德国icHaus产品选型
德国IC-Haus Gmbh磁编码器
Rev B1,Page1/23Copyright©2008iC-Haus Rev B1,Page 2/23PIN CONFIGURATION QFN285x5mm²MH22232425262728123456789101112131421201918171615PTE NERR VPA VNA SLI MA SLOV Wnc ncnc ncnc ncnc ncnc ncnc ncVZAPU VPD VND Z B APIN FUNCTIONS Function 1PTE T est Enable Pin2NERR Error output(active low)3VP A +5V Supply Voltage (analog)4VNA Ground (analog)5SLI Serial Interface,Data Input 6MA Serial Interface,Clock Input 7SLO Serial Interface,Data Output 8-11nc not connected12VZAP Zener Zapping Programming Voltage 13,14nc not connected15A Incremental A (+NU)16B Incremental B (+NV)17Z Index Z (+NW)18VND Ground (digital)19VPD +5V Supply Voltage (digital)20U Commutation U (+NA)21V Commutation V (+NB)22W Commutation W (+NZ)23-28nc not connected TPThermal-PadThe Thermal Pad is to be connected to VNA on the PCB.Orientation of the logo MH CODE ...)is subject toalteration.Rev B1,Page3/23Beyond these values damage may occur;device operation is not guaranteed.Item Symbol Parameter Conditions Unit No.Min.Max.G001V()Supply voltages at VP A,VPD-0.36VG002V(VZAP)Zapping voltage-0.38VG003V()Voltages at A,B,Z,U,V,W,MA,SLO,-0.36V SLI,NERR,PTEG004I()Current in VP A-1020mAG005I()Current in VPD-20200mAG006I()Current in A,B,Z,U,V,W-100100mAG007I()Current in MA,SLO,SLI,NERR,PTE-1010mAG008Vd()ESD-voltage,all pins HBM100pF discharged over1.5kΩ2kVG009Ts Storage temperature-40150°CG010Tj Chip temperature-40135°COperating conditions:VP A,VPD=5V±10%Item Symbol Parameter Conditions Unit No.Min.Typ.Max.T01T a Ambient temperature-40125°CT02Rthja Thermal resistance chip/ambient package mounted on PCB,thermal pad at40K/Wapprox.2cm²cooling areaAll voltages are referenced to ground unless otherwise stated.All currents into the device pins are positive;all currents out of the device pins are negative.Rev B1,Page4/23Operating conditions:VPA,VPD=5V±10%,Tj=-40...125°C,IBM adjusted to200µA,4mm NdFeB magnet,unless otherwise notedItem Symbol Parameter Conditions Unit No.Min.Typ.Max.General001V(VP A,VPD)Supply Voltage Range 4.5 5.5V 002I(VP A)Supply Current in VP A38mA 003I(VPD)Supply Current in VPD PRM=’0’,without Load515mA 004I(VPD)Supply Current in VPD PRM=’1’,without Load210mA 005Vc(hi)Clamp Voltage hi at MA,SLI,SLO,PTE,NERRVc()hi=V()−VPD,I()=1mA0.4 1.5V 006Vc(lo)Clamp Voltage lo I()=-1mA-1.5-0.3V Hall Sensors and Signal Conditioning101Hext Operating Magnetic FieldStrengthAt Chip Surface20100kA/m102fmag Operating Magnetic Field Fre-quencyRotating Speed of Magnet2120000kHzrpm103dsens Diameter of HALL Sensor Array2mm 104xdis Lateral Displacement of Magnetto Chip0.2mm105xpac Displacement Chip to Package QFN28package-0.20.2mm 106φpac Angular alignment of chip vs.packageQFN28package-3+3Deg107hpac Distance of chip surface to pack-age surfaceQFN28package0.4mm108Vos T rimming range of output offsetvoltageVOSS or VOSC=0x7F-55mV109Vos T rimming range of output offsetvoltageVOSS or VOSC=0x3F55mV110Vopt Optimal differential output voltage Vopt=Vpp(PSIN)−Vpp(NSIN),ENAC=’0’,see Fig.64Vpp Amplitude Control201Vampl Differential Output Amplitude Vampl=Vpp(PSIN)−Vpp(NSIN),ENAC=’1’,see Fig.63.24.8Vpp 202Vratio Amplitude Ratio Vratio=Vpp(PSIN)/Vpp(PCOS) 1.09203Vratio Amplitude Ratio Vratio=Vpp(PSIN)/Vpp(PCOS)0.91204tampl Settling Time of Amplitude Con-trol±10%300µs205Vae()lo Amplitude Error Threshold forMINERRVpp(PSIN)−Vpp(NSIN) 1.2 2.8Vpp206Vae()hi Amplitude Error Threshold forMAXERRVpp(PSIN)−Vpp(NSIN) 5.0 5.8Vpp Bandgap Reference401Vbg Bandgap Reference Voltage 1.2 1.25 1.3V 402Vref Reference Voltage455055%VP A 403Iibm Bias Current CIBM=0x0-100µACIBM=0xF-370µABias Current adjusted-220-200-180µA 404VPDon T urn-on Threshold VPD,SystemonV(VPD)−V(VND),increasing voltage 3.7 4.0 4.3V405VPDoff T urn-off Threshold VPD,SystemresetV(VPD)−V(VND),decreasing voltage3 3.5 3.8V 406VPDhys Hysteresis System on/reset0.35V 407Vosr Reference voltage offset com-pensation480500520mVRev B1,Page5/23Operating conditions:VPA,VPD=5V±10%,Tj=-40...125°C,IBM adjusted to200µA,4mm NdFeB magnet,unless otherwise notedItem Symbol Parameter Conditions Unit No.Min.Typ.Max.Clock Generation501f()sys System Clock Bias Current adjusted0.85 1.0 1.15MHz 502f()sdc Sinus/Digital-Converter Clock Bias Current adjusted141618MHz Sin/Digital Converter12Bit 601RESsdc Sinus/Digital-Converter Resolu-tion602AAabs Absolute Angular Accuracy Vpp()=4V,adjusted-0.350.35Deg-1010% 603AArel Relative Angular Accuracy with reference to one output periode at A,B,atResolution1024,see Fig.17604f()ab Output frequency at A,B CFGMTB=’0’0.5MHzCFGMTB=’1’ 2.0MHz1.875Deg 605REScom Resolution of Commutation Con-verter-0.50.5Deg 606AAabs Absolute Angular Accuracy ofCommutation ConverterSerial Interface,Digital Outputs MA,SLO,SLI0.4V 701Vs(SLO)hi Saturation Voltage High V(SLO)=V(VPD)−V(),I(SLO)=4mA702Vs(SLO)lo Saturation Voltage Low I(SLO)=4mA to VND0.4V 703Isc(SLO)hi Short-Circuit Current High V(SLO)=V(VND),25°C-80-50mA 704Isc(SLO)lo Short-Circuit Current Low V(SLO)=V(VPD),25°C5080mA 705tr(SLO)Rise Time SLO CL=50pF60ns 706tf(SLO)Fall Time SLO CL=50pF60ns 707Vt()hi Threshold Voltage High:MA,SLI2V 708Vt()lo Threshold Voltage Low:MA,SLI0.8V 709Vt()hys Threshold Hysteresis:MA,SLI150250mV 710Ipd(SLI)Pull-up Current:MA,SLI V()=0...VPD−1V63060µA 711Ipu(MA)-60-30-6µA 712f()MA10MHz Zapping and Testwith reference to VND2V 801Vt()hi Threshold Voltage High VZAP,PTEwith reference to VND0.8V 802Vt()lo Threshold Voltage Low VZAP,PTE803Vt()hys Hysteresis Vt()hys=Vt()hi−Vt()lo150250mV0.8V 804Vt()nozap Threshold Voltage Nozap VZAP V()=V(VZAP)−V(VPD),V(VPD)=5V±5%,at chip temperature27°C805Vt()zap Threshold Voltage Zap VZAP V()=V(VZAP)−V(VPD),V(VPD)=5V±5%,1.2Vat chip temperature27°C806V()zap Zapping voltage PROG=’1’ 6.97.07.1V 807V()zpd Diode voltage,zapped2V 808V()uzpd Diode voltage,unzapped3V 809Rpd()VZAP Pull-Down Resistor at VZAP3055kΩNERR Output901Vt()hi Input Threshold Voltage High with reference to VND2V 902Vs()lo Saturation Voltage Low I()=4mA,with reference to VND0.4V 903Vt()lo Input Threshold Voltage Low with reference to VND0.8V 904Vt()hys Input Hysteresis Vt()hys=Vt()hi−Vt()lo150250mV 905Ipu(NERR)Pull-up Current V(NERR)=0...VPD−1V-700-300-80µA 906Isc()lo Short circuit current NERR V(NERR)=V(VPD),25°C5080mA 907tf(NERR)Decay time NERR CL=50pF60nsRev B1,Page6/23Operating conditions:VPA,VPD=5V±10%,Tj=-40...125°C,IBM adjusted to200µA,4mm NdFeB magnet,unless otherwise notedItem Symbol Parameter Conditions Unit No.Min.Typ.Max.Line Driver OutputsP01Vs()hi Saturation Voltage hi Vs()=VPD−V();CfgDR(1:0)=00,I()=-4mA200mVCfgDR(1:0)=01,I()=-50mA700mVCfgDR(1:0)=10,I()=-50mA700mVCfgDR(1:0)=11,I()=-20mA400mVP02Vs()lo Saturation Voltage lo CfgDR(1:0)=00,I()=-4mA200mVCfgDR(1:0)=01,I()=-50mA700mVCfgDR(1:0)=10,I()=-50mA700mVCfgDR(1:0)=11,I()=-20mA400mVP03Isc()hi Short-Circuit Current hi V()=0V;CfgDR(1:0)=00-12-4mACfgDR(1:0)=01-120-50mACfgDR(1:0)=10-120-50mACfgDR(1:0)=11-60-20mAP04Isc()lo Short-Circuit Current lo V()=VPD;CfgDR(1:0)=00412mACfgDR(1:0)=0150120mACfgDR(1:0)=1050120mACfgDR(1:0)=112060mAP05Ilk()tri Leakage Current T ristate TRIHL(1:0)=11-100100µAP06tr()Rise-Time lo to hi at Q RL=100Ωto VND;CfgDR(1:0)=00520nsCfgDR(1:0)=01520nsCfgDR(1:0)=1050350nsCfgDR(1:0)=11540nsP07tf()Fall-Time hi to lo at Q RL=100Ωto VND;CfgDR(1:0)=00520nsCfgDR(1:0)=01520nsCfgDR(1:0)=1050350nsCfgDR(1:0)=11540nsOperating conditions:VP A,VPD=5V±10%,T a=-40...125°C,IBM calibrated to200µA;Logic levels referenced to VND:lo=0...0.45V,hi=2.4V...VPDItem Symbol Parameter Conditions Unit No.Min.Max.SSI Protocol(ENSSI=1)I001T MAS Permissible Clock Period t out determined by CFGTOS2502x t out nsI002t MASh Clock Signal Hi Level Duration25t out nsI003t MASl Clock Signal Lo Level Duration25t out nsFigure1:I/O Interface timing with SSI protocolRev B1,Page7/23Rev B1,Page8/23p:Register value write protected;can only be changed while V(VZAP)>Vt()hi T able5:Register layoutHall signal processing....................Page10 GAING:Hall signal amplification range GAINF:Hall signal amplification(1–20,log.scale)GCC:Amplification calibration cosine ENAC:Activation of amplitude control VOSS:Offset calibration sineVOSC:Offset calibration cosinePRM:Energy-saving modeCIBM:Calibration of bias currentDPU Deactivation of NERR pull-upHCLH Activation of high Hall clock pulseRS422driver..............................Page18 CFGDR:Driver propertyTRIHL:Tristate high-side/low-side driver CFGO:Configuration of output mode CFGPROT:Write/read protection memory ENSSI:Activation of SSI mode Sine/digital converter.....................Page16 CFGRES:Resolution of sine digital converter CFGZPOS:Zero point for positionCFGAB:Configuration of incremental output CFGPOLE:No.of poles for commutation signals CFGSU:Behavior during start-up CFGMTD:Frequency at ABCFGDIR:Rotating direction reversal CFGHYS:Hysteresis sine/digital converter CFGCOM:Zero point for commutationTestTEST:T est modePROGZAP:Activation of programming routineRev B1,Page 9/23zFigure 2:Sensor principleIn conjunction with a rotating permanent magnet,the iC-MH module can be used to create a complete en-coder system.A diametrically magnetized,cylindri-cal permanent magnet made of neodymium iron boron (NdFeB)or samarium cobalt (SmCo)generates op-timum sensor signals.The diameter of the magnet should be in the range of 3to 6mm.The iC-MH has four Hall sensors adapted for angle determination and to convert the magnetic field into a measurable Hall voltage.Only the z-component of the magnetic field is evaluated,whereby the field lines pass through two opposing Hall sensors in the oppo-site direction.Figure 2shows an example of field vec-tors.The arrangement of the Hall sensors is selected so that the mounting of the magnets relative to iC-MH is extremely tolerant.T wo Hall sensors combined pro-vide a differential Hall signal.When the magnet is ro-tated around the longitudinal axis,sine and cosine out-put voltages are producedwhich can be used to deter-mine angles.The Hall sensors are placed in the center of the QFN28package at 90°to one another and arranged in a circle with a diameter of 2mm as shown in Figure 3.C040907-2Figure 3:Position of the Hall sensorsWhen a magnetic south pole comes close to the sur-face of the package the resulting magnetic field has a positive component in the +z direction (i.e.from the top of the package)and the individual Hall sensors each generate their own positive signal voltage.In order to calculate the angle position of a diametri-cally polarized magnet placed above the device a dif-ference in signal is formed between opposite pairs of Hall sensors,resulting in the sine being V SIN =V PSIN -V NSIN and the cosine V COS =V PCOS -V NCOS .The zero angle position of the magnet is marked by the resulting cosine voltage value being at a maximum and the sine voltage value at zero.This is the case when the south pole of the magnet is exactly above the PCOS sensor and the north pole is above sensor NCOS,as shown in Figure 4.Sensors PSIN and NSIN are placed along the pole boundary so that neither generate a Hall signal.When the magnet is rotated counterclockwise the poles then also cover the PSIN and NSIN sensors,re-sulting in the sine and cosine signals shown in Figure 5being produced.The signals are internal but can be made externally available for test purposes (see the description of iC-MH’s calibration procedure).Rev B1,Page 10/23C040907-1Figure 4:Zero position of the magnetFigure 5:Pattern of the analog sensor signals withthe angle of rotationThe iC-MH module has a signal calibration function that can compensate for the signal and adjustment errors.The Hall signals are amplified in two steps.First,the range of the field strength within which the Hall sensor is operated must be roughly selected.The first amplifier stage can be programmed in the follow-ing ranges:Table 6:Range selection for Hall signal amplification The operating range can be specified in advance inaccordance with the temperature coefficient and the magnet distance.Theintegrated amplitude control can correct the signal amplitude between 1and 20via an-other amplification factor.Should the control reach the range limits,a different signal amplification must be se-lected via GAING.Table 7:Hall signal amplificationThe second amplifier stage can be varied in an addi-tional range.With the amplitude control (ENAC =’0’)deactivated,the amplification in the GAINF register isused.With the amplitude control (ENAC =’1’)acti-vated,the GAINF register bits have no effect.T able 8:Amplification calibration cosineThe GCC register is used to correct the sensitivity ofthe sine channel in relation to the cosine channel.The cosine amplitude can be corrected within a range of approximately ±10%.T able 9:Activation of amplitude controlThe integrated amplitude control can be activated with the ENAC bit.In this case the differential signal am-plitude is adjusted to 4Vss and the values of GAINF have no effect here.Rev B1,Page11/23Figure 6:Definition of differential amplitude After switch-on the amplification is increased until the setpoint amplitude is reached.The amplification is automatically corrected in case of a change in the input amplitude by increasing the distance between the magnet and the sensor,in case of a change in the supply voltage or a temperature change.The sine signals are therefore always converted into high-resolution quadrature signals at the optimum ampli-tude.Table 10:Offset calibration for sine and cosine Should there be an offset in the sine or cosine signal that,among other things,can alsobe caused by an inexactly adjusted magnet,then this offset can be cor-rected by the VOSS and VOSC registers.The output voltage can be shifted by ±63mV in each case to com-pensate for the offset.T able 11:Energy-saving modeIn the energy-saving mode the current consumptionof the Hall sensors can be quartered.This also reduces the maximum rotating frequency by a factor of 4.T able 12:Calibration of bias currentIn the test mode (TEST =0x43)the internal currents canbe calibrated on Pin B.For this purpose,the cur-rent must be measured based on VNA and the CIBM register bits must be changed until the current is cal-ibrated to 200µA.All internal currents are then cali-brated.T able 13:Activation of high Hall clock pulse The switching-current hall sensors can be operated at two frequencies.At 500kHz the sine has twice the number of support points.This setting is of interest at high speeds above 30,000rpm.Rev B1,Page12/23For signal calibration iC-MH has several test settings which make internal reference quantities and the am-plified Hall voltages of the individual sensors accessi-ble at external pins A,B,Z and U for measurement pur-poses.This enables the settings of the offset(VOSS, VOSC),gain(GAING,GAINF)and amplitude ratio of the cosine to the sine signal(GCC)to be directly ob-served on the oscilloscope.Test mode can be triggered by connecting pin VZAP to VPD and programming the TEST register(address 0x0E).The individual test modes are listed in the fol-lowing table:Table14:Test modes and available output signals The output voltages are provided as differential sig-nals with an average voltage of2.5V.The gain is de-termined by register values GAING and GAINF and should be set so that output amplitudes from the sine and cosine signals of about1V are visible.Test modes Analog SIN and Analog COSIn these test modes it is possible to measure the sig-nals from the individual Hall sensors independent of one another.The name of the signal is derived from the sensor name and position.HPSP,for example, is the(amplified)H all voltage of sensor PS IN at the p ositive signal path;similarly,HNCN is the H all voltage of sensor NC OS at the n egative signal path.The effec-tive Hall voltage is accrued from the differential voltage between the positive and negative signal paths of the respective sensor.Test mode Analog OUTIn this test mode the sensor signals are available at the outputs as they would be when present internally for further processing on the interpolator.The interpo-lation accuracy which can be obtained is determined by the quality of signals V sin and V cos and can be influ-enced in this particular test mode by the calibration of the offset,gain and amplituderatio.VPSINVNSINFigure7:Output signals of the sine Hall sensors in test mode AnalogSINVPCOSVNCOSFigure8:Output signals of the cosine Hall sensors intest mode Analog COSVSINVCOSFigure9:Differential sine and cosine signals in test mode Analog OUTTest mode Analog REFIn this mode various internal reference voltages are provided.VREF is equivalent to half the supply voltage (typically2.5V)and is used as a reference voltage for the Hall sensor signals.VBG is the internal bandgapRev B1,Page 13/23reference (1.24V),with VOSR (0.5V)used to gener-ate the range of the offset settings.Bias current IBM determines the internal current setting of the analog circuitry.In order to compensate for variations in this current and thus discrepancies in the characteristics of the individual iC-MH devices (due to fluctuations in production,for example),this can be set within a range of -40%to +35%using register parameter CIBM.The nominal value of 200µA is measured as a short-circuit current at pin B to ground.Test mode Digital CLKIf,due to external circuitry,it is not possible to mea-sure IBM directly,by way of an alternative clock signal CLKD at pin A can be calibrated to a nominal 1MHz in this test mode via register value CIBM.Figure 10:Setting bias current IBM in test modeAnalog REFThe calibration procedure described in the following applies to the optional setting of the internal analog sine and cosine signals and the mechanical adjust-ment of the magnet and iC-MH in relation to one an-other.BIAS SETTINGThe BIAS setting compensates for possible manufac-turing tolerances in the iC-MH devices.A magnetic field does not need to be present for this setting which can thus be made either prior to or during the assem-bly of magnet and iC-MH.If the optional setup process is not used,register CIBM should be set to an average value of 0x8(which is equivalent to a change of 0%).As described in the previous section,by altering the value in register CIBM in test mode Analog REF current IBM is set to 200µA or,alternatively,in test mode Digital CLK signal CLKD is set to 1MHz.MECHANICAL ADJUSTMENTiC-MH can be adjusted in relation to the magnet in test modes Analog SIN and Analog COS,in which the Hall signals of the individual Hall sensors can be observed while the magnet rotates.In test mode Analog SIN the output signals of the sine Hall sensors which are diagonally opposite one an-other are visible at pins A,B,Z and U.iC-MH and the magnet are then adjusted in such a way that differen-tial signals V PSIN and V NSIN have the same amplitude and a phase shift of 180°.The same applies to test mode Analog COS,where differential signalsV PCOS and V NCOS are calibrated in the same manner.Figure 11:Ideal Lissajous curveCALIBRATION USING ANALOG SIGNALSIn test mode Analog OUT as shown in Figure 5the in-ternal signals which are transmitted to the sine/digital converter can be tapped with high impedance.With a rotating magnet it is then possible to portray the dif-ferential signals V SIN and V COS as an x-y graph (Lis-sajous curve)with the help of an oscilloscope.In an ideal setup the sine and cosine analog values describe a perfect circle as a Lissajous curve,as illustrated by Figure 11.At room temperature and with the amplitude control switched off (ENAC =0)a rough GAING setting is se-lected so that at an average fine gain of GAINF =0x20(a gain factor of ca.4.5)the Hall signal amplitudes are as close to 1V as possible.The amplitude can then be set more accurately by varying GAINF .Variations inRev B1,Page14/23the gain factor,as shown in Figure12,have no effect on the Lissajous curve,enabling the angle information for the interpolator to be maintained.Figure12:Effect of gain settings GAING andGAINFDeviations of the observed Lissajous curve from the ideal circle can be corrected by varying the ampli-tude offset(register VOSS,VOSC)and amplitude ratio (register GCC).Changes in these parameters are de-scribed in the followingfigures13to15.Each of these settings has a different effect on the interpolated angle value.A change in the sine offset thus has a maximum effect on the angle value at0°and180°,with no al-terations whatsoever taking place at angles of90°and 270°.When varying the cosine offset exactly the oppo-site can be achieved as these angle pairs can be set independent of one another.Setting the cosine/sine amplitude ratio does not change these angles(0°,90°, 180°and270°);however,in-between values of45°, 135°,225°and315°can still be influenced by this pa-rameter.Once calibration has been carried out a signal such as the one illustrated in Figure11should be available.In thefinal stage of the process the amplitude control can be switched back on(ENAC=1)to enable devi-ations in the signal amplitude caused by variations in the magneticfield due to changes in distance and tem-perature to be automaticallycontrolled.Figure13:Effect of the sine offsetsetting Figure14:Effect of the cosine offsetsetting Figure15:Effect of the amplitude ratioRev B1,Page15/23CALIBRATION USING INCREMENTAL SIGNALSIf test mode cannot be used,signals can also be cali-brated using the incremental signals or the values read out serially.In order to achieve a clear relationship be-tween the calibration parameters which have an effect on the analog sensor signals and the digital sensor val-ues derived from these,the position of the zero pulse should be set to ZPOS=0so that the digital signal starting point matches that of the analog signals.At an incremental resolution of8edges per revolu-tion(CFGRES=0x1)those angle values can be dis-played at which calibration parameters VOSS,VOSC and GCC demonstrate their greatest effect.When ro-tating the magnet at a constant angular speed the in-cremental signals shown in Figure16are achieved, with which the individual edges ideally succeed one another at a temporal distance of an eighth of a cy-cle(a45°angle distance).Alternatively,the angle po-sition of the magnet can also be determined using a reference encoder,rendering an even rotational action unnecessary and allowing calibration to be performed using the available set angle values.The various possible effects of parameters VOSS, VOSC and GCC on theflank position of incremental signals A and B are shown in Figure16.Ideally,the distance of the rising edge(equivalent to angle posi-tions of0°and180°)at signal A should be exactly half a period(PER).Should the edges deviate from this in distance,the offset of the sine channel can be adjusted using VOSS.The same applies to the falling edges of the A signal which should also have a distance of half a period;deviations can be calibrated using the offset of cosine parameter VOSC.With parameter GCC the distance between the neighboringflanks of signals A and B can then be adjusted to the exact value of an eighth of a cycle(a45°angledistance).Figure16:Calibration using incremental signalsRev B1,Page 16/23The iC-MH module integrates two separate sine/digital converters.A high-resolution 12-bit converter for the ABZ incremental signals can be programmed in broad ranges of the resolution and generate quadrature sig-nals even at the highest speed and resolution.The converter operates for the commutation signals inde-pendently of this and can be set in the zero point sep-arately from the quadrature converter.This enables the commutation at other angles based on the index track Z.T able 15:Programming interpolation factorThe resolution of the 12-bit converter can virtually be set as desired.Any resolution can be set up to an in-terpolation factor of 128,i.e.512edges per rotation.At higher resolutions,only the binary resolutions can be set,i.e.256,512and 1024.In the highest resolution with an interpolation factor of 1024,4096edges per rotation are generated and 4096angular steps can be differentiated.Even in the highest resolution,the abso-lute position can be calculated in real time at the maxi-mum speed.After the resolution is changed,a module reset is triggered internally and the absoluteposition is recalculated.Table 16:Inversion of AB signals405060A B Z100%Figure 17:ABZ signals and relative accuracyThe incremental signals can be inverted again inde-pendently of the output drivers.As a result,other phase angles of A and B relative to the index pulse Z can be generated.The standard is A and B high level for the zero point,i.e.Z is equal to high .Figure 17shows the position of the incremental sig-nals around the zero point.The relative accuracy of the edges to each other at a resolution setting of 10bit is better than 10%.This means that,based ona period at A or B,the edge occurs in a window between 40%and 60%.T able 17:Programming angular hysteresisWith rotating direction reversal,an angular hysteresis prevents multiple switching of the incremental signals at the reversing point.The angular hysteresis corre-sponds to a slip which exists between the two rotating directions.However,if a switching point is approached from the same direction,then the edge is always gen-erated at the same position on the output.The fol-lowing figure shows the generated quadrature signals for a resolution of 360edges per rotation (interpolation factor 90)and a set angular hysteresis of 1.4°.Rev B1,Page17/23A B ZFigure 18:Quadrature signals for rotating directionreversal (hysteresis 1.4°)At the reversal point at +10°,first the corresponding edge is generated at A.As soon as an angle of 1.4°has been exceeded in the other direction in accor-dance with the hysteresis,the return edge is generated at A again first.This means that all edges are shifted by the same value in the rotating direction.Table 18:Programming AB zero positionThe position of the index pulse Z can be set in 1.4°steps.An 8-bit register is provided for this purpose,which can shift the Z-pulse once over 360°.Table 19:Minimum edge spacingThe CFGMTB register defines the time in which two consecutive position events can be output.The de-fault is a maximum output frequency of 500kHz on A.This means that at the highest resolution,speeds of 30,000rpms can still be correctly shown.In the set-ting with an edge spacing of 125ns,the edges can be generated even at the highest revolution and the max-imum speed.However,the counter connected to the module must beable to correctly process all edges in this case.The settings with 2µs,and 8µs can be used for slower counters.It should be noted then,however,that at higher resolutions the maximum rotation speed is reduced.Table 20:Rotating direction reversalThe rotating direction can easily be changed with the bit CFGDIR.When the setting is CCW (counter-clockwise,CFGDIR =’0’)the resulting angular position values will increase when rotation of the magnet is per-formed as shown in figure 5.T o obtain increasing an-gular position values in the CW (clockwise)direction,CFGDIR then hasto be set to ’1’.The internal analoge sine and cosine signal which are available in test mode are not affected by the setting of CFGDIR.They will always appear as shown in figure 5.T able 21:Configuration of output startupDepending on the application,a counter cannot bear generated pulses while the module is being switched on.When the supply voltage is being connected,first the current position is determined.During this phase,the quadrature outputs are constantly set to "111"in the setting CFGSU =’0’.In the setting CFGSU =’1’,edges are generated at the output until the absolute position is reached.This enables a detection of the absolute position with the incremental interface.The converter for the generation of the commutation signals can beconfigured for two and four-pole mo-tors.Three rectangular signals each with a phase shift of 120°are generated.With two-pole commutation,the sequence repeats once per rotation.With a four-pole setting,the commutation sequence is generated twice per rotation.T able 22:CommutationThe zero position of the commutation,i.e.therising edge of the track U,can be set as desired over a rota-tion.Here 192possible positions are available.Values above 0xC0are the mirrored positions from 0x70.T able 23:Commutation。
Endress + Hauser 温度传感器TMT121 127 128型号产品说明说明书
i.iE -5: GYJ17.1056X(�tt: Obere Wank 1, 87484 Nesselwang, Germany)� -5 � � TMT121/127/128��VIlf.j 11 l;r. $ Ex iaHe T4-T6 Ga/GbI!l ** UU -5 14 10 00 000�1!l�&�*���$·�����,.���P�r.f ft GB 3836.1-2010, GB 3836.4-2010, GB 3836.20-2010 *;r. ;1,�� Wi � tlt iiE 0* iiE � 'A � 1m: 2017 � 2 F.1 22 S � 2022 � 2 F.1 21 B* 51 1. ��fl:m5.t��rYlm*iiE�1lf1f!fo2.iiE���€."X".���A���RmM •• �, �fim*iiE�Mf!fo3. ��m�l�aJ:lm*iiE�1lf1f!fo4. *�Et!. �VH&m*iiE�1lf1f!fo5. *iiE�F5JII1�mT,t�H�WT�WTiM.Jl[{)'(. (�1H) ��LHHi.J(�tt: �#lI�rm��iJUt:/lJm465�) ���F5J����o!t!? :1:.1: 1: j1i} m ie 3i: Jm 1 03 �JiI��: 200233 IXX.I:I:.II::Emai l:**************.cnJ:t!�: +86 21 64368180�a: +8621 64844580EX PL OS IO N PR OT EC TI ONCE RT IF IC AT E OF CO NFO RM ITYCert NO.GYJI7.1056XThis is to certify that the productTemperature transmitter (DIN raH)manufactured by Endress + Hauser We tzer GmbH + Co. KG(Address:Obcre Wank 1,87484 Nesselwang, Germany)which model is TMT1211127/128 Se r iesEx marking Ex iaHC T4-T6 Ga/Gbproduct standard /drewing number 14 1000000has been inspected end certified by NEPSI, and that it conformsto GB 3836.1-2010,GB 3836.4-2010,GB 3836.20-2010This Approval shall remain in force until 2022.02.21Remarks I.Conditions for safe use are specified in the attachment(s) to this certificate.2.Symbol "X" placed after the certification number denotes specific conditions of use,which are specified in the aUachrnent(s) to this certificate.3.Model designation is specified in the attachment(s) to this certificate.4.1ntrinsic safety parameters specified in the attachment(s) to this certificate.5.This certificate is also applicable for the product with the same type manufactured byEndress+Hauser Wetzer (Suzhou) Co., Ltd. (address: Su Hong Zhong Lu No.465,Suzhou-SIP, China)DirectorIssued DateThis Ce rtificat e is valid for produc ts com patible with t he doc ument s and s am p ies app rovedby NEPSI.103 C ao Bao Road Shanghai200233,China Email: **************.cnTel: +862164368180Fax: +8621 64844580Edilion05�*�tt�tt��.������M National Supervision and Inspection Centre forExplosion Protection and Safety of Instrumentation (GYJ17.1056X) (Attachment I )GY J17.1 056X� tI-ß-�iJE m{tf: I��ft Jr0 i1J �FB�TMT121/127/128*Ju�lfu l5t���� C '@%lL��) �� j;ill%� 15U:Wrf5U&r!15 *'�3:Jlli:'I�H&!J@: M(N E P S I )f&!J@: ?:{f-g. T J U fiT-1ft:GB3836.1-2010 *,Yr:äJiF� m1'ßM·}: .�� iffi J tj�*GB3836.4-2010 �'l:'Fti):f� �4tftl7}: El:pls:J.!jJ:�3:lli "i" 1:l1tJ?ß!'r��GB3836.20-2010 :Ii'l:'FäJiF� m20'ß-ß7t: W:�{ljH?�laIJ CEPL)Frf�Il1J�ß*$$Ex iaHC T4�T6 Ga/Gb. IltJ�lfr*:(:liiE-'%GYJ17.1056Xo*�iE 1 � 1A i:iJB� F J1J:1� -'%�m*lt :tm T :iTEMP PCP DIN rail TMT 121-10iTEMP RTD DIN rail TMT 127-10iTEMP TC DIN rail TMT 128-10Ä�: •• •.-, 1'= fflt:'tC� {f:ffl*f'**ftfA����T:f���s*�.:(HJI.:t�.d�ffl B�·�lJ1:'t:�:(.f�-1-g.GB4208-2008�J\lJCB� IP20 lJ,J:. lLmJE GB3836.1-201 0;fDGB3836.4-201 O�*Er�5'r1G� 0=,1'=fflt{f:ffl��$t9i1. F� f tJ:f.P:f�Ylfult;fDYlfu)jU.l3.3JU I'r� �*:�Jt�.I3.!iJIJ T4 T5 T6Je if Pf� iJh1il&-40 'C -+85 'C -40C+65C -40C+50Cm��� /F1�+:1Hf1i 03. FrI1i'I�*����ln:;-:f*,�if!IiI,VJR[1 (+),2(-)] Uj=30V Ij=100mA Pj=750mW Cj�O Lj�OUo=4.4V l o=9.6mA Po=10.6mW f'iZ��@]��[3, 4, 5,6] HC TIBCo 2.4iJ F 12iJ FLo 100mH 100mH(GY J17.1 056X) (Attachment I )4, FI-l�.!=j*Ri&�B��f�Il!.��BYj}11H{g�:j:p�B�mfM(I\:I.��, ;!{mfM(mBYf�±ilio5,ffl����fiM.���F����.$#, BY��F������M*�fi�� ���., �����.fi��m������o6, Fp1B���, 1�fFHII�Mf'�I'"Jßt�'1'Fp11tffl�A)H5, G83836.13-1997 ";lfHt'i1-4: {i.f(flF�ffl�@'�i&�m13f'i�7t: , G83836.15-2000 ". 1:t't1�1*lf:Liffl J:f!.�i&� m15f'iM·}: i1t�fttmwrJ:f!.-4:�� (;I:�1tl;�"�) , G83836.16-2006 " ;I:l 1:t 'ti /=t 1* lf m m J:f!. � .\& fIl. � 16 f'i� 7t: f:@. /=t � l!f B� tft � �[I MU? (m 1t ��,,�) JJzG850257-1996 r:@. ��:EiMii I JJz�I&J.m1[i" rttlff* �!.\l)E o1,F���r������ru& •• ��AF��mill��;2 ,*� � r 16' �li1 ?-*tr f'J{W� N E P S I iA i:iJ (:1<] )( 1q: 'Bi �4 � F ;3, F � � ),�. � r0. j> -E1 �% r 31U I*J � :a) NEPS liA (��Jj1jit*tri.LE:;)b) F &i'dVI :ti liF iil;;c ) rVI :Ii 1-1 *1HIE 'ij'd) 1� ffl W �YliliJte) *� Il!.�%t��*������.���.��� National Supervision and Inspection Centre forExplosion Protection and Safety of Instrumentation(GY J17.1 056X) (Attachment I )Attachment I to GYJ17.1056X1. DescriptionTMT121 /127/128 se r ies Temperature transmitter (DIN rail), manufactured by Endress+Hauser Wetzer GmbH + Co.KG, has been certified by National Supervision and Inspection Center for Explosion Protection and Safety of Instrumentation (NEPSI). The product accords with following standards:GB3836.1-2010 Explosive atmospheres-Part 1: Equipment-General requirementsGB3836.4-2010 Explosive atmospheres-Part 4: Equipment protection by intrinsic safety"i"GB3836.20-2010 Explosive atmospheres-Part 20: Equipment with equipment protection level (EPL) GaThe Ex marking is Ex ia 11 C T 4-T6 Ga/Gb, its certificate number is GY J17.1 056X.Type approved in this certificate is shown as the following:iTEMP PCP DIN rail TMT121-1 DiTEMP RTD DIN rail TMT121-1 0iTEMP TC DIN rail TMT128-1 0o indicates type of connection, sensor, meauring range and etc.Refer to instruction manual for the details.2. Special Conditions for Safe UseThe suffix "X" placed after the certificate number indicates that this product is subject to special conditions for safe use, that is:When using this head type product, it shall be installed in the enclosure which IP degree is at least IP20 according to GB4208-2008, and meet the relative requirements of GB3836.1-201 0 and GB3836.4-2010.3. Conditions for Safe Use3.1 The relationship between ambient temperature range and the temperature class is shown as foliows:Temperature dass T4 T5 T6Ambient temperature range -40'C-+85'C -40'C-+65'C -40'C-+50'C3.2 This product should be used in explosive gas atmospheres together with approved associated apparatus, follow the instruction manual of this product and associated apparatus when connecting the wiring. Connect the wiring terminals correctly.Page 1 01 2(GYJ17.1056X) (Attachment I )3.3 Intrinsically safe parameters:Ui=30V li=100mA Pi=750mW Ci::::O Li::::OSensor circuits [3, 4, 5, 6] Uo=4.4V lo=9.6mA Po=10.6mWHCCo 2.4 I.l F 12 I.l FLo 100mH 100mH3.4 Connecting cable between intrinsically safe product and associated apparatus should be insulated screen cable; connect the cable screen functionally to earth ground.3.5 The user shall not change the configuration in order to maintain/ensure the explosion protection performance of the equipment. Any change may impair safety.3.6 For installation, use and maintenance of this product, the end user shall observe the instruction manual and the following standards:hazard electrical equipment installation engineering".GB3836.13-2013 "Explosive atmospheres-Part 13:Equipment repair, overhaul and reclamation".GB3836.15-2000 "Electrical apparatus for explosive gas atmospheres-Part 15:Electrical installations inhazardous area (other than rnines)".GB3836.16-2006 "Electrical apparatus for explosive gas atmospheres-Part 16:lnspection and maintenance of electrical installation (other than mines)".GB3836.18-2010 "Explosive atmospheres-Part 18: Intrinsically safe system".4. Manufacturer's Responsibility4.1 Conditions for safe use, a s specified above, s hould be induded in the documentation the user is provided with. 4.2 Manufacturing should be done according to the documentation approved by NEPSI.4.3 Nameplate should include these contents listed below:1) NEPSl logo @2) Ex marking3) certificate number4) ambient temperature5) intrinsically safe parametersPage 2 of 2。
HASUNCAST常用产品选择指南
/
邦定胶
734
单组份,蜂蜜状流动性较好,热固化,灌封粘接涂抹
/
736
膏状不流动,热固化,粘接力强,涂刷保密
/
737-C
膏状不流动,低温固化,粘接金属,塑料等材质
/
739
蜂蜜状能流动,热固化,粘接强度高,保密性好
/
SG160
白色膏状不干,涂抹方便,导热性好
/
SG260
白色膏状微塌不干,涂抹方便,导热性好
20:1
RTVS21 双组份浅红色,极高导热率,流动性较好
1:1
RTVS287 对灌封构件等连续拔插多次依然保持自动修复性,高频性好
1:1
RTVS605 双组份高透明,操作时间长,粘度低,韧性很好
10:1
RTVS901 双组份高透明,透光率高,可拆性好
1:1
RTVS6100 双组份高透明,粘度低,凝固表面带粘性,极软
10:1
RTVS12 双组份灰黑色,粘度低,凝固后弹性,多数基材附着力好
1:1
RTVS27 双组份灰黑/白可选,粘度低,凝固后弹性,导热性能好
1:1
RTVS27LV 双组份黑色,粘度低,高绝缘,带粘性,优异介电常数
1:1
RTVS28 双组份深灰,粘度低,能渗透进微小缝隙,介电常数低
1:1
RTVS29 双组份流动性好,模块电源灌封散热,绝缘,高压模块灌封
1:1
RTVS6100-2 双组份高透明凝胶,自修复性,耐低温优异
1:1Leabharlann RTVS6103 半导体IGBT、传感器集成模块等封装保护IC 芯片灌封,耐高压好 1:1
711
双组份黄色透明,防水密封性能优异,电路板防水
德国SIPOS电动执行器型选型手册
2006年8月版订货号:E20185-P920-B701-X-5D00© SIPOS Aktorik GmbH 2006 版权所有!电动执行机构使用说明书PROFITRON 专业型SIPOS 5 Flash增补的使用说明书E20185-P920-B705-X-5D00内容页1 总的说明 (3)1.1 安全操作说明 (3)1.2 一般的安全准则 (3)1.3 处理和回收 (3)2 运输和储存 (4)3 框图及子部件装配 (5)4 安装和连接 (6)4.1 安装在阀门上 (6)4.1.1 A型输出轴 (6)4.1.2 螺杆保护套管 (6)4.2 电气连接 (7)4.3 分体安装 (8)5 手动及远控操作 (9)5.1 手柄(轮) (9)5.2 就地操作面板 (9)5.3 远端控制 (10)5.3.1 远端操作 (10)5.3.2 参数设置和监控 (10)6 设置参数和调试 (11)6.1 调试前的准备工作 (11)6.2 调整信号齿轮单元的比率 (11)6.3 当前的状态 (12)6.4 主菜单language setting(语言设定),commissioning(调试),observing(观察),diagnosis(诊断) (12)6.5 Commissioning(调试)菜单 (13)6.5.1 设定和阀门有关的参数 (13)6.5.2 调整执行机构的行程极限(即:末端位置调整) (14)6.5.2.1 首次调整(完全设定) (14)6.5.2.2 再次调整 (16)6.5.2.3 调整机械式位置指示器 (17)6.5.3 记录力矩曲线 (18)6.5.4 设定和过程控制有关的参数 (19)6.5.5 外部模拟量速度给定 (23)6.5.6 设定速度曲线 (24)7 状态和故障信息 (26)7.1 Observing (观察)菜单(设备的状态和故障信息)..26 7.2 状态和故障信息的含义及处理方法 (28)7.3 Diagnosis (诊断)菜单 (29)8 维护 (30)8.1 检查、修正和服务 (30)8.2 重新上油脂 (31)8.3 拆卸和重装 (31)8.4 备件 (32)9 面板显示的关键词索引 (33)附录II.1 直行程线性单元的技术数据 (34)I.2 直行程关断推力与多回转关断力矩对照表 (35)I.3 直行程直线运动速度与多回转输出转速对照表 (35)I.4 直连式减速箱的技术数据 (36)I.5 直连式角行程关断力矩与多回转关断力矩对照表 (37)I.6 直连式角行程全行程时间与多回转输出转速对照表 (37)I.7 底座曲柄式减速箱的技术数据······································38 I.8底座曲柄式角行程关断力矩与多回转关断力矩对照表··39 I.9 底座曲柄式角行程全行程时间与多回转输出转速对照表39附录a 多回转型的齿轮单元 2SA5.1/2/3/4 . - (40)b 多回转型的齿轮单元 2SA5.5/6/7/8 . - (41)c 直行程型的齿轮单元和线性单元2SA5.1/2/3/4.-..+LE12.1/25.1/50.1/70.1 (42)d 直行程型的齿轮单元和线性单元2SA5.5/6 . -+LE100.1/200.1 (43)p 小的角行程型的齿轮单元2SG5 (44)e 角行程型的齿轮单元 2SA5. . . - +GS/GF (45)i 控制单元(电机功率至 1.5 kW) (46)k 控制单元(电机功率从 3 kW起) (47)n 符合EC标准的声明 (48)第2页E20185-P920-B701-X-5D00E20185-P920-B701-X-5D00 第3页1 总的说明 1.1安全操作说明本手册中,通过对下列图形符号的适当定义,来引起对安全操作步骤的注意。
赫斯曼选型手册
赫斯曼选型手册
赫斯曼选型手册(Hermann Hesseman Selection Guide)是一本商业工具书,用于帮助工程师和设计师选择合适的电气设备和元件。
该手册由德国公司赫斯曼(Hermann Hesseman)出版,涵盖了各种电气设备,包括电机、传感器、开关、电缆、电源等。
赫斯曼选型手册通常包括以下内容:
产品目录:手册中列出了赫斯曼公司提供的各种电气设备和元件的详细产品目录,包括型号、规格、技术参数等。
选型指南:为了帮助用户选择合适的产品,手册提供了选型指南。
这些指南可能包括各种应用场景和特定需求下的选型建议,例如功率要求、环境条件、安装要求等。
技术资料:手册中可能提供了有关电气设备和元件的技术资料,如特性曲线、电气连接方式、安装尺寸等。
这些资料有助于工程师和设计师更好地了解和评估产品。
参考资料:手册中可能包含有关标准、规范和相关技术文献的参考资料,以便用户进一步了解和研究相关领域的知识。
赫斯曼选型手册是一个重要的工具,在电气工程和设计领域被广泛使用。
通过使用手册中提供的信息和指南,用户可以更加方便地选择和应用合适的电气设备和元件,以满足特定的需求和要求。
德国icHaus产品选型
德国i c H a u s产品选型集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-德国icHaus是生产特殊应用集成电路芯片(ASSP),特定应用集成电路(ASIC),是一个单片的混合信号和微处理芯片的领先专家,有25年历史。
icHaus秉承创新、可靠技术和着名的集成电路及微软系统的FMEA(失效模式与影响分析),在工业、医疗和汽车方面得到广泛应用创意电子正式代理德国iChaus磁传感器、光编码器、插补细分器、激光二极管驱动ic。
光编码器IC:iC-LG 21位光学位置编码器带串行/并行和Sin/Cos输出iC-LGC 21位光学位置编码器带串行/并行和Sin/Cos输出iC-LNB 18位光学位置编码器带SPI,串行/并行和FlexCount输出IC-LNG 16位光学位置编码器带SPI和串行/并行输出iC-LSB 8通道主动光敏器件阵列iC-LSC 12通道主动光敏器件阵列iC-LSHB 增量式光敏器件阵列iC-LSHC 3通道Sin/Cos光敏器件阵列IC-LTA 6通道增量光学编码器iC-LV 6光编码器带级联串行接口(SSI)iC-OF 3位光学编码器iC-OG 8位差分扫描光编码器带LED控制iC-OV 5位光编码器iC-OW 增量式光编码器带A/B门索引和LED控制iC-PD3948 5通道相控阵列正弦编码器(D39,2048PPR)iC-PN26xx相控阵列游标编码器(D26:256,512,1024PPR)iC-PN33xx相控阵列游标光编码器(D33:256,512,1024PPR)iC-PN39xx 相控阵列游标光编码器(D39:1024PPR)iC-PNH3348 相控阵列游标光编码器(D33:2048PPR)iC-PT26xx 相控阵列光编码器(D26:256,500,1000,1250PPR)iC-PT33xx 相控阵列光编码器(D33:1000,1024,1250,2000,2500PPR)iC-WG14位差分扫描光编码器(D33,1250PPR)磁编码器IC:iC-MA8位角度霍尔编码器,可级联iC-MH/812位角度霍尔编码器带换向,增量,串行和模拟输出iC-MHA角度霍尔编码器带Sin/Cos输出iC-ML8位线性位置霍尔编码器,可级联iC-MP8位霍尔编码器带比率计输出iC-MU磁偏轴绝对位置编码器激光二极管驱动ICiC-HB3只155MHz激光开关带LVDS输入iC-HG200MHz激光开关高达3AiC-HK,iC-HKB155MHz双通道尖峰释放激光开关iC-HL适用于APCs的非易失性激光偏置电位计iC-NZ失效安全激光二极管驱动器CW和脉冲工作高达155MHziC-NZNN型激光二极管驱动器带APC和ACCiC-NZPP型激光二极管驱动器带APC和ACCiC-VJ,iC-VJZ激光二极管控制器带发射功能iC-WJ,iC-WJZ激光二极管驱动器CW和脉冲工作高达300MHziC-WJB适应于电池供电的2.7到6V激光二极管驱动器iC-WK,iC-WKL低功耗通用激光驱动CW工作2.4V以上iC-WKMM型CW激光二极管驱动器,为蓝光M型激光二极管优化iC-WKNN型CW激光二极管驱动器,为N型激光二极管优化iC-WKPP型CW激光二极管驱动器,P型激光二极管优化插补细分器iC-MG8位Sin/Cos插补器带RS422线驱动iC-MN可编程9位Sin/Cos插补器带失效安全RS422线驱动iC-MQ3通道,同时采样13位Sin/Cos插补器带游标计算iC-NG8位正弦到数字转换器处理器带波形适配iC-NQ13位信号调理插补器带BiSSB接口IC-NQI13位信号调理插补器带2-Wire接口iC-NQC13位信号调理插补器带BiSSC接口iC-NQL13位信号调理插补器带SSI接口iC-NV6位Sin/Cos快速转换器带管脚选择插补器(×16),iC-NVH6位Sin/Cos快速转换器带管脚选择插补器(×16),半周期索引iC-TW2可编程8位Sin/Cos择插补器带EEPROMiC-TW48位Sin/Cos择插补器带自动偏置矫正iC-TW816位Sin/Cos择插补器带自动矫正24V线性驱动器iC-DL3通道差分线驱动器带集成阻抗匹配iC-HD24差分线驱动器,管脚兼容xx2068iC-HD74差分线驱动器,管脚兼容xx7272和26LS31iC-HE3通道差分线驱动器iC-HX3通道差分线驱动器带减少电源消耗iC-VX3通道差分线驱动器带兼容24V输出iC-WE3通道75Ohm线驱动器适用于RS422和24V应用ET7272双差分线驱动带单独的逻辑偏置和驱动偏置传感器ICiC-LA64*1线性图像传感器带双向位移和扩展的I/OiC-LF1401128*1线性图像传感器带电子快门功能iC-LFL1402256*1连续光谱线性图像传感器带电子快门功能iC-LFM64*1线图像传感器带电子快门功能iC-LFS32*1线性图像传感器带电子快门功能IC-LO智能三角测量传感器iC-LQNP脉冲和交流光传感器带补偿输出iC-OC双集成光学传感器带移动寄存器给链式连接iC-OD光学位置敏感检测器(2.6mmPSD)带环境光抑制iC-ODL光学位置敏感检测器(8.4mmPSD)带环境光抑制iC-OR5单元光学二极管阵列iC-VP可调节敏感度的光电开关磁性产品iC-MZ差分霍尔开关和齿轮齿牙传感器带线驱动器iC-SM2LAMR线性位置传感器(间隙:2mm)iC-SM5LAMR线性位置传感器(间隙:5mm)信号调理和监控iC-MSBSin/Cos传感器信号调理器带安全失效1Vpp线驱动iC-MSB2Sin/Cos传感器信号调理器/多路器带安全失效1Vpp线驱动iC-RC1000正弦/余弦信号安全监控ICiC-TW3自动信号调理器带LUT温度补偿和1Vpp(100Ohm)/2Vpp输出iC-WT3通道光电二极管放大器-比较强带LED控制器输出级iCsiC-DN4V到36V200mA低边开关带输入/输出退耦iC-DP4V到36V200mA高边开关带输入/输出退耦iC-DX通用数字传感器输出驱动iC-DXC数字传感器输出驱动器(200mA)带IO-LINK反馈回路iC-MFL8倍失效-安全逻辑N-FET驱动器iC-MFLT12倍失效-安全逻辑N-FET驱动器iC-MFN8倍失效-安全N-FET驱动器带电平转换高达40ViC-MFP8倍失效-安全P-FET驱动器带电平转换高达40VLEDsiC-SD85850nm红外LED带平面玻璃适用于高分辨光编码器iC-SG85850nm红外LED带塑料镜头适用于高质量大面积流明高分别率光编码器iC-SN85850nm红外LED带塑料镜头适用于高质量大面积照明iC-TL85850nm红外LED带镜头或者平面窗适用于高分辨光编码器继电器/螺线管驱动器iC-GE宽工作电压范围PWM继电器/螺线管驱动器(1A)IC-GE100PWM继电器/螺线管驱动器(100mA)iC-JES低功耗继电器/螺线管驱动器安全光幕iCs发射器适用于机器安全保护系统(IEC61496-1,ESPE),测量光幕iC-NL光栅脉冲驱动器带调制输入iC-NT光幕光栅脉冲驱动器,光电池和电子敏感保护设备iC-NX8通道光栅脉冲驱动器带调制输入C-NXL8通道光栅脉冲驱动器接收器适用于机器安全保护系统(IEC61496-1,ESPE),测量光幕iC-LK光栅脉冲接收器集成光敏二极管iC-ME2通道光栅脉冲接收器iC-MK2通道光栅脉冲接收器iC-NE光幕光栅脉冲接收器光电池和电子敏感保护装置iC-NK光栅脉冲接收器I/O接口iCsiC-DI双传感器接口3.3V/5V电源供电iC-GFIO-Link从机IO-Llink传输器iC-JRX2*4双向24V高边驱动器带uC接口iC-JX4*4双向24V高边驱动器带负责诊断和uC接口iC-MDRS422正交编码器接收器/计数器带SPI和BiSS接口iC-TW916位ABZ正交计数器iC-VRV2*424V低边驱动器带I/O功能和uC接口接口iCs.BISSiC-MB3BiSS接口主机,1通道/3从机电源管理iCsiC-DC可编程的双2.5/3.3VBuck/Boost开关电源iC-JJ电源管理IC带经济功能iC-WD8V到36V开关模式双5V调整器iC-WDA8V到36V开关模式双3.3V调整器iC-WDB8V到36V开关模式3.3V(200mA)和5V调整器iC-WDC8V到36V开关模式3.3V和5V(200mA)调整器线性功能iC-BM4重4象限模拟乘法器iC-HC双超快ATE信号比较器高达36ViC-HQ4高性能运算放大器带超低偏置(小于1uV)iC-HQL4高性能运算放大器带超低偏置(小于10uV)。
基于BiSS-C协议的编码器接口技术及在伺服驱动系统中的应用
B i S S (B i d i r e c t i O n a l Synchronous Seria1)协 议 是一 种
由德国IC.Haus公司提 出的新型可 自由使 用 的 开 放 式 同步 串 行 通 信 协议 ,使用该 协议通信 波特率 可 以达 到 10M bps,达  ̄URS422接 口 总 线 的 波 特 率 上 限 ,是 其 他 一 些 同类常用串行通信协议 ( ̄NSSI, EnDat,Hiperface,起 止式 异 步 协 议 )的5倍 以上 。
洋 科 技 工 程 有 限 公 司 自主 研 发 的 接 口和 所有 从 接 口 (见 图2) 。
伺 服 驱动 系统 中加 以 验证 。
第 一 个从 接 口 (First Slave)
1.BiSS—C接 口的连 接方 式 (1)点 对 点模式 :在 点对
是 指 数 据 第 一 个 传输 到 主 接 口的 从接 口。它的输 出SLO直接连接
点配置 中 ,只有一个 配有一个或
多个从接 口 (传感 器 )的设备连
接 到 主 控 接 口上 。 主控 接 I:1通 过
M A信 号 线 将 时 钟 信 号 传 输 到 从
接 口 。 SL信 号 线 将 传 感 器 数 据
从第一个从接 口 (First Slave) 直 接 传 送 回主 控 接 口。 在 点 对 点
兼 容 。 在 点 对 点
图2 BiSS—C协议 总线配置
62
口技术 及在伺服驱动系统中的应用
一 大连 光洋科 技工程有 限公 司 (辽 宁 116600) 商怀昊 韩 基鹏 肖 鹏 李德 爽
摘 要 :本 文论 述 了BiSS—Cf ̄-K的 内容和 传 输 方 式 ,并通 过FPGA编程 来 实现 其接 t2'的 开 发 ,并 在 伺服 驱 动 系统 中加 以验 证 。
思默康产品选型说明书
温度湿度气体2015价格表德国标准 东方精神壓力照度及位移思默康自动化设备(上海)有限公司价格生效期始于2014年10月15日1.0版TRW1-Series (T)TRW2-Series (T)0…10V / 4…20mANTC / PT / NiTPS1-Series (T)0…10V / 4…20mANTC / PT / NiTOW1-Series (T)TOW2-Series (T)TDE1-Series (T_av)TDE2-Series (T_av)风管温度防凍开关TDE2-Series (T_fp)通用温度有源传感器TUU1-Series (T)0…10V / 4…20mA通用温度无源传感器TUU2-Series (T)HPS2-Series (H_cs) HPS2-Series (H_lg)GDI1-Series (VOC)0…10V湿度:0..10V温度:0..10V可选 NTC ; PT ; NiPDE1- Series (dP_r) PDI1- Series (V&T) PDE2- Series (dP) PPE1- Series ( PPE2- Series (LRC1-Series(L)10V / 4…20mA CRC8-series (L&M)照度:0...10V人体活动:ON/OFF MRW2-Series(M)asia pacific照度及位移传感器温度湿度气体壓力照度及位移价格生效期始于2014年10月15日价格表其他配件德国标准 东方精神asia pacific配件asia pacific安装套件思默康自動化設備(上海)有限公司上海市閔行區莘庄工業區春東路479號C-1廠房2樓電話: (+8621) 5176 0211傳真: (+8621) 5176 0213泰慕康传感器科技有限公司香港新界荃灣168德士古道德豐工業中心2座13/樓10-11室電話: (+852) 3468 8636傳真: (+852) 3621 0002网站: / 邮箱: info@ asia pacific声明该价格表中,对技术信息都进行了简化,并保持随时更新。
BISS C 通讯协议在英飞凌XMC4500上的实现
孙彦超(MichaelBaker)
内容提要
BISS C Protocol背景 BISS C Protocol介绍 BISS-C Protocol在Infineon XMC4500上的实现
1.BISS C Protocol背景
图9
set date
Copyright © Infineon Technologies AG 2013. All rights reserved.
Page 20
计旨在减轻系统负荷(CPU负荷),这样就允许高效的数据处理。
3 BISS-C Protocol在Infineon XMC4500上的实现
BISS-C通信协议在Infineon XMC4500上的实现方式 使用SPI来实现BISS通信协议。其中SPI信号线和BISS C传感器信号线映 射:
图6 SPI信号线和BISS信号线映射
通过JLink v8将驱动代码下载到XMC4500 MiniKit,用示波器观察波形,
结果如图7、图8所示。其中蓝色波形表示的是MA,黄色的波形表示的是传
感器输出SLO。为了便于和协议进行比照,将两个波形进行重叠显示。其 中图8是图7放大之后的波形。由图8可以看出BISS C Protocol通讯速率为
位置编码器是工业自动控制中重要的反馈环节执行元件。位置编码器按工
作方式分为绝对式和增量式两种。绝对位置式编码器的数据输出一般采用 串行通信的方式。在绝对式位置编码器中,常用的协议有:BISS、SSI、
EnDat、Hiperface、起止式异步协议。其中由于 BISS 协议的双向、同
步及开放性而受到广泛的关注。
800nm波段半导体激光器的开关驱动数字电路设计
[1]肖冬亚.BWT- K85S06M激光器驱动技术的研究[D].吉林:长春理 工大学,2013. [2]Catalina Mayol, Ra ú l Toral, Claudio R. Mirasso, Sergei I. Turovets, and Luis Pesquera.Theory of Main Resonances in Directly Modulated Diode Lasers[J]IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 38, NO. 3, MARCH 2002. [3]袁林成,蒋书波,宋相龙,陆志峰.半导体激光器驱动电路的研究与 设计[J]电子器件,2015,38(6):1287-1291. [ 4 ] 王国梁. 半导体激光器驱动电路设计[ D ] . 天津: 天津工业大学, 2017.
178
图3 硬件原理图
数字技术 与应用
设计开发
管。具有快速和慢速切换模式,引脚CIx能实现简单电流控制。电源 电压范围从3到5.5V,所有通道可并联3A 的电流和9A的工作脉冲。 多个iC-HG可以并联连接以获得更高的电流,而且有热关机的保护 操作,有效防止器件的损坏。IC-HG芯片的内部框图如图2所示。
4 硬件电路设计
根据LU0808M250激光器件的要求和上述开关驱动电路的原 理,设计的基于芯片iC-HG的硬件原理图如图3所示。
为了高速运行,请将激光二极管尽可能靠近这些引脚,以尽量 减小电感。为了确保较高的开关速度,重要的是将由iC-HG,激光 二极管组成的整个电流回路,备用电容器以及封闭区域。使用R / C缓冲器网络来阻尼L/C振荡也是必要的。iC-HG由集成的热关断 功能保护。当达到关机温度时,所有通道都被禁用。关机后的降温
Silabs产品选型手册
PRODUCT SELECTOR GUIDE / 1 Silicon Labs选型指南1 / PRODUCT SELECTOR GUIDE成立于1993年,总部深圳,中国电子行业最优秀的半导体分销商以帮助客户成功为最高服务宗旨,多次帮助客户实现产品创新,打破市场空白,占领市场先机我们分销的产品全部来自欧美和日本的最具技术创新实力和拥有严苛品质管理的领先半导体原厂我们同多家世界500强和行业龙头企业已合作多年,同时也是快速成长的新兴企业信任和选择的合作伙伴提供新元件推荐、新技术导入、参考设计、应用咨询及方案等服务工业自动化、变频、伺服、物联网、智能电网、可再生能源、智能四表、安防、医疗、轨道交通、电动工具基站/直放站、雷达、卫星通信、光纤传输、Wifi、路由器、光模块、交换机、数据通信、无线通信智能手机、可穿戴设备、智能家居、智能家电、便携数码、个人保健车身控制、底盘、仪表盘、车载娱乐、电动汽车系统、动力系统、安全系统、ADAS、TPMS关于芯科实验室PRODUCT SELECTOR GUIDE / 1© 2014, Silicon Laboratories Inc. ClockBuilder, CMEMS, DSPLL, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers,”Ember, EZMac, EZRadio, EZRadioPRO, EZLink, ISOmodem, Precision32, ProSLIC, Silicon Laboratories and the Silicon Labs logo are trademarks or registered trademarks of Silicon Laboratories Inc. ARM Cortex-M0/M0+/M3/M4 and Keil are trademarks or registered trademarks of ARM Limited. ZigBee is a registered trademark of ZigBee Alliance Inc. All other product or service names are the property of their respective owners. For the most up to date information please see your sales representative or visit our website at . 3000 February 2014 Rev Z SEL-FUL音频产品 (2)• FM/AM 多通道音频接收芯片 • D 类音频驱动芯片时钟和振荡器时钟发生器..............................................................................................3-4 • 任意频率,任意输出CMOS 时钟 • 微型CMOS 时钟• 任意频率,任意输出CMOS 时钟 • 时钟发生器+压控振荡器 • PCI.同步时钟发生器 • 嵌入式英特尔X86时钟 • EMI 消减时钟时钟分配..................................................................................................4-5 • 扇出缓冲器/电平转换器 • 无延时缓冲器• PCI.Express.时钟缓冲器.(PCIe)振荡器.....................................................................................................6-7 • CMEMS ®振荡器 • 晶体振荡器 • 压控振荡器 • 硅振荡器 • 抖动衰减时钟 • 同步以太网时钟 • 时钟和数据恢复芯片接口产品• 智能接口集成电路...........................................................................7-8隔离产品• 多通道数字隔离器(1.kVrms)............................................................8-9 • 多通道数字隔离器(2.5.kVrms).......................................................9-10 • 多通道数字隔离器(3.75.kVrms)...................................................10-11 • 多通道数字隔离器(5.kVrms)........................................................11-12 • 双向数字隔离器.................................................................................12 • 带电流传感的隔离器.....................................................................12-13 • 带驱动的隔离器............................................................................13-15 • 带AC 电源的隔离器..........................................................................15 • 以太网供电芯片 (15)8位微控制器产品• 电容触摸感应MCU.......................................................................15-17 • 小封装MCU.................................................................................17-20 • 汽车和工业MCU..........................................................................20-22 • 模拟加强型MCU..........................................................................22-23 • 低功耗MCU.................................................................................24-25 • USB.MCU.....................................................................................25-26 • 集成无线MCUs............................................................................26-2732位微控制器产品• 小壁虎Coretex-M0+ZG 系列32位MCU.........................................28 • 小壁虎Coretex-M3.TG 系列32位MCU.....................................28-29 • 小壁虎Coretex-M3.G 系列32位MCU.......................................29-30 • 小壁虎Coretex-M3.LG 系列32位MCU.....................................30-32 • 小壁虎Coretex-M3.GG 系列32位MCU....................................32-33 • 小壁虎Coretex-M4.WG 系列32位MCU....................................33-35 • 混合信号32位微控制器产品系列......................................................35 • 精密32位低功耗系列MCU.........................................................35-36 • 精密32位USB 系列.MCU. (36)调制解调器 (36)• 嵌入式调制解调芯片 • 直接存取装置光学传感器 (37)• 红外接近传感器 • 温湿度传感器视频产品............................................................................................37-38• 数字电视解调器 • 多制式数字电视解调器 • 全制式电视信号接收器语音产品............................................................................................38-39• 用户线PCM 数字接口电路芯片 • 集成的串行数字接口电路芯片 • 用户线模拟接口电路芯片 • 语音编解码芯片无线产品 (39)• 支持Zigbee ®协议的Ember ®芯片 • 全球通用频段射频芯片• 加强性能的全球通用频段射频芯片模拟产品............................................................................................40-41• 低功耗定时器 • 运算放大器 • 电压参考源 • 比较器 • DC-DC 转换器 • 电流检测放大器 • 模拟数字转换器软硬件支持 ..............................................................................................42轻松获取 (44)目 录P R O D U C T S E L EC T O R G U I D E / 3 2 / P R O D U C T S E L EC T O R G U I D E2 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 3 PRODUCT SELECTOR GUIDE / 3P R O D U C T S E L EC T O R G U I D E / 5 4 / P R O D U C T S E L EC T O R G U I D E4 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 5 PRODUCT SELECTOR GUIDE / 5P R O D U C T S E L EC T O R G U I D E / 7 6 / P R O D U C T S E L EC T O R G U I D E6 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 7 PRODUCT SELECTOR GUIDE / 7P R O D U C T S E L EC T O R G U I D E / 9 8 / P R O D U C T S E L EC T O R G U I D E8 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 19 PRODUCT SELECTOR GUIDE / 19P R O D U C T S E L EC T O R G U I D E / 21 20 / P R O D U C T S E L EC T O R G U I D E20 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 21 PRODUCT SELECTOR GUIDE / 21P R O D U C T S E L EC T O R G U I D E / 23 22 / P R O D U C T S E L EC T O R G U I D E22 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 23 PRODUCT SELECTOR GUIDE / 23P R O D U C T S E L EC T O R G U I D E / 25 24 / P R O D U C T S E L E C T O R G U I D E24 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 25 PRODUCT SELECTOR GUIDE / 25P R O D U C T S E L EC T O R G U I D E / 27 26 / P R O D U C T S E L EC T O R G U I D E26 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 27 PRODUCT SELECTOR GUIDE / 2728 / PRODUCT SELECTOR GUIDE32位微控制器产品小壁虎Coretex-M0+ZG系列32位MCU小壁虎Coretex-M3 TG系列32位MCUPRODUCT SELECTOR GUIDE / 29小壁虎Coretex-M3 G系列32位MCU30 / PRODUCT SELECTOR GUIDE小壁虎Coretex-M3 LG系列32位MCUPRODUCT SELECTOR GUIDE / 3132 / PRODUCT SELECTOR GUIDE小壁虎Coretex-M3 GG系列32位MCUPRODUCT SELECTOR GUIDE / 33小壁虎Coretex-M4 WG系列32位MCU34 / PRODUCT SELECTOR GUIDEPRODUCT SELECTOR GUIDE / 35P R O D U C T S E L EC T O R G U I D E / 37 36 / P R O D U C T S E L E C T O R G U I D E36 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 37 PRODUCT SELECTOR GUIDE / 37P R O D U C T S E L EC T O R G U I D E / 39 38 / P R O D U C T S E L EC T O R G U I D E38 / PRODUCT SELECTOR GUIDEP R O D U C T S E L EC T O R G U I D E / 39 PRODUCT SELECTOR GUIDE / 3940 / PRODUCT SELECTOR GUIDE模拟产品低功耗定时器运算放大器电压参考源比较器PRODUCT SELECTOR GUIDE / 41DC-DC转换器电流检测放大器模拟数字转换器42 / PRODUCT SELECTOR GUIDE40 / P R O D U C T S E L EC T O R G U I D ESi4010 EZRadio ® KEY FOB TRANSMITTERSi5317 JITTER ATTENUATING CLOCK EVALUATION BOARDSi2185 TV RECEIVER EVALUATION BOARDSi86xxISO-KIT ISOLATIONEVALUATION BOARDMCU USB TOOLSTICKPRODUCT SELECTOR GUIDE / 43P R O DU C T S E L EC T O R G U I D E / 41CP2108 USB TO QUAD UART EVALUATION BOARDSi47xx MULTI-BAND RADIO RECEIVER EVALUATION BOARD EFM32™ ZERO GECKOSTARTER KITSi7013 RH&T SENSOR USB DONGLE Simplicity StudioSilicon Labs’ EFM32™ 32-bit and 8051 8-bit MCUs are supported by Simplicity Studio — a complimentary software suite that provides instant, one-click access to all your IDE, EFM32 tools, software, code examples, news, documents and resources. /simplicity-studio• Always updated: Automatically keeps you up-to-date with changes affecting your development environment.One-click accessibility: Instant access to tools, relevant documentation, software and source code libraries.Custom Clock and Oscillator Design ServicesSilicon Labs offers the industry’s broadestportfolio of embedded clocks and oscillators for communications, computing, broadcast video and consumer applications with the shortest lead times in the industry, with no minimum order quantities or NRE fees. Our timing IC portfolio leveragesinformation – features, applications, block diagrams and even order samples and development kits, all from within the app. Offline access available—refresh data the next time you’re connected to the Internet. /parametric-search关于芯科实验室工业自动化、变频、伺服、物联网、智能电网、可再生能源、智能四表、安防、医疗、轨道交通、电动工具基站/直放站、雷达、卫星通信、光纤传输、Wifi、路由器、光模块、交换机、数据通信、无线通信智能手机、可穿戴设备、智能家居、智能家电、便携数码、个人保健车身控制、底盘、仪表盘、车载娱乐、电动汽车系统、动力系统、安全系统、ADAS、TPMS香港南京北京上海杭州宁波成都重庆香港观塘开源道62号骆驼漆大厦1期11楼A, B室南京市御道街标营4号紫荆大厦1003室北京市海淀区知春路1号学院国际大厦603室上海市定西路1100号辽油大厦5楼D座杭州市西湖区文三路535号莱茵达大厦805室宁波市江东区百丈路168号会展中心A座16楼C3室成都市武侯区佳灵路3号红牌楼广场2号楼513室重庆市江北区红旗河沟国际商会大厦24楼武汉西安青岛厦门苏州沈阳郑州株洲武汉市武昌区中南路7号中商广场B座35层3508室西安市高新路50号南洋国际8楼北部801室青岛市市南区山东路九号深业中心A座14B室厦门市湖滨南路609号夏商置业大厦17层E单元苏州市平江区娄门路266号博济创意园9幢205室沈阳市和平区青年大街322号昌鑫大厦F栋909室郑州市二七区华中路11号院25号楼3单元5楼西户株洲市天元区长江北路8号保利大厦2216室服务热线:40088 73266深圳总部深圳市人民南路3005号深房广场A座32楼邮编:518001邮编:210007邮编:100083邮编:200050邮编:310013邮编:315040邮编:610041邮编:400020邮编:430071邮编:710075邮编:266071邮编:361004邮编:215000邮编:110004邮编:470006邮编:412007RF无线芯片,模拟产品,以太网产品,时钟通讯器件单片机,无线传输芯片,广播电视芯片,隔离传感以太网供电芯片,时钟及晶振超声波测量芯片,电容数字转换芯片,应变电阻测量芯片帮助客户成功SMI MEMS压力传感器选型指南S01101V12世强 2014年11月印Melexis产品选型指南驱动器,光电器件,传感器,无线产品Cypress存储器选型指南Cypress汽车电子元件选型指南Cypress产品选型指南可编程片上系统,USB控制器,电容触摸ICAvago射频微波器件选型指南Renesas MCU选型指南Ricoh电源管理芯片、实时时钟芯片选型指南ROGERS高频印刷线路板材料选型指南。
iC-WKN
Rev A1, Page 1/7FEATURES APPLICATIONS ËCW operation up to 300 mA from 2.4..15 V supply voltage ËRapid soft start after power-on typical within 70 µs ËOptimised for N-type laser diodesËSimple power adjustment via the external resistorËControl loop accuracy better than 1.5 % with changes in temperature, supply voltage and load currentËIntegrated reverse polarity protection for the iC and laser diodeËStrong suppression of transients with very small external capacitors; integrated flyback pathËPermanent shutdown with excessive temperature and overcurrent (i.e. if the laser diode is damaged or the feedback current path fails)ËTwo feedback inputs permit all current LD types to be used (M/P/N configurations)ËModulation via the feedback inputs is possibleËWide monitor current range from 2.5 µA to 6.25 mAËLD modulesËBlue laser diodesCopyright © 2003, iC-Haus VREFRev A1, Page 2/7DESCRIPTIONiC-WKN is a driver for laser diodes in continuous wave operation with laser currents of up to 300 mA, which requires only four external components. The wide power supply range of up to 15 V allows for operation of blue laser diodes.The iC includes integrated circuitry protecting against destruction by ESD, excessive temperature and over-current plus a soft start of the regulator to protect the laser diode when the power supply is switched on. The iC also filters the laser diode power supply for transients.The regulator is adapted to the laser diode by an external resistor at MDA. The monitor current acts as a reference and is regulated independent of the influence of temperature and supply voltage (range: 2.5 µA to6.25 mA). The capacitor at CI determines the control time constants and start-up time.A second monitor input, pin MDK, allows the driver to be used for other types of laser diode configuration; alternatively, it can be used as an analog modulation input (DC to a few kHz).In the event of failure, such as overcurrent in the laser path with a lack of feedback, for example, a quick power lockout is activated. The shutdown persists until power is reapplied, permitting a restart. The strain on power packs and batteries is relieved and the laser class is retained even in the event of a disturbance.iC-WKN offers additional protection by means of spike detection at pin MDA. Should spikes or oscillation occur at pin MDA the power lockout is activated after a time-out.Rev A1, Page 3/7All voltages are referenced to ground unless otherwise noted.All currents into the device pins are positive; all currents out of the device pins are negative.ABSOLUTE MAXIMUM RATINGSBeyond these values damage may occur; device operation is not guaranteed.ItemSymbolParameter ConditionsFig.UnitMin.Max.G001VCC Voltage at VCC -616V G002I(VCC)Current in VCC -10900mA G003I(CI)Current in CI -1010mA G004I(LDA)Current in LDA-90010mA G005I(LDK) Current in LDK -10900mA G006I(MDA) Current in MDA -1010mA G007I(MDK)Current in MDK -1010mA G008I(AGMD)Current in AGND-1010mA G009I(GND)Current in GND-90010mA E001Vd()ESD Susceptibility at all pins MIL-STD-883, Method 3015, HBM 100 pF discharged through 1.5 k Ω2kV TG1Tj Operating Junction Temperature -40150°C TG2TjStorage Temperature Range-40150°C THERMAL DATAOperating Conditions: VCC = 2.4..15 V Item Symbol ParameterConditionsFig.UnitMin.Typ.Max.T1Ta Operating Ambient TemperatureRange-4085°C T2RthjaThermal Resistance Chip/Ambientsoldered to PCB,no additional cooling areastherm. pad soldered to approx. 2cm²cooling area3017050K/WRev A1, Page 4/7 ELECTRICAL CHARACTERISTICSOperating Conditions: VCC = 2.4..15 V, RM = 80 Ω..200 kΩ, Tj = -40..125 °C unless otherwise notedItem Symbol Parameter Conditions Tj Fig.Unit°C Min.Typ.Max.Total Device001VCC Permissible Supply Voltage 2.415V 002I(LDK)m Permissible Laser Drive Current power control range10300mA003Idc(VCC)Supply Currentwithout load path closed control loop,I(MDK) = 0, I(LDK) = 290 mA1020mA004Ioff(VCC)Supply Current on Reset 2.4 5mA 005Ir(VCC)Reverse Supply Current RM= 50 kΩ, VCC = -6 V-6 mA 006ton()Turn-on Delay VCC: 0 ÷ 5 V to 95 % I(LDK),I(LDK) = I(LDK)m;CI = 47 nF CI = 100 nF70150µsµs007Vc()hi Clamp Voltage hi at VCC, LDA I()= 10mA, other pins open1624V 008Vc()hi Clamp Voltage hi at LDK V()< VCC + 1 V; I() = 10 mA,other pins open1624V009Vc()hi Clamp Voltage hi at MDK vs. LDA I()= 10mA, other pins open81V 010Vc()hi Clamp Voltage hi at MDA, CI I() = 10 mA, other pins open 1.14V 011Vc()lo Clamp Voltage lo atVCC, LDA, MDK, MDA, CII() = -10 mA, other pins open-9V Reference and Monitor Inputs MDA, MDK, AGND101V(MDA)Reference Voltage at MDA closed control loop,V(LDK) > Vs(LDK)480500520mV102dV(MDA)Reference Voltage TemperatureDrift at MDAsee 101120µV/°C103Ierr(MDA)Input Current in MDA closed control loop,I(MDK) = 0, I(LDK) = 10..290 mA-100100nA104dI(MDA)Input Current Temperature Driftin MDAsee 103-11nA/°C105APCerr Control Error RM = 10 kΩ, Tj = 0..80 °CRM = 10 kΩ, Tj = -40..125 °C 0.31%%106dI(RM)Supply Voltage Suppression V(VCC): 2.4 ÷ 15 V,I(LDK) = 290 mA-0.20.2%/V 107Rgnd()Resistor AGND-GND3Ω301Vf(MDK)Voltage at MDK Vf() = V(LDA) - V(MDK);I(MDK) = 1 µA..1 mA0.462V302CR()Current Ratio I(MDA)/I(MDK)I(MDK) = 1 µA..1 mAI(MDK) = 1..6 mA 0.980.951.021.05303TC()Current Ratio TemperatureCoefficient I(MDA)/I(MDK)I(MDK) = 1 µA..1 mAI(MDK) = 1..6 mA-0.005-0.0250.0050.025%/°C%/°CLaser Driver LDA, LDK201Vs(LDK)Saturation Voltage at LDK I(LDK) = 40 mAI(LDK) = 290 mA 350700mVmV202dI(LD)Load Balancing Error I(LD) = 20 mA,I(LDK): 20 mA ÷ 290 mA-1.5 1.5%203It(LDK)Overcurrent Threshold in LDK V(LDK) = 2..5.5 V300700mA 203It(LDK)m Maximum Overcurrent Thresholdin LDK1.2A204toff()Overcurrent Reset Delay lack of feedback:I(MD) = 0 bis I(LDK) = It(LDK);CI = 47 nF CI = 100 nF85170µsµs205Vf()Flyback Diode Forward VoltageLDK-LDAI(LDK) < 290 mA 1.3VRev A1, Page 5/7 ELECTRICAL CHARACTERISTICSOperating Conditions: VCC = 2.4..15 V, RM = 80 Ω..200 kΩ, Tj = -40..125 °C unless otherwise notedItem Symbol Parameter Conditions Tj Fig.Unit°C Min.Typ.Max.206Rvcc()Transient Protection Resistor VCC to LDA 1.3Ω207Vt(MDA)Shutdown Threshold at MDA t > 1 µs0.72VControl Release Flip-Flop401VCCen Set Threshold for EnableFlip-Flop-40271250.61.210.61.91.91.71.2V402Toff Overtemperature Shutdown140165°CRev A1, Page 6/7This specification is for a newly developed product. iC-Haus therefore reserves the right to modify data without further notice. Please contact us to ascertain the current data. The data specified is intended solely for the purpose of product description and is not to be deemed guaranteed in a legal sense. Any claims for damage against us - regardless of the legal basis - are excluded unless we are guilty of premeditation or gross negligence.We do not assume any guarantee that the specified circuits or procedures are free of copyrights of third parties.Copying - even as an excerpt - is only permitted with the approval of the publisher and precise reference to source.DESCRIPTION OF FUNCTIONSTurn-on behaviourAfter switching the supply voltage on, the output stage remains disabled until the internal enabling flip-flop is set by a sufficiently high voltage at LDA.A quick soft start follows during phase I; the control capacitor CI is charged at an accelerated rate until the voltage at pin MDA reaches 1/3 of its nominal value.With V(MDA) > 1/3 V(MDA)nom phase II starts, the controlled start-up. The transition to CW operation (phase III) is gradual and primarily determined by the values of CI and RM. CI is properly dimensioned when the voltage overshoot at MDA is at a minimum.Turn-off behaviouriC-WKN works without a fixed undervoltage lockout,thus the laser diode forward voltage is the prime factor determining the lowest possible supply voltage.If the voltage drops below this value, the output stage is forcibly saturated and the laser current decreases.iC-WKN simultaneously discharges the control capacitor CI so that no excessive laser diode currents occur when the supply voltage rises again.Disruptions in operationThe power control is shut down with excessive driver temperature or when the laser current reaches the overcurrent shutdown threshold, for example when thefeedback is interrupted. If the monitor diode or the biasresistor RM fail, the device is shut down in less than250 µs, provided that the supply voltage applied is high enough. When modulating the laser current via pin MDK,excessive voltage occurring at pin MDA also may cause a shutdown.Rev A1, Page 7/7 APPLICATION NOTESApplication notes on iC-WKN and data sheets of the demo board are available as separate documents. ORDERING INFORMATIONType Package Order designationiC-WKNWKN demo board SO8tp iC-WKN SO8tpWKN4DFor information about prices, terms of delivery, other packaging options etc., please contact: iC-Haus GmbH Tel +49-6135-9292-0Am Kuemmerling 18Fax+49-6135-9292-192D-55294 Bodenheim GERMANY。
德国icHaus产品选型
德国icHaus是生产特殊应用集成电路芯片(ASSP),特定应用集成电路(ASIC),是一个单片的混合信号和微处理芯片的领先专家,有25年历史。
icHaus秉承创新、可靠技术和着名的集成电路及微软系统的FMEA(失效模式与影响分析),在工业、医疗和汽车方面得到广泛应用创意电子正式代理德国iChaus磁传感器、光编码器、插补细分器、激光二极管驱动ic。
光编码器IC:iC-LG 21位光学位置编码器带串行/并行和Sin/Cos输出iC-LGC 21位光学位置编码器带串行/并行和Sin/Cos输出iC-LNB 18位光学位置编码器带SPI,串行/并行和FlexCount输出IC-LNG 16位光学位置编码器带SPI和串行/并行输出iC-LSB 8通道主动光敏器件阵列iC-LSC 12通道主动光敏器件阵列iC-LSHB 增量式光敏器件阵列iC-LSHC 3通道Sin/Cos光敏器件阵列IC-LTA 6通道增量光学编码器iC-LV 6光编码器带级联串行接口(SSI)iC-OF 3位光学编码器iC-OG 8位差分扫描光编码器带LED控制iC-OV 5位光编码器iC-OW 增量式光编码器带A/B门索引和LED控制iC-PD3948 5通道相控阵列正弦编码器(D39,2048PPR)iC-PN26xx相控阵列游标编码器(D26:256,512,1024PPR)iC-PN33xx相控阵列游标光编码器(D33:256,512,1024PPR)iC-PN39xx 相控阵列游标光编码器(D39:1024PPR)iC-PNH3348 相控阵列游标光编码器(D33:2048PPR)iC-PT26xx 相控阵列光编码器(D26:256,500,1000,1250PPR)iC-PT33xx 相控阵列光编码器(D33:1000,1024,1250,2000,2500PPR)iC-WG14位差分扫描光编码器(D33,1250PPR)磁编码器IC:iC-MA8位角度霍尔编码器,可级联iC-MH/812位角度霍尔编码器带换向,增量,串行和模拟输出iC-MHA角度霍尔编码器带Sin/Cos输出iC-ML8位线性位置霍尔编码器,可级联iC-MP8位霍尔编码器带比率计输出iC-MU磁偏轴绝对位置编码器激光二极管驱动ICiC-HB3只155MHz激光开关带LVDS输入iC-HG200MHz激光开关高达3AiC-HK,iC-HKB155MHz双通道尖峰释放激光开关iC-HL适用于APCs的非易失性激光偏置电位计iC-NZ失效安全激光二极管驱动器CW和脉冲工作高达155MHziC-NZNN型激光二极管驱动器带APC和ACCiC-NZPP型激光二极管驱动器带APC和ACCiC-VJ,iC-VJZ激光二极管控制器带发射功能iC-WJ,iC-WJZ激光二极管驱动器CW和脉冲工作高达300MHziC-WJB适应于电池供电的2.7到6V激光二极管驱动器iC-WK,iC-WKL低功耗通用激光驱动CW工作2.4V以上iC-WKMM型CW激光二极管驱动器,为蓝光M型激光二极管优化iC-WKNN型CW激光二极管驱动器,为N型激光二极管优化iC-WKPP型CW激光二极管驱动器,P型激光二极管优化插补细分器iC-MG8位Sin/Cos插补器带RS422线驱动iC-MN可编程9位Sin/Cos插补器带失效安全RS422线驱动iC-MQ3通道,同时采样13位Sin/Cos插补器带游标计算iC-NG8位正弦到数字转换器处理器带波形适配iC-NQ13位信号调理插补器带BiSSB接口IC-NQI13位信号调理插补器带2-Wire接口iC-NQC13位信号调理插补器带BiSSC接口iC-NQL13位信号调理插补器带SSI接口iC-NV6位Sin/Cos快速转换器带管脚选择插补器(×16),iC-NVH6位Sin/Cos快速转换器带管脚选择插补器(×16),半周期索引iC-TW2可编程8位Sin/Cos择插补器带EEPROMiC-TW48位Sin/Cos择插补器带自动偏置矫正iC-TW816位Sin/Cos择插补器带自动矫正24V线性驱动器iC-DL3通道差分线驱动器带集成阻抗匹配iC-HD24差分线驱动器,管脚兼容xx2068iC-HD74差分线驱动器,管脚兼容xx7272和26LS31iC-HE3通道差分线驱动器iC-HX3通道差分线驱动器带减少电源消耗iC-VX3通道差分线驱动器带兼容24V输出iC-WE3通道75Ohm线驱动器适用于RS422和24V应用ET7272双差分线驱动带单独的逻辑偏置和驱动偏置传感器ICiC-LA64*1线性图像传感器带双向位移和扩展的I/OiC-LF1401128*1线性图像传感器带电子快门功能iC-LFL1402256*1连续光谱线性图像传感器带电子快门功能iC-LFM64*1线图像传感器带电子快门功能iC-LFS32*1线性图像传感器带电子快门功能IC-LO智能三角测量传感器iC-LQNP脉冲和交流光传感器带补偿输出iC-OC双集成光学传感器带移动寄存器给链式连接iC-OD光学位置敏感检测器(2.6mmPSD)带环境光抑制iC-ODL光学位置敏感检测器(8.4mmPSD)带环境光抑制iC-OR5单元光学二极管阵列iC-VP可调节敏感度的光电开关磁性产品iC-MZ差分霍尔开关和齿轮齿牙传感器带线驱动器iC-SM2LAMR线性位置传感器(间隙:2mm)iC-SM5LAMR线性位置传感器(间隙:5mm)信号调理和监控iC-MSBSin/Cos传感器信号调理器带安全失效1Vpp线驱动iC-MSB2Sin/Cos传感器信号调理器/多路器带安全失效1Vpp线驱动iC-RC1000正弦/余弦信号安全监控ICiC-TW3自动信号调理器带LUT温度补偿和1Vpp(100Ohm)/2Vpp输出iC-WT3通道光电二极管放大器-比较强带LED控制器输出级iCsiC-DN4V到36V200mA低边开关带输入/输出退耦iC-DP4V到36V200mA高边开关带输入/输出退耦iC-DX通用数字传感器输出驱动iC-DXC数字传感器输出驱动器(200mA)带IO-LINK反馈回路iC-MFL8倍失效-安全逻辑N-FET驱动器iC-MFLT12倍失效-安全逻辑N-FET驱动器iC-MFN8倍失效-安全N-FET驱动器带电平转换高达40ViC-MFP8倍失效-安全P-FET驱动器带电平转换高达40ViC-SG85850nm红外LED带塑料镜头适用于高质量大面积流明高分别率光编码器iC-SN85850nm红外LED带塑料镜头适用于高质量大面积照明iC-TL85850nm红外LED带镜头或者平面窗适用于高分辨光编码器继电器/螺线管驱动器iC-GE宽工作电压范围PWM继电器/螺线管驱动器(1A)IC-GE100PWM继电器/螺线管驱动器(100mA)iC-JES低功耗继电器/螺线管驱动器安全光幕iCs发射器适用于机器安全保护系统(IEC61496-1,ESPE),测量光幕iC-NL光栅脉冲驱动器带调制输入iC-NT光幕光栅脉冲驱动器,光电池和电子敏感保护设备iC-NX8通道光栅脉冲驱动器带调制输入C-NXL8通道光栅脉冲驱动器接收器适用于机器安全保护系统(IEC61496-1,ESPE),测量光幕iC-LK光栅脉冲接收器集成光敏二极管iC-ME2通道光栅脉冲接收器iC-MK2通道光栅脉冲接收器iC-NE光幕光栅脉冲接收器光电池和电子敏感保护装置iC-NK光栅脉冲接收器I/O接口iCsiC-DI双传感器接口3.3V/5V电源供电iC-GFIO-Link从机IO-Llink传输器iC-JRX2*4双向24V高边驱动器带uC接口iC-JX4*4双向24V高边驱动器带负责诊断和uC接口iC-MDRS422正交编码器接收器/计数器带SPI和BiSS接口iC-TW916位ABZ正交计数器iC-VRV2*424V低边驱动器带I/O功能和uC接口接口iCs.BISSiC-MB3BiSS接口主机,1通道/3从机电源管理iCsiC-DC可编程的双2.5/3.3VBuck/Boost开关电源iC-JJ电源管理IC带经济功能iC-WD8V到36V开关模式双5V调整器iC-WDA8V到36V开关模式双3.3V调整器iC-WDB8V到36V开关模式3.3V(200mA)和5V调整器iC-WDC8V到36V开关模式3.3V和5V(200mA)调整器线性功能iC-BM4重4象限模拟乘法器iC-HC双超快ATE信号比较器高达36ViC-HQ4高性能运算放大器带超低偏置(小于1uV)iC-HQL4高性能运算放大器带超低偏置(小于10uV)。
基于BiSS协议的编码器及其在伺服驱动系统中的应用
基于BiSS协议的编码器及其在伺服驱动系统中的应用霍海龙【摘要】The paper presented some character of BiSS protocol and its communication modes, and its advantage was analyzed when the encoder based on BiSS protocol was applied to servo-driven system. The hardware design and protocol realized by FPGA were finished on the basis of experiments. It shows that BiSS protocol has high communication speed and stability, easy realizability and has low development cost in servo-driven system.%介绍了BiSS通信协议的特点、通信模式,分析了BiSS协议编码器在伺服驱动系统中应用的特点,优势.在实验的基础上完成了其硬件设计和基于FPGA的通信协议实现.实验表明,BiSS协议通信速度快、稳定性强、易于实现,在伺服驱动系统中的开发和应用成本低.【期刊名称】《电气自动化》【年(卷),期】2011(033)003【总页数】3页(P12-14)【关键词】BiSS协议;FPGA;编码器;伺服驱动【作者】霍海龙【作者单位】河南省神火煤业公司新庄煤矿信息自动化中心,河南476600【正文语种】中文【中图分类】TM921.55+1;TP210 引言高性能的伺服驱动系统往往采用高分辨率和高通信速度的编码器作为电机的位置传感器,以获得速度和绝对值位置等信息。
而高分辨率和高速度的编码器通常要求可以实现正余弦信号到位置参量的转换,并且通过较少数量的导线传输高速的数字信号,以满足伺服驱动系统对位置信息更高的精度和响应速度要求[1]。
iC-Haus高边驱动器包括故障监控可编程I/O端口
iC-Haus高边驱动器包括故障监控可编程I/O端口
佚名
【期刊名称】《《可编程控制器与工厂自动化(PLC FA)》》
【年(卷),期】2005(000)008
【摘要】iC—Haus公司推出iC—JX 16倍高边驱动器,具有故障监控可编程I/O且及诊断功能和ADC,一个外部的MCU可将I/O端口配置为输入只读或具有回读选项的驱动器。
此外,该器件还具有一个8位并口或SPI串口作为与控制器的接口,电源电压VCC兼容任意3V或5V MCU电源。
具有输入功能的I/O端口可读取24V逻辑电平。
【总页数】1页(P20)
【正文语种】中文
【中图分类】TP368.1
【相关文献】
1.ROHM成功开发出照明用大功率LED驱动器模块最适合LED驱动器的高进度恒定输出电流 [J],
2.Intersil推出最低功耗双端口G类线路驱动器 [J],
3.罗克韦尔自动化在所有支持SCANPort端口的驱动器上实现EtherNet/IP协议互连 [J],
4.可编程USB端口电源控制器 [J],
5.新型双端口高性能VDSL2线路驱动器ISL1539A [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
基于BISS协议的编码器接口技术研究及应用
37位 (包括 29位位置数据 +2位状态位 +6位 CRC); 步骤 2:将数据的最 后六位 CRC码 用 “ 000000”
来代替 ; 步骤 3:采用生 成多 项 式 “ 1000011 ” 来除 (模
2.2.3 合理性校验与数据输出模块 尽管使用 FPGA能够成功解决与编码器的 通信问
题 , 并且数据经 过了 CRC环节 的验 证 , 但是 由于 硬
件连接电路中随机干扰而导致的错误数据仍然有可能
不会被校验出来 , 所 以需要进 行数 据的合 理性 判断 ,
收稿日期 :2010 -05 -24 作者简介 :王列 虎 (1984— ), 男 , 硕士 研究 生 , 主 要从 事伺服 系统 、 伺服 驱动 器方 面的研 究 。 电话 : 15989048149,
E-mail:wangliehu@。
· 104·
机床与液压
第 39卷
需要说 明的 是 , 在 控制 信号 的第 二 个上 升 沿 时 , 可 能会产生总线延 , 或者由于编码器的位置信号需要内 部采集 、 转换等过程 , 当编码器忙不能立刻响应主机 的读数请 求 时 , 也可 能 会延 迟响 应 start位 。 在 start 置 `1' 之后 , 则开始数 据位的 传输 , 在 MA的 每一 个时钟上升沿 , SL返回相应的数据位 。
图 1 传感器模式协议波形
1.2 寄存器模式 寄存器模式又分为读和写两种模式 , 读寄存器模
式时数据帧格式如下 :
写寄存器模式时数据帧格式如下 :
寄存器模式协议波形见如图 2所示 , 在控制信号 MA的第一次下降沿之后紧跟着 的低电平 的持续 时间 大于 timeoutSENS时 , 则 系统 采 用寄 存 器 传输 模 式 。 该模式通信波特率相对较低 , 一般正常工作上限波特 率为几百 K。控制信号不但需要提供 时钟信 号 , 还需 要携带寄存器地址 、 寄存器值等信息 , 这是通过不同 的占空比 实现 的 :当占 空比 在 10% ~ 30% (低占 空 比 )时 , 表示数据 0;当占空比在 70% ~ 90% (高占 空比 )时 , 表示数据 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德国icHaus是生产特殊应用集成电路芯片(ASSP),特定应用集成电路(ASIC),是一个单片的混合信号和微处理芯片的领先专家,有25年历史。
icHaus秉承创新、可靠技术和著名的集成电路及微软系统的FMEA(失效模式与影响分析),在工业、医疗和汽车方面得到广泛应用
创意电子正式代理德国iChaus磁传感器、光编码器、插补细分器、激光二极管驱动ic。
光编码器IC:
iC-LG 21位光学位置编码器带串行/并行和Sin/Cos输出
iC-LGC 21位光学位置编码器带串行/并行和Sin/Cos输出
iC-LNB 18位光学位置编码器带SPI,串行/并行和FlexCount输出
IC-LNG 16位光学位置编码器带SPI和串行/并行输出
iC-LSB 8通道主动光敏器件阵列
iC-LSC 12通道主动光敏器件阵列
iC-LSHB 增量式光敏器件阵列
iC-LSHC 3通道 Sin/Cos光敏器件阵列
IC-LTA 6通道增量光学编码器
iC-LV 6光编码器带级联串行接口(SSI)
iC-OF 3位光学编码器
iC-OG 8位差分扫描光编码器带LED控制
iC-OV 5位光编码器
iC-OW 增量式光编码器带A/B门索引和LED控制
iC-PD3948 5通道相控阵列正弦编码器(D39,2048 PPR)
iC-PN26xx 相控阵列游标编码器(D26:256,512,1024 PPR)
iC-PN33xx 相控阵列游标光编码器(D33:256,512,1024 PPR)
iC-PN39xx 相控阵列游标光编码器(D39:1024PPR)
iC-PNH3348 相控阵列游标光编码器(D33:2048PPR)
iC-PT26xx 相控阵列光编码器(D26:256,500,1000,1250PPR)
iC-PT33xx 相控阵列光编码器(D33:1000,1024,1250,2000,2500PPR)
iC-WG 14位差分扫描光编码器(D33,1250 PPR)
磁编码器IC:
iC-MA 8位角度霍尔编码器,可级联
iC-MH/8 12位角度霍尔编码器带换向,增量,串行和模拟输出
iC-MHA角度霍尔编码器带Sin/Cos输出
iC-ML 8位线性位置霍尔编码器,可级联
iC-MP 8位霍尔编码器带比率计输出
iC-MU 磁偏轴绝对位置编码器
激光二极管驱动IC
iC-HB 3只155MHz 激光开关带LVDS输入
iC-HG 200MHz激光开关高达3A
iC-HK,iC-HKB 155MHz双通道尖峰释放激光开关
iC-HL 适用于APCs的非易失性激光偏置电位计
iC-NZ 失效安全激光二极管驱动器CW和脉冲工作高达155MHz
iC-NZN N型激光二极管驱动器带APC和ACC
iC-NZP P型激光二极管驱动器带APC和ACC
iC-VJ,iC-VJZ 激光二极管控制器带发射功能
iC-WJ,iC-WJZ 激光二极管驱动器CW和脉冲工作高达300MHz
iC-WJB 适应于电池供电的2.7到6V激光二极管驱动器
iC-WK,iC-WKL 低功耗通用激光驱动CW工作2.4V以上
iC-WKM M型CW激光二极管驱动器,为蓝光M型激光二极管优化
iC-WKN N型CW激光二极管驱动器,为N型激光二极管优化
iC-WKP P型CW激光二极管驱动器,P型激光二极管优化
插补细分器
iC-MG8位Sin/Cos插补器带RS422线驱动
iC-MN可编程9位Sin/Cos插补器带失效安全RS422线驱动
iC-MQ 3通道,同时采样13位Sin/Cos插补器带游标计算
iC-NG 8位正弦到数字转换器处理器带波形适配
iC-NQ13位信号调理插补器带BiSS B接口
IC-NQI 13位信号调理插补器带2-Wire接口
iC-NQC 13位信号调理插补器带BiSS C接口
iC-NQL 13位信号调理插补器带SSI接口
iC-NV 6位Sin/Cos快速转换器带管脚选择插补器(×16),
iC-NVH 6位Sin/Cos快速转换器带管脚选择插补器(×16),半周期索引iC-TW2可编程8位Sin/Cos择插补器带EEPROM
iC-TW4 8位Sin/Cos择插补器带自动偏置矫正
iC-TW8 16位Sin/Cos择插补器带自动矫正
24V线性驱动器
iC-DL 3通道差分线驱动器带集成阻抗匹配
iC-HD2 4差分线驱动器,管脚兼容xx2068
iC-HD7 4差分线驱动器,管脚兼容xx7272和26LS31
iC-HE 3通道差分线驱动器
iC-HX 3通道差分线驱动器带减少电源消耗
iC-VX 3通道差分线驱动器带兼容24V输出
iC-WE3通道75 Ohm线驱动器适用于RS422和24V应用
ET7272双差分线驱动带单独的逻辑偏置和驱动偏置
传感器IC
iC-LA 64*1线性图像传感器带双向位移和扩展的I/O
iC-LF1401 128*1线性图像传感器带电子快门功能
iC-LFL1402256*1连续光谱线性图像传感器带电子快门功能
iC-LFM64*1线图像传感器带电子快门功能
iC-LFS32*1线性图像传感器带电子快门功能
IC-LO智能三角测量传感器
iC-LQNP脉冲和交流光传感器带补偿输出
iC-OC双集成光学传感器带移动寄存器给链式连接
iC-OD光学位置敏感检测器(2.6mmPSD)带环境光抑制
iC-ODL光学位置敏感检测器(8.4mmPSD)带环境光抑制
iC-OR5单元光学二极管阵列
iC-VP可调节敏感度的光电开关
磁性产品
iC-MZ差分霍尔开关和齿轮齿牙传感器带线驱动器
iC-SM2LAMR线性位置传感器(间隙:2mm)
iC-SM5LAMR线性位置传感器(间隙:5mm)
信号调理和监控
iC-MSBSin/Cos传感器信号调理器带安全失效1Vpp线驱动
iC-MSB2Sin/Cos传感器信号调理器/多路器带安全失效1Vpp线驱动
iC-RC1000正弦/余弦信号安全监控IC
iC-TW3自动信号调理器带LUT温度补偿和
1Vpp(100Ohm)/2Vpp输出
iC-WT3通道光电二极管放大器-比较强带LED控制器
输出级iCs
iC-DN4V到36V 200mA低边开关带输入/输出退耦
iC-DP 4V到36V200mA高边开关带输入/输出退耦
iC-DX通用数字传感器输出驱动
iC-DXC数字传感器输出驱动器(200mA)带IO-LINK反馈回路
iC-MFL 8倍失效-安全逻辑N-FET驱动器
iC-MFLT 12倍失效-安全逻辑N-FET驱动器
iC-MFN 8倍失效-安全N-FET驱动器带电平转换高达40V
iC-MFP8倍失效-安全P-FET驱动器带电平转换高达40V
iC-SG85850nm红外LED带塑料镜头适用于高质量
大面积流明高分别率光编码器
iC-SN85850nm红外LED带塑料镜头适用于高质量大面积照明
iC-TL85850nm红外LED带镜头或者平面窗适用于高分辨光编码器继电器/螺线管驱动器
iC-GE宽工作电压范围PWM继电器/螺线管驱动器(1A)
IC-GE100PWM继电器/螺线管驱动器(100mA)
iC-JES低功耗继电器/螺线管驱动器
安全光幕iCs
发射器
适用于机器安全保护系统(IEC61496-1,ESPE),
测量光幕
iC-NL光栅脉冲驱动器带调制输入
iC-NT光幕光栅脉冲驱动器,
光电池和电子敏感保护设备
iC-NX8通道光栅脉冲驱动器带调制输入
C-NXL8通道光栅脉冲驱动器
接收器
适用于机器安全保护系统(IEC61496-1,ESPE),
测量光幕
iC-LK光栅脉冲接收器集成光敏二极管
iC-ME2通道光栅脉冲接收器
iC-MK2通道光栅脉冲接收器
iC-NE光幕光栅脉冲接收器
光电池和电子敏感保护装置
iC-NK光栅脉冲接收器
I/O接口iCs
iC-DI双传感器接口3.3V/5V电源供电
iC-GFIO-Link从机IO-Llink传输器
iC-JRX2*4双向24V高边驱动器带uC接口
iC-JX4*4双向24V高边驱动器带负责诊断和uC接口
iC-MDRS422正交编码器接收器/计数器带SPI和BiSS接口
iC-TW916位ABZ正交计数器
iC-VRV2*4 24V低边驱动器带I/O功能和uC接口
接口iCs. BISS
iC-MB3BiSS接口主机,1通道/3从机
电源管理iCs
iC-DC可编程的双2.5/3.3V Buck/Boost开关电源
iC-JJ电源管理IC带经济功能
iC-WD8V到36V开关模式双5V调整器
iC-WDA8V到36V开关模式双3.3V调整器
iC-WDB8V到36V开关模式3.3V(200mA)和5V调整器iC-WDC8V到36V开关模式3.3V和5V(200mA)调整器线性功能
iC-BM4重4象限模拟乘法器
iC-HC双超快ATE信号比较器高达36V
iC-HQ4高性能运算放大器带超低偏置(小于1uV)iC-HQL4高性能运算放大器带超低偏置(小于10uV)。