考察截长补短辅助线的做法以及三角形全等判定的综合运用.11.如图,已知AB AC =,100A ∠=°,BD 平分ABC ∠.求证:BC BD AD =+.【难度】★★★【解析】在BC 上截取一点E 使得BE=BD ,截取一点F 使得BF=AB ,联结ED 、DF .∵100AB AC BAC =∠=,°,∴︒=∠=∠40C ABC ,∵BD 平分ABC ∠,∴︒=∠=∠20DBE ABD∵BE BD =,∴︒=∠=∠80BDE BED∵EDC C BED ∠+∠=∠,∴︒=∠40EDC ,∴C EDC ∠=∠,∴EC DE =∵BF AB =,DBF ABD ∠=∠,BD BD =,∴()S A S FBD ABD ..≌△△∴︒=∠=∠100BFD BAC ,DF AD =,∴︒=︒-︒=∠80100180DFE .∵︒=∠80BED ,∴BED DEF ∠=∠,∴DF DE =∵EC DE =,∴EC DF =∵DF AD =,∴CE AD =∵BC BE CE =+,BE BD =,CE AD =∴BC BD AD =+【总结】本题综合性较强,主要考查截长补短辅助线的添加以及等腰三角形性质的综合运用.12.已知:如图,△ABC 是等腰直角三角形,∠ACB=90°,△ADB 是等边三角形,点C 在△ADB 的内部,DE ⊥AC 交直线AC 于点E .(1)求证:DE=CE ;(2)若点C 在△ADB 外部,DE=CE 的关系是否成立?如不成立,请说明理由;如成立,请证明.【难度】★★★【解析】(1)联结DC 并延长交AB 于F .∵DB AD =,DC DC =,CB AC =∴BDC ADC ≌△△ ∴ADF BDF ∠=∠∴AB DF ⊥ ∴︒=∠45FCB∴︒=∠-∠-︒=∠45180ECB FCB DCE∵CE DE ⊥ ∴︒=∠=∠45EDC DCE∴CE DE =(2)证明方法同(1)一样.【总结】考察全等三角形的判定和性质以及等腰三角形的性质的综合运用.13.如图,在直角△ABC 和直角△ADE 中,∠C=∠E =90°,BC=DE ,∠BAE=∠DAC ,BC 与DE 交于点F ,求证:BF=DF .F EDCBA【难度】★★★【解析】联结AF ∵∠BAE=∠DAC,∴EAC∠,即DAEBAC∠∠∠=+BAE∠EAC+∠DAC=∵∠C=∠E ,DAE△BAC∠AEF≌△∠,BC=DE,∴ABC=∴AE AC CB ED,==∵AE AC AF AF,∴ACF==△AEF≌△∴CFFE=∵EFBF-==,∴BF=DF.-CBDEDFCF【总结】考察三角形全等判定和性质的综合运用.14.如图,已知在△ABC中,∠C=90°,∠A=45°,AB=a,在线段AC上有动点M,在射线CB上有动点N,且AM=BN,连接MN交AB于点P.(1)当点M在边AC(与点A、C不重合)上,线段PM与线段PN之间有怎样的大小关系?试证明你的结论.(2)过点M作边AB的垂线,垂足为点Q,随着M、N两点的移动,线段PQ的长能确定吗?若能确定,请求出PQ的长;若不能确定,请简要说明理由.【难度】★★★【答案】(1)PM PN =;(2)线段PQ 的长能确定,为a 21. 【解析】(1)PM PN =.过M 作DM ∥CB 交BA 于D∵DM ∥CB ,∴︒=∠=∠45ABC ADM ∴A ADM ∠=∠,∴MD AM =∵AM=BN ,∴MD BN =∵MD BN =,DMP N ∠=∠,MPD NPB ∠=∠∴MPD NPB ≌△△ ∴PM PN =(2)线段PQ 的长能确定,为a 21. ∵∠A=45°,AB MQ ⊥,∴△AMD 为等腰直角三角形设x BN AM DM ===,则x AD 2=由(1)可得:BD PD BP 21== ∵x a AD AB BD a AB 2,-=-== ∴x a BD BP 222121-== ∵x AD AQ DQ 2221=== ∴a DQ PD PQ 21=+=∴线段PQ 的长能确定,为a 21. 【总结】考查全等三角形的判定和性质,勾股定理以及等腰直角三角形性质的综合运用.15.已知:如图,△ABC 是等边三角形,BD=DC ,∠BDC=120°,∠MDN=60°, 求证:23AMN ABC C C ∆∆=.【难度】★★★【解析】证明:延长NC 至点E ,使得CE BM =,联接DE .∵BD=DC ,∠BDC=120°,∴︒=∠=∠30DCB DBC∵︒=∠=∠60ACB ABC ∴︒=∠=∠90ACD ABD∴ABD DCE ∠=∠∵BD =DC ,DCF ABD ∠=∠,CE BM =∴CDE BDM △≌△∴MD DE CDE BDM =∠=∠,∵∠BDC=120°,∠MDN=60°,∴︒=∠+∠60CDN BDM∵∴︒=∠+∠60CDN CDE ,即︒=∠60NDEBDM CDE ∠=∠∴MDN NDF ∠=∠∵MDN NDF ∠=∠,DN DN =∴NDM NDE ≌△△,可得:NE MN =, 则ABC AMN C AC AB NC MB AN AM MN AN AM C ∆∆=+=+++=++=32. 【总结】考察截长补短辅助线的添加及等腰三角形的性质.16.如图,正方形ABCD 中,E 、F 分别是AD 、DC 上的点,且∠EBF = 45°,(1) 求证:AE+CF = EF ;(2) 若,BC=1,求BE 的长.【难度】★★★【解析】(1)延长FC 至点G ,使得AE CG =,连接BG .∵BCG BAE ∠=∠,AE CG =,BC AB =∴BCG AEB ≌△△∴CBG ABE BG BE ∠=∠=,.∵︒=∠45EBF ∴︒=∠+∠45CBF ABE∵,∴︒=∠+∠45CBF CBG 即︒=∠45FBG∴EBF FBG ∠=∠,DE MD=CBG ABE ∠=∠∵,BG BE =EBF FBG ∠=∠,BF BF = ∴BGF BEF ≌△△∴GF EF =,∵CG FC GF +=,GF EF =,AE CG =∴AE+CF = EF ;(2)∵,BC=1, ∴由勾股定理可得:31=CF , ∴32311=-=DF . 设x AE =,则由(1)可得:113ED x EF x =-=+,, ∵222EF DF DE =+,∴()22231321⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+-x x , 解得:21=x ∴2522=+=AE AB BE . 【总结】考察截长补短辅助线的添法和勾股定理的综合运用.17.已知,如图,在△ABC 外作正方形ABDE 和ACGF ,M 是BC 的中点.求证:12AM EF =.【难度】★★★【答案】见解析.【解析】延长AM 至点N ,使得NM =AM ,联结CN∵MN AM =,AMB CMN ∠=∠,BM MC =∴ABM NCM △≌△∴CN AB =,ABC BCN ∠=∠∵AE AB =,∴AE = CN ,∵BCN ACB ACN ∠+∠=∠,ABC BCN ∠=∠∴BAC ABC ACB ACN ∠-︒=∠+∠=∠180∵BAC BAC FAC EAB EAF ∠-︒=∠-∠-∠-︒=∠180360∴EAF ACN ∠=∠∵AF CA =,EAF ACN ∠=∠,AE = CN ,∴ACN AFE ≌△△,∴AN EF =∵AM AN 2=,∴AM EF 2=【总结】考察倍长中线辅助线的添加方法及全等的综合运用.18.已知:如图,在△ABC 中,BD=DC ,ED ⊥DF .求证:BE+CF >EF .【难度】★★★【解析】延长FD 至点G ,使得DG DF =,联结BG 、GE∵DG DF =,FDC BDG ∠=∠,BD DC =∴BDG CDF △≌△,∴BG CF =∵DG DF =,FDE EDG ∠=∠,ED DE =∴EDG EDF △≌△,∴EG EF =∵GE BE BG >+,EG EF =,BG CF =∴BE+CF >EF .【总结】考察倍长中线辅助线的添加方法及三角形的三边关系的运用.19.已知:如图,点M 是△ABC 的边BC 的中点,射线ME 、MF 互相垂直,且分别交AB 、AC 于E 、F 两点,连接EF .(1) 求证:线段BE 、CF 、EF 能够成一个三角形;(2) 若∠A=120°,且BE=CF ,试判断BE 、CF 、EF 所构成三角形的形状,并证明 .【难度】★★★【答案】(1)见解析;(2)等边三角形.【解析】(1)延长FM 至点G ,使得MG MF =,联结BG 、GE .∵MG MF =,FMC BMG ∠=∠,BM MC =∴BMG CMF △≌△, ∴BG CF =∵MG MF =,FME EMG ∠=∠,MD ME =∴EMG EMF △≌△,∴EG EF =∵EG EF =,BG CF =∴线段BE 、CF 、EF 能够成一个三角形;(2)等边三角形.∵∠A=120°, ∴︒=∠+∠60C ABC ,∵BE=CF ,BG CF =, ∴BG BE =,由(1)可得:C MBG ∠=∠.∴︒=∠+∠=∠+∠=∠60C ABC MBG ABC EBG∵BG BE =, ∴BE 、CF 、EF 所构成三角形的形状是等边三角形. 【总结】考察倍长中线辅助线的添加方法及三角形的成立条件.20.如图所示,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,MF//DA 交BA 的延长线于点E ,交AC 于点F ,求证:BE=CF .【难度】★★★【解析】延长FM 至点N ,使得FM=MN ,联结BN .∵CM BM =,CMF BMN ∠=∠,FM=MN ,∴CMF BMN ≌△△∴CF BN =,C MBN ∠=∠,∴CF//BN∵MF ∥DA , ∴DAC AFE ∠=∠,E BAD ∠=∠∵DAC BAD ∠=∠,∴E AFE ∠=∠∵CF//BN ,∴N AFE ∠=∠∵E AFE ∠=∠,∴E N ∠=∠,∴BN BE =∵CF BN =,∴BE=CF .【总结】考察倍长中线辅助线的添加方法.21.已知:Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AE 平分∠CAB 交CD 于F ,过F 作FH ∥AB ,交BC 于H .求证:CE = BH .(提示:平行四边形的对边相等,对角相等)【难度】★★★【解析】过E 作EG ⊥AB ,垂足为G .∵︒=∠+∠90FAD AFD ,︒=∠+∠90CAF CEF , CAF FAD ∠=∠,∴CEF AFD ∠=∠∵CFE AFD ∠=∠,∴CEF CFE ∠=∠,∴CF CE =∵AE AE =,CAF FAD ∠=∠,AGE ACE ∠=∠∴AGE ACE ≌△△,∴EG CE =∵CF CE =,∴CF EG =∵FH ∥AB ,∴CHF B ∠=∠,︒=∠=∠90CDB CFH∵CHF B ∠=∠,EGB CFH ∠=∠,CF EG =∴EGB CFH ≌△△, ∴EB CH =∵CE CH EH BE BE EH =-=-,,∴CE=BH .【总结】考察构造全等三角形辅助线的做法.22.如图,在△ABC 中,∠A=30°,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD ,求证:AF=FG=BG .【难度】★★★【答案】见解析.【解析】连接DF 、DG ,∵FM 垂直平分AD ,GN 垂直平分BD∴AF=DF ,DG=BG又∵∠A=30°,∴∠DFG=∠DGF=60°即△DFG 为等边三角形 ∴DF=DG=FG ∴AF=FG=BG【总结】考查垂直平分线性质定理的运用.23.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°,(1)求∠NMB的大小;(2)如果将(1)中的度数改为70°,其余条件不变,再求∠NMB的度数;(3)若∠A=α,你发现了怎样的规律,并证明之;(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否要加以修改.【难度】★★★【解析】(1)∵AB=AC,∴∠B =(180°-40°)÷2=70°,又∵∠MNB=90°,∴∠NMB=180°-90°-70°=20°;(2)∵∠B=(180°-70°)÷2=55°,∴∠NMB =180°-90°-55°=35°;(3)∠NMB的度数等于∠A度数的一半,证明:∵AB=AC,∴∠B=(180°-∠A)÷2∵∠BNM = 90°,∴∠NMB = 90°-∠B = 90°-(180°-∠A)÷2=12A ∠即∠NMB的度数等于∠A度数的一半;(4)不需修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成锐角为顶角的一半.【总结】考查垂直平分线性质定理的运用.24.如图,在直角△ABC中,AD是斜边BC上的高,BF平分∠ABC,交AC于点F、AD于点E,EG∥BC 交AC于点G,求证:AF=CG.【难度】★★★【解析】过F作FH⊥BC于点H,连接EH,∵∠ABF+∠AFB=90°,∠BED+∠EBD=90°,∠ABF=∠EBD,∴∠AFB=∠BED又∵∠BED=∠AEF ,∴∠AFB=∠AEF ,∴AE=AF.∵BF平分∠ABC, AF⊥BA,FH⊥BC ∴AF=FH又∵AE∥FH,∴四边形AEHF为菱形,∴AF=EH, EH∥CG又∵EG∥HC,∴EHCG为平行四边形∴EH=CG,∴AF=CG.【总结】考查角平分线性质定理、菱形及平行四边形的判定及性质.25.如图,以△ABC两边AB、AC为边,向外作等边△ABD和等边△ACE,连接BE、CD交于F点,CD 交AB于点G,BE交AC于点H,求证:AF平分∠DFE.【难度】★★★【解析】∵AD=AB,AC=AE,∠DAC=∠BAE ∴△ACD≌△AEB ∴BE=CD过点A作AM⊥DC,AN⊥BE,则1122DC AM AN BE ⨯=⨯∴AM=AN∵AM⊥DC,AN⊥BE,所以AF平分∠DFE.【总结】考查角平分线性质定理逆定理及其等面积法的综合运用.26.如图,在△ABC中,∠CAB和∠ABC的平分线AD、BE交于点P,连接CP.(1)求证:CP平分∠ACB;(2)如图1,当△ABC为等边三角形时,求证:EP=DP;(3)如图2,当△ABC不是等边三角形,但∠ACB=60°,(2)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.【难度】★★★【解析】(1)过点P分别作PM⊥AB于点M,PN⊥AC于点N,PH⊥BC于点H∵AD、BE分别为∠CAB与∠ABC的角平分线∴PM=MN,PM=PH,∴PN=PH,∴CP平分∠ACB(2)∵ABC为等边三角形∴PD⊥BC,PE⊥AC,∴△CPE≌△CPD ,∴EP=DP (3)成立.假设∠CAB<∠CBA作PH⊥AC于H,PM⊥CB于M,PQ⊥AB于Q,则点H在线段CE上,点M在线段BD上∵∠CAB和∠ACB的平分线AD、BE交于点P,∴PH=PQ=PM∵∠ACB+∠CAB+ABC=180°,∠ACB=60°∴∠CAB+∠ABC=120°∵AD、BE分别平分∠CAB、∠ABC ∴∠PAB+∠PBA=60°∵∠CEP=∠CAP+∠PAB+∠PBA=∠CAP+60°∠ADB=∠CAP+∠ACD=∠CAP+60°∴∠CEP=∠ADB在△PHE和△PMD中,∵∠HEP=∠MDP,∠EHP=∠DMP=90°,PH=PM∴△PHE≌△PMD ∴PE=PD【总结】考查角平分线性质定理及其逆定理的综合运用.27.如图,在△ABC中,OE、OF分别是边AB、AC的垂直平分线,∠OBC、∠OCB的平分线相交于点G,判断OG与BC的位置关系,并证明你的判断.【难度】★★★【解析】连接OA ∵OE垂直平分AB,∴OA=OB同理OA=OC,∴OB=OC,∴∠OBC=∠OCB∵BG平分∠OBC,CG平分∠OCB∴∠GBC=12∠OBC,∠GCB=12∠OCB∴∠GBC=∠GCB,∴BG=CG又∵OG=OG,∴△BOG≌△COG∴∠BOG=∠COG,∴OG⊥BC【总结】考查角平分线与垂直平分线性质定理的运用.28.已知,AC⊥BC,AD平分∠BAC,DE⊥AB,判断下面四个结论中哪些成立,(1)AD平分∠CDE;(2)∠BAC=∠BDE;(3)DE平分∠ADB;(4)BD+AC>AB哪些不成立,成立的说明理由,不成立的在原有条件的基础上,添加条件使之成立,并证明.【难度】★★★【解析】(1)∵∠EAD=∠CAD,∠AED=∠C,AD =AD ∴△ADE≌△ADC,∴成立;(2)∵∠B+∠BAC=90°,∠B +∠BDE =90°,∴∠BAC =∠BDE ,∴成立;(3)不成立.添加∠B=30°∵∠B=30°,∴∠BAC=60°,∴∠BAD=30°∴△ABD为等腰三角形又∵DE⊥AB,∴DE平分∠ADB,(4)AB=AE+EB ,由(1)知AE=AC,又∵BD>BE(斜边大于直角边)∴BD+AC>AB,∴成立.【总结】考查角平分线性质定理的运用.29.如图,AD是等腰△ABC底边上的高,E、F为AD上两点,且∠ABE=∠EBF=∠FBC,联结CF并延长交AB于点G.求证:(1)△GBF为等腰三角形;(2)GE∥BF.【难度】★★★【解析】(1)ABC AD ∆∵为等腰三角形且为高FBC FCB ∴∠=∠GBF GBE EBF GFB FBC FCB ∠=∠+∠∠=∠+∠∵,∵∠ABE=∠EBF=∠FBC ,GBF GFB ∴∠=∠∴△GBF 为等腰三角形;(2)如图,过点E 作EP ⊥GF 于点P 、EQ ⊥BF 于点Q 、ER ⊥AB 于点R .∵FB=FC , FD ⊥BC , ∴BFD CFD ∠=∠∵BFD EFQ ∠=∠,CFD EFG ∠=∠, ∴EFQ EFG ∠=∠∴EP EQ =∵BE 平分GBF ∠,EQ ⊥BF ,ER ⊥AB ,∴EQ ER =, ∴EP ER =, ∴2AGF EGA ∠=∠∵2AGF GFB GBF GBF ∠=∠+∠=∠∴GBF EGA ∠=∠∴//GE BF .【总结】考查角平分线性质定理的运用及等腰三角形的性质.30.在直角△ABC 中,AB=AC ,∠BAC=90°,直线l 为经过点A 的任一直线,BD ⊥l 于点D ,CE ⊥l 于点E ,若BD>CE ,试问:(1) AD 与CE 的大小关系如何?请说明理由;(2) 线段BD 、DE 、CE 之间的数量关系如何?你能说明清楚吗?试一试.【难度】★★★【答案】(1)AD CE =;(2)BD CE DE =+.【解析】(1)90BAC ∠=︒,90BAD CAE ∴∠+∠=︒,BD l CE l ⊥⊥,, 90BDA AEC ∴∠=∠=︒,90DBA BAD ∴∠+∠=︒, DBA EAC ∴∠=∠在RT ABD 和RT CAE 中, BDA AEC AB CA DBA EAC ∠=∠⎧⎪=⎨⎪∠=∠⎩, RT ABD ∴≌RT CAE (..A S A )AD CE ∴=(全等三角形对应边相等)(2)BD CE DE =+AD CE =,又AE AD DE =+ ,AE CE DE ∴=+RT ABD ≌RT CAE ,BD AE ∴=BD CE DE ∴=+.【总结】考查全等三角形的应用及线段间的等量代换.31.如图,在△ABC 中,AB=AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E .(1) 若BC 在DE 的同侧(如图1),且AD=CE ,求证:AB ⊥AC .(2)若BC在DE的两侧(如图2),其他的条件不变,问AB与AC仍垂直吗?若是,请予以证明,若不是,请说明理由.【难度】★★★【解析】(1)证明:BD⊥DE,CE⊥DE90BDA AEC∴∠=∠=︒.在RT BDA和RT AEC中,AB CAAD CE=⎧⎨=⎩,RT ABD∴≌RT CAE(.H L),DAB ECA∴∠=∠.90AEC∠=︒,90CAE ECA∴∠+∠=︒,90CAE DAB∴∠+∠=︒,90BAC∴∠=︒,∴AB⊥AC .(2)AB⊥AC.同理可证:RT ABD≌RT CAE,则可证90BAC∠=︒,即AB⊥AC.【总结】考查直角三角形全等的判定及同角的余角相等相结合.32.如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高,在AB上截取AE=AC,过点E作EF∥CD、交BC边于点F,EG垂直BC于点G,求证:DE=EG.【难度】★★★【解析】联结CE AE=AC ,ACE AEC∴∠=∠∴∠+∠=︒90ACE ECG∠=︒,90ACBAEC ECD∴∠+∠=︒⊥,90CD AB∴∠=∠ECD ECG又CD AB⊥DE GE∴=⊥,EG BC【总结】考查等边对等角及角平分线性质定理的综合运用.33.如图,已知在钝角∆ABC中,AC、BC边上的高分别是BE、AD,BE、AD的延长线交于点H,点F、G分别是BH、AC的中点.(1)求证:∠FDG=90°;(2)连结FG,试问∆FDG能否为等腰直角三角形?若能,试确定∠ABC的度数,并写出你的推理过程;若不能,请简要说明理由.【难度】★★★【解析】(1)证明:AC 、BC 边上的高分别是BE 、AD , 又点F 、G 分别是BH 、AC 的中点,12DG CG AC ∴==,12DF BF BH ∴==(斜边中线等于斜边的一半) GDC GCD BCE ∴∠=∠=∠,DBF BDF ∴∠=∠GDC BDF BCE DBF ∴∠+∠=∠+∠,又AE BH ⊥,90BCE DBF ∴∠+∠=︒90GDC BDF ∴∠+∠=︒,即90FDG ∠=︒(2)能,45ABC ∠=︒.若GDF 为直角等腰三角形,则GD FD =,AC BH ∴=,ACD ∴≌BHD (..A A S ),AD BD ∴=,45ABC ∴∠=︒.【总结】主要考查对直角三角形性质的掌握,以及能否灵活的运用.34.如图,点A 、B 、C 在同一直线上,在直线AC 的同侧作△ABE 和△BCF ,连接AF 、CE ,取AF 、CE 的中点M 、N ,连接MB 、NB 、NM .(1) 若△ABE 和△FBC 是等腰直角三角形,且∠ABE=∠FBC=90°,如图1所示,则△MBN 是_____________三角形;(2) 若△ABE 和△FBC 中,BA=BE ,BC=BF ,且∠ABE=∠FBC=α,如图2所示,则△MBN 是 _____________三角形,且∠MBN=_______;(3)若(2)中的△ABE绕点B旋转一定的角度,如图3,其他的条件不变那么(2)中的结论是否成立?若成立,给出你的证明,若不成立,写出正确的结论并给出证明.【难度】★★★【答案】(1)等腰直角;(2)等腰,α;(3)结论仍然成立.【解析】(1)易证ABF≌EBC,AF EC∴=,BM BN∴∠=∠∴=,∴AMB≌ENB,MBA NBE∴∠+∠=︒MBF NBE90MBA MBF∠+∠=︒,90即90MBN ∠=︒,MBN ∴为等腰直角三角形(2)根据题意,可知ABF ≌EBC ,BM BN ∴=即MBN 为等腰三角形,ABM EBN ∠=∠ABE MBN α∴∠=∠=,MBN α∴∠=(3)∵ABF ≌EBC ,AF CE AFB ECB ∴=∠=∠,FM CN ∴=, MFB ∴≌NCBBM BN ∴=,MBF NBC ∠=∠MBN MBF FBN FBN NBC FBC α∴∠=∠+∠=∠+∠=∠=【总结】本题考查了图形旋转的性质,等腰三角形和全等三角形的判定.掌握等腰三角形和全等三角形的性质及判定并学会灵活运用是解题的关键.35.已知,如图,在△ABC 中,边AB 上的高CF 、边BC 上的高AD 与边CA 上的高BE 交于点H ,连接EF ,AH 和BC 的中点为N 、M .求证:MN 是线段EF 的中垂线.【难度】★★★【解析】连接FM 、EM 、FN 、EN∵︒=∠90BFC ,M 为BC 的中点, ∴BC FM 21=∵︒=∠90BEC ,M 为BC 的中点, ∴BC EM 21=,∴ME FM =∵︒=∠90AFH ,N 为AH 的中点,∴AH FN 21= ∵︒=∠90AEH ,N 为AH 的中点,∴AH EN 21=, ∴EN FN =, ∵ME FM =,EN FN =∴MN 是线段EF 的中垂线.【总结】考察直角三角形的性质和线段垂直平分线性质定理逆定理的综合运用.36.在△ABC 中,已知∠A=60°,BE ⊥AC 于E ,CF ⊥AB 于F ,点D 是BC 中点.(1)如果AB=AC ,求证△DEF 为等边三角形;(2)如果AB ≠AC ,试猜想△DEF 是不是等边三角形,若是,请加以证明,若不是,请说明理由;(3)如果CM=4,FM=5,求BE 的长度.【难度】★★★【解析】(1)∵BE ⊥AC ,点D 是BC 中点,∴BC DC DE 21== ∵CF ⊥AB ,点D 是BC 中点,∴BC BF DF 21==,∴DF DE = ∵∠A=60°,AB=AC ,∴△ABC 是等边三角形,∴︒=∠=∠60ACB ABC∵DC DE =,︒=∠60ACB ,∴△DEC 是等边三角形,∴︒=∠60EDC∵DB DF =,︒=∠60ABC ,∴△BFD 是等边三角形,∴︒=∠60FDB∴︒=︒-︒-︒=∠606060180FDE∵DF DE =,∴△DEF 为等边三角形(2)∵BE ⊥AC ,点D 是BC 中点,∴BC DC DE 21== ∵CF ⊥AB ,点D 是BC 中点,∴BC BF DF 21==,∴DF DE = ∵∠A=60°,∴︒=∠+∠120ACB ABC ,∵DC DE =,∴ACB DEC ∠=∠∵DB DF =,∴ABC DFB ∠=∠,∴180FDE FDB EDC ∠=︒-∠-∠ ()()180********ABC ACB =︒-︒-∠-︒-∠()218060ABC ACB =∠+∠-︒=︒∵DF DE =,∴△DEF 为等边三角形(3)∵∠A=60°,BE ⊥AC 于E ,CF ⊥AB ,∴︒=∠=∠30ECM FBM ∴1122FM BM EM CM ==, ∵CM=4,FM=5,∴102==BM EM ,,∴12210=+=+=ME BM BE【总结】考察直角三角形性质及等边三角形性质的综合运用.37.已知∠MAN ,AC 平分∠MAN ,(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC.(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍 然成立?若成立,请给出证明;若不成立,请说明理由.【难度】★★★【解析】(1)∵∠MAN=120°,AC 平分∠MAN ,∴︒=∠=∠60CAB CAD∵∠ABC=∠ADC=90°,∴∠ACD=∠ACB=30°,∴AC AB 21=,AC AD 21= ∴AC AC AC AD AB =+=+2121; (2)过C 作CE ⊥AM ,过C 作CF ⊥AN ,垂足分别为E 、F∵AC 平分∠MAN ,CE ⊥AM ,CF ⊥AN ,∴CF CE =∵∠ABC+∠ADC=180°,∠MDC+∠ADC=180°,∴∠EDC=∠ABC∵∠EDC=∠ABC ,CF CE =,CFB CED ∠=∠,∴CBF CED ≌△△,∴BF ED =∴AF AE BF AF DE AE AB AD +=++-=+∵∠MAN=120°,AC 平分∠MAN ,∴︒=∠=∠60CAB CAD∵∠ABC=∠ADC=90°,∴∠ACE=∠ACF=30°, ∴AC AE 21=,AC AF 21= ∴AC AC AC AD AB =+=+2121 【总结】考察角平分线的性质和直角三角形的性质的综合运用.38.如图,AB 两个村子在河边CD 的同侧,A 、B 两村到河边的距离分别为AC=1千米,BD =3千米,CD =3千米.现在河边CD 建一座水厂,建成后的水厂,可以直接向A 、B 两村送水,也可以将水送一村再转送另一村.铺设水管费用为每千米2万元,试在河边CD选择水厂位置P确定方案,使铺设水管费用最低,并求出铺设水管的总费用(精确到0.01万元).【难度】★★★【答案】10万元.【解析】延长AC至点E,使得CE=AC,连接EB交CD于一点,,则此时铺设水管费用最低.过E作EF∥CD,交BD延长线于F∵四边形CEFD是长方形,∴1=DFCE=∵34,,∴由勾股定理可得:5EF BF==BE=此时5EPPBAPBP==+BE+=∴总费用为10⨯万元.5=2【总结】考察勾股定理在实际问题中的应用.39.如图,在直角△ABC中,∠BAC=90°,AB=AC,E、F是BC上的两点,且∠EAF=45°,求证:222+=BE CF EF.【难度】★★★【解析】过C 作CG ⊥BC ,使CG CE =,连接AG 、FG .∵∠BAC=90°,AB=AC , ∴45B BCA ∠=∠=.∵CG ⊥BC , ∴45ACG BCA ∠=∠=, ∴ACG B ∠=∠.∵AB=AC ,BE=CG , ∴AEB AGC △≌△∴AE AG BAE CAG =∠=∠,.∵︒=∠45EAF ,∴︒=∠+∠45CAF BAE ,∴45CAF CAG ∠+∠=︒,即45FAG ∠=︒,∴GAF EAF ∠=∠∵AF AF =,AE AG =,∴AFG AFE △≌△, ∴EF GF =.在Rt CFG 中,由勾股定理,可得:222GF CG CF =+,又EF GF =,CG CE =,∴222+=BE CF EF .【总结】本题综合性较强,本质上是对三角形的旋转,同时结合了勾股定理进行解题.40.如图,∆ABC 是等边三角形,P 是三角形内一点,PA=3,PB=4,PC=5,求∠APB 的度数.【难度】★★★【答案】150°.【解析】在BC 的下方作︒=∠60PBD ,在BD 上截取一点D ,使得BD=BP ,连接CD 、PD ∵︒=∠+∠60PBC ABP ,︒=∠+∠60PBC DBC ∴CBD ABP ∠=∠∵BC AB =,CBD ABP ∠=∠,BP BD = ∴CBD ABP ≌△△,∴3==AP CD∵︒=∠60PBD ,BP BD =,∴△BPD 为等边三角形,∴4==BP DP .∵435DP DC PC ===,,,∴222PC DC DP =+,∴︒=∠90PDC∴︒=∠+∠=∠150PDC BDP BDC∵CBD ABP ≌△△,∴︒=∠=∠150BDC APB【总结】考察旋转辅助线的作法和勾股定理逆定理的应用.41.如图,P 是凸四边形内一点,过点P 作AB 、BC 、CD 、DA 的垂线,垂足分别为E 、F 、G 、H ,已知AH=3,DH=4,DG=1,GC=5,CF=6,BF=4,且BE -AE=1,求四边形ABCD 的周长.【难度】★★★【答案】34.【解析】由勾股定理可得:22222PE AE PH AH AP +=+=,22222PF BF PE BE BP +=+=,22222PG CG CF PF CP +=+=,22222PH DH GP DG DP +=+=,等式相加后代入数据可得:2222222454163+++=+++AE BE ,整理得:2211BE AE -=,即()()11BE AE BE AE +-=,∵BE -AE=1,解得:65BE AE ==,. 所以周长为:3415646534+++++++=.【总结】考察勾股定理的应用,注意解题方法的合理选择.42.已知,如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,设AC=b ,BC=a ,AB=c ,CD=h . 求证:(1)c h a b +>+;(2)以a b +、c h +、h 为三边可构成一个直角三角形.【难度】★★★【解析】(1)由等面积可知:ch ab =,∵222c b a =+,∴()ch c b ab a b a 222222+=++=+,()ch h c h c 2222++=+.∵ch h c ch c 22222++<+,∴()()22h c b a +<+,∴c h a b +>+.(2)∵()ch h c h c 2222++=+;()ab b a h b a h 222222+++=++,222c b a =+,ch ab = ∴()()222b a h h c ++=+,∴以a b +、c h +、h 为三边可构成一个直角三角形.【总结】考察勾股定理及其逆定理的应用、等面积法的综合应用.43.已知直角坐标平面内的点A (4,32)、B (6,3),在x 轴上求一点C ,使得△ABC 是等腰三角形.【难度】★★★ 【答案】10704C ⎛⎫⎪⎝⎭,或()60C ,或()20C ,. 【解析】设()0C x ,,当CA=CB 时,∴()()222236234+-=⎪⎭⎫ ⎝⎛+-x x ,16107=x ,∴10704C ⎛⎫ ⎪⎝⎭,; 当CA=AB 时,∴()2222223234+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-x ,62或=x ,∴()60C ,或()20C ,; 当CB=AB 时,∴()222222336+⎪⎭⎫ ⎝⎛=+-x ,方程无解,所以不存在. 综上,满足条件的点C 的坐标为:10704C ⎛⎫ ⎪⎝⎭,或()60C ,或()20C ,. 【总结】考察两点之间距离公式的应用,注意分类讨论.44.已知点A (4,0)、B (2,-1),点C 的坐标是(x ,2-x ),若△ABC 是等腰三角形,求C 的坐标.【难度】★★★【答案】7322C ⎛⎫- ⎪⎝⎭,或C -⎝⎭或C ⎝⎭或()11C -,或()42C -,. 【解析】由两点间距离公式,可得:AB =AC ,BC 当CA=CB 时,即()()()()222221224x x x x +--+-=-+-, 解得:27=x ,∴7322C ⎛⎫- ⎪⎝⎭,; 当CA=AB 时,即()()22221224+=-+-x x ,解得:266266-+=或x ,∴C -⎝⎭或C ⎝⎭; 当CB=AB 时,即()()222221212+=+--+-x x ,解得:14x x ==或,所以()11C -,或()42C -,.综上,满足条件的C 点的坐标为:7322⎛⎫- ⎪⎝⎭,或⎝⎭或⎝⎭或()11-,或()42-,. 【总结】本题主要考察两点之间距离公式及勾股定理的应用,由于题目中并没有说明斜边是哪条边,因此要分类讨论。
【精编版】数学中考专题训练——平行四边形的判定和性质
中考专题训练——平行四边形的判定和性质1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.参考答案与试题解析1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF;(2)根据全等三角形的对应边相等即可证得.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)∵BE=DF,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.【分析】(1)只要证明DE=CF,DE∥CF即可解决问题;(2)过D作DH⊥BE于H,想办法求出DH、HF即可解决问题;【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵E是AD的中点,∴DE=AD,∵CF=BC∴DE=CF,又∵AD∥BC,∴四边形CEDF是平行四边形.(2)过D作DH⊥BE于H,在▱ABCD中,∵∠B=60°,AB∥CD,∴∠DCF=60°,∵AB=4,∴CD=4,∴CH=2,DH=2,∴FH=1,在Rt△DHF中,DF==.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC;【分析】(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC∵延长BC至点F,使CF=BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形.(2)解:∵DE∥FC,DE=FC∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF==.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?【分析】(1)方法一:证明△BAE≌△DCF,推出BE=DF,BE∥DF即可.方法二:连接BD,交AC于点O.只要证明OE=OF,OB=OD即可;(2)是平行四边形.只要证明△BAE≌△DCF即可解决问题;(3)四边形BFDE不是平行四边形.因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等;【解答】(1)证法一:∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF又∵AE=CF∴△BAE≌△DCF(SAS)∴BE=DF,∠AEB=∠CFD∴∠BEF=180°﹣∠AEB∠DFE=180°﹣∠CFD即:∠BEF=∠DFE∴BE∥DF,而BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)证法二:连接BD,交AC于点O.∵ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE是平行四边形∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF∵BE⊥AC,DF⊥AC∴∠BEA=∠DFC=90°,BE∥DF∴△BAE≌△DCF(AAS)∴BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等.5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)由(1)知,AB=DE=CD,即D是CE的中点,在直角△CEF中利用三角函数即可求得到CE的长,则求得CD,进而根据AB=CD求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,即AB∥DE,∵AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵EF⊥BC,∴∠EFC=90°.∵AB∥EC,∴∠ECF=∠ABC=60°,∴∠CEF=30°∵CF=,∴CE=2CF=2,∵四边形ABCD和四边形ABDE都是平行四边形,∴AB=CD=DE,∴CE=2AB,∴AB=.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.【答案】(1)证明见解析;(2)CD,AF,BD,AD,CF.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)根据平行四边形的性质和直角三角形的性质解答即可.【解答】(1)证明:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)解:∵四边形CDAF是平行四边形,∴AG=GC,AD=CF,∵E为AD的中点,∴EG是△ADC的中位线,∴2EG=DC,∵∠BAC=90°,AD为BC边上的中线,∴BD=DC=AD,由(1)可知,CD=AF=BD=2EG,即所有长度为2EG的线段是CD,AF,BD,AD,CF.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.(1)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,【分析】得出BC∥FG,BC=FG,证出AD∥FH,AD=FH,由平行四边形的判定方法即可得出结论;(2)由平行四边形的性质得出∠BCE=50°,再由等腰三角形的性质得出∠CBE=∠CEB,根据三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵∠BAE=70°,∴∠BCD=70°,∵∠DCE=20°,∴∠BCE=70°﹣20°=50°,∵CB=CE,∴∠CBE=∠CEB=(180°﹣50°)=65°.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.【分析】(1)先证△AEF≌△CED(AAS),得AF=CD,再由CD∥AB,即AF∥CD,即可得出结论;(2)过C作CM⊥AB于M,先证△BCM是等腰直角三角形,得BM=CM,再由含30°角的直角三角形的性质得AC=2AM,BM=CM=AM,由AM+BM=AB求出AM=2﹣2,即可求解.【解答】(1)证明:∵E是AC的中点,∴AE=CE,∵CD∥AB,∴∠AFE=∠CDE,在△AEF和△CED中,,∴△AEF≌△CED(AAS),∴AF=CD,又∵CD∥AB,即AF∥CD,∴四边形AFCD是平行四边形;(2)解:过C作CM⊥AB于M,如图所示:则∠CMB=∠CMA=90°,∵CD∥AB,∴∠B+∠DCB=180°,∴∠B=180°﹣135°=45°,∴△BCM是等腰直角三角形,∴BM=CM,∵∠BAC=60°,∴∠ACM=30°,∴AC=2AM,BM=CM=AM,∵AM+BM=AB,∴AM+AM=4,解得:AM=2﹣2,∴AC=2AM=4﹣4.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.【分析】(1)根据等边三角形的性质可得BD=DC,∠BAD=∠CAD=30°,然后证明△ADF为等边三角形,可得ED=DF,进而可以证明四边形BECF为平行四边形;(2)根据AB=6和勾股定理可得BF的长,然后证明BE=BD,进而可得四边形BECF 的周长.【解答】(1)证明:∵AD是等边△ABC的BC边上的高,∴BD=DC,∠BAD=∠CAD=30°,∵∠AED=30°,∴ED=AD,∠ADF=∠AED+∠EAD=60°,∵AF⊥AB,∴∠DAF=90°﹣∠EAD=90°﹣30°=60°,∴△ADF为等边三角形,∴AD=DF,∵ED=AD,∴ED=DF,∵BD=DC,∴四边形BECF为平行四边形;(2)∵AB=6,∴BD=3,AD=3,∵△ADF为等边三角形,∴AF=AD=3,∴BF===3,∵∠ABC=60°,∠AED=30°,∴∠BDE=30°,∴BE=BD=3,∴四边形BECF的周长为:2(BF+BE)=2(3+3)=6+6.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.【分析】(1)根据∠ADB=∠CBD=90°,可得DE∥CB,由∠AEB+∠C=180°.证明BE∥CD,进而可得四边形BEDC是平行四边形;(2)根据勾股定理先求出AD的长,再设DE=x,则EA=AD﹣DE=8﹣x,EB=EA=8﹣x.根据勾股定理列式计算得x的值,进而可以求出四边形ABCD的面积.【解答】解:(1)∵∠ADB=∠CBD=90°,∴DE∥CB,∵∠AEB+∠C=180°,∵∠AEB+∠BED=180°,∴∠C=∠BED,∴∠CDB=∠EBD,∴BE∥CD,∴四边形BEDC是平行四边形;(2)∵四边形BEDC是平行四边形.∴BC=DE,在Rt△ABD中,由勾股定理得,AD===8.设DE=x,则EA=AD﹣DE=8﹣x,∴EB=EA=8﹣x.在Rt△BDE中,由勾股定理得,DE2+DB2=EB2,∴x2+42=(8﹣x)2.解得x=3.∴BC=DE=3,∴S四边形ABCD=S△ABD+S△BDC=AD•DB+DB•BC=16+6=22.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.【分析】(1)根据已知条件证明△AED≌△BFD,可得ED=FD,可得四边形AEBF是平行四边形;(2)根据BE⊥CE,可得四边形AEBF是矩形,根据CE=2AE=4,BC=9,再利用勾股定理即可求DE的长.【解答】解:(1)四边形AEBF是平行四边形,证明:∵点D为边AB的中点,∴AD=BD,∵AE∥BF,∴∠AED=∠BFD,在△AED和△BFD中,,∴△AED≌△BFD(AAS),∴ED=FD,∵AD=BD,∴四边形AEBF是平行四边形;(2)∵BE⊥CE,∴∠AEB=90°,∴平行四边形AEBF是矩形,∴EF=AB,DE=AB,在Rt△BEC中,CE=4,BC=9,根据勾股定理,得BE2=BC2﹣CE2=92﹣42=65,在Rt△ABE中,AE=2,BE2=65,根据勾股定理,得AB===,∴DE=AB=.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.【分析】(1)由三角形的中位线定理可证得DE∥AC,由直角三角形斜边中线定理得到CE=AB,根据平行线的性质定理和等腰三角形的性质证得∠F=∠CED,进而得到AF∥CE,根据平行四边形的判定即可证得四边形ACEF是平行四边形;(2)根据直角三角形的性质得到AC=AB,由(1)知CE=AB,求得AC=CE,推出四边形ACEF为菱形,得到AE⊥CF,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵BD=CD,BE=AE,∴DE∥AC,∴∠AEF=∠EAC,∠CED=∠ECA,∵∠ACB=90°,BE=AE,∴CE=AE,∴∠EAC=∠ECA,∵AF=AE,∴∠F=∠AEF,∴∠F=∠CED,∴AF∥CE,∴四边形ACEF是平行四边形;(2)解:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE=BE,又∵四边形ACEF为平行四边形∴四边形ACEF为菱形,∴AE⊥CF,∵CE=BE,∴∠B=∠DCE=30°,∴∠BED=∠BAC=60°,∵DF∥AC,∠BDE=∠ACB=∠CDE=90°,∴BD=CD=DE,∵∠DEB=∠FEG=∠CEG=60°,∴∠CED=60°,∴∠FEG=∠CED,∵EF=CE,∠EGF=∠CDE=90°,∴△EFG≌△CED(AAS),∴EG=DE,FG=CD,∴FG=DE,∵CG=FG,∴CG=DE,∴等于线段DE的长度的倍的线段是FG,CG,CD,DB.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.【分析】(1)只要证明AD∥FG,AF∥DG即可;(2)根据三角形的中位线的性质和平行四边形的性质即可得到结论.【解答】(1)证明:如图,∵EB=BF,EC=CH,∴BC∥FH,BC=FH,∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴∠DAF+∠AFG=180°,∵∠ADG=∠AFG,∴∠DAF+∠ADG=180°,∴AF∥CD,∴四边形AFHD是平行四边形;(2)∵四边形ABCD为平行四边形,∴AD=BC,∵BF=BE,CH=CE,∴BC=FH,∴AD=FH,∵四边形AFHD是平行四边形,∴FG=AD=FH,∴HG=FH,∴长度为FH的一半的所有线段为:AD,BC,FG,HG.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).【分析】(1)由CN∥AB,MA=MC,易证得△AMD≌△CMN,则可得MD=MN,即可证得:四边形ADCN是平行四边形.(2)由∠AMD=2∠MCD,可证得四边形ADCN是矩形,又由∠ACB=90°,AC=BC,可得四边形ADCN是正方形,继而求得答案.【解答】(1)证明:∵CN∥AB,∴∠DAM=∠NCM,在△ADM和△CNM中,,∴△AMD≌△CMN(ASA),∴MD=MN,∴四边形ADCN是平行四边形.(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MC=MD,∴AC=DN,∴▱ADCN是矩形,∵AC=BC,∴AD=BD,∵∠ACB=90°,∴CD=AD=BD=AB,∴▱ADCN是正方形,∴AN=AD=BD=CD=CN.15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.【分析】(1)求出AP=BQ和AP∥BQ,根据平行四边形的判定得出即可;(2)求出高AM和ON的长度,求出△DOC和△OQC的面积,再求出答案即可.【解答】解:(1)当t=2.5s时,四边形ABQP是平行四边形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=3cm,AD=BC=5cm,AO=CO,BO=OD,∴∠P AO=∠QCO,在△APO和△CQO中∴△APO≌△CQO(ASA),∴AP=CQ=2.5cm,∵BC=5cm,∴BQ=5cm﹣2.5cm=2.5cm=AP,即AP=BQ,AP∥BQ,∴四边形ABQP是平行四边形,即当t=2.5s时,四边形ABQP是平行四边形;(2)过A作AM⊥BC于M,过O作ON⊥BC于N,∵AB⊥AC,AB=3cm,BC=5cm,∴在Rt△ABC中,由勾股定理得:AC=4cm,∵由三角形的面积公式得:S△BAC==,∴3×4=5×AM,∴AM=2.4(cm),∵ON⊥BC,AM⊥BC,∴AM∥ON,∵AO=OC,∴MN=CN,∴ON=AM=1.2cm,∵在△BAC和△DCA中∴△BAC≌△DCA(SSS),∴S△DCA=S△BAC==6cm2,∵AO=OC,∴△DOC的面积=S△DCA=3cm2,当t=4s时,AP=CQ=4cm,∴△OQC的面积为 1.2cm×4cm=2.4cm2,∴y=3cm2+2.4cm2=5.4cm2.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.【分析】(1)根据全等三角形的性质和判定求出AF=CD,求出AF=BD,根据平行四边形的判定推出即可;(2)求出四边形AFBD的矩形,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AFE和△DCE中∴△AFE≌△DCE(AAS),∴AF=CD,∵BD=CD,∴BD=AF,∵AF∥BC,∴四边形AFBD是平行四边形;(2)解:∵AB=AC,CD=BD,∴AD⊥BC,∴∠ADB=90°,∵四边形AFBD是平行四边形,∴四边形AFBD是矩形,∵AB=AC=13,BD=5,∴由勾股定理得:AD==12,∴四边形AFBD的面积是12×5=60.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.【分析】(1)利用平行四边形得判定和性质证明;(2)利用全等三角形的判定求解.【解答】解:(1)∵AD=BC,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC;(2)BG=y,DE=t,当0≤t≤时,CF=3t,则BF=8﹣3t,∵AD∥BC,∴∠DBC=∠ADB,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或(不合题意,舍去),当<t≤时,则BF=3t﹣8,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或,所以△DEG与△BFG全等的情况出现了三次,第一次是2秒时,y=6,第二次是4秒时,y=6,第三次是5秒时,y=5.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为PE+PF=AB.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.【分析】(1)先求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PF=AE,再根据两直线平行,同位角相等可得∠BPE=∠C,然后求出∠B=∠BPE,利用等角对等边求出PE=BE,然后求解即可;(2)根据等边对等角可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后求出∠C=∠CDE,再根据等角对等边可得CE=PD+PE,然后求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PE=AF,然后求出PD+PE+PF=AC,等量代换即可得证;(3)证明思路同(2).【解答】解:(1)答:PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PF AE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PE+PF=AB;故答案为:PE+PF=AB(2)证明:∵AB=AC,∴∠B=∠C,∵PE∥AB,∴∠B=∠CDE,∴∠C=∠CDE,∴CE=PD+PE,∵PF∥AC,PE∥AB,∴四边形PF AE是平行四边形,∴PE=AF,∴PD+PE+PF=AC,∴PD+PE+PF=AB;(3)证明:同(2)可证DE=CE,PE=AF,∵AE+CE=AC,∴PF+PE﹣PD=AC,∴PE+PF﹣PD=AB.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB =AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)由(1)知AC=CF,根据三角形的中位线的性质得到DQ=FQ,根据直角三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)由(1)知AC=CF,∵CQ∥AD,∴DQ=FQ,∵在Rt△DAF与Rt△DEF中,∴AQ=EQ=DF.。
二次函数与实际问题
第十二讲 二次函数与实际问题(建模类)例1(2012年武汉市中考第23题)已知河底ED 是水平的,ED=16米,AE=8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系。
(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h(单位:米)随时间t (单位:时)的变化满足函数关系 h=-1281(t-19)2+8(0≤t≤40) 且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这个时段内,需多少小时禁止船只通行?例2 一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如下图的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?例3如图是一种新型的滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图象的一局部,滑道BCD是二次函数图象的一局部,两滑道的连接点B为抛物线的顶点,且B点到地面的距离为2米,当甲同学滑到C点时,距地面的距离为1米,距点B的水平距离CE也为1米.(1)试求滑道BCD所在抛物线的解析式.(2)试求甲同学从点A滑到地面上D点时,所经过的水平距离.例4如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,假如该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?C B DA二次函数与实际问题(建模类)专练1 如图,某建筑物的外形能够视作由两条线段AB ,BC 和一条曲线围成的封闭的平面图形.已知AB ⊥BC ,曲线是以点D 为顶点的抛物线的一局部,BC =6m ,点D 到BC ,AB 的距离分别为4m 和2m .(1) 请以BC 所在直线为x 轴(射线BC 的方向为正方向),AB 所在直线为y 轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2) 求AB 的长.2有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m .(1)在如下图的直角坐标系中,求出该抛物线的解析式;(2)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.3如图,小区中央公园要修建一个圆形的喷水池,在水池中央垂直于地面安装一个柱子OA,O恰好在水面的中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计水流在离OA距离为1米处达到距水面的最大高度2.25米.(1)建立适当的平面直角坐标系,使A点的坐标为(0,1.25),水流的最高点的坐标为(1,2.25),求水流的抛物线路线在第一象限内对应的函数关系式(不要求写取值范围);(2)若不计其他因素,则水池的半径至少要多少米,才能使喷出的水流不至于落到池外?(3)若水流喷出的抛物线形状与(1)相同,水池半径为3.5米,要使水流不落到池外,此时水流距水面的最大高度就达到多少米?4施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.第十三讲二次函数与实际问题(利润类)1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件.设该商店这段时间内的利润为y元.(1)直接写出利润y与售价x之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?2九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1) 求出y与x的函数关系式(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果3某商场将进货价为30元的书包以40元售出,平均每月能售出600个.调查说明:这种书包的售价每上涨1元,其销售t就减少10个.(1)请写出每月售出书包的利润y(元与每个书包涨价x(元)间的函数关系式;(2)设某月的利润为10000元,此利润是否为该月的最大利润,请说明理由;(3)请分析并回答售价在什么范围内商家获得的月利润不低于6000元.4某宾馆有50个房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍).(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2) 设宾馆一天的利润为w元,求w与x的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大? 最大利润是多少元?二次函数与实际问题(利润类)专练1某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。
2024年中考第一轮复习直角三角形 课件
[解析] 设AB=x,则AC=x-2.由勾股定理,
.
得x2-(x-2)2=82.解得x=17.
■ 知识梳理
勾股定理
直角三角形两条直角边的平方和等于⑥ 斜边的平方
勾股定理
如果三角形中两边的平方和等于第三边的⑦ 平方 ,那么这个三角形
的逆定理 是直角三角形
勾股数
能够成为直角三角形三条边长的三个正整数,称为勾股数
∴AD=BC,∠A=∠B=∠CFE=90°,AB∥CD,∴∠AED=∠CDF,∠A=∠CFD=90°,
AD=CF,∴△ADE≌△FCD,∴ED=CD=x,∴FD=x-1,
在Rt△CFD中,FD2+CF2=CD2,∴(x-1)2+32=x2,解得x=5,∴CD=5.故选B.
考向三
勾股定理与拼图
例 3 [2020·孝感]如图 19-11①,四个全等的直角三角形围成一个大正方形,中间是个
图19-6
∴∠BEC=90°,∠BFC=90°,
1
2
∵G 是 BC 的中点,∴EG=FG= BC=5,
∵D 是
1
EF 的中点,∴ED= EF=3,GD⊥EF,
2
∴∠EDG=90°.在 Rt△ EDG 中,
由勾股定理得,DG= 2 - 2 =4,故答案为 4.
考向二
利用勾股定理进行计算
例2 [2020·宜宾]如图19-7,在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分
∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是
.
图19-7
【方法点析】勾股定理是求线段长的重要工具,主要应用:(1)已知直角三角形的
两边长求第三边长;(2)已知直角三角形的一边长求另两边的关系;(3)用于证明平
AE中实现3D动画渲染的步骤与技巧
AE中实现3D动画渲染的步骤与技巧AE是指Adobe After Effects,是业界一款常用的影视后期制作软件。
它强大的特效功能和丰富的插件资源使得它成为了3D动画制作的首选工具之一。
下面将介绍AE中实现3D动画渲染的步骤与技巧。
首先,打开AE软件并创建一个新的合成。
在AE界面的顶部菜单栏中选择"文件" -> "新建" -> "合成",或者直接按下快捷键Ctrl + N。
在弹出的窗口中设置合成的宽度、高度、帧率和时长等参数,然后点击确定。
接下来,导入3D模型。
在AE中可以导入各种不同格式的3D模型文件,如.obj、.fbx等。
选择"文件" -> "导入" -> "文件",或者直接按下快捷键Ctrl + I,找到并选择所需的3D模型文件进行导入。
然后,将导入的3D模型添加到合成中。
在AE的项目面板中选中导入的3D模型文件,然后拖拽到合成面板中的时间轴上。
可以通过调整时间轴上的起始帧和结束帧来控制3D模型的出现和消失时间。
接着,添加相机。
在AE中,相机是用来模拟3D空间的元素,可以通过相机的视角来观察和控制3D场景。
选择"图层" -> "新建" -> "相机",或者直接按下快捷键Ctrl + Alt + Shift + C,创建一个新的相机图层。
可以通过调整相机的位置、焦距和方向等属性来调整视角。
然后,设置光源。
在AE中,光源用来给3D模型提供照明效果,使得模型在场景中有逼真的光影效果。
选择"图层" -> "新建" -> "灯光",或者直接按下快捷键Ctrl + Alt + Shift + L,创建一个新的灯光图层。
三角形全等的判定方法压轴题五种模型全攻略(解析版)
三角形全等的判定方法压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一用SAS证明两三角形全等】【考点二用ASA证明两三角形全等】【考点三用AAS证明两三角形全等】【考点四用SSS证明两三角形全等】【考点五添一个条件使两三角形全等】【过关检测】【典型例题】【考点一用SAS证明两三角形全等】1(2023春·江苏苏州·七年级校联考阶段练习)如图,在△ABC中,AC>AB,射线AD平分∠BAC,交BC 于点E,点F在边AB的延长线上,AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.【答案】(1)证明见解析(2)80°【分析】(1)由射线AD平分∠BAC,可得∠CAE=∠FAE,进而可证△AEC≌△AEF SAS;(2)由△AEC≌△AEF SAS,可得∠C=∠F,由三角形外角的性质可得∠AEB=∠CAE+∠C=50°,则∠FAE+∠F=50°,根据∠FAE+∠F+∠AEB+∠BEF=180°,计算求解即可.【详解】(1)证明:射线AD平分∠BAC,∴∠CAE=∠FAE,在△AEC和△AEF中,∵AC=AF∠CAE=∠FAEAE=AE,∴△AEC≌△AEF SAS;(2)解:∵△AEC≌△AEF SAS,∴∠C =∠F ,∵∠AEB =∠CAE +∠C =50°,∴∠FAE +∠F =50°,∵∠FAE +∠F +∠AEB +∠BEF =180°,∴∠BEF =80°,∴∠BEF 为80°.【点睛】本题考查了角平分线,全等三角形的判定与性质,三角形外角的性质,三角形内角和定理.解题的关键在于对知识的熟练掌握与灵活运用.【变式训练】1(2023春·云南昭通·九年级校考阶段练习)如图,点A 、C 、F 、D 在同一直线上,AF =DC ,∠A =∠D ,AB =DE .求证:△ABC ≌△DEF.【答案】见解析【分析】由AF =CD ,可求得AC =DF ,利用SAS 可得出结论.【详解】解:∵ AF =CD ,∴AF -FC =CD -FC ,即AC =DF ,在△ABC 和△DEF 中,AB =DE∠A =∠D AC =DF,∴△ABC ≌△DEF (SAS ).【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.2(2023春·四川成都·七年级统考期末)如图在△ABC 中,D 是BC 边上的一点,AB =DB ,BE 平分∠ABC ,交AC 边于点E ,连接DE.(1)求证:△ABE ≌△DBE ;(2)若∠A =100°,∠C =40°,求∠DEC 的度数.【答案】(1)证明见解析(2)60°【分析】(1)根据BE 平分∠ABC ,可得∠ABE =∠DBE ,进而利用SAS 证明△ABE ≌△DBE 即可;(2)根据全等三角形的性质可得∠BDE =∠A =100°,再由三角形外角的性质即可求解.【详解】(1)解:∵BE 平分∠ABC ,∴∠ABE =∠DBE .∵AB=DB,BE=BE,∴△ABE≌△DBE SAS;(2)解:∵△ABE≌△DBE,∴∠BDE=∠A=100°,∴∠DEC=∠BDE-∠C=60°.【点睛】本题主要考查了全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.3(2023春·江苏泰州·七年级统考期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连接BD、CE.(1)求证:△ABD≌△ACE.(2)图中BD和CE有怎样的关系?试证明你的结论.【答案】(1)见详解(2)见详解【分析】(1)先证明∠BAD=∠EAC,又因为AB=AC,AD=AE,即可求出三角形全等;(2)根据△ABD≌△ACE,得到∠ACE=∠ABD,进而证得∠ABD+∠DBC+∠ACB=90°,等量代换得∠ACE+∠DBC+∠ACB=90°即∠ECB+∠DBC=90°,再利用内角和,即可证明垂直.【详解】(1)解:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD∴∠BAD=∠EAC∵AB=AC,AD=AE∴△ABD≌△ACE.(2)解:如图,设BD和CE交点为F∵△ABD≌△ACE∴∠ACE=∠ABD∵∠BAC=90°∴∠ABD+∠DBC+∠ACB=90°∴∠ACE+∠DBC+∠ACB=90°即∠ECB+∠DBC=90°∴∠BFC=180°-∠ECB+∠DBC=90°∴BD⊥CE.【点睛】此题考查全等三角形的判定和性质,和角与角之间关系,解题的关键是根据SAS三角形全等.4(2023·江苏南通·统考一模)如图,点A,B,C,D在同一条直线上,AB=CD=13BC,AE=DF,AE∥DF.(1)求证:△AEC ≌△DFB ;(2)若S △AEC =6,求四边形BECF 的面积.【答案】(1)见解析(2)9【分析】(1)由AE ∥DF ,得∠A =∠D ,进一步证得AC =DB ,根据边角边求证△AEC ≌△DFB SAS ;(2)以AC 为底作EH 为高,则S △AEC =12EH ∙AC ,S △BCE =12EH ·BC ,由AB =CD =13BC ,求得S △BEC =34S △AEC=4.5;求证△BEC ≌△CFB SAS ,得S △BEC =S △CFB ,所以S 四边形BECF =2S △BEC =9.【详解】(1)证明:∵AE ∥DF ,∴∠A =∠D ,∵AB =CD ,∴AC =DB ,在△AEC 和△DFB 中,AE =DF∠A =∠DAC =DB∴△AEC ≌△DFB SAS ;(2)解:在△AEC 中,以AC 为底作EH 为高,∴S △AEC =12EH ∙AC ,S △BCE =12EH ∙BC ,∵AB =CD =13BC ,∴AC =43BC ,∵S △AEC =6,∴S △BEC =34S △AEC =4.5,∵△AEC ≌△DFB ,∴∠ACE =∠DBF ,EC =FB ,在△BEC 和△CFB 中,EC =FB∠BCE =∠CBF BC =CB,∴△BEC ≌△CFB SAS ,∴S △BEC =S △CFB ,∴S 四边形BECF =2S △BEC =9.【点睛】本题考查平行的性质,全等三角形的判定和性质,三角形面积计算;能够灵活运用全等三角形性质是解题的关键.【考点二用ASA 证明两三角形全等】1(2023春·广东惠州·八年级校考期中)如图,BC ∥EF ,点C ,点F 在AD 上,AF =DC ,∠A =∠D .求证:△ABC ≌△DEF.【答案】见解析【分析】首先根据平行线的性质可得∠ACB =∠DFE ,利用等式的性质可得AC =DF ,然后再利用ASA 判定△ABC ≌△DEF 即可.【详解】证明:∵BC ∥EF ,∴∠ACB =∠DFE ,∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,在△ABC 和△DEF 中,∠A =∠DAC =DF ∠ACB =∠DFE,∴△ABC ≌△DEF ASA .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD =BE ,∠A =∠EDF ,∠E =∠ABC .求证:AC =DF.【答案】见解析【分析】由AD =BE 知AB =ED ,结合∠A =∠EDF ,∠E =∠ABC ,依据“ASA ”可判定△ABC ≌△DEF ,依据两三角形全等对应边相等可得AC =DF .【详解】证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =ED ,在△ABC 和△DEF 中,∠ABC =∠EAB =ED ∠A =∠EDF,∴△ABC≌△DEF ASA,∴AC=DF.【点睛】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.2(2023·浙江温州·温州市第八中学校考三模)如图,在△ABC和△ECD中,∠ABC=∠EDC=90°,点B为CE中点,BC=CD.(1)求证:△ABC≌△ECD.(2)若CD=2,求AC的长.【答案】(1)见解析(2)4,见解析【分析】(1)根据ASA判定即可;(2)根据△ABC≌△ECD ASA和点B为CE中点即可求出.【详解】(1)证明:∵∠ABC=∠EDC=90°,BC=CD,∠C=∠C,∴△ABC≌△ECD ASA(2)解:∵CD=2,△ABC≌△ECD ASA,∴BC=CD=2,AC=CE,∵点B为CE中点,∴BE=BC=CD=2,∴CE=4,∴AC=4;【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定条件是解答本题的关键.【考点三用AAS证明两三角形全等】1(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠CED=∠BAD.求证:△ABC≌△DEA【答案】证明见解析【分析】根据平行线的性质,得到∠DAC=∠C,再根据三角形外角的性质,得出∠D=∠BAC,即可利用“AAS”证明△ΑBC≌△DEA.【详解】证明:∵BC∥AD,∴∠DAC=∠C,∵∠CED=∠BAD,∠CED=∠D+∠DAC,∠BAD=∠DAC+∠BAC,∴∠D=∠BAC,在△ABC和△DEA中,∠BAC=∠D ∠C=∠DAC BC=AE,∴△ΑBC≌△DEA AAS.【点睛】本题考查了全等三角形的判定,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定定理是解题关键.【变式训练】1(2023·浙江温州·统考二模)如图,AB=BD,DE∥AB,∠C=∠E.(1)求证:△ABC≅△BDE.(2)当∠A=80°,∠ABE=120°时,求∠EDB的度数.【答案】(1)见解析(2)40°【分析】(1)根据平行线的性质,利用三角形全等的判定定理即可证明;(2)根据三角形全等的性质和平行线的性质即可求解【详解】(1)解:∵DE∥AB,∴∠BDE=∠ABC,又∵∠E=∠C,BD=AB,∴△ABC≅△BDE.(2)解:∵∠A=80°,△ABC≅△BDE,∴∠A=∠BDE=80°,∵∠ABE=120°,∴∠ABD=40°,∵DE∥AB,∴∠EDB=40°.【点睛】本题考查了平行线的性质,三角形全等的判定和性质,熟练掌握各知识点,利用好数形结合的思想是解本题的关键.2(2023秋·八年级课时练习)如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)求证:△ACD ≌△BEC ;(2)求证:AB =AD +BE .【答案】(1)见解析(2)见解析【分析】(1)由∠DCE =∠A 得∠D +∠ACD =∠ACD +∠BCE ,即∠D =∠BCE ,从而即可证得△ACD ≌△BEC ;(2)由△ACD ≌△BEC 可得AD =BC ,AC =BE ,即可得到AC +BC =AD +BE ,从而即可得证.【详解】(1)证明:∵∠DCE =∠A ,∴∠D +∠ACD =∠ACD +∠BCE ,∴∠D =∠BCE ,在△ACD 和△BEC 中,∠A =∠B∠D =∠BCE CD =EC,∴△ACD ≌△BEC AAS ;(2)解:∵△ACD ≌△BEC ,∴AD =BC ,AC =BE ,∴AC +BC =AD +BE ,∴AB =AD +BE .【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.【考点四用SSS 证明两三角形全等】1(2023·云南玉溪·统考三模)如图,点B ,E ,C ,F 在一条直线上,AB =DF ,AC =DE ,BE =CF ,求证:△ABC ≌△DFC.【答案】见解析【分析】根据题意,运用“边边边”的方法证明三角形全等.【详解】证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF ,在△ABC 和△DFE 中,AB =DFAC =DEBC =FE∴△ABC ≌△DFE (SSS ).【点睛】本题主要考查三角形全等的判定,掌握全等三角形的判定方法解题的关键.【变式训练】1(2023·云南·统考中考真题)如图,C 是BD 的中点,AB =ED ,AC =EC .求证:△ABC ≌△EDC.【答案】见解析【分析】根据C 是BD 的中点,得到BC =CD ,再利用SSS 证明两个三角形全等.【详解】证明:∵C 是BD 的中点,∴BC =CD ,在△ABC 和△EDC 中,BC =CDAB =ED AC =EC,∴△ABC ≌△EDC SSS 【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.2(2023春·全国·七年级专题练习)如图,已知∠E =∠F =90°,点B ,C 分别在AE ,AF 上,AB =AC ,BD =CD.(1)求证:△ABD ≌△ACD ;(2)求证:DE =DF .【答案】(1)见解析(2)见解析【分析】(1)直接根据SSS 证明即可.(2)根据(1)得∠EAD =∠FAD ,然后证明△AED ≌△AFD 即可.【详解】(1)解:证明:在△ABD 和△ACD 中,AB =ACAD =AD BD =CD∴△ABD ≌△ACD (SSS ).(2)解:由(1)知△ABD ≌△ACD (SSS ),∴∠EAD =∠FAD ,在△AED和△AFD中,∠E=∠F∠EAD=∠FAD AD=AD∴△AED≌△AFD(AAS),∴DE=DF.【点睛】本题考查了全等三角形的性质与判定,熟记全等三角形的性质与判定是解题关键.【考点五添一个条件使两三角形全等】1(2023春·宁夏银川·七年级校考期末)如图,在△ABC和△FED中,AD=FC,∠A=∠F,要使△ABC≌△FED,需添加的一个条件是.【答案】AB=EF(∠B=∠E或∠ACB=∠FDE答案不唯一)【分析】要使△ABC≌△FED,现有一边一角分别对应相等,还少一个条件,可结合图形选择利用求解即可.【详解】解:∵AD=FC,∴AC=FD又∵∠A=∠F,∴添加AB=EF,利用SAS可以证明△ABC≌△FED;添加∠B=∠E,利用AAS可以证明△ABC≌△FED;添加∠ACB=∠FDE,利用ASA可以证明△ABC≌△FED故答案为:AB=EF(∠B=∠E或∠ACB=∠FDE(.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.【变式训练】1(2023·北京大兴·统考二模)如图,点B,E,C,F在一条直线上,AC∥DF,BE=CF,只需添加一个条件即可证明△ABC≌△DEF,这个条件可以是(写出一个即可).【答案】AC=DF或∠A=∠D或∠ABC=∠DEF或AB∥DE(答案不唯一).【分析】根据SAS,AAS或ASA添加条件即可求解.【详解】解:∵AC∥DF,∴∠ACB=∠DFE,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,则有边角AS两个条件,要添加一个条件分三种情况,(1)根据“SAS”,则可添加:AC=DF,(2)根据“ASA”,则可添加:∠ABC=∠DEF或AB∥DE,(3)根据“AAS”,则可添加:∠A=∠D,故答案为:AC=DF或∠ABC=∠DEF或AB∥DE或∠A=∠D(答案不唯一).【点睛】本题考查了全等三角形的判定,解此题的关键是熟练掌握全等三角形的几种判断方法.2(2023春·山东青岛·七年级统考期末)如图,点E,F在BC上,BE=CF,∠AFB=∠DEC,请你添加一个条件(不添加字母和辅助线),使得△ABF≌△DCE,你添加的条件是.【答案】AF=DE或∠ABF=∠DCE或∠A=∠D【分析】本题要判定△ABF≌△DCE,已知∠AFB=∠DEC,由BE=CF可得BF=CE,那么只需添加一个条件即可.添边可以是AF=DE或添角可以是∠ABF=∠DCE或∠A=∠D.【详解】解:所添加条件为:AF=DE或∠ABF=∠DCE或∠A=∠D,∵BE=CF,∴BE+EF=CF+EF,即BF=CE,添加:AF=DE,在△ABF和△DCE中,AF=DE∠AFB=∠DECBF=CE,∴△ABF≌△DCE SAS;添加:∠ABF=∠DCE,在△ABF和△DCE中,∠ABF=∠DCEBF=CE∠AFB=∠DEC,∴△ABF≌△DCE ASA添加:∠A=∠D,在△ABF和△DCE中,∠A=∠D∠AFB=∠DECBF=CE,∴△ABF≌△DCE AAS.故答案为:AF=DE或∠ABF=∠DCE或∠A=∠D.【点睛】本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3(2023秋·八年级课前预习)如图,AB=AC,D,E分别是AB,AC上的点,要使△ABE≌△ACD,则还需添加的条件是.(只需填写一个合适的条件即可,图中不能再添加其他点或线)【答案】AE=AD或∠B=∠C或∠AEB=∠ADC(答案不唯一)【分析】根据全等三角形的判定方法即可求解.【详解】解:①∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS),∴添加的条件为AE=AD;②∵∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA),∴添加的条件为∠B=∠C;③∵∠A=∠A,∠AEB=∠ADC,AB=AC,∴△ABE≌△ACD(ASA),∴添加的条件为∠AEB=∠ADC;综上所述,添加的条件为AE=AD或∠B=∠C或∠AEB=∠ADC,故答案为:AE=AD或∠B=∠C或∠AEB=∠ADC(答案不唯一).【点睛】本题主要考查全等三角形的判定,掌握以上知识是解题的关键.【过关检测】一、单选题1(2023春·四川达州·七年级四川省大竹中学校考期末)如图,已知BE=DF,AF∥CE,不能使△ABF≌△CDE的是()A.BF=DEB.AF=CEC.AB∥CDD.∠A=∠C【答案】A【分析】根据BE =DF ,可得BF =DE ,根据AF ∥CE ,可得∠AFE =∠CEF ,由等角的补角相等可得∠AFB =∠CED ,然后根据全等三角形的判定定理逐一判断即可.【详解】解:∵BE =DF ,∴BF =DE ,∵AF ∥CE ,∴∠AFE =∠CEF ,∴∠AFB =∠CED .A 、添加BF =DE 时,不能判定△ABF ≌△CDE ,故选项符合题意;B 、添加AF =CE ,根据SAS ,能判定△ABF ≌△CDE ,故选项不符合题意;C 、由AB ∥CD 可得∠B =∠D ,所以添加AB ∥CD ,根据ASA ,能判定△ABF ≌△CDE ,故选项不符合题意;D 、添加∠A =∠C ,根据AAS ,能判定△ABF ≌△CDE ,故选项不符合题意;故选:A .【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2(2023秋·河南漯河·八年级校考期末)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=42°,则∠BDE 的度数为()A.71°B.69°C.67°D.65°【答案】B【分析】证明△BED ≌△AEC ,得到DE =CE ,∠C =∠BDE 等边对等角,求出∠C 的度数,即可.【详解】解:∵∠A =∠B ,∠BOE =∠AOD ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴∠BED =∠AEC ,又AE =BE ,∴△BED ≌△AEC ,∴DE =CE ,∠C =∠BDE ,∴∠CDE =∠C =12180°-∠1 =69°,∴∠BDE =69°.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质.解题的关键是证明三角形全等.3(2023春·辽宁丹东·八年级校考期中)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.42°B.74°C.84°D.96°【答案】D【分析】根据等腰三角形的性质得出两个底角相等,根据三角形全等的判定定理得出∠AMK=∠BKN,根据三角形的外角性质得出∠A的度数,即可得答案.【详解】解:∵PA=PB,∴∠A=∠B,∵AM=BK,BN=AK,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=42°,∴∠P=180°-2×42°=96°.故选:D.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理及三角形外角性质,熟练掌握相关判定定理及性质是解题关键.二、填空题4(2023春·山东青岛·七年级统考期末)如图,∠l=∠2,现要添加一个条件使△ABD≌△ACD,可以添加.(只添一个即可).【答案】CD=BD(答案不唯一)【分析】根据三角形全等的判定方法进行解答即可.【详解】解:∵∠l=∠2,∴180°-∠1=180°-∠2,即∠ADC =∠ADB ,∵AD =AD ,∴添加条件CD =BD ,根据SAS 证明△ABD ≌△ACD ;添加条件∠C =∠B ,根据AAS 证明△ABD ≌△ACD ;添加条件∠CAD =∠BAD ,根据ASA 证明△ABD ≌△ACD .故答案为:CD =BD (答案不唯一).【点睛】本题主要考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法,SAS ,AAS ,ASA ,HL ,SSS .5(2023秋·湖南娄底·八年级统考期末)如图,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D .下面四个结论:①∠ABE =∠BAD ;②△CBE ≌△ACD ;③AB =CE ;④AD -BE =DE ,其中正确的有.【答案】①②④【分析】由BE ⊥CE 于E ,AD ⊥CE 于D ,得BE ∥AD ,则∠ABE =∠BAD ,可判断①正确;根据“同角的余角相等”推导出∠BCE =∠CAD ,即可证明△CBE ≌△ACD ,可判断②正确;由垂线段最短可证明AB >BC ,BC >CE ,则AB >CE ,可判断③错误;由CE =AD ,BE =CD ,且CE -CD =DE ,得AD -BE =DE ,可判断④正确,于是得到问题的答案.【详解】∵BE ⊥CE ,AD ⊥CE ,∴AD ∥BE ,∴∠ABE =∠BAD ,故①正确;∵∠E =∠ADC =∠ACB =90°,∴∠BCE =∠CAD =90°-∠ACD ,在△CBE 和△ACD 中,∠E =∠ADC∠BCE =∠CAD BC =CA,∴△CBE ≌△ACD AAS ,故②正确;∵BC ⊥AC ,CE ⊥BE ,∴AB >BC ,BC >CE ,∴AB >CE ,故③错误;∵△CBE ≌△ACD ,∴CE =AD ,BE =CD ,∵CE -CD =DE ,∴AD -BE =DE ,故④正确;故答案为:①②④.【点睛】此题考查了同角的余角相等、垂线段最短、平行线的判定与性质、全等三角形的判定与性质等知识,证明∠BCE =∠CAD 及△CBE ≌△ACD 是解题的关键.6(2023秋·江苏淮安·八年级淮安市浦东实验中学校考开学考试)如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.如果点P在线段BC上以4cm/s的速度由B点向C点运动.同时,点Q在线段CD上以acm/s的速度由C点向D点运动.当a=时,△EBP和△PCQ全等.【答案】4或24 5【分析】分两种情况:当△EBP≌△PCQ时和当△EBP≌QCP时,根据边对应相等,分别求出a的值即可.【详解】解:当△EBP≌△PCQ时,此时BE=CP,BP=CQ,则有BP=4t=at,CP=BC-BP=10-4t=6,此时t=1,a=4,当△EBP≌QCP时,此时BE=CQ,BP=CP,则有CQ=at=6,CP=BC-BP=10-4t=4t,此时t=54,a=245,综上所述,a的值为4或24 5,故答案为:4或24 5.【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的性质,采用分类讨论的思想是解题的关键.三、解答题7(2023春·上海嘉定·七年级校考期末)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB;(2)如果∠BDC=75°,求∠ADB的度数.【答案】(1)见解析(2)∠ADB=30°【分析】(1)由平行线性质可得∠ADB=∠CBE,再由ASA可证△ABD≌△ECB;(2)由全等三角形的性质可得BD=BC,由等腰三角形的性质可求出∠DBC=30°,再由两直线平行内错角相等即可求解.【详解】(1)证明∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,∠A=∠BECAD=BE∠ADB=∠CBE,∴△ABD≌△ECB ASA;(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=75°,∴∠DBC=180°-∠BDC-∠BCD=30°,∵AD∥BC,∴∠ADB=∠DBC=30°.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,三角形内角和,熟练掌握两直线平行内错角相等是解答本题的关键.8(2023秋·江苏·八年级校考周测)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)试说明AE=CD;(2)若AC=12cm,求BD的长.【答案】(1)见解析(2)BD=6cm【分析】(1)由题意可得∠D+∠DCB=90°,∠DCB+∠AEC=90°,即∠D=∠AEC,根据“AAS”可证△DBC≌△ECA,可得;(2)先求出,然后根据全等三角形的性质即可求解.【详解】(1)∵,,∴,,∴,∵,,∴,∴;(2)∵,,∴.∵是边上的中线,∴.∵,∴.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.9(2023秋·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考开学考试)如图所示,在中,于D,于E,与交于点F,且.(1)求证:;(2)已知,求的长.【答案】(1)见解析(2)【分析】(1)根据垂直的定义得出,再根据同角的余角相等得出,然后由证明即可;(2)由全等三角形的性质得出,再根据线段的和差即可解决问题.【详解】(1)证明:∵,,∴,∴,∴,在和中∴,(2)解:∵,∴,∵,∴,∴;【点睛】此题考查了全等三角形的判定与性质的应用,证明三角形全等是解决问题的关键,属于中考常考题型.10(2023春·四川成都·七年级成都实外校考期末)已知:如图,点是等边三角形内一点,且,外一点满足,平分.(1)求证:;(2)求的度数.(3)若,试判断与的位置关系,并说明理由.【答案】(1)见解析(2)(3),理由见解析【分析】(1)由三角形是等边三角形和可得,由角平分线的性质可得,由“”即可证明;(2)由三角形是等边三角形和可得,,由“”证明,从而得到,再由,;(3)由全等三角形的性质可得,由等腰三角形的性质可得,令交于点,通过计算得出,最后由三角形内角和定理可得出,从而得到答案.【详解】(1)证明:三角形是等边三角形,,,,平分,,在和中,,;(2)解:三角形是等边三角形,,,在和中,,,,,,由(1)得,,;(3)解:,理由如下:由(1)得,,,由(2)得,,,,,,如图,令交于点,,则,,,.【点睛】本题主要考查了等边三角形的性质、三角形全等的判定与性质、等腰三角形的性质、三角形内角和定理、角平分线的性质,熟练掌握等边三角形的性质、三角形全等的判定与性质、等腰三角形的性质、三角形内角和定理、角平分线的性质,是解题的关键.11(2023春·四川达州·七年级校考期末)如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.(1)当时,,;点从向的运动过程中,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由.(3)在点的运动过程中,与的长度可能相等吗?若可以,请直接写出的度数,请说明理由.【答案】(1);;小;(2),理由见解析;(3)可能相等,,理由见解析【分析】(1)现根据邻补角的定义,得到,进而得到,然后利用三角形内角和定理,得到,,又因为点从向的运动过程中,逐渐增大,所以逐渐变小;(2)利用三角形内角和定理,得到,根据平角的性质,得到,进而得到,再根据“”证明,即可得到答案;(3)根据等边对等角的性质,得到,再利用三角形内角和定理,得出,由三角形外角的性质,得到,进而得到,最后利用邻补角,即可求出的度数.【详解】(1)解:,,,,,,,,点从向的运动过程中,逐渐增大,逐渐变小,故答案为:;;小;(2)解:当时,,理由如下:,,又,,,,当时,,,在和中,,,即当时,,;(3)解:在点的运动过程中,与的长度可能相等,理由如下:,,,,,,,,.【点睛】本题考查了邻补角,三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,三角形外角的性质,灵活运用相关知识解决问题是解题关键.12(2023春·广东梅州·八年级校考开学考试)在四边形中.(1)如图1,,,,分别是,上的点,且,探究图中,,之间的数量关系.小林同学探究此问题的方法是:延长到点,使.连接,先对比与结论是;(2)如图2,在四边形中,,,、分别是,上的点,且,则上述结论是否仍然成立,请说明理由.(3)如图3,在四边形中,,,若点在的延长线上,点在的延长线上,若,请写出与的数量关系,并给出证明过程.【答案】(1),理由见解析(2)成立,理由见解析(3),证明见解析【分析】(1)延长到点,使,连接,可判定,进而得出,,再判定,可得结论;(2)延长到点,使,连接,先判定,进而得出,,再判定,可得结论;(3)在延长线上取一点,使得,连接,先判定,再判定,得出,最后根据,推导得到【详解】(1)解:结论:.理由:如图1,延长到点,使,连接,在和中,,,,,,,,在和中,,,.故答案为:;(2)解:仍成立,理由:如图2,延长到点,使,连接,,,,在和中,,,,,,,,在和中,,,;(3)解:结论:.理由:如图3,在延长线上取一点,使得,连接,,,,在和中,,,,,在和中,,,,,,,即,.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.。
2022年上海市静安区九年级上学期期末中考数学一模试卷带讲解
∴ ,
∴ ,
故答案为: .
【点睛】本题考查了平面向量的知识.此题难度不大,注意掌握相似三角形判定的应用,注意掌握数形结合思想的应用.
18.如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
【答案】 或
【分析】分两种情况分析:当点E在BC下方时记点E为点 ,点E在BC上方时记点E为点 ,连接 , ,根据垂直平分线的性质得 , ,由正方形的性质得 , ,由旋转得 , ,故 , 是等边三角形, , 是等腰三角形,由等边三角形和等腰三角形的求角即可.
【答案】
【分析】由AD、BE分别是边BC、AC上的中线,可求得AE=EC,BD=DC,然后利用△DEG∽△∽ABG,求得结果.
【详解】解:连接DE
∵AD、BE分别是边BC、AC上 中线,
∴AE=EC,BD=DC,
∴DE是△ABC的中位线,
∴DE= AB,
∴△DEG∽△∽ABG,
∴ ,
∴AG=2DG,BG=2EG,
6.下列说法错误的是()
A. 任意一个直角三角形都可以被分割成两个等腰三角形
B. 任意一个等腰三角形都可以被分割成两个等腰三角形
C. 任意一个直角三角形都可以被分割成两个直角三角形
D. 任意一个等腰三角形都可以被分割成两个直角三角形
【答案】B
【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【答案】低
【分析】根据抛物线 的形状开口方向向上即可得出结果.
【详解】解:∵抛物线开口方向与抛物线 的开口方向相同,抛物线 中,a= >0开口方向向上,
∴该抛物线有最低点,
故答案为:低.
对角线垂直的四边形定理
对角线垂直的四边形定理对角线垂直的四边形定理是几何学中的一个重要定理,它指出如果一个四边形的对角线互相垂直,那么这个四边形一定是菱形。
这个定理可以用来解决许多与菱形有关的问题。
首先,我们需要了解什么是菱形。
菱形是一种有两条对称轴的四边形,它的四个边长相等,且相邻两条边互相垂直。
因此,如果一个四边形的对角线互相垂直,那么它必须满足这些条件。
证明这个定理需要用到勾股定理。
假设我们有一个四边形ABCD,其中AC和BD是对角线,并且它们互相垂直。
我们需要证明这个四边形是菱形。
首先考虑三角形ABC和三角形CDA。
由于AC和BD互相垂直,所以它们交于点E,并且AE=EC和BE=ED(因为AE、EC、BE、ED都是对半分割AC和BD得到的)。
因此,三角形ABC和三角形CDA都是等腰三角形。
接下来考虑三角形ABE和三角形CDE。
由于AE=EC和BE=ED,所以三角形ABE和三角形CDE的底边分别相等。
又因为AC和BD互相垂直,所以∠AEB和∠CED是直角。
因此,根据勾股定理,AB²+BE²=AE²和CD²+DE²=CE²。
将这些结果结合起来可以得到AB²+BE²=CD²+DE²。
又因为AB=CD (因为ABCD是四边形),所以BE=DE。
因此,四边形ABCD的相邻两条边长相等,即它是一个菱形。
这个定理有许多应用。
例如,在解决几何问题时,我们可以通过观察对角线是否垂直来判断一个四边形是否是菱形。
如果一个四边形的对角线互相垂直,则我们可以确定它是菱形,并且可以使用菱形的性质来解决问题。
另外,这个定理还可以用于证明其他几何定理。
例如,在证明平行四边形对角线互相平分的定理时,我们可以使用对角线垂直的四边形定理来证明其中一条线段是菱形的对角线,并且由此推导出结论。
总之,对角线垂直的四边形定理是几何学中一个重要的基础性质,它不仅有着广泛的应用,而且可以帮助我们更好地理解和掌握几何学的知识。
(必考题)初中数学八年级数学下册第六单元《平行四边形》测试题(包含答案解析)
一、选择题1.下列命题是假命题的是()A.三角形的外角和是360°B.线段垂直平分线上的点到线段两个端点的距离相等C.有一个角是60°的等腰三角形是等边三角形D.有两边和一个角对应相等的两个三角形全等2.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,BC=10,则EF长为()A.1 B.1.5 C.2 D.2.53.正多边形的每个外角为60度,则多边形为()边形.A.4 B.6 C.8 D.104.已知如图:为估计池塘的宽度BC,在池塘的一侧取一点A,再分别取AB、AC的中点D、E,测得DE的长度为20米,则池塘的宽BC的长为()A.30米B.60米C.40米D.25米5.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形6.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A',若∠C=120°,∠A=25°,则∠A'DB的度数是()A.100°B.110°C.115°D.120°7.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A .对角线互相平分的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .两组对角分别相等的四边形是平行四边形 8.四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的为( ) A .88︒,108︒,88︒ B .108︒,108︒,82︒C .88︒,92︒,92︒D .108︒,72︒,108︒ 9.如图,将四边形ABCD 去掉一个60°的角得到一个五边形BCDEF ,则∠1与∠2的和为( )A .60°B .108°C .120°D .240° 10.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是BC 的中点,若AB =16,则OE 的长为( )A .8B .6C .4D .311.如图.ABCD 的周长为60,,cm AC BD 相交于点,O EO BD ⊥交AD 于点E ,则ABE ∆的周长为( )A .30cmB .60cmC .40cmD .20cm 12.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( )A .2B .4C .8D .16 二、填空题13.如图,在ABC 中,13AB AC ==,10BC =.M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的动点,且5DE =.连接DN ,EM ,则图中阴影部分的面积和为______.14.如图,在ABD △中,90A ∠=︒,1AB AD ==,将ABD △沿射线BD 平移,得到EGF △,再将ABD △沿射线BD 翻折,得到CBD ,连接EC 、GC ,则GC EC +的最小值为_____.15.边长相等的正方边形ABFG 和正五边形BCDEF 如图所示拼接在一起,则∠FGE =____°.16.正五边形每个内角的度数是_______.17.七边形的外角和为________.18.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.19.如图,在五边形ABCDE 中,∠A +∠B +∠E =320°,DP 、CP 分别平分∠EDC 、∠BCD ,则∠CPD 的度数是_____.20.如图,己知ABCD 中,点M 是BC 的中点,线段AM 、BD 互相垂直,AM=3,BD=6,则该平行四 边形的面积为____.三、解答题21.在平面直角坐标系中,二次函数23y ax bx =++的图象与x 轴交于(4,0)A -,(2,0)B 两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使ACP △的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)抛物线上是否存在点Q ,且满足AB 平分CAQ ∠,若存在,求出Q 点坐标;若不存在,说明理由;(4)点N 为x 轴上一动点,在抛物线上是否存在点M ,使以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由. 22.一个多边形的每个外角都等于40°,求这个多边形的内角和.23.已知:如图,平行四边形ABCD ,DE 是ADC ∠的角平分线,交BC 于点E ,且BE CE =,80B ∠=︒;求DAE ∠的度数.24.如图,四边形ABCD 中,BE ⊥AC 交AD 于点G ,DF ⊥AC 于点F ,已知AF=CE ,AB=CD .(1)求证:四边形ABCD 是平行四边形;(2)如果∠GBC=∠BCD ,AG=6,GE=2,求AB 的长.25.如图,在平行四边形ABCD 中,AC 是对角线,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,连结BF ,DE .(1)求证:四边形BFDE 是平行四边形;(2)连结BD ,若3BE =,5BF =,求BD 的长.26.如图,在ABCD 中,点E ,F 分别在AD ,BC 边上,且BE ∥DF. 求证:(1)四边形BFDE 是平行四边形;(2)AE=CF.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形外角和的性质即可对A 进行判断;根据垂直平分线的性质即可对B 进行判断;根据等边三角形的判定即可对C 进行判断;根据三角形全等的证明即可对D 进行判断;【详解】A 、三角形的外角和为360°,故A 正确;B 、垂直平分线上的点到线段两端的距离相等,故B 正确;C 、有一个角是60°的等腰三角形是等边三角形,故C 正确;D 、由两边和它们的夹角对应相等的两个三角形全等,故D 错误;故选:D .【点睛】本题考查了命题与定理,命题的真假是就命题的内容而言,正确掌握定理是解题的关键. 2.C解析:C【分析】根据平行四边形的性质可得AFB FBC ∠=∠,由角平分线可得ABF FBC ∠=∠,所以AFB ABF ∠=∠,所以6AF AB ==,同理可得6DE CD ==,则根据EF AF DF AD =+-即可求解.【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==,∴AFB FBC ∠=∠,∴BF 平分ABC ∠,∴ABF FBC ∠=∠,∴AFB ABF ∠=∠,∴6AF AB ==,同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=.故选:C .【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.3.B解析:B【分析】利用多边形的外角和360除以外角60得到多边形的边数.【详解】多边形的边数为36060÷=6,故选:B .【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.4.C解析:C【分析】根据三角形中位线定理可得DE=12BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,∴DE=12BC,∵DE=20米,∴BC=40米,故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.5.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A、∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形,∴选项D不符合题意;故选:C.【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.6.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=25°可求出∠B 的值,继而求出答案.【详解】由题意得:∠A'DE=∠B=180°−120°−25°=35°,∠BDE=180°−∠B=145°,故∠A'DB=∠BDE−∠A'DE=145°−35°=110°.故选:B.【点睛】本题考查了轴对称的性质及三角形中位线定理,有一定难度,根据题意得出各角之间的关系是关键.7.A解析:A【分析】根据平行四边形的判定定理解答即可.【详解】由已知可得AO=CO,BO=DO,∴四边形ABCD是平行四边形,依据是:对角线互相平分的四边形是平行四边形,故选:A.【点睛】此题考查平行四边形的判定定理,熟练掌握平行四边形的五种判定定理并运用解决问题是解题的关键.8.D解析:D【分析】两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.【详解】A、第四个角是76°,有一组对角不相等,不是平行四边形;B、第四个角是72°,两组对角都不相等,不是平行四边形;C、第四个角是88°,而C中相等的两个角不是对角,不是平行四边形;D、第四个角是72°,满足两组对角分别相等,因而是平行四边形.故选:D.【点睛】本题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角的对应的位置关系,并不是有两组角相等的四边形就是平行四边形.9.D解析:D【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选D.【点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.10.A解析:A【分析】直接利用平行四边形的性质结合三角形中位线定理得出EO的长.【详解】解:∵在□ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点,又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=1AB=8.2故选:A.【点睛】此题主要考查了平行四边形的性质以及三角形中位线定理,正确得出EO是△ABC的中位线是解题关键.11.A解析:A【分析】根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,结合OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为60cm可得AB+AD=30cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.【点睛】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形的对边相等,平行四边形的对角线互相平分.12.B解析:B【分析】由题意可以得到a+b 的值,再利用完全平方公式可以得到答案.【详解】解:由题意可得:2(a+b)=4,∴a+b=2,∴()2222224a ab b a b ++=+==, 故选B .【点睛】本题考查长方形周长与完全平方公式的综合应用,灵活应用有关知识求解是解题关键 .二、填空题13.30【分析】连接MN 根据题意可以得到MN 是三角形ABC 的中位线过点A 作AF 垂直于BC 与点F 进而求解面积即可;【详解】连接MN ∵MN 分别是ABAC 的中点∴MN 为三角形ABC 的中位线∵BC=10∴过点A解析:30【分析】连接MN ,根据题意可以得到MN 是三角形ABC 的中位线,过点A 作AF 垂直于BC 与点F ,进而求解面积即可;【详解】连接MN ,∵ M 、N 分别是AB 、AC 的中点,∴ MN 为三角形ABC 的中位线,∵BC=10,∴ 152MN BC == , 过点A 作AF 垂直于BC 与点F ,∵AB=AC=13,∴点F 为BC 的中点, ∴152BF BC ==,∴AF ,∴阴影部分的高为12,∵MN=DE=5, ∴1=512=302S ⨯⨯阴影 ,故答案为:30.【点睛】本题考查了三角形的面积和中位线的性质,掌握数形结合的方法是解题的关键;14.【分析】如图连接DE作点D关于直线AE的对称点T连接ATETCT首先证明BAT共线求出TC证明四边形EGCD是平行四边形推出DE=CG推出EC+CG=EC+ED=EC+TE根据TE+EC≥TC即可解解析:5【分析】如图,连接DE,作点D关于直线AE的对称点T,连接AT,ET,CT.首先证明B,A,T共线,求出TC,证明四边形EGCD是平行四边形,推出DE=CG,推出EC+CG=EC+ED=EC +TE,根据TE+EC≥TC即可解决问题.【详解】解:如图,连接DE,AE,作点D关于直线AE的对称点T,连接AT,ET,CT.∵∠A=90°,AB=AD=1,将△ABD沿射线BD平移,得到△EGF,再将△ABD沿射线BD 翻折,得到△CBD,∴AB=BC═AD=1,∠ABC=90°,∠ABD=45°,∵AE//BD,∴∠EAD=∠ABD=45°,∵D,T关于AE对称,∴AD=AT=1,∠TAE=∠EAD=45°,∴∠TAD=90°,∵∠BAD=90°,∴B,A,T共线,∴CT2222+=+BT BC215∵EG=CD,EG//CD,∴四边形EGCD是平行四边形,∴CG =DE ,∴EC +CG =EC +ED =EC +TE ,∵TE +EC≥TC ,∴GC +∴GC +EC【点睛】本题考查轴对称,等腰直角三角形的性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会用转化的思想思考问题.15.9【分析】根据多边形的内角和定理计算即可;【详解】∵四边形ABFG 是正方形∴又∵五边形BCDEF 是正五边形∴正五边形的内角和为∴∴∵∴∴即∴;故答案是9【点睛】本题主要考查了多边形内角和定理准确分析解析:9【分析】根据多边形的内角和定理计算即可;【详解】∵四边形ABFG 是正方形,∴90BFG ∠=︒,又∵五边形BCDEF 是正五边形,∴正五边形的内角和为()52180540-⨯︒=︒,∴5405108BFE ∠=︒÷=︒,∴36010890162GFE ∠=︒-︒-︒=︒,∵FG FE =,∴FGE FEG ∠=∠,∴180FGE FEG EFG ∠+∠+∠=︒,即1602180FGE ︒+∠=︒,∴9FGE ∠=︒;故答案是9.【点睛】本题主要考查了多边形内角和定理,准确分析计算是解题的关键.16.【分析】先求出正n 边形的内角和再根据正五边形的每个内角都相等进而求出其中一个内角的度数【详解】解:∵正多边形的内角和为∴正五边形的内角和是则每个内角的度数是故答案为:【点睛】此题主要考查了多边形内角 解析:108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.17.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵ 多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 18.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.19.70°【分析】根据五边形的内角和等于540°由∠A+∠B+∠E =320°可求∠BCD+∠CDE 的度数再根据角平分线的定义可得∠PDC 与∠PCD 的角度和进一步求得∠CPD 的度数【详解】解:∵五边形的内解析:70°【分析】根据五边形的内角和等于540°,由∠A +∠B +∠E =320°,可求∠BCD +∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠CPD 的度数.【详解】解:∵五边形的内角和等于540°,∠A+∠B+∠E =320°,∴∠BCD+∠CDE =540°﹣320°=220°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD =12(∠BCD+∠CDE )=110°, ∴∠CPD =180°﹣110°=70°.故答案是:70°.【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.20.12【分析】由题意连接MD 根据三角形同底同高可得再利用平行四边形的性质得出进而运用面积的比例进行分析计算即可求得平行四边形的面积【详解】解:由题意连接MD ∵点M 是BC 的中点∴∵四边形是平行四边形∴∵ 解析:12【分析】由题意连接MD,根据三角形同底同高可得DBM DCM S S =,再利用平行四边形的性质得出 ABD DBC S S =,进而运用面积的比例进行分析计算即可求得平行四边形的面积. 【详解】解:由题意连接MD,∵点M 是BC 的中点,∴DBM DCM S S=,22DBC DCM DBM S S S ==, ∵四边形ABCD 是平行四边形, ∴ABD DBC S S =,∵线段AM 、BD 互相垂直,AM=3,BD=6,∴S 四边形ABMD =1136922AM BD =⨯⨯=,∵S 四边形ABMD =223DCM ABD DBC DCM DCM DCM DCM DCM ABCD S S S S S S S S S -=+-=+-=, ∴933DCM S=÷=, ∴44312D ABC M D C S S ==⨯=.故答案为:12.【点睛】本题考查平行四边形的性质,熟练掌握三角形同底同高其面积相等以及平行四边形的对角线平分平行四边形的面积是解题的关键.三、解答题21.(1)233384y x x =--+;(2)(2,3)P -;(3)(4,6)Q -;(4)1(2,3)M -,2(13)M ---,3(13)M -+-.【分析】(1)将点(4,0)A -,(2,0)B 代入抛物线的一般式解析式,利用待定系数法解题;(2)设直线:AC y kx b =+,代入(4,0)A -,(0,3)C ,利用待定系数法解得一次函数解析式为334y x =+,过点P 作PD x ⊥轴,交AC 于点D ,设3,34D t t ⎫⎛+ ⎪⎝⎭,233,384P t t t ⎫⎛--+ ⎪⎝⎭,计算23382PD t t =--,结合三角形面积公式及配方法可解得二次函数的最值;(3)作点C 关于x 轴的对称点E ,连接AE 交抛物线于点Q ,设直线:AE y mx n =+,代入(4,0)A -,(0,3)-E ,利用待定系数法解得直线AE 的解析式为334y x =--,再与233384y x x =--+联立方程组,解得交点Q 点坐标,舍去不符合题意的解即可; (4)设点(,)M x y ,分两种情况讨论:以BN 为边,或以BN 为对角线,分别画出示意图,根据平行四边形对应边相等的性质列出一元二次方程,利用公式法解得点M 的坐标,即可解题.【详解】解:(1)将点(4,0)A -,(2,0)B 代入23y ax bx =++得,22(4)4302230a b a b ⎧--+=⎨++=⎩164304230a b a b -+=⎧∴⎨++=⎩解得3834 ab⎧=-⎪⎪⎨⎪=-⎪⎩233384y x x∴=--+;(2)设直线:AC y kx b=+,代入(4,0)A-,(0,3)C得:403k bb-+=⎧⎨=⎩.解得:343kb⎧=⎪⎨⎪=⎩,∴直线3:34AC y x=+,过点P作PD x⊥轴,交AC于点D,设3,34D t t⎫⎛+⎪⎝⎭,则233,384P t t t⎫⎛--+⎪⎝⎭,22333333384482PD t t t t t⎫⎫⎛⎛∴=--+-+=--⎪ ⎪⎝⎝⎭⎭,22133423(2)3244APCS PD PD t t t∴=⋅⋅==--=-++△,∴当2t=-时最大,S的最大值为3,此时,(2,3)P-;(3)作点C关于x轴的对称点E,连接AE交抛物线于点Q,则(0,3)-E,设直线:AE y mx n =+,代入(4,0)A -,(0,3)-E ,4003m n n -+=⎧⎨+=⎩ 343m n ⎧=⎪∴⎨⎪=⎩ 解得:334y x =-- 联立方程组233384334y x x y x ⎧=--+⎪⎪⎨⎪=--⎪⎩,解得:14x =-(舍),24x =, 存在(4,6)Q -;(4)存在,1(2,3)M -,2(117,3)M --,3(117,3)M --,理由如下: 如图,设点(,)M x y ,以BN 为边,当//MC BN 时,M 在x 轴上方,在平行四边形B C M N 中,3c y =3M y ∴=在233384y x x =--+中, 当3y =时,2333384x x --+= 33()084x x ∴--= 120,2x x ∴==-2M x ∴=-1(2,3)M ∴-;当以BN 为对角线,//NC BM 时,M 在x 轴下方, C M y y =3M y ∴=-在233384y x x =--+中, 当3y =-时,2333384x x --+=- 22160x x ∴+-=1,2,16a b c ===-224241(16)68b ac ∴-=-⨯⨯-=1222112222b b x x a a -+----∴===-===-2(13)M ∴--,3(13)M --,综上所述,1(2,3)M -,2(13)M --,3(13)M --.【点睛】本题考查二次函数与一次函数综合、二次函数与一元二次方程综合、平行四边形的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.1260︒【分析】先利用外角和360度除以每个外角的度数求出边数,再利用多边形内角和公式计算得出答案.【详解】 解:这个多边形的边数为36040=9(条), ∴180(92)1260︒⨯-=︒,∴这个多边形的内角和是1260︒.【点睛】此题考查多边形的角度计算,多边形的外角和定理,多边形的内角和计算公式,根据多边形的每个外角都等于40°求出多边形的边数是解题的关键.23.50°【分析】根据平行四边形的性质求出CD=CE ,得到AB=BE ,所以BAE BEA ∠=∠根据80B ∠=︒,//AD BC 得到DAE ∠的度数【详解】 证明:四边形ABCD 是平行四边形//AD BC ∴13∠∠∴=DE 是ADC ∠的角平分线12∠∠∴=23∴∠=∠CD CE ∴=四边形ABCD 是平行四边形AB CD ∴=BE CE =AB BE ∴=BAE BEA ∴∠=∠80B ∠=︒50AEB ∴∠=︒//AD BC50DAE AEB ∴∠=∠=︒【点睛】本题考查平行四边形的性质,由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解,得出AB=BE 是解决问题的关键.24.(1)见解析 (2)9【分析】(1)先证明Rt △ABE ≌Rt △CDF ,得到AB ∥CD ,即可判定平行四边形;(2)证明AB=GB ,根据勾股定理构造方程,解方程即可求解.【详解】解:(1)∵AF=CE ,∴AF-EF=CE-EF ,∴AE=CF ,∵BE ⊥AC ,DF ⊥AC ,,∴∠AEB=∠CFD=90°,∵AB=CD ,∴Rt △ABE ≌Rt △CDF ,∴∠BAE=∠DCF ,∴AB ∥CD ,∵AB=CD ,∴四边形ABCD 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠DAB=∠BCD ,∴∠AGB=∠GBC ,∵∠GBC=∠BCD ,∴∠AGB=∠BAG ,∴AB=GB ,设AB=GB=x ,则BE=x-2,∵BG ⊥AC ,∴2222AB BE AG GE -=-,∴()2222262x x --=- , 解得x=9,∴AB=9.【点睛】本题考查了平行四边的判定与性质,勾股定理,等腰三角形判定等知识,综合性较强,熟知相关定理并根据已知条件合理选择定理是解题关键.25.(1)见解析 (2)213【分析】(1)根据平行四边形的性质和已知可证得//BE DF ,ABE CDF ≅,由全等三角形的性质可证得BE DF =,利用平行四边形的判定即证得出结论;(2)根据平行四边形的对角线互相平分得OE OF OB OD ==,,再根据勾股定理即可求解.【详解】 解:(1)在平行四边形ABCD 中,∵//AB CD ,AB CD =,∴BAE DCF ∠=∠,∵BE AC DF AC ⊥⊥, ,∴90//BEA DFC BE DF ∠=︒=∠,,∴ABE CDF ≅,∴BE DF =,∴四边形BFDE 是平行四边形;(2)连结BD 交AC 于点O ,则OE OF OB OD ==,,∵35BE AC BE BF ⊥==,, ,∴在Rt BEF △中,2222534EF BF BE =--=,∴OE =2,在Rt OBE中,OB==∴==BD OB2【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、勾股定理,是典型的基础题,难度适中,熟练掌握这些知识的综合运用是解答的关键.26.(1)见解析;(2)见解析.【分析】(1)由四边形ABCD是平行四边形,可得AD∥BC,又BE∥DF,可证四边形BFDE是平行四边形;(2)由四边形ABCD是平行四边形,可得AD=BC ,又ED=BF ,从而AD-ED=BC-BF,即AE=CF.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,即DE∥BF .∵BE∥DF,∴四边形BFDE是平行四边形;(2)∵四边形ABCD是平行四边形,∴AD=BC ,∵四边形BFDE是平行四边形,∴ED=BF ,∴AD-ED=BC-BF,即AE=CF.【点睛】本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题五(含答案) (77)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题五(含答案)如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC=DE ,FC 与BE 相等吗?请说明理由.【答案】相等;理由见解析【解析】试题分析:AAS 证明ABC DEF ≌,即可得证.试题解析:相等;理由如下:,AB DF AC DE ,,B F ACB FED ∴∠=∠∠=∠,在ABC △和DEF 中{,B FACB FED AC DE ∠=∠∠=∠=ABC DEF ∴≌,.BC EF ∴=,BC EC EF EC ∴-=-即.BE CF =62.如图,在△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连接EG 、EF.(1)求证:BG =CF.(2)求证:EG=EF.(3)请判断BE+CF 与EF 的大小关系,并证明你的结论.【答案】见解析【解析】试题分析:()1由ASA 判定.BGD CFD ≌得到.BG CF =()2线段的垂直平分线上的点到线段两个端点的距离相等.()3三角形的三边关系.试题解析:()1 ,.BG AC DBG C ∴∠=∠ D 为BC 的中点,.BD CD ∴=.BDG CDF ∠=∠(ASA).BGD CFD ∴≌.BG CF ∴=()2.BGD CFD ≌.DG DF ∴=又.DE DF ⊥.EG EF ∴=(垂直平分线上的点到线段两个端点的距离相等)()3BE CF EF +>.∵在BEG 中,.BE BG EG +> ,.BG CF EG EF ==BE CF EF ∴+>.63.已知:如图,△ABC 和△DBE 均为等腰直角三角形.(1)求证:AD =CE ;(2)猜想:AD 和CE 是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.【答案】(1)证明见解析 (2)垂直【解析】试题分析:由SAS 判定.ABD CBE ≌得到.AD CE =试题解析:()1ABC 和DBE 均为等腰直角三角形,,,90.AB BC BD BE ABC DBE ∴==∠=∠=︒.ABC DBC DBE DBC ∴∠-∠=∠-∠ABD CBE ∠=∠.在ABD △和CBE △中,AB BC ABD CBE BD BE =⎧⎪∠∠⎨⎪=⎩= .ABD CBE ≌.AD CE ∴=()2垂直.延长AD 分别交BC 和CE 于G 和.F.ABD CBE ∴≌.BAD BCE ∴∠=∠.BGA CGF ∠=∠90.AFC ABC ∴∠=∠=︒AD CE ∴⊥.64.已知:如图,在平行四边形ABCD 中,连接对角线BD ,作AE ⊥BD 于E ,CF ⊥BD 于F ,(1)求证:△AED ≌△CFB ;(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD 的周长.【答案】(1)证明见解析;(2).【解析】分析:(1)在平行四边形ABCD 中,AD=BC ,AD ∥BC ,可知∠ADE=∠CBD ,然后根据AE ⊥BD 于E ,CF ⊥BD 于F ,可知∠AED=∠CFB=90°,根据这三个条件即可证明全等;(2)根据已知∠ABC=75°,∠ADB=30°,AE=3,分别在Rt △ABE 、Rt △AED 中求出AB 、AD 的长度,即可求出周长.本题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴∠ADE=∠CBF ,又∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AED=∠CFB=90°,在△AED 和△CFB 中,AD BC ADE CBF AED CFB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△AED ≌△CFB (AAS );(2)解:在Rt △AED 中,∵∠ADE=30°,AE=3,∴AD=2AE=2×3=6,∵∠ABC=75°,∠ADB=∠CBD=30°∴∠ABE=45°,在Rt △ABE 中, ∵AE AB=sin45°,∴AB=sin45AE ︒,∴平行四边形ABCD 的周长l=2(AB+AD )=2×()65.在平行四边形ABCD 中,E 是BC 上任意一点,延长AE 交DC 的延长线与点F .(1)在图①中当CE=CF 时,求证:AF 是∠BAD 的平分线.(2)在(1)的条件下,若∠ABC =90°,G 是EF 的中点(如图②),请求出∠BDG 的度数.(3)如图③,在(1)的条件下,若∠BAD =60°,且FG ∠CE ,FG=CE ,连接DB 、DG ,求出∠BDG 的度数.【答案】见解析【解析】试题分析:()1CE CF =,CEF F ∴∠=∠,利用四边形ABCD 是平行四边形,可得,FAD FEC BAF F ∠=∠∠=∠,等量关系可得BAF DAF ∠=∠,即可求解.(2)根据90ABC ∠=︒,G 是EF 的中点可直接求得.(3)延长,AB FG 相较于H ,连接,,EG DH 求证四边形CEGF 是平行四边形,再求证,AHD FHD 是等边三角形,求证BHD GFD ≌,即可求得答案. 试题解析:(1)证明:如图1,.CE CF =.CEF F ∴∠=∠∵四边形ABCD 是平行四边形,,,AD BC AB CD ∴,,DAF CEF BAF F ∴∠=∠∠=∠,BAF DAF ∴∠=∠AF ∴平分BAD ∠.(2)如图2,连接,,GC BG∵四边形ABCD 为平行四边形,90,ABC =∠∴四边形ABCD 为矩形, AF 平分BAD ∠,45,DAF BAF ∴∠=∠=90,,DCB DF AB ∠=45,90.DFA ECF ∴∠=∠=ECF ∴为等腰直角三角形, G 为EF 中点,,,EG CG FG CG EF ∴==⊥ABE ∵△为等腰直角三角形,,AB DC =,BE DC ∴=45,CEF GCF ∠=∠=135.BEG DCG ∴∠=∠=在BEG 与DCG △中,,EG CG BEG DCG BE DC =⎧⎪∠=∠⎨⎪=⎩,BEG DCG ∴≌,BG DG ∴=,CG EF ⊥90,DGC DGA ∴∠+∠=又,DGC BGA ∠=∠90,BGA DGA ∴∠+∠=DGB ∴为等腰直角三角形,45.BDG ∴∠=(3)如图3,延长,AB FG 交于H ,连接HD .,,AD GF AB DF∴四边形AHFD 为平行四边形,120,ABC ∠=AF 平分BAD ∠,30,120,30.DAF ADC DFA ∴∠=∠=∠=DAF ∴为等腰三角形,,AD DF ∴=,CE CF ∴=∴平行四边形AHFD 为菱形,ADH DHF ∴,为全等的等边三角形.,60.DH DF BHD GFD ∴=∠=∠=,,,FG CE CE CF CF BH ===.BH GF ∴=在BHD 与GFD 中,∵,DH DF BHD GFD BH GF =⎧⎪∠=∠⎨⎪=⎩,BHD GFD ∴≌.BDH GDF ∴∠=∠60.BDG BDH HDG GDF HDG ∴∠=∠+∠=∠+∠=66.如图,正方形ABCD 中,点E 、F 分别是AB 和AD 上的点。
考点19 相似三角形模型-备战2023届中考数学一轮复习考点梳理(解析版)
考点19 相似三角形基本模型相似三角形在初中数学中因为不同类型的规律比较明显,所以被总结了很多的模型,比如:A 字图、8字图、母子三角形、一线三等角、手拉手相似等。
而掌握了这类模型的套路后,可以更快的应对相似三角形类的应用。
所以考生需要对该考点完全掌握。
一、A 字图及其变型二、8字图及其变型三、一般母子型四、一线三等角五、手拉手模型考向一、A 字图及其变型“斜A 型”型在圆中的应用:如图可得:△PAB ∽△PCD1.如图,在△ABC中,DE∥BC,DE=2,BC=6,则的值为( )A.B.C.D.【分析】利用平行线的性质和相似三角形的判定与性质解答即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===,故选:C.2.如图,在△ABC中,DE∥FG∥BC,AD:AF:AB=1:2:5,则S△ADE:S四边形DEGF:S四边形FGCB=( )A.1:2:5B.1:4:25C.1:3:25D.1:3:21【分析】由DE∥FG∥BC,可得△ADE∽△AFG∽△ABC,又由AD:AF:AB=1:2:5,利用相似三角形的面积比等于相似比的平方,即可求得S△ADE:S△AFG:S△ABC=1:4:25,然后设△ADE的面积是a,则△AFG和△ABC的面积分别是3a,21a,即可求两个梯形的面积,继而求得答案.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴AD:AF:AB=1:2:5,∴S△ADE:S△AFG:S△ABC=1:4:25,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,25a,则S四边形DFGE=S△AFG﹣S△ADE=3a,S四边形FBCG=S△ABC﹣S△AFG=21a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:21.故选:D.3.将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是 54或 平方厘米.【分析】分两种情况讨论,由勾股定理求出AD长,由三角形面积公式求出四边形ABCD的面积,由相似三角形的性质,即可解决问题.【解答】解:(1)分别延长CD,BA交于M,连接BD,设△MBC的面积是S(cm2),∵∠C=∠DAB=90°,∴DC2+BC2=AB2+AD2=BD2,∴22+92=72+AD2,∴AD=6(cm),∴△ADB的面积=AD•AB=×6×7=21(cm2),△DCB的面积=DC•BC=×2×9=9(cm2),∴四边形ABCD的面积=21+9=30(cm2),∴△DMA的面积=(S﹣30)(cm2),∵∠M=∠M,∠MAD=∠MCB,∴△MDA∽△MBC,∴===,∴=,∴S=54(cm2).(2)分别延长AD,BC交于N,设△NAB的面积是S′(cm2),由(1)知四边形ABCD的面积=30(cm2),∵∠N=∠N,∠NCD=∠A=90°,∴△NCD∽△NAB,∴===,∴=,∴S′=(cm2),∴原来的直角三角形纸片的面积是54cm2或cm2.故答案为:54或.4.如图,矩形DEFG的边DE在△ABC的边BC上,顶点G、F分别在边AB、AC上.已知BC=6cm,DE =3cm,EF=2cm,那么△ABC的面积是 12 cm2.【分析】过点A作AN⊥BC,先利用相似三角形的判定说明△AGF∽△ABC,再利用相似三角形的性质求出△ABC的高,最后利用三角形的面积得结论.【解答】解:过点A作AN⊥BC,垂足为N,交GF于点M.∵四边形DEFG是矩形,∴GF∥DE,GF=DE=3cm,EF=MN=2cm.设AM=acm,则AN=(a+2)cm.∵GF∥DE,∴△AGF∽△ABC.∴=.∴=.∴a=2.∴AN=4cm.S△ABC=BC•AN=6×4=12(cm)2.故答案为:12.5.如图▱ABCD中,点E在BA的延长线上,连接EC、BD交于点G,EC交AD于F,已知EA:AB=1:2.(1)求EF:EC;(2)求FG:GC.【分析】(1)利用平行线分线段成比例定理和比例的性质求解即可;(2)利用相似三角形的判定,先说明△EAF∽△CDF,再利用相似三角形的性质和比例的性质求出BC:FD,最后通过说明△FDG∽△CBG,利用相似三角形的性质得结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD∥BC,AD=BC.(1)∵EA:AB=1:2,∴=.∵AD∥BC,∴==.(2)∵AB ∥CD ,∴△EAF ∽△CDF .∴===.∴==.∵AD ∥BC ,∴△FDG ∽△CBG .∴==.考向二、8字图及其变型“蝴蝶型”变型1.如图,在△ABC 中,中线AD 与中线BE 相交于点G ,联结DE .下列结论成立的是( )A .B .C .D .【分析】由AD ,BE 是△ABC 的中线,得到DE 是△ABC 的中位线,推出△DEG ∽△ABG ,△CDE ∽△CBA ,由相似三角形的性质即可解决问题.【解答】解:AD ,BE 是△ABC 的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S△CDE=S△ABC,∴=,结论成立的是=,故选:C.2.如图,在平行四边形ABCD中,F为BC的中点,延长AD至点E,使DE:AD=1:3,连接EF交DC 于点G,则S△CFG:S△DEG等于( )A.9:4B.2:3C.4:9D.3:2【分析】利用平行四边形的性质可得AD∥BC,AD=BC,,再根据线段中点的定义可得CF=BC=AD,然后证明8字模型相似三角形△EDG∽△FCG,利用相似三角形的性质进行计算即可解答.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵F为BC的中点,∴CF=BC,∴CF=AD,∵AE∥CF,∴∠E=∠GCF,∠EDG=∠C,∴△EDG∽△FCG,∵DE:AD=1:3,∴DE=AD,∴S△CFG:S△DEG=()2=()2=()2=,故选:A.3.如图,在正方形ABCD中,E为AD上的点,连接CE.以点E为圆心,以任意长为半径作弧分别交EC,ED于点N,M,再分别以M,N为圆心,以大于MN长为半径作弧,两弧在∠CED内交于点P,连接EP并延长交DC于点H,交BC的延长线于点G.若AB=16,AE:AD=1:4,则EH的长为 6 .【分析】根据题中作图判断EP是∠DEC的角平分线,利用线段比和勾股定理求出EC,再利用角平分线的性质和平行线的性质得到CG,利用相似三角形的判定和性质求出DH,最后利用勾股定理得结论.【解答】解:∵以点E为圆心,以任意长为半径作弧分别交EC,ED于点N,M,再分别以M,N为圆心,以大于MN长为半径作弧,两弧在∠CED内交于点P,连接EP,∴EP是∠DEC的角平分线,∴∠DEG=∠CEG.∵四边形ABCD是正方形,∴AD=DC=AB=16,∠D=90°,AD∥BC.∵AE:AD=1:4,AE+ED=16,∴AE=4,ED=12.在Rt△EDC中,EC===20.∵AD∥BC,∴∠G=∠DEG=∠CEG.∴EC=CG=20.∵AD∥BC,∴△EDH∽△GCH.∴===.∵DH+HC=CD=16,∴DH=6.在Rt△EDH中,EH====6.故答案为:6.4.如图,在▱ABCD中,G是CD延长线上一点,连接BG交AC,AD于E,F.(1)求证:△ABE∽△CGE;(2)若AF=2FD,求的值.【分析】(1)根据平行四边形对边平行,得到∠ABE=∠CGE,再利用对顶角相等,可得△ABE∽△CGE;(2)利用平行四边形对边平行,证明△AEF∽△CEB,得到,再由(1)得,,从而求解.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠ABE=∠CGE,又∵∠AEB=∠CGE,∴△ABE∽△CGE.(2)解:设FD=m,则AF=2m,∴AD=3m,∵四边形ABCD为平行四边形,∴AD∥BC,BC=AD=3m,∴∠EAF=∠ECB,∠AFE=∠CBE,∴△AEF∽△CEB∴==,又∵△ABE∽△CGE,∴==.即的值为.5.以下各图均是由边长为1的小正方形组成的网格,A,B,C,D均在格点上.(1)在图①中,的值为 1:3 ;(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB上找一点P,使AP=3;②如图③,在BD上找一点P,使△APB∽△CPD.【分析】(1)如图①中,利用平行线的性质求解即可.(2)①根据勾股定理得AB的长为5,再根据相似三角形的判定方法即可找到点P;②作点A的对称点A′,连接A′C与BD的交点即为要找的点P,使△APB∽△CPD.【解答】解:(1)如图①中,∵AB∥CD,∴△PCD∽△PBA.∴==,故答案为:1:3;(2)①取格点E,F,连接EF交AB于点P,点P即为所求的点.由勾股定理知:AB==5.∵AP=3,∴BP=2.∵BE∥FA,∴△EPB∽△FPA.∵AP:BP=AF:BE=3:2.∴取格点E,F,连接EF交AB于点P,点P即为所求的点;②如图③所示,作点A的对称点A′,连接A′C,交BD于点P,点P即为所要找的点,∵AB ∥CD ,∴△APB ∽△CPD .考向三、一般母子型:联系应用:切割线定理:如图,PB 为圆O 切线,B 为切点,则:△PAB ∽△PBC得:1.如图,在△ABC 中,CD ⊥AB 于点D ,有下列条件:①∠A =∠BCD ;②∠A +∠BCD =∠ADC ;③;④BC 2=BD •BA .其中能判断△ABC 是直角三角形的有( )A .0个B .1个C .2个D .3个【分析】根据题目中①②③④给出的条件分别判定△BCD ∽△BAC 或△ABC ∽△ACD 即可求得∠ACB =90°,计算能求证△BCD ∽△BAC 或△ABC ∽△ACD 的个数即可解题.【解答】解:①∵∠A =∠BCD ,∠A +∠ACD =90°,∴∠BCD +∠ACD =90°,故本命题成立;②条件不足,无法求证∠ACB =90°,故本命题错误;③∵BD :CD =BC :AC ,∠ADC =∠CDB =90°,∴Rt △ADC ∽Rt △CDB ,(因为都有一个直角,斜边直角边成比例)∴∠ACD =∠B ;∵∠B +∠BCD =90°,其中:∠A 是公共角AB 是公共边BD 与BC 是对应边∴∠ACD+∠BCD=90°,∵∠ACB=∠ACD+∠BCD,∴∠ACB=90°;故本命题正确;④∵BC2=BD×BA,∴=,∵∠B=∠B,∴△ABC∽△CBD,∴∠ACB=90°,故本命题成立,故选:D.2.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E为斜边AB的中点,则=( )A.B.C.D.【分析】利用相似三角形的判定与性质得到∠BCD=∠A=22.5°,利用三角形的外角的性质得到∠CED=45°,利用直角三角形斜边上的中线等于斜边的一半,得到AE=CE=BE=AB,设CD=DE=x,则CE=,AD=(+1)x,代入化简即可得出结论.【解答】解:∵∠ACB=90°,∠ACD=3∠BCD,∴∠BCD=22.5°,∠ACD=67.5°.∵∠ACB=90°,CD⊥AB,∴△BCD∽△BAC,∴∠BCD=∠A=22.5°.∵∠ACB=90°,E为斜边AB的中点,∴AE=CE=BE=AB.∴∠ECA=∠A=22.5°,∴∠CED=∠A+∠ECA=45°,∵CD⊥AB,∴CD=DE.设CD=DE=x,则CE=,∴AE=x,∴AD=AE+DE=(+1)x,∴=+1.故选:B.3.如图,在△ABC中,∠A=90°,点D、E分别在AC、BC边上,BD=CD=2DE,且∠C+∠CDE=45°,若AD=6,则BC的长为 8 .【分析】首先根据等腰三角形的性质和已知条件证出∠BDE=90°,作DF⊥BC于F,则BF=CF,△DEF ∽△BED∽△BDF,得出===,设EF=x,则DF=2x,BF=CF=4x,得出BC=8x,DE=x,得出CD=BD=2x,AC=6+2x,证明△CDF∽△CBA,得出=,代入计算即可得出结果.【解答】解:∵∠A=90°,∴∠ABD+∠ADB=90°,∵BD=CD,∴∠DBC=∠C,∴∠ADB=∠DBC+∠C=2∠C,∵∠C+∠CDE=45°∴2∠C+∠CDE=90°,∴∠ADB+∠CDE=90°,∴∠BDE=90°,作DF⊥BC于F,如图所示:则BF=CF,△DEF∽△BED∽△BDF,∴===,设EF=x,则DF=2x,BF=CF=4x,∴BC=8x,DE=x,∴CD=BD=2x,AC=6+2x,∵∠DFC=∠A=90°,∠C=∠C,∴△CDF∽△CBA,∴=,即=,解得:x=,∴BC=8;故答案为:8.4.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.【分析】(1)根据相似三角形的判定与性质可得结论;(2)由直角三角形的性质得BD=AC=CD,再由相似三角形的判定与性质可得EC2=GE•EA,结合(1)的结论可得答案.【解答】证明:(1)∵AE⊥BD,∴∠BGE=90°,∵∠ABC=90°,∴∠BGE=∠ABE,∵∠BEG=∠AEB,∴△ABE∽△BGE,∴=,即EB2=EG•EA;(2)在Rt△ABC中,点D是斜边AC的中点,∴BD=AC=CD,∴∠DBC=∠DCB,∵∠CGE=∠DBC,∴∠CGE=∠DCB,∵∠GEC=∠GEC,∴△GEC∽△CEA,∴=,∴EC2=GE•EA,由(1)知EB2=EG•EA,∴EC2=EB2,∴BE=CE.考向四、一线三等角:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型1.如图,AB⊥BD于点B,ED⊥BD于点D.AB=2,DE=4,BD=6.点C为BD上一点,连接AC、CE.当BC=( )时,可使AC⊥CE.A.3B.2或4C.D.2或3【分析】根据垂直定义可得∠B=∠D=∠ACE=90°,从而利用直角三角形的两个锐角互余可得∠A+∠ACB=90°,再利用平角定义可得∠ACB+∠ECD=90°,然后利用同角的余角相等可得∠ECD=∠A,从而证明△ABC∽△CDE,最后利用相似三角形的性质进行计算即可解答.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,∴∠A+∠ACB=90°,∵AC⊥CE,∴∠ACE=90°,∴∠ACB+∠ECD=180°﹣∠ACE=90°,∴∠ECD=∠A,∴△ABC∽△CDE,∴=,∴=,解得:BC=2或BC=4,∴当BC=2或4时,可使AC⊥CE,故选:B.2.如图,点A,B,C在同一直线上,∠A=∠DBE=∠C,则下列结论:①∠D=∠CBE,②△ABD∽△CEB,③=,其中正确的结论有( )个.A.0B.1C.2D.3【分析】根据三角形内角和和平角的定义可得①正确,进行可得△ABD∽△CEB,得出②正确;由相似三角形的性质可知,相似三角形的对应线段成比例,得出结论.【解答】解:由图可知,∠A+∠D+∠ABD=180°,∠ABD+∠DBE+∠CBE=180°,∵∠A=∠DBE,∴∠D=∠CBE,故①正确;∵∠A=∠C,∴△ABD∽△CEB,故②正确;∴=,故③正确;故选:D.3.如图,在矩形ABCD中,点E是对角线上一点,连接AE并延长交CD于点F,过点E作EG⊥AE交BC 于点G,若AB=8,AD=6,BG=2,则AE=( )A.B.C.D.【分析】过点E作EN⊥BC,垂足为N,延长NE交AD于点M,根据矩形的性质可得AD=BC=6,∠DAB =∠ABC=90°,从而可得四边形AMNB是矩形,进而可得∠AMN=90°,AB=MN=8,AM=BN,MN ∥AB,然后设ME=x,则EN=MN﹣EM=8﹣x,再证明A字模型相似三角形△DME∽△DAB,并利用相似三角形的性质求出DM,从而求出AM,GN的长,最后证明一线三等角模型相似三角形△AME∽△ENG,利用相似三角形的性质列出关于x的方程,进行计算即可求出ME,AM的长,从而在Rt△AME 中,利用勾股定理进行计算即可解答.【解答】解:过点E作EN⊥BC,垂足为N,延长NE交AD于点M,∴∠ENB=90°,∵四边形ABCD是矩形,∴AD=BC=6,∠DAB=∠ABC=90°,∴四边形AMNB是矩形,∴∠AMN=90°,AB=MN=8,AM=BN,MN∥AB,∴∠DME=∠DAB=90°,∠DEM=∠DBA,∴△DME∽△DAB,∴=,设ME=x,则EN=MN﹣EM=8﹣x,∴=,∴DM=x,∴BN=AM=AD﹣DM=6﹣x,∵BG=2,∴GN=BN﹣BG=4﹣x,∵EG⊥AE,∴∠AEG=90°,∴∠AEM+∠GEN=90°,∵∠AEM+∠MAE=90°,∴∠MAE=∠GEN,∵∠AME=∠ENG=90°,∴△AME∽△ENG,∴=,∴=,∴x1=,x2=8,经检验:x1=,x2=8都是原方程的根,x2=8(舍去),∴ME=,AM=6﹣x=,∴AE===,故选:B.4.如图,在△ABC中,AB=10,BC=34,cos∠ABC=,射线CM∥AB,D为线段BC上的一动点且和B,C不重合,联结DA,过点D作DE⊥DA交射线CM于点E,联结AE,作EF=EC,交BC的延长线于点F,设BD=x.(1)如图1,当AD∥EF,求BD的长;(2)若CE=y,求y关于x的函数解析式,并写出定义域;(3)如图2,点G在线段AE上,作∠AGD=∠F,若△DGE与△CDE相似,求BD的长.【分析】(1)可推出△ABD是等腰三角形,从而求得BD;(2)作AK⊥BC于K,EH⊥CF于H,可证得△AKD∽△DHE,可求得AK=8,DK=x﹣6,EH=y,DH=34﹣x+y,进一步求得结果;(3)推出可以是△GDE∽△CDE或△GDE∽△CED,当△GDE∽△CDE时,可推出△GDE≌△CDE及△ABD≌△AGD,进而求得此时BD的值;当△GDE∽△CED时,推出四边形ADFED是平行四边形,再根据△AKD∽△DTE,进而求得此时BD.【解答】解:(1)如图1,作AK⊥BC于K,∴BK=AB•cos∠ABC=10×=6,∴AK===8,∵EF=EC,∴∠ECF=∠F,∵CM∥AB,AD∥EF,∴∠B=∠ECF,∠ADB=∠F,∴∠B=∠ADB,∴AB=AD,∴BD=2BK=12;(2)如图2,作AK⊥BC于K,EH⊥CF于H,∴∠ADK=∠CHE=90°,∴∠ADK+∠DAK=90°,∵AD⊥DE,∴∠ADE=90°,∴∠ADK+∠EDH=90°,∴∠DAK=∠EDH,∴△AKD∽△DHE,∴=,∵BD=x,BK=6,BC=34,∴DK=x﹣6,DC=34﹣x,∵∠ECF=∠ABD,∴CH=CE•cos∠ECF=y•cos∠ABD=,∴EH=y,∴DH=DC+CH=34﹣x+,∴=,化简,得,y=,当∠HDE=∠ECF时,DE∥CE,∴∠DAK=∠ECH=∠ABD,∴DK=AK•tan∠DAK=8•tan∠ABK=8×=,此时,BD=BK+DK=6+=,∴6<x<;(3)如图3,∵∠AGD=∠F,∠AGD+∠DGE=180°,∴∠DGE+∠F=180°,∵∠ECF+∠DCE=180°,∠F=∠ECF,∴∠DGE=∠DCE,∴△GDE∽△CDE或△GDE∽△CED,当△GDE∽△CDE时,∠GDE=∠CDE,∵DE=DE,∴△CDE≌△GDE(AAS),∴DG=DC,∵∠ADE=90°,∴∠ADB+∠EDC=∠ADG+∠GDE=90°,∴∠ADB=∠ADG,∵∠ABD=∠ECF=∠F,∴∠ABD=∠AGD,∵AD=AD,∴△ABD≌△AGD(AAS),\∴DB=DG,∴BD=CD=BC=17,∵6<BD<,∴BD=17不符合题意,舍去;当△GDE∽△CED时,如图4,∠GDE=∠DEC,∠GED=∠CDE,∴DG∥CE,CD∥GE,∴四边形CDGE是平行四边形,由(1)(2)知,AK=8,DK=x﹣6,CD=34﹣x,△AKD∽△DTE,∴ET=AK=8,CT=BK=6,DT=40﹣x,∴=,∴=,∴x=8,综上所述:BD=8.考向五、手拉手相似模型:模型名称几何模型图形特点具有性质相似型手拉手△ABC ∽△ADEA 、D 、E 逆时针A 、B 、C 逆时针连结BD 、CE ①△ABD ∽△ACE ②△AOB ∽△HOC③旋转角相等④A 、B 、C 、H 四点共圆“反向”相似型手拉手△ABC ∽△ADE A 、D 、E 顺时针A 、B 、C 逆时针A 、D 、E`逆时针作△ADE 关于AD 对称的△ADE`性质同上①②③1.如图,△ABC 中,∠BAC =30°,∠ACB =90°,且△ABC ∽△AB 'C ',连接CC ',将CC ′沿C ′B ′方向平移至EB ',连接BE ,若CC '=,则BE 的长为( )A .1B .C .D .2【分析】连接BB′,在Rt△ABC中,利用锐角三角函数的定义可得=,再利用相似三角形的性质可得=,∠ACB =∠AC ′B′=90°,∠BAC =∠B ′AC ′=30°,从而利用等式的性质可得∠BAB ′=∠CAC ′,进而可证△BAB ′∽△CAC ′,然后利用相似三角形的性质可得∠BB ′A =∠CC ′A ,==,再利用平移的性质可得CC ′∥B ′E ,==,从而利用平行线的性质可得∠BB ′E =30°,最后证明△BCA ∽△BEB ′,从而可得∠BEB ′=90°,进而在Rt △BEB ′中,利用锐角三角函数的定义进行计算即可解答.【解答】解:连接BB ′,∵∠BAC=30°,∠ACB=90°,∴cos30°==,∵△ABC∽△AB'C',∴=,∠ACB=∠AC′B′=90°,∠BAC=∠B′AC′=30°,∴∠BAC+∠CAB′=∠B′AC′+∠CAB′,∴∠BAB′=∠CAC′,∴△BAB′∽△CAC′,∴∠BB′A=∠CC′A,==,由平移得:CC′=B′E=,CC′∥B′E,∴==,∵CC′∥B′E,∴∠CC′B′+∠AB′C′+∠BB′A+∠BB′E=180°,∴∠CC′B′+∠AB′C′+∠CC′A+∠BB′E=180°,∴∠AC′B′+∠AB′C′+∠BB′E=180°,∵∠AC′B′=90°,∠B′AC′=30°,∴∠AB′C′=90°﹣∠B′AC′=60°,∴∠BB′E=30°,∴∠BB′E=∠CAB=30°,∴△BCA∽△BEB′,∴∠BEB′=∠ACB=90°,∴BE=B′E•tan30°=×=,故选:B.2.如图,在△ABC中,AB=AC=3,BC=6,点P在边AC上运动(可与点A,C重合),将线段BP 绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为 .【分析】以BC为边构建出和△BPD相似的三角形,通过将CD边转化为其他边来求值.【解答】解:如图所示,以BC为底边向上作等腰△BQC,使∠BQC=120°,连接PQ.由题意可得△BQC和△BPD均为顶角为120°的等腰三角形,可得,∠QBC=∠PBD=30°,∴∠QBC﹣∠QBD=∠PBD﹣∠QBD,∴∠PBQ=∠DBC,∴△PBQ∽△DBC,∴,∴当PQ⊥AC时,有PQ最小,即此时CD最小,如图所示,设OP′⊥AC,延长AQ与BC交K,此时QP'为QP的最小值,可得AK⊥BC,∵△BQC中,∠BQC=120°,BC=6,∴BK=3,∠QBK=30°,∴QK=,∵AB=AC=3,KC=3,∴AK==6,∴AQ=AK﹣QK=5,∵∠AP'Q=∠AKC=90°,∠QAP'=∠CAK,∴△AQP'∽△ACK,∴,∴,∴QP'=,∴CD=P′=.3.已知在Rt△ABC中,CD⊥AB于点D.(1)在图1中,写出其中两对相似三角形.(2)已知BD=1,DC=2,将△CBD绕着点D按顺时针方向进行旋转得到△C'BD,连接AC',BC.①如图2,判断AC'与BC之间的位置及数量关系,并证明;②在旋转过程中,当点A,B,C'在同一直线时,求BC的长.【分析】(1)利用两个角相等可得△ABC∽△ACD,△BCD∽△BAC;(2)①利用两边成比例且夹角相等证明△DBC∽△DC'A,得,∠DC'A=∠DBC,可得结论;②分点C'在线段AB或AB的延长线两种情形,分别画出图形,利用勾股定理列方程可得答案.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°,∴△ABC∽△ACD,△BCD∽△BAC;(2)①,AC'⊥BC,理由如下:由(1)知,在图1中,△ABC∽△CBD∽△ACD,∴,如图2,∵∠BDC'=∠CDA=90°,∴∠BDC=∠C'DA,∴△DBC∽△DC'A,∴,∠DC'A=∠DBC,∵∠DEB=∠CEC',∴∠C'FE=∠BDC'=90°,∴AC'⊥BC,∴,AC'⊥BC;②如图,当点A、B、C'在同一直线上时,由①知,,AC'⊥BC,设BC=x,AC'=2x,在Rt△ACB中,由勾股定理得,x2+(2x﹣)2=(2)2,解得x=(负值舍去),如图,当A、C'、B在同一直线上时,同理可得,x2+(2x+)2=(2)2,解得x=(负值舍去),综上:BC=或.1.(2022秋•泗阳县期末)如图,利用标杆BE测量建筑物的高度,已知标杆BE高2m,测得AB=3m,BC =6m.则建筑物CD的高是( )A.4m B.9m C.8m D.6m【分析】利用相似三角形的性质求解即可.【解答】解:∵EB∥CD,∴△AEB∽△ADC,∴=,∴=,∴CD=6(m),故选:D.2.(2022秋•成华区期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BDEF是平行四边形,.若△ADE的面积为1,则平行四边形BDEF的面积为( )A.3B.4C.5D.6【分析】利用平行四边形的性质先说明△ADE∽△ABC、△CEF∽△CBA,再利用相似三角形的性质求出△ADE、△ABC、△CEF的面积,最后利用面积的和差关系得结论.【解答】解:∵四边形BDEF是平行四边形,∴DE∥BC,EF∥AB.∴△ADE∽△ABC,△CEF∽△CBA.∵,∴=.∴=.∴=()2=,=()2=.∵S△ADE=1,∴S△ABC=9,S△CEF=4.∵S△ADE+S△CEF+S平行四边形BDEF=S△ABC,∴S平行四边形BDEF=9﹣1﹣4=4.故选:B.3.(2022秋•海淀区校级月考)如图,在等腰△ABC中,AB=AC=9,BP=BC=2,D在AC上,且∠APD =∠B,则CD= .【分析】根据已知易得BC=6,从而可得CP=4,再利用等腰三角形的性质可得∠B=∠C,从而利用三角形内角和定理可得∠BAP+∠APB=180°﹣∠B,然后利用平角定义可得∠APB+∠DPC=180°﹣∠B,从而可得∠DPC=∠BAP,进而可得△ABP∽△PCD,最后利用相似三角形的性质进行计算即可解答.【解答】解:∵BP=BC=2,∴BC=3BP=6,∴CP=BC﹣BP=6﹣2=4,∵AB=AC=9,∴∠B=∠C,∴∠BAP+∠APB=180°﹣∠B,∵∠APD=∠B,∴∠APB+∠DPC=180°﹣∠APD=180°﹣∠B,∴∠DPC=∠BAP,∴△ABP∽△PCD,∴=,∴=,∴CD=,故答案为:.4.(2022秋•万州区期末)如图,矩形ABCD中,AB=6,BC=9,E为CD的中点,F为BC上一点,BF<FC,且AF⊥FE.对角线AC与EF交于点G,则GC的长为 .【分析】根据矩形的性质可得∠B=∠FCE=90°,由∠AFB+∠EFC=∠AFB+∠BAF可得∠EFC=∠BAF,以此证明△ABF∽△FCE,根据相似三角形的性质得,设BF=x,则CF=9﹣x,以此列出方程解得BF=3,CF=6,过点G作GH⊥BC于点H,再证明△CHG∽△CBA,△FHG∽△FCE,得到,,联立两式子,算出CH、GH,最后根据勾股定理即可求解.【解答】解:∵四边形ABCD为矩形,∴∠B=∠FCE=90°,∵AF⊥FE,∴∠AFB+∠EFC=90°,∵∠AFB+∠BAF=90°,∴∠EFC=∠BAF,∴△ABF∽△FCE,∴,设BF=x,则CF=9﹣x,∵四边形ABCD为矩形,AB=6,E为CD的中点,∴CE=3,∴,整理得:x2﹣9x+18=0,解得:x1=3,x2=6,∵BF<FC,∴BF=3,CF=6,过点G作GH⊥BC于点H,如图,∵AB⊥BC,DC⊥BC,∴GH∥AB,GH∥CD,∴△CHG∽△CBA,△FHG∽△FCE,∴,,∴①,②,联立①②得:,解得:,在Rt△CHG中,由勾股定理得GC=.故答案为:.5.(2022•安徽模拟)在数学探究活动中,小明进行了如下操作:如图,将两张等腰直角三角形纸片ABC 和CDE如图放置(其中∠ACB=∠E=90°,AC=BC,CE=DE).CD、CE分别与AB边相交于M、N 两点.请完成下列探究:(1)若AC=2,则AN•BM的值为 4 ;(2)过M作MF⊥AC于F,若=,则的值为 .【分析】(1)由等腰直角三角形的性质可得∠A=∠B=45°,∠MCN=45°,可得∠ACN=∠ACM+∠MCN=∠ACM+45°,∠BMC=∠ACM+∠A=∠ACM+45°,即可证明△ACN∽△BMC,可得=,即可求解;(2)过点C作CG⊥AB于点G,可得∠CGN=∠CFM=90°,由等腰直角三角形的性质可得∠NCG+∠MCG=45°,∠ACM+∠MCG=45°,从而可得∠NCG=∠MCF,可证得△GCN∽△FCM,可得==,设CG=4k,则CF=5k,AC=4k,即可求解=.【解答】解:(1)∵△ABC和△CDE为等腰直角三角形,∴∠A=∠B=45°,∠MCN=45°,BC=AC=2,∵∠ACN=∠ACM+∠MCN=∠ACM+45°,∠BMC=∠ACM+∠A=∠ACM+45°,∴∠ACN=∠BMC,∴△ACN∽△BMC,∴=,∵BC=AC=2,∴AN•BM=AC•BC=4,故答案为:4;(2)如图,过点C作CG⊥AB于点G,∵MF⊥AC,∴∠CGN=∠CFM=90°,∵∠NCG+∠MCG=45°,∠ACM+∠MCG=45°,∴∠NCG=∠MCF,∴△GCN∽△FCM,∵=,∴==,设CG=4k,则CF=5k,AC=4k,∴=,故答案为:.6.(2022秋•驻马店期末)如图,AD是Rt△ABC斜边上的高,若AB=4cm,BC=10cm,求BD的长.【分析】根据射影定理列出算式,代入数据计算即可.【解答】解:由射影定理得,AB2=BD•BC,则BD==1.6.7.(2022秋•开化县期中)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若AC:DC=2:3,BC=6,求EC的长.【分析】(1)由∠BCE=∠ACD,可得出∠BCA=∠ECD,结合∠A=∠D,可证出△ABC∽△DEC;(2)由△ABC∽△DEC,利用相似三角形的性质可得出AC:DC=BC:CE,结合已知条件,可求出EC 的长.【解答】(1)证明:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ACE,即∠BCA=∠ECD.又∵∠A=∠D,∴△ABC∽△DEC.(2)解:∵△ABC∽△DEC,AC:DC=2:3,∴AC:DC=BC:CE=2:3,而BC=6,∴EC=9,∴EC的长为9.8.(2022秋•奉贤区期中)如图,已知在四边形ABCD中,AD∥BC.E为边CB延长线上一点,联结DE 交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AE2=AG•AC,求证:=.【分析】(1)由AD∥BC,得到△ADG∽△CEG,根据相似三角形的性质即可得到结论;(2)由AE2=AG•AC易得△AEG∽△ACE,所以∠AEG=∠ACE=∠DAG,可得△ADG∽△EDA,再根据相似三角形的性质可得结论.【解答】证明:(1)∵AD∥BC,∴△ADG∽△CEG,∴=,∵=,∴=,∴AB∥CD;(2)∵AE2=AG•AC,∴=,∵∠EAG=∠CAE,∴△AEG∽△ACE,∴∠AEG=∠ACE,∵AD∥BC,∴∠ACE=∠DAG,∴∠DAG=∠AEG,∵∠ADG=∠EDA,∴△ADG∽△EDA,∴,即=.9.(2022秋•长安区校级月考)如图,已知AB∥EF∥CD,AC,BD相交于点E,EF:AB=2:3.(1)若CE=4,求AE的长;(2)若CD=6,求AB的长;(3)若四边形ABFE的面积为8,直接写出△CEF的面积.【分析】(1)根据AB∥EF得到△CEF∽△CAB,接着利用相似三角形的性质得到EF:AB=2:3=CE:CA,由此求出CA=6即可求解;(2)根据AB∥EF∥CD,得到△ABE∽△CDE,接着得到AB:CD=AE:CE,利用比例的性质最后得到EFAE:CE=AB:CD=1:2即可求出AB=3;(3)由于△CEF∽△CAB得到S△CEF:S△CAB===,由此即可求解.【解答】解:(1)∵AB∥EF,∴△CEF∽△CAB,∴EF:AB=2:3=CE:CA,∵CE=4,∴2:3=4:CA,∴CA=6,∴AE=CA﹣CE=6﹣4=2;(2)∵AB∥EF∥CD,∴△ABE∽△CDE,∴AB:CD=AE:CE,∵EF:AB=2:3=CE:CA,∴CE:EA=2:1,∴AE:CE=AB:CD=1:2,而CD=6,∴AB=3;(3)∵△CEF∽△CAB,∴S△CEF:S△CAB===,∴=,∴=,∴S△CEF=.10.(2022•文山州模拟)如图,在△ABC中,∠A=90°,D、E分别是AB、BC上的点,过B、D、E三点作⨀O,交CD延长线于点F,AC=3,BC=5,AD=1.(1)求证:△CDE∽△CBF;(2)当⨀O与CD相切于点D时,求⨀O的半径;(3)若S△CDE=3S△BDF,求DF的值.【分析】(1)根据圆内接四边形的性质可得∠BED+∠BFD=180°,再根据同角的补角相等可得∠CED =∠BFD,然后根据两角相等的两个三角形相似进行证明即可解答;(2)连接OD,过点O作OM⊥BD,垂足为M,可得DM=BM=DB,∠OMD=90°,从而可得∠ODM+∠MOD=90°,再在Rt△ABC中利用勾股定理求出AB的长,从而求出BD,DM的长,然后在Rt△ACD 中,利用勾股定理求出CD的长,再利用切线的性质可得∠ODC=90°,最后利用一线三等角相似模型证明△DMO∽△CAD,从而利用相似三角形的性质进行计算即可解答;(3)过点D作DH⊥BC,垂足为H,过点B作BG⊥CF,垂足为G,根据△BDC的面积=BC•DH=BD•AC=BG•CD,可求出DH=,BG=,再根据已知S△CDE=3S△BDF,可得=,然后设DF=x,则CE=15x,从而利用(1)的结论,进行计算即可解答.【解答】(1)证明:∵四边形BEDF是⊙O的内接四边形,∴∠BED+∠BFD=180°,∵∠BED+∠CED=180°,∴∠CED=∠BFD,∵∠DCE=∠BCF,∴△CDE∽△CBF;(2)连接OD,过点O作OM⊥BD,垂足为M,∴DM=BM=DB,∠OMD=90°,∴∠ODM+∠MOD=90°,∵∠A=90°,BC=5,AC=3,∴AB===4,∵AD=1,∴BD=AB﹣AD=4﹣1=3,∴DM=BD=,在Rt△ADC中,CD===,∵⨀O与CD相切于点D,∴∠ODC=90°,∴∠ODM+∠ADC=180°﹣∠ODC=90°,∴∠MOD=∠ADC,∵∠OMD=∠A=90°,∴△DMO∽△CAD,∴=,∴=,∴DO=,∴⨀O的半径为;(3)过点D作DH⊥BC,垂足为H,过点B作BG⊥CF,垂足为G,∵△BDC的面积=BC•DH=BD•AC=BG•CD,∴BC•DH=BD•AC=BG•CD,∴5DH=3×3=BG,∴DH=,BG=,∵S△CDE=3S△BDF,∴CE•DH=3×DF•BG,∴CE•DH=3DF•BG,∴CE=3DF•,∴==,∴设DF=x,则CE=15x,由(1)得:△CDE∽△CBF,∴=,∴=,解得:x=,经检验:x=是原方程的根,∴DF=x=,∴DF的长为.1.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )A.4B.5C.6D.7【分析】根据CD∥OB得出,根据AC:OC=1:2,得出,根据C、D两点纵坐标分别为1、3,得出OB=6,即可得出答案.【解答】解:∵CD∥OB,∴,∵AC:OC=1:2,∴,∵C、D两点纵坐标分别为1、3,∴CD=3﹣1=2,∴,解得:OB=6,∴B点的纵坐标为6,故选:C.2.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )A.9cm B.12cm C.15cm D.18cm【分析】根据=,得到=,根据DE∥BC,得到∠ADE=∠B,∠AED=∠C,得到△ADE∽△ABC,根据相似三角形对应边成比例即可得出答案.【解答】解:∵=,∴=,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∴=,∴BC=15(cm),故选:C.3.(2022•哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )A.B.4C.D.6【分析】利用平行线证明判定三角形相似,得到线段成比例求解.【解答】解:∵AB∥CD,∴△ABE∽△CDE,∴=,即=,∴BE=1.5,∴BD=BE+DE=4.5.故选:C.4.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )A.B.C.D.【分析】根据相似三角形的判定定理和性质定理解答即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵=,∴=,∴==.故选:D.5.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC 边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③【分析】由旋转的性质得出∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,进而得出∠B=∠ADB,得出∠ADE=∠ADB,得出DA平分∠BDE,可判断结论②符合题意;由∠AFE=∠DFC,∠E=∠C,得出△AFE∽△DFC,可判断结论①符合题意;由∠BAC=∠DAE,得出∠BAD=∠FAE,由相似三角形的性质得出∠FAE=∠CDF,进而得出∠BAD=∠CDF,可判断结论③符合题意;即可得出答案.【解答】解:∵将△ABC以点A为中心逆时针旋转得到△ADE,∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,∴∠B=∠ADB,∴∠ADE=∠ADB,∴DA平分∠BDE,∴②符合题意;∵∠AFE=∠DFC,∠E=∠C,∴△AFE∽△DFC,∴①符合题意;∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠FAE,∵△AFE∽△DFC,∴∠FAE=∠CDF,∴∠BAD=∠CDF,∴③符合题意;故选:D.6.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F 处,若CD=3BF,BE=4,则AD的长为( )A.9B.12C.15D.18【分析】证明△BEF∽△CFD,求得CF,设BF=x,用x表示DF、CD,由勾股定理列出方程即可求解.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.7.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=( )A .B .C .D .【分析】根据三角形的中位线定理,相似三角形的面积比等于相似比的平方解答即可.【解答】解:在△ABC 中,D 、E 分别为线段BC 、BA 的中点,∴DE 为△ABC 的中位线,∴DE ∥AC ,DE =AC ,∴△BED ∽△BAC ,∵=,∴=,即=,故选:B .8.(2022•锦州)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若AB =6,则△AEF 的面积为 3 .【分析】由正方形的性质可知AE =3,AD //BC ,则可判断△AEF ∽△CBF ,利用相似三角形的性质得到,然后根据三角形面积公式得到S △AEF =S △ABE .【解答】解:∵四边形ABCD 是正方形,∴AD =BC =AB =6,AD ∥BC ,∵E 为AD 的中点,∴AE =AB =3,∵AE ∥BC ,∴△AEF ∽△CBF ,∴==,∴S △AEF :S △ABF =1:2,∴S△AEF=S△ABE=××3×6=3.故答案为:3.9.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D 在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 ②③ .【分析】①根据等腰直角三角形可知∠B=∠ACB=45°,若AC=CD,则∠ADC=∠CAD=67.5°,这个根据已知得不出来,所以①错误;②证明△AEF∽△ABD,列比例式可作判断;④证明△ADH∽△BAH,列比例式可作判断;③先计算AH的长,由④中得到的比列式计算可作判断.【解答】解:①∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∵∠ADC=∠B+∠BAD,而∠BAD的度数不确定,∴∠ADC与∠CAD不一定相等,∴AC与CD不一定相等,故①错误;②∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵∠B=∠AED=45°,∴△AEF∽△ABD,∴=,∵AE=AD,AB=BC,∴AD2=AF•AB=AF•BC,∴AD2=AF•BC,故②正确;④∵∠DAH=∠B=45°,∠AHD=∠AHD,∴△ADH∽△BAH,∴=,∴AH2=DH•BH,而BH与AC不一定相等,故④不一定正确;③∵△ADE是等腰直角三角形,∴∠ADG=45°,∵AH⊥DE,∴∠AGD=90°,∵AD=3,∴AG=DG=,∵DH=5,∴GH===,∴AH=AG+GH=2,由④知:AH2=DH•BH,∴(2)2=5BH,∴BH=8,∴BD=BH﹣DH=8﹣5=3,故③正确;本题正确的结论有:②③故答案为:②③.10.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .【分析】设AD交EH于点R,由矩形EFGH的边FG在BC上证明EH∥BC,∠EFC=90°,则△AEH∽△ABC,得=,其中BC=8,AD=6,AR=6﹣EH,可以列出方程=,解方程求出EH 的值即可.【解答】解:设AD交EH于点R,∵矩形EFGH的边FG在BC上,∴EH∥BC,∠EFC=90°,∴△AEH∽△ABC,∵AD⊥BC于点D,∴∠ARE=∠ADB=90°,∴AR⊥EH,∴=,∵EF⊥BC,RD⊥BC,EH=2EF,∴RD=EF=EH,∵BC=8,AD=6,AR=6﹣EH,∴=,解得EH=,∴EH的长为,故答案为:.11.(2022•上海)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt△AEC 中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.1.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )A.B.C.D.【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=5,∴S△ADE:S△ABC的值为,故选:B.2.(2022•南岗区三模)如图,点E在菱形ABCD的边CD的延长线上,连接BE交AD于点F,则下列式子一定正确的是( )A.B.C.D.。
期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)
期中真题几何证明40题专练一.解答题(共40小题)1.(2022秋•宝山区校级期中)五边形ABCDE中,AB=AE,AD平分∠CDE,∠B+∠E=180°,求证:BC+DE=CD.【分析】在DC上截取DF=DE,连接AF,先证△ADF≌△ADE,再证△ACF≌△ACB,即可得证结果.【解答】证明:如图,在DC上截取DF=DE,连接AF,∵AD平分∠CDE,∴∠ADF=∠ADE,在△ADF和△ADE中,,∴△ADF≌△ADE(SAS),∴AF=AE,∠FAD=∠EAD,∵AB=AE,∠BAE=∠CAD,∴AB=AF,∠BAC=∠FAC,在△ACF和△ACB中,,∴△ACF≌△ACB(SAS)∴BC=CF,∵CD=CF+DF,∴CD=BC+DE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解题的关键是准确作出辅助线构造全等三角形.2.(2022秋•虹口区校级期中)如图,△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,且ED ⊥AB于点F,且AB=DE.(1)求证:BD=2EC;(2)若BD=10cm,求AC的长.【分析】(1)根据AAS证明△ABC≌△EDB得BD=BC,再根据E是BC的中点,即可得出结论;(2)根据(1)的结论,结合BD=10,即可求出AC的长.【解答】(1)证明:∵ED⊥AB,∠ACB=∠DBC=90°,∴∠BFE=∠DBC=90°,∴∠BEF+∠ABC=∠BDE+∠BEF=90°,∴∠ABC=∠BDE,在△ABC和△EDB中,,∴△ABC≌△EDB(AAS),∴BD=BC,∵E是BC的中点,∴BC=2CE,∴BD=2EC;(2)解:由(1)知,△ABC≌△EDB,∴BE=AC,∵BD=2CE,即BD=2BE,∵BD=10,∴AC=BE=5cm.【点评】本题考查了全等三角形的判定与性质,证明△ABC≌△EDB是解题的关键.3.(2022秋•静安区校级期中)如图,AD是△ABC的高,∠B=2∠C,BD=5,BC=25,求AB的长.【分析】在线段DC上截取DE=BD,连接AE,根据线段垂直平分线的性质得到AB=AE,求得∠B=∠AEB,根据三角形外角的性质得到∠AEB=∠CAE+∠C,求得AE=CE,于是得到结论.【解答】解:如图:在线段DC上截取DE=BD,连接AE,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,∵∠B=2∠C,∴∠AEB=2∠C,∵∠AEB=∠CAE+∠C,∴∠C=∠CAE,∴AE=CE,∵BD=5,BC=25,∴DE=BD=5,∴AB=AE=CE=BC﹣BD﹣DE=15.【点评】此题主要考查的是等腰三角形的判定和性质,作出辅助线正确构建出等腰三角形是解答此题的关键.4.(2020秋•杨浦区校级期中)如图,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过B作BE⊥CD,分别交AC于点E、交CD于点F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和CD的数量关系,并证明你的猜想.【分析】(1)证得∠EBC=∠ACD,∠A=∠ACD,则结论可得出;(2)过点D作DG⊥AC于点G,根据ASA证明△DCG≌△EBC,可得出结论.【解答】(1)证明:∵BE⊥CD,∴∠BFC=90°,∴∠EBC+∠BCF=180°﹣∠BFC=90°,∵∠ACB=∠BCF+∠ACD=90°,∴∠EBC=∠ACD,∵AD=CD,∴∠A=∠ACD,∴∠A=∠EBC;(2)解:CD=BE.过点D作DG⊥AC于点G,∵DA=DC,DG⊥AC,∴AC=2CG,∵AC=2BC,∴CG=BC,∵∠DGC=90°,∠ECB=90°,∴∠DGC=∠ECB,在△DGC和△ECB中,,∴△DCG≌△EBC(ASA),∴CD=BE.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形的性质,关键是掌握全等三角形的判定定理.5.(2020秋•徐汇区校级期中)如图,AD∥BC,点E是AB的中点,联结DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:AD=BF;(2)当点G是FC的中点时,判断△FDC的形状.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E 为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE,根据全等三角形的性质即可得解;(2)连接EG,根据题意,结合全等三角形的性质得到GE⊥DF,GE是△FDC的中位线,根据三角形中位线的性质即可得出△FDC是直角三角形.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF;(2)解:△FDC是直角三角形,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE⊥DF,∵点G是FC的中点,DE=FE,∴GE∥CD,∴CD⊥DF,∴△FDC是直角三角形.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,利用AAS证明△ADE≌△BFE是解本题的关键.6.(2022秋•静安区校级期中)如图,AB=AC,AD=AE,∠BAD=∠CAE,BE与CD相交于点F.求证:(1)∠ADC=∠AEB;(2)FD=FE.【分析】(1)利用AAS证明△ABD≌△ACE即可;(2)连接DE,利用等腰三角形的性质和判定即可证明结论.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠EAD=∠CAE+∠DAE,∴∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ADC=∠AEB;(2)连接DE,∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠ADC﹣∠ADE=∠AEB﹣∠AED,∴∠FDE=∠FED,∴FD=FE.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握等腰三角形的性质和判定是解题的关键.7.(2022秋•杨浦区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.【分析】根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.【解答】证明:∵AB=AC,∴∠B=∠C,在△BEF与△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴FM⊥EH.ASA证明△BEF≌△CFH.8.(2021秋•浦东新区期中)如图,在△ABC中,BD平分∠ABC,∠A=2∠C,求证:BC=AB+AD.【分析】在BC上截取BE=BA,由“SAS”可证△ABD≌△EBD,可得∠BED=∠A,AB=BE,AD=DE,由外角的性质可得∠C=∠EDC,可证EC=ED,即可得结论.【解答】证明:如图,在BC上截取BE=BA,连接DE,∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴∠BED=∠A,AB=BE,AD=DE,∵∠A=2∠C,∴∠BED=2∠C,∵∠BED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴BC=BE+EC=AB+AD.【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2021秋•徐汇区校级期中)已知在△ABC中,AB=AC,在边AC上取一点D,以D为顶点,DB为一条边作∠BDF=∠A,点E在AC的延长线上,∠ECF=∠ACB.求证:(1)∠FDC=∠ABD;(2)DB=DF;(3)当点D在AC延长线上时,DB=DF是否依然成立?在备用图中画出图形,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)过D作DG∥BC交AB于G,根据等腰三角形的性质和全等三角形的判定和性质定理即可得到结论;(3)过D作DG∥BC交AB于G,根据平行线的性质得到∠ADG=∠ACB,∠AGD=∠ABC,根据等腰三角形的性质得到∠ABC=∠ACB,根据全等三角形的判定和性质即可得到结论.【解答】(1)证明:∵∠BDC=∠A+∠ABD,即∠BDF+∠FDC=∠A+∠ABD,∵∠BDF=∠A,∴∠FDC=∠ABD;(2)过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AB﹣AG=AC﹣AD,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF;(3)仍然成立,如图2,过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AG﹣AB=AD﹣AC,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,∵∠ACB+∠BCF+∠FCD=180°,∴∠ACB+∠BCF+∠DGB=180°,∵∠DGB=∠ABC.∴∠ACB+∠BCF∠ABC=180°,∵∠A+∠ABC+∠ACB=180°,∴∠A=∠BCF,∵∠BDF=∠A,∴∠BCF=∠BDF,∴∠CBD=∠CFD,∵∠GBD=180°﹣∠ABC﹣∠CBD=180°﹣∠FCD﹣∠CFD=∠FDC,∴∠GBD=∠FDC,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.10.(2022秋•浦东新区期中)如图,已知在△ABC中,AB=AC,点D、E分别在AC、AB上,且AD=AE,点F在BC的延长线上,DB=DF.(1)求证:∠ABD=∠ACE.(2)求证:CE∥DF.【分析】(1)由“SAS”可证△ADB≌△AEC,可得∠ABD=∠ACE;(2)由等腰三角形的性质可得∠=∠F,由外角的性质可得∠ACE=∠CDF,可得结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE;(2)∵DB=DF,∴∠DBF=∠F,∵∠ABC=∠ABD+∠DBC,∠ACB=∠F+∠CDF,∴∠ABD=∠CDF,∴∠ACE=∠CDF,∴CE∥DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,掌握全等三角形的判定方法是本题的关键.11.(2020秋•浦东新区校级期中)已知:如图,点B、F、C、E在同一条直线上,AC∥DF,AC=DF,BF =CE.求证:AB∥DE.【分析】根据线段的和差求出BC=EF,由平行线的性质证得∠ACB=∠DFE,根据SAS定理推出△BAC≌△EDF,根据全等三角形的性质得出∠B=∠E,根据平行线的判定即可证得AB∥DE.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△BAC和△EDF中,,∴△BAC≌△EDF(SAS),∴∠B=∠E,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定,平行线的判定的应用,能推出△BAC和△EDF全等是解此题的关键.12.(2022秋•长宁区校级期中)已知:如图,△ABC中,AD平分∠BAC交BC于点D,CF∥AB且CD平分∠FCA,联结FD并延长交边AB于点E,说明CF=AC﹣AE的理由.【分析】由CF∥AB得∠FCB=∠ABC,由CD平分∠FCA得∠FCB=∠ACB,可得∠ACB=∠ABC,从而得AB =AC,由AD平分∠BAC可得CD=BD,再根据ASA证明△FCD≌△EBD,可得FC=BE,从而可得结论.【解答】解:∵CF∥AB,∴∠FCB=∠ABC,∵CD平分∠FCA,∴∠FCB=∠ACB,∴∠ACB=∠ABC,∴AB=AC,∵AD平分∠BAC,∴CD=BD,在△FCD和△EBD中,,∴△FCD≌△EBD(ASA),∴FC=BE,∵AC=AB=AE+EB=AE+CF,∴CF=AC﹣AE.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,角平分线的意义等知识,运用ASA证明△FCD≌△EBD是解答本题的关键.13.(2022秋•杨浦区期中)如图1所示,已知点E在直线AB上,点F,G在直线CD上且∠EFG=∠FEG,EF平分∠AEG,如图2所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG=β,(1)若∠HEG=40°,∠QGH=20°,求∠Q的度数;(2)判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.【分析】(1)先证明,再依据∠HEG=40°,即可得到∠FEG=70°,依据QG平分∠EGH,即可得到∠QGH=∠QGE=20°,根据∠Q=∠FEG﹣∠EGQ进行计算即可;(2)根据∠FEG是△EGQ的外角,∠AEG是△EGH的外角,即可得到∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG ﹣∠EGH,再根据FE平分∠AEG,GQ平分∠EGH,即可得出,,最后依据∠Q=∠FEG﹣∠EGQ进行计算,即可得到.【解答】解:(1)∵EF平分∠AEG,∴∠AEF=∠GEF,∵∠EFG=∠FEG,∴∠AEF=∠GFE,∴AB∥CD,∵∠HEG=40°,∴,∵QG平分∠EGH,∴∠QGH=∠QGE=20°,∴∠Q=∠FEG﹣∠EGQ=70°﹣20°=50°;(2)点H在运动过程中,α和β的数量关系不发生变化,∵∠FEG是△EGQ的外角,∠AEG是△EGH的外角,∴∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG﹣∠EGH,又∵FE平分∠AEG,GQ平分∠EGH,∴,,∴∠Q=∠FEG﹣∠EGQ==,即.【点评】本题主要考查了平行线的判定与性质,三角形外角性质的运用,解题的关键是利用三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.14.(2022秋•宝山区校级期中)如图,在五边形ABCDE中,(1)已知AB=AE,BC=ED,∠B=∠E,F是CD中点,求证:AF⊥CD.(2)已知AB=AE,BC=ED,∠C=∠D,F是CD中点,求证:AF⊥CD.(3)已知∠B=∠E,BC=ED,∠C=∠D,F是CD中点,求证;AF⊥CD.【分析】(1)连接AC,AD,根据全等三角形的判定和性质得出△ABC≌△AED,AC=AD,再由等腰三角形三线合一即可证明;(2)连接BF,EF,BCF≌△EDF,△ABF≌△AEF,∠CFB=∠DFE,∠AFB =∠AFE,结合图形得出∠AFC=∠AFD,即可证明;(3)连接BD,CE交于点G,根据全等三角形的判定和性质得出△BCD≌△EDC,△CGF≌△DGF,∠AFC=∠AFD,结合图形即可证明.【解答】解:(1)如图所示,连接AC,AD,在△ABC与△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∵F是CD中点,∴AF⊥CD;(2)如图所示,连接BF,EF,∵F是CD中点,∴CF=FD,在△BCF与△EDF中,,∴△BCF≌△EDF(SAS),∴BF=EF,∠CFB=∠DFE在△ABF与△AEF中,,∴△ABF≌△AEF(SSS),∴∠AFB=∠AFE,∴∠AFB+∠CFB=∠DFE+∠AFE,即∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD;(3)如图所示,连接BD,CE交于点G,∵F是CD中点,∴CF=FD,在△BCD与△EDC中,,∴△BCD≌△EDC(SAS),∴∠CDB=∠DCE,∴CG=DG,在△CGF与△DGF中,,∴△CGF≌△DGF(SAS),∴∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD.【点评】题目主要考查全等三角形的判定和性质,线段中点的性质及等腰三角形的判定和性质等,理解题15.(2022秋•宝山区校级期中)如图,△ABC和△ABD,AB=AD,点E、F在边BC上,点A、F、D共线,∠BAC=∠AFC,∠EAC=∠FCD,求证:AE=CD.【分析】根据三角形内角和定理得出∠CAD=∠ABC,再由三角形外角的性质及全等三角形的判定和性质即可证明.【解答】证明:∵∠BAC=∠AFC,∴180°﹣∠BAC﹣∠ACB=180°﹣∠AFC﹣∠ACB,即∠CAD=∠ABC,∵∠EAC=∠FCD,∴∠EAC+∠ACB=∠FCD+∠ACB,即∠AEB=∠ACD,在△AEB与△DCA中,,∴△AEB≌△DCA(AAS),∴AE=CD.【点评】题目主要考查全等三角形的判定和性质,三角形内角和定理及外角的性质,熟练掌握全等三角形的判定和性质是解题关键.16.(2022秋•虹口区校级期中)如图,△ABC和△BDE都是等边三角形,且点A、D、E在同一直线上,证明AE=BE+CE.【分析】根据等边三角形的性质,得出∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,再根据角之间的数量关系,得出∠ABD=∠CBE,再根据“边角边”,得出△ABD≌△CBE,再根据全等三角形的性质,得出AD=CE,再根据等量代换,即可得出结论.【解答】证明:∵△ABC和△BDE都是等边三角形,∴∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,∴∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+∠CBE,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,∴AE=DE+AD=BE+CE.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理.17.(2022秋•普陀区校级期中)如图,在△ABC中,AD平分∠BAC,E是BC的中点,过点E作FG⊥AD 交AD的延长线于H,交AB于F,交AC的延长线于G.求证:(1)AF=AG;(2)BF=CG.【分析】(1)由FG⊥AD交AD的延长线于H,∠AHF=∠AHG=90°,可根据全等三角形的判定定理“ASA”证明△AHF≌△AHG,得AF=AG;(2)作CL∥AB交FG于点L,则∠AFG=∠CLG,由AF=AG,得∠AFG=∠G,则∠CLG=∠G,得CL=CG,再证明△BEF≌△CEL,得BF=CL,所以BF=CG.【解答】证明:(1)∵AD平分∠BAC,∴∠FAH=∠GAH,∵FG⊥AD交AD的延长线于H,∴∠AHF=∠AHG=90°,在△AHF和△AHG中,,∴△AHF≌△AHG(ASA),∴AF=AG.(2)作CL∥AB交FG于点L,则∠B=∠ECL,∠AFG=∠CLG,∵AF=AG,∴∠AFG=∠G,∴∠CLG=∠G,∴CL=CG,∵E是BC的中点,∴BE=CE,在△BEF和△CEL中,,∴△BEF≌△CEL(ASA),∴BF=CL,∴BF=CG.【点评】此题重点考查全等三角形的判定与性质、等腰三角形的判定与性质、平行线的性质等知识,正确地作出所需要的辅助线构造全等三角形是解题的关键.18.(2022秋•浦东新区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:∠EFM=∠HFM.【分析】证明△BEF≌△CFH(ASA),△EFM≌△HFM(SSS)即可求解.【解答】证明:∵AB=AC,∠BEF=∠CFH,BE=CF,∴∠B=∠C,在△BEF和△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴EM=HM,FM为公共边,∴△EFM≌△HFM(SSS),∴∠EFM=∠HFM.【点评】本题主要考查全等三角形的判定和性质,掌握三角形全等的判定方法和性质是解题的关键.19.(2017秋•上海期中)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中,,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.20.(2022秋•静安区校级期中)已知:如图,AD∥CF,∠A=∠C=90°,DB平分∠ADF,AD+CF=DF.求证:FB平分∠CFD.【分析】在DF上取一点E,使DE=AD,进而利用SAS证明△ADB与△EDB全等,进而证明△FCB与△FEB 全等,进而解答即可.【解答】证明:在DF上取一点E,使DE=AD,∵DB平分∠ADF,∴∠ADB=∠EDB,在△ADB与△EDB中,,∴△ADB≌△EDB(SAS),∴AB=BE,∠BAD=∠BED,AD=DE,∴∠BAD=∠BED=90°,∵AD∥CF,∴∠C=∠A=90°,∵DF=AD+CF,∴EF=DF﹣DE=DF﹣AD=CF,在Rt△BEF与Rt△BCF中,,∴Rt△BEF≌Rt△BCF(HL),∴∠EFB=∠CFB,即FB平分∠CFD.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.21.(2022秋•静安区校级期中)已知如图,AB=AC,AD=AE,∠BAE=∠CAD,BD与CE相交于点F,求证:FB=FC.【分析】由已知条件证得△ABD≌△ACE,连接BC,要证FB=FC,可利用等式性质来证得.【解答】证明:∵∠BAE=∠CAD(已知),∴∠BAE+∠EAD=∠CAD+∠DAE(等式性质),即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴∠ABD=∠ACE(全等三角形对应角相等),连接BC.∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵∠ABD=∠ACE(已证),∴∠ABC﹣∠ABD=∠ACB﹣∠ACE(等式性质),即∠FBC=∠FCB.∴FB=FC(等角对等边).【点评】本题主要考查了两个三角形的判定和性质,关键是根据SAS证得△ABD≌△ACE.22.(2022秋•闵行区校级期中)如图,已知点A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:BC∥EF.【分析】证△ABC≌△DEF(SAS),得∠BCA=∠EFD,再由平行线的判定即可得出结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】考查了全等三角形的判定与性质、平行线的判定与性质等知识,熟练掌握平行线的判定与性质,证明三角形全等是解题的关键.23.(2022秋•杨浦区期中)如图,已知△ABC和△CDE都是等边三角形,点D、A、C在同一直线上,延长BA交边DE于点F,联结AE、BD.(1)试说明△ADB≌△F AE的理由;(2)延长EA交BD于点H,求∠DHE的度数.【分析】(1)证△ADF是等边三角形,得AD=FA=DF,∠DFA=60°,再证CD=BF,则AB=FE,然后证∠BAD=∠EFA,进而证△ADB≌△FAE(SAS);(2)由全等三角形的性质得∠ABD=∠FEA,再证∠DHE=∠FEA+∠FAE,即可得出结论.【解答】(1)证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,∠DAF=∠BAC=60CDE=60°,CD=DE,∴△ADF是等边三角形,∴AD=FA=DF,∠DFA=60°,∴AC+AD=AB+FA,即CD=BF,∴BF﹣FA=DE﹣DF,即AB=FE,∵∠BAD=180°﹣∠DAF=180°﹣60°=120°,∠EFA=180°﹣∠DFA=180°﹣60°=120°,∴∠BAD=∠EFA,在△ADB和△FAE中,,∴△ADB≌△FAE(SAS);(2)解:由(1)得:△ADB≌△FAE,∴∠ABD=∠FEA,∵∠DHE=∠ABD+∠BAH,∠FAE=∠BAH,∴∠DHE=∠FEA+∠FAE,∵∠DFA=∠FEA+∠FAE,∴∠DHE=∠DFA=60°.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.24.(2022秋•闵行区期中)如图,点D,E在△ABC的边BC上,AD=AE,BD=CE,求证:∠B=∠C.【分析】方法一:利用全等三角形的性质证明即可.方法二:作AM⊥BC于M.证明AN垂直平分线段BC 即可;【解答】证明方法一:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=∠AED+∠AEC=°,∴∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠C.证明方法二:作AM⊥BC于M.∵AD=AE,∴DM=EM,∵BD=CE,∴DM+BD=EM+CE,即:BM=CM,又∵AM⊥BC,即AM为BC的垂直平分线,∴AB=AC,∴∠B=∠C.【点评】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(2022秋•普陀区期中)已知:如图,在四边形ABCD中,BC=DC,点E在边AB上,∠EBC=∠EDC.(1)求证:EB=ED.(2)当∠A=90°,求证:∠BED=2∠BDA.【分析】(1)由BC=DC,得出∠CBD=∠CDB,再由∠EBC=∠EDC,推出∠EBD=∠EDB,即可得出结论;(2)由三角形内角和定理得出∠BDA+∠ABD=90°=∠A,再由(1)得∠EBD=∠EDB,则∠BDA+∠EDB=∠A,然后由三角形的外角性质即可得出结论.【解答】证明:(1)∵BC=DC,∴∠CBD=∠CDB,∵∠EBC=∠EDC,∴∠EBC﹣∠CBD=∠EDC﹣∠CDB,即∠EBD=∠EDB,∴EB=ED;(2)∵∠A=90°,∴∠BDA+∠ABD=90°=∠A,由(1)得:∠EBD=∠EDB,∴∠BDA+∠ABD=∠BDA+∠EDB=∠A,∴∠BED=∠A+∠ADE=∠BDA+∠EDB+∠ADE=∠BDA+∠BDA=2∠BDA.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理、三角形外角的性质等知识,熟练掌握等腰三角形的判定与性质是解题的关键.26.(2021秋•奉贤区校级期中)在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为腰右侧作等腰三角形△ADE,且AD=AE,∠BAC=∠DAE,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度.(2)设∠BAC=α,∠BCE=β.①点D是在线段BC上移动时,如图2,则α、β之间有怎样的数量关系?试说明理由.②点D是在射线CB上移动时,则α、β之间有怎样的数量关系?试直接写出结论.【分析】(1)证明△BAD≌△CAE,得∠B=∠ACE,即可证明;(2)①与(1)同理证明△BAD≌△CAE,得∠ABD=∠ACE,则∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°;②同理证明△ADB≌△AEC,得∠ABD=∠ACE,由∠ABD=∠BAC+∠ACB,则∠BAC=∠BCE.【解答】解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①α+β=180°,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;②α=β,理由如下:∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ADB与△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∴∠BAC=∠BCE,∴α=β.【点评】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,三角形外角的性质等知识,证明△ADB≌△AEC是解题的关键.27.(2021秋•浦东新区期中)如图,在△ABC中,AD平分∠BAC,DE∥AC,过点E作EF⊥AD于点O,交BC的延长线于F,连接AF,求证:AF=DF.【分析】根据平行线的性质和等腰三角形的判定和性质解答即可.【解答】证明:∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA,∴AE=DE,∵EF⊥AD,∴EF垂直且平分AD,∴F在AD的垂直平分线上,∴AF=DF.【点评】此题考查等腰三角形的判定和性质,关键是根据平行线的性质和等腰三角形的判定和性质解答.28.(2020秋•浦东新区期中)如图,已知在△ABC中,AB=AC,D是AB上一点,延长AC至点E,使CE =BD.联结DE交BC于点F,求证:DF=EF.【分析】过点D作DG∥AC交BC于点G,由“AAS”可证△DFG≌△ECF,可得DF=EF.【解答】证明:如图,过点D作DG∥AC交BC于点G,∵AB=AC,∵DG∥AC,∴∠ACB=∠DGB,∠DGF=∠ECF,∴∠ACB=∠DGB=∠B,∴DG=DB,∵CE=BD,∴DG=CE,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS)∴DF=EF.【点评】本题考查了全等三角形的判定和性质、等腰三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是解题的关键.29.(2022秋•奉贤区校级期中)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.【解答】证明:∵BE∥DF,在△ABE和△FDC中,,∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.30.(2020秋•普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF ⊥AC交AC的延长线于点F,垂足分别为点E、F.(1)求证:∠DBE=∠DCF.(2)求证:BE=CF.【分析】(1)连接AD,证△ABD≌△ACD(SSS),得∠ABD=∠ACD,即可得出结论;(2)证△BDE≌△CDF(AAS),即可得出结论.【解答】证明:(1)连接AD,如图:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠ABD=∠ACD,∴∠DBE=∠DCF.(2)∵DE⊥AB,DF⊥AC,∴∠E=∠F=90°,由(1)得:∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定和性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.31.(2017秋•静安区期中)如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【分析】(1)根据SAS证明△AED与△BFD全等,再利用等量代换证明即可;(2)根据角平分线的定义和等腰三角形的性质进行证明即可.【解答】证明:(1)∵D为AB的中点,∴BD=AD,在△AED与△BFD中,,∴△AED≌△BFD(SAS),∴∠E=∠DFB,∵DF∥AC,∴∠C=∠DFB,∴∠C=∠E;(2)∵DF平分∠AFB,∴∠AFD=∠DFB,∵∠E=∠DFB,∴∠AFD=∠AED,∵ED=DF,∴∠DAF+∠AFD=90°,∵EF∥AC,∴∠AFD=∠FAC,∴∠DAF+∠FAC=90°,∴AC⊥AB.【点评】本题考查了全等三角形的判定与性质,关键是根据平行线的性质、全等三角形的判定与性质等知识进行解答.32.(2021秋•浦东新区期中)如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE=AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.33.(2022秋•奉贤区校级期中)(1)已知:如图①,△ABC是等边三角形,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:线段EF、DF之间有怎样的数量关系?并证明你的猜想.(2)已知:如图②,在△ABC中,∠B=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:上述(1【分析】(1)证明△EAC≌△DCA(ASA),可得EC=DA,然后根据线段的和差即可得结论;(2)在CA上截取CG=CD,证明△CDF≌△CGF(SAS),可得DF=GF,∠DFC=∠GFC,再证明△AEF≌△AGF(ASA),可得EF=GF,进而可得结论.【解答】解:(1)EF=DF,证明:∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,∵AD、CE分别平分∠BAC、∠ACB,∴∠FAC=BAC,∠FCA=BCA,∴∠FAC=∠FCA,∴FA=FC,在△EAC和△DCA中,,∴△EAC≌△DCA(ASA),∴EC=DA,∵FA=FC,∴EF=DF;(2)EF=DF仍成立,理由如下:如图,在CA上截取CG=CD,在△CDF和△CGF中,,∴△CDF≌△CGF(SAS),∴DF=GF,∠DFC=∠GFC,∵∠DFC=∠FAC+∠FCA=BAC+BCA=60°,∴∠GFC=60°,∠AFE=60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣(BAC+BCA)=180°﹣60°=120°,∴∠AFG=120°﹣60°=60°,∴∠AFE=∠AFG,在△AEF和△AGF中,,∴△AEF≌△AGF(ASA),∴EF=GF,∴EF=DF.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,遇到角平分线,作角平分线上的点到两边的距离构造出全等三角形是解题的关键.34.(2021秋•台江区期中)如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【分析】(1)利用SAS ABC≌△AED;(2)根据全等三角形的性质得到∠ABC=∠AED,根据等腰三角形的性质得到∠ABE=∠AEB,得到∠OBE=∠OEB,根据等腰三角形的判定定理证明.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.35.(2022秋•宝山区校级期中)如图,已知在△ABC中,AB=AC,点D、E分别在边AB、AC上,且AD =AE.(1)求证:DE∥BC;(2)如果F是BC延长线上一点,且∠EBC=∠EFC,求证:DE=CF.【分析】(1)根据等腰三角形的性质和三角形内角和证明即可;(2)根据AAS证明△BDE与△EFC全等即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵AD=AE,∴∠ADE=∠AED,∵∠A=∠A,∴∠ADE=∠ABC,∴DE∥BC;(2)∵∠EBC=∠EFC,∠ABC=∠ACB,∴∠DBE+∠EBC=∠CEF+∠EFC,∴∠DBE=∠CEF,∠DEB=∠EFC,在△BDE与△EFC中,,∴△BDE≌△EFC(AAS),∴DE=CF.【点评】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.36.(2022秋•浦东新区期中)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.37.(2022秋•徐汇区校级期中)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.【分析】过点D作DE⊥AB,垂足为点E,由“在角的平分线上的点到这个角的两边的距离相等”可知DE=DC,再证明Rt△ACD≌Rt△AED,由此可得AC=AE,在证明BE=DE即可.【解答】证明:过点D作DE⊥AB,垂足为点E,又∵∠ACB=90°(已知),∴DE=DC(在角的平分线上的点到这个角的两边的距离相等).在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(H.L).∴AC=AE,∠CDA=∠EDA.∵∠B=2∠D(已知),∴∠B=∠BDE.∴BE=DE.又∵AB+AE=BE,∴AB+AC=CD.【点评】本题考查了全等三角形的判定与性质,关键是作辅助线使得AB与AC在同一条直线上才好证AB+AC =CD.38.(2021秋•徐汇区校级期中)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE =11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.39.(2022秋•奉贤区校级期中)△ABC为等边三角形,D为AB边上的任意一点.连接CD.(1)在BD的左侧,以BD为一边作等边三角形BDE(尺规作图,保留作图痕迹,不写作法);(2)连接AE,试说明:CD=AE.【分析】(1)可以分别以B、D为圆心,以BD为半径作弧,相交于E;(2)由已知条件,证明△BCD≌△EAB即可.【解答】(1)解:如图:(2)证明:连接AE,如图,∵在△BCD与△BAE中,,∴△BCD≌△BAE(SAS)∴CD=AE.【点评】此题主要考查等边三角形的作法以及性质的运用,还涉及到全等三角形的判定,综合性强.求得三角形全等是正确解答本题的关键.40.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【PR和AE配合】
PR和AE可以智能链接,在AE里的调色工程不需要输出可以直接导入到PR剪辑,如果对某个画面不满意,只需要再AE打开相应的工程修改,PR可以即时显示出修改的结果。
可是实际工作中并不是很好用,因为在PR里的AE工程是无法实时预览的,如果在PR里进行预渲染,那将是很耗时间,当你剪辑上做某些改动时,又需要进行预渲染,想想是多么的痛苦,因此从效率上讲是不现实的。
当然如果有超级强大的工作站联机工作另当别论,我没用过,不敢妄自评论。
【ED和AE的配合】
我一直用PR剪辑多年,但从去年开始痛下决定改用ED
ED的好处是在同等电脑配置下实时性比PR好许多,而且界面简洁,双显很漂亮。
功能上PR似乎强大,有N多的调整,N多的插件。
但这些东西往往加重了软件和系统的负担,对于一个剪辑软件来说,剪辑的流畅度,操作便利度才是第一位的,这是剪辑软件的本职。
如果要调色、特效可以到AE\CB等别的软件进行,那是特效软件的本职,操作一定比在剪辑软件里要强。
对于ED和AE的组合使用,我的做法是,先在ED里剪辑,剪辑完成后,不会有很大改动时,将ED里使用到的原始素材调到AE调色,然后输出高品质的MOV,到ED替换。
注意ED5.5里有两个选项,一个是替换,一个是替换部分,请选择替换部分里的素材,而不是替换,否则你在ED里加的效果就会消失,如果是ED6,只有一个替换选项,只需要替换里的素材选项即可。
在ED的时间线上选择要调色的素材,右键选项里有一个在素材库中显示,素材库中会自动独立显示和时间线上同名的素材,然后右键有个资源管理器,点击就会自动跳到硬盘中素材所处的位置,直接拖到AE即可,还是很便捷的。
接下来就可以在AE中对素材进行特效或则调色,然后输出,注意开始点的位置一定要和ED时间线上的剪辑点起点相通,结尾可以不用管。
把AE输出后的素材导入ED,右键复制,回到ED时间线,然后点替换素材。
看起来这么多文字,其实操作起来没那么复杂,你可以试验下。