SVPWM控制三电平逆变器

合集下载

三电平SVPWM算法研究及仿真

三电平SVPWM算法研究及仿真

三电平SVPWM算法研究及仿真三电平SVPWM(Space Vector Pulse Width Modulation)是一种常见的电力电子转换技术,用于控制三相逆变器或变频器输出的电压波形。

本文将着重研究三电平SVPWM算法,并进行仿真评估。

首先,我们来介绍三电平SVPWM算法的原理。

它基于矢量控制(Vector Control)理论,通过在三相逆变器的输出电压空间矢量图上选择合适的电压矢量,以实现所需的输出电压。

1.获取输入信号:通过采样电网电压和电网电流,获取输入信号的相位和幅值。

2.电网电压矢量合成:将电网电压坐标变换到α-β坐标系,然后将三相电压矢量转换为α-β坐标系下的矢量。

3. 电机电流转换:通过坐标变换将α-β坐标系下的矢量转换为dq 坐标系下的矢量,其中d轴是电机电流的直流分量,q轴是电机电流的交流分量。

4. 电机电流控制:通过PI控制器对dq坐标系下的电机电流进行控制,以实现所需的电机电流。

5.电网电压生成:通过逆变器控制器生成电网输出电压的矢量。

6.SVM模块选择:根据电网电压矢量在α-β坐标系下的位置,选择合适的SVM模块进行控制。

7.输出PWM波形:根据选择的SVM模块,将PWM波形通过逆变器输出到电网上。

接下来,我们将进行三电平SVPWM的仿真评估。

仿真环境可以使用Matlab/Simulink或者PSCAD等软件。

首先,我们需要建立三电平逆变器的模型,包括电网电压、逆变器、电机等组成部分。

然后,编写三电平SVPWM算法的仿真程序。

在仿真程序中,通过输入电网电压和电机负载等参数,我们可以模拟电网电压和电机电流的变化情况。

然后,根据三电平SVPWM算法,计算逆变器输出的PWM波形,并将其作为输入给逆变器,从而实现对电网电压和电机电流的控制。

最后,通过仿真结果分析三电平SVPWM算法的性能,包括输出波形的失真程度、功率因数、谐波含量等。

并与传统的两电平SVPWM算法进行对比,评估其性能优势。

三电平逆变器SVPWM过调制控制策略综述

三电平逆变器SVPWM过调制控制策略综述
ge nd dia a a sw e e ds us e e pe tvey Fialy p oblm s oft xitng o r o s a s dv nt ge r ic s d r s c i l . n l r e he e s i ve m dulton s r t gis a i ta e e w e e po n e ut r itd o .
各 自的 优 缺 点 , 指 出 了 现 有 过 调 制 控 制 策 略 中存 在 的 问题 。 并
关 键 词 : 电 平 逆 变 器 ; 调 制 ; 间 电压 矢 量 脉 宽 调制 三 过 空 中 图 分 类 号 : M4 4 T 6 文献标识码 : A
O v r iw ft e S PW M v r o l to r t g e f Thr e lv lI v re e v e o h V O e m du a i n Sta e iso e —e e n e t r LIYa g, n DAIPe g, n YU es n, Yu —e CA0 n JANG e g y u Xig,I Zh n — o
量 分类 技 术 过 调 制[ 7 、 于 叠 加 原 理 S wM 5]基  ̄ VP 过 调制 l 等 。在 不 增 加任 何 硬 件 的情 况 下 , 效 _ 8 有 的 S WM 过 调 制 策 略 可 以 用 非 线 性 过 调 制 区 VP 将 线性 调制 区和系统 最 大可 能输 出 ( 6阶梯 波 ) 进 行 平滑 衔接 , 统 的 调 制 范 围能 够 由线性 调 制 区 系
满 足多 数高 转矩 输 出或 低 电压 场合 的需 求 , 是 但
过 调制 策 略不可 避免 地 引起 了逆变 器输 出电流 畸
变 , 别 是 6次 谐 波 L n 。 特 1 ] 钆 本 文 分 析 了 过 调 制 产 生 的 原 因 , 结 了 几 种 总

三电平svpwm的等效简化控制算法

三电平svpwm的等效简化控制算法

三电平svpwm的等效简化控制算法1三相SVPWM的简易控制算法三相SVPWM(Space Vector Pulse Width Modulation)是一种三电平的有效调制技术,该技术可以实现完全电平控制。

在这种技术中,模拟功率可以由六个不同的电平信号组成,从而对电源进行可控。

尽管SVPWM具有很好的优势,但是使用SVPWM进行控制会产生大量的运算量和复杂性,因此尝试简化该控制算法。

为了简化SVPWM控制算法,研究者们提出了一种名为“等效SVPWM”的控制算法。

等效SVPWM是一种基于交流逆变器算法的分析,它可以有效地实现多级ZVT的功率控制。

等效SVPWM的思想是,在整个逆变器行程的每个阶段,只控制其中一个独特的三角形,而不是六个相互交替的三角形,从而实现简单的控制算法,减少控制的负载和复杂性。

2等效SVPWM的工作原理等效SVPWM的工作原理是,它把输入端的电子逆变器抽象为一个ABC结构,这个ABC结构有三个节点,A,B和C。

等效SVPWM控制算法从A节点到BC,依次做6次变换,然后从BC到A,即由一个负边依次切换到另一个负边,从而实现输入端的电压的变换。

在等效SVPWM的控制算法中,每个阶段只控制一个三角形,而不是六个相互交替的三角形,这样可以简化控制算法,减少调制模块中的逻辑,节省功耗,并降低计算复杂度。

3等效SVPWM的优势等效SVPWM控制算法具有许多优势,这些优势在于它比传统SVPWM 控制算法具有更低的运算复杂度,可以实现快速的响应,并有可能更大限度地提高效率。

同时,等效SVPWM比其他常见的低阶调制技术具有更高的调制步长,更准确的调制效果,更好的利用率。

针对有源补偿,等效SVPWM技术可以进一步提高系统的效率,同时通过改善功率损耗质量来提高系统性能。

此外,由于等效SVPWM技术可以大大降低复杂性,因此也可以用于削减体积,减少成本。

4结论从上面的讨论可以看出,等效SVPWM控制算法是目前最先进和最有效的三电平SVPWM控制算法,它具有低复杂度,快速响应,高调制步长,准确调制,有效利用率,有效的功率损耗质量和低成本的优势。

NPC三电平逆变器VSVPWM的研究

NPC三电平逆变器VSVPWM的研究

NPC三电平逆变器VSVPWM的研究NPC三电平逆变器(Neutral-Point- Clamped Three-LevelInverter)和SVPWM(Space Vector Pulse Width Modulation)是现代电力转换系统中两种常见的拓扑和控制方法。

它们在不同应用场景中具有各自的优势和适用性。

NPC三电平逆变器是一种多电平逆变器,由具有多个电源和单个中性点连接的功率开关组成。

它的控制方式可以实现高质量的电压波形和较低的谐波畸变。

其中,中性点电压的控制是该拓扑独特的特点之一、它可以通过三电平逆变器输出不同电平的电压,以产生尽可能接近理想波形的输出电压。

在低功率应用中,NPC三电平逆变器具有高效率和较低的失真。

而SVPWM是一种基于空间矢量模型的脉宽调制方法。

它通过对逆变器开关的开合进行控制,实现输出电压波形的调制。

它可以产生接近理想正弦波形的输出电压,并且可以减少谐波畸变。

相较于传统的脉宽调制方法,SVPWM的控制精度更高,使得电力转换效率更高,并且可以减少尺寸和重量。

在比较NPC三电平逆变器和SVPWM时,可以考虑以下几个方面:1.转换效率:SVPWM方法控制的逆变器可以实现更高的转换效率,因为其输出电压波形接近理想正弦波,减少了谐波畸变和功率损耗。

相较之下,NPC三电平逆变器在高功率应用中的效率可能会较低,因为其电路结构复杂,电压开关频率较高。

2.复杂性和成本:SVPWM相对于NPC三电平逆变器的控制策略较简单,且在设计和实现上较为常见。

然而,NPC三电平逆变器较复杂,需要多个功率开关和电源,并且需要特殊的控制策略。

在一些低成本和低功率应用中,SVPWM可能是更经济和实用的选择。

3.谐波畸变:由于SVPWM可以接近理想正弦波输出,所以其谐波畸变较低。

而NPC三电平逆变器也可以通过输出不同电平的电压来减少谐波畸变,并且在低功率应用中通常具有较低的失真。

因此,在高要求的工业应用中,两者都可能是合适的选择。

基于svpwm的三电平逆变器控制策略研究

基于svpwm的三电平逆变器控制策略研究

基于svpwm的三电平逆变器控制策略研究
基于svpwm(Space Vector Pulse Width Modulation)的三电平
逆变器控制策略研究是一个有趣又有兴趣的话题,尤其是在有需要开
发出新一代控制策略以满足市场不断提高要求时,受到越来越多的关注。

SVPWM是一种多相双向逆变器控制的有效方式,它能够在负载测动
或静态状态时提供有效的响应,以调节输出电压并减少电磁悬浮。

然而,当输出功率较大时,可能会出现火花现象,增加了损耗,影响了
系统效率。

因此,采用三电平逆变器技术减少了火花现象,可以改善
输出功率对分部多脉冲控制的响应。

SVPWM技术与三电平逆变器的结合构成了一种适用于三电平逆变器
的新一代控制策略,可以有效改善该系统的性能。

在研究中,已经实
现了针对三电平逆变器的改进的SVPWM策略,调节了单相的输出电压,将负载拖动电流降低至最低,并且可以对输入电压的变化作出及时响应,从而提高系统效率。

此外,由于信号电平与控制精度之间的关系,本文还介绍了如何
可以使用基于三电平逆变器的SVPWM策略来提高信号电平和控制精度
之间的性能。

该方案利用不同的控制方法来控制三相的逆变器的输出,通过理论和仿真结果,得出了显著的改善效果。

总而言之,基于svpwm的三相逆变器控制策略研究可能会取得长
足的进展,以满足市场的新一代控制需求。

在相关的研究工作中已经
取得了良好的成果,并且有望在未来继续发展,使得三电平逆变器能
够发挥更好的控制性能。

基于空间电压矢量法(SVPWM)的三电平逆变器的研究的开题报告

基于空间电压矢量法(SVPWM)的三电平逆变器的研究的开题报告

基于空间电压矢量法(SVPWM)的三电平逆变器的研
究的开题报告
一、选题背景
三电平逆变器作为一种新型的逆变器拓扑结构,因其具有更低的谐波含量、更小的开关损耗以及更高的输出电压质量等优势受到了广泛关注。

而空间电压矢量法(SVPWM)则是一种广泛使用的控制方法,其控制策略简单、实现方便、控制精度高等特点,使其成为了三电平逆变器控制的一种重要方法。

因此,本文将研究基于SVPWM的三电平逆变器控制方法,以期能够更加深入地了解其控制原理和性能特点,为三电平逆变器的实际应用提供技术支持。

二、研究目的
本文的研究目的是通过对三电平逆变器的控制方法进行深入的分析和研究,探讨其控制原理和特性,为提高三电平逆变器控制器性能和应用贡献一份力量。

三、研究内容
本文将以以下内容为主要研究内容:
1. 对三电平逆变器的基本原理进行分析和介绍,包括三电平逆变器的拓扑结构和控制方法等。

2. 对SVPWM控制方法进行介绍,包括其基本原理、控制策略和实现方法等,以及与传统PWM控制方法的比较。

3. 基于SVPWM控制方法,对三电平逆变器进行仿真模拟,研究其输出电压波形和谐波含量等性能指标,并与传统PWM控制方法进行对比分析。

4. 在仿真模拟基础上,进一步设计和实现基于SVPWM的三电平逆变器控制系统,对其性能进行实际测试和验证。

四、研究意义
通过本文的研究,不仅能够深入了解三电平逆变器的控制方法和SVPWM技术的特点,还能提高三电平逆变器控制器的性能,为其在实际工程应用中的推广和应用提供技术支持。

同时,本文的研究也为其他相关领域的研究提供了借鉴和参考。

三电平逆变器SVPWM过调制控制策略综述

三电平逆变器SVPWM过调制控制策略综述

Ⅵ慈警
淤一
巡哕
图5典型双模式过调制
typical dual—mode overmodulation
E183在傅立叶谐波分析的基础上,提出了一种基 于角度控制的分段SVPWM过调制算法,但只是
这种方法有较低的谐波畸变率(THD),但是 有相对复杂的控制算法,并且查表需要较大的内 存空间[2¨,因此适合于对谐波指标要求较高的 应用。 3.4典型单模式过调制策略 这种方法借鉴了S.Bolognani的思想[I],通 过离线计算得到修改后的参考电压矢量的幅值与 m的非线性关系,同时修改参考电压矢量的幅值 和相位,用一种控制模式即可实现从线性区到最 大调制的平滑过渡。修正后的电压矢量运行轨迹 如图6中黑粗线所示。
应用在两电平SVPWM算法中,在三电平中的应
用有待研究。文献Ez03提出了磁场定向控制中的 SVPWM过调制策略,其思想和3.3节中的方法类 似。文献[-243介绍了过调制策略在电流型逆变器 中的应用。文献Ez53介绍了过调制策略在双级矩 阵变换器中的应用。 4
现有过调制策略存在的问题
过调制控制策略是在人们对电机输出转矩及
矿=,r/3,用H。代替y。r。如果}V。f I足够大,随着 y。r的旋转,y。r的端点在六边形的一个顶点停留 一段时间以后,直接跳到另一个端点,轨迹就是六 边形的6个顶点。
3过调制控制策略
针对过调制运行时出现的问题,国内外很多 学者进行了研究,至今已取得了多项成果[13 ̄3 下面介绍几种典型的过调制策略。 3.1最小相角误差过调制策略 其基本原理是:对V。t的端点轨迹超出六边 形的部分,保持y。r的相位角不变,将y。r的端点 强制固定在六边形上形成新的矢量y7,同时未超 出六边形的部分仍保留为圆形。因此,最后y甜 的端点轨迹为口6段圆弧、6f段直线、cd段圆弧, 如图3所示。因为y7与y。t有相同的相角,故这 种方法具有最小相角误差的优点。 这种方法较3.1节中的方法复杂,计算量大, 电压、电流波形失真程度也比最小相角误差过调 制大。然而,它可以达到最大调制度为1,此时输 出电压基波幅值为2L厂。。/兀,充分利用了直流母线 电压[221。 3.3典型双模式过调制策略 这种方法借鉴了Joachim Holtz的思想‘引,将

三相三电平逆变器SVPWM控制研究

三相三电平逆变器SVPWM控制研究
如图1所示,三电平逆变器每个桥臂有4个开关管, 因此每个桥臂可以有三种开关状态,用 S a、 S b、 S c表示
作者简介:王璨(1986-),女,硕士研究生,主要研究方向电力电子.
64
船舶机电设备 2011/06
图 1 中点箝位三电平逆变电路图
图 2 三电平逆变器空间电压矢量分布图
A 、 B 、 C 各桥臂的三态开关变量。以 A 相桥臂为例,若 Sa=0,则表示开关管T1、T2关断,T3、T4导通;Sa=1,则 表示开关管T1、T4关断,T2、T3导通;Sa=2,则表示开关 管T3、T4关断,T1、T2导通 。 A相输出端A对电源中点O的电压UAO可以用A相开关 变量结合输入直流电压Udc来表示:
V1 t1 + V2 t2 + V7 t7 = Vref T t1 + t2 + t7 = T
v v v v
其中, Vref 为目标电压矢量。
v
图 3 参考电压矢量的分解
用,且开关矢量的作用是对称的。 3)零矢量的作用时间是等份分配的。 在三电平逆变电路中,每相的开关状态有三种, 即-1(N),0(O),1(P),对应的交流侧输出电压 为-Udc/2,0,Udc/2。综合考虑以上因素,表1给出了当参 考矢量在空间逆时针转动时第一扇区开关矢量的作用顺 序,表中每一列从上到下为矢量的作用顺序。
2空间矢量pwm算法将如图2所示的电压空间矢量按大六边形的六个大矢12aaodcsvu?12bbodcsvu?12ccodcsvu?1100112101abadcbcbcacvsuvsvs?????????????????????????????????2111216112anadcbnbcncvsuvsvs????????????????????????????????????0203mmu1234323coscossinsin323coscossinsin34sinsin33coscossinsinmmmm??????????????66船舶机电设备201106academicresearch技术交流图3参考电压矢量的分解可知当1mm时坐标属于区域1

三电平NPC逆变器SVPWM控制策略及中点电位平衡研究

三电平NPC逆变器SVPWM控制策略及中点电位平衡研究

三电平NPC逆变器SVPWM控制策略
三电平NPC逆变器SVPWM控制策略
SVPWM是一种先进的空间矢量调制技术,通过将一个采样周期内的三个电压矢 量分配到两个开关器件上,可以获得与常规PWM相比更高的调制效率和更好的输 出波形质量。对于三电平NPC逆变器,SVPWM控制策略的关键是选取合适的调制方 式、脉宽调制参数和中点电位控制策略。
中点电位平衡研究
中点电位的影响主要有以下几个方面:
中点电位平衡研究
1、输出波形质量:中点电位不平衡会导致输出波形畸变,产生谐波污染;
中点电位平衡研究
2、开关器件的可靠性:中点电位不平衡会导致开关器件承受电压增大,降低 其可靠性;
中点电位平衡研究
3、系统的稳定性:中点电位不平衡会影响系统的稳定运行,可能导致系统振 荡甚至崩溃。
结论与展望
结论与展望
本次演示对三电平NPC逆变器SVPWM控制策略及中点电位平衡问题进行了深入 研究,提出了一种有效的控制方法。实验结果表明,该方法可以有效提高逆变器 的性能和可靠性。然而,在实际应用中仍存在一些问题需要进一步探讨,例如如 何进一步优化脉宽调制参数和中点电位平衡控制策略,以获得更好的输出波形质 量和系统稳定性。
三电平NPC逆变器SVPWM控制策略
电流跟踪控制参数也是SVPWM控制策略的重要组成部分。本次演示采用PI (Proportional-Integral)控制器来实现电流跟踪控制,通过调节PI控制器的 参数,达到快速跟踪输出电流的目的。
中点电位平衡研究
中点电位平衡研究
中点电位平衡问题是三电平NPC逆变器运行过程中的一个关键问题。中点电位 的平衡与否直接影响到逆变器的性能和可靠性。中点电位的产生原因是逆变器两 个半桥中点电压的差值,它可能会导致半桥电容充放电不平衡,进而影响逆变器 的正常工作。

三电平逆变器SVPWM控制算法研究

三电平逆变器SVPWM控制算法研究

三电平逆变器SVPWM控制算法研究摘要:论述了二极管箝位式三电平逆变器的基本结构,分析了空间矢量脉宽调制(SVPWM)控制三电平逆变器的算法,给出了确定参考矢量的三个规则,并推导出工作矢量的作用时间和输出顺序,从而使三电平逆变器SVPWM控制算法的可行性得到了验证。

关键词:三电平逆变器;SVPWM;算法目前,三电平逆变器是实现中高压、大容量电机调速的主要方式之一,与传统的两电平逆变器相比,其优点是能承受高电压、电压电流上升率低等。

但是,由于其逆变状态比传统两电平多,加上前端三线整流所带来的中点电压波动,其控制算法的复杂程度也随之增大。

电压空间矢量脉宽调制(SVPWM)本质上依赖于开关矢量的选择和开关矢量作用时间的计算,通过优化开关矢量,降低开关频率,从而减少了交流侧电流的总谐波畸变率,提高了母线电压利用率。

1 三电平逆变器主电路结构三电平逆变器主电路结构主要是二极管中点箝位(NPC)式,如图1所示。

以电源中点为参考,每一相可以输出1、0和-1三种电平。

以U相为例,其输出规律为:当S1、S2开通。

S3、S4关断时,输出电压为1;当S2、S3开通,S1、S4关断时,输出电压为0;当S1、S2关断,S3、S4开通时,输出电压为-1。

对三相三电平逆变器而言,每相都有3种(1、0、-1)电平输出,所以三相共有33=27个电平状态输出,对应着空间矢量的27个矢量状态,如图2所示。

2 三电平SVPWM算法的实现2.1 参考电压矢量位置和输出电压矢量的确定SVPWM算法的首要任务就是判断参考电压矢量位于哪个区域及该区域中的哪个小三角形,然后依此确定相应的输出电压矢量。

为了防止输出电压产生很高的dv/dt,每次输出状态切换时,开关状态只切换一个电平。

第I象限正三角形中矢量分区如图3所示,其它象限矢量的分析可参照第I象限。

先根据参考矢量的角度确定出该矢量位于图2所示的6个正三角形区域中的哪一个,然后可以依据如下3条规则进一步判断位于哪个小三角形。

三电平逆变器的SVPWM控制与MATLAB仿真研究

三电平逆变器的SVPWM控制与MATLAB仿真研究

三电平逆变器的SVPWM控制与MATLAB仿真研究三电平逆变器是一种常用的电力电子设备,具有输出波形质量高、效率高、功率密度大等优点。

SVPWM是一种常用于三电平逆变器的控制算法,可以实现对输出电压的精确调节。

本文将对SVPWM控制算法进行研究,并使用MATLAB进行仿真验证。

首先,介绍三电平逆变器的基本原理。

三电平逆变器由两个半桥逆变器和一个中间电压平衡电路组成。

其工作原理是通过控制两个半桥逆变器的开关状态,将输入直流电压转换为输出交流电压。

为了实现高质量的输出波形,需要对逆变器的开关状态进行精确控制。

SVPWM是一种常用的控制算法,通过控制逆变器的开关状态来实现对输出电压的精确控制。

SVPWM控制算法的基本原理是将三相交流信号转换为空间电压矢量,然后通过控制逆变器的开关状态来实现对输出电压的调节。

该算法采用三角波进行调制,根据三角波和参考信号之间的相位差确定逆变器的开关状态。

具体来说,根据参考信号和三角波的相位关系,可以将逆变器的开关状态分为六个不同的区间。

在每个区间中,逆变器的开关状态发生变化,从而实现对输出电压的调节。

为了验证SVPWM控制算法的性能,我们使用MATLAB进行仿真。

首先,我们需要建立逆变器的数学模型。

逆变器的数学模型可以通过电路方程和开关动态方程来建立。

然后,我们可以编写MATLAB代码来实现SVPWM控制算法。

在代码中,需要定义参考信号和三角波的频率和幅值,并根据相位差确定逆变器的开关状态。

最后,我们可以通过MATLAB的仿真工具来模拟逆变器的工作过程,并观察输出电压的波形和频谱。

通过对SVPWM控制算法的研究和MATLAB的仿真验证,可以得出以下结论。

首先,SVPWM控制算法可以实现对三电平逆变器输出电压的精确控制。

其次,通过调整参考信号和三角波的频率和幅值,可以实现不同频率和幅值的输出电压。

最后,MATLAB的仿真工具可以有效地验证SVPWM控制算法的性能,并对三电平逆变器的工作过程进行可视化分析。

二电平和三电平逆变器svpwm调制方法-概述说明以及解释

二电平和三电平逆变器svpwm调制方法-概述说明以及解释

二电平和三电平逆变器svpwm调制方法-概述说明以及解释1.引言1.1 概述概述部分应该对二电平和三电平逆变器svpwm调制方法进行简要介绍,说明其在逆变器领域中的重要性和应用。

可以按照以下方式编写该部分的内容:概述逆变器是一种将直流电能转换为交流电能的装置,广泛应用于电力电子领域。

在逆变器的调制方法中,svpwm是一种常用且有效的调制技术。

根据逆变器的拓扑结构的不同,svpwm调制方法可以分为二电平和三电平两种。

二电平逆变器svpwm调制方法通过对逆变器开关管的控制,使输出波形接近正弦波,并最大化功率输出。

其调制原理是将高频三角波与标准正弦波进行比较,通过控制开关管的导通时间实现输出波形的控制。

二电平逆变器svpwm调制方法具有简单、可靠的特点,在许多应用中得到广泛使用。

相比之下,三电平逆变器svpwm调制方法引入了一个额外的中点电压,可以提供更高的输出电压质量。

其调制原理是将标准正弦波与两个输出电压等级的三角波进行比较,通过控制开关管的导通时间和电平,实现输出波形的更精确控制。

三电平逆变器svpwm调制方法适用于高功率应用和对输出电压质量要求较高的场景。

本文将重点探讨二电平和三电平逆变器svpwm调制方法的调制原理和实现方式,比较其优缺点,并对其应用前景进行展望。

二电平和三电平逆变器svpwm调制方法的研究对提高逆变器效率、降低谐波失真以及满足不同应用需求具有重要意义。

1.2 文章结构文章结构部分的内容应该包括对整篇文章的结构进行概括和简要说明。

可以按照以下方式编写:本文主要围绕着二电平逆变器SVPWM调制方法和三电平逆变器SVPWM调制方法展开讨论。

文章结构如下:第一部分为引言,包括概述、文章结构和目的。

在概述中,将会介绍逆变器的作用和重要性,以及SVPWM调制方法在逆变器中的应用背景。

文章结构将会简要列举本文的章节和主要内容。

目的部分将明确本文旨在比较二电平和三电平逆变器SVPWM调制方法的优劣以及探讨其应用前景。

三电平三相桥式逆变器的svpwm控制方式应用_概述说明

三电平三相桥式逆变器的svpwm控制方式应用_概述说明

三电平三相桥式逆变器的svpwm控制方式应用概述说明1. 引言1.1 概述本文旨在介绍三电平三相桥式逆变器的SVPWM(空间矢量脉宽调制)控制方式的应用。

逆变器作为电力电子变换技术中的重要组成部分,广泛应用于交流电力传输和各种工业应用中,有着重要的实际意义。

而SVPWM控制方式作为一种高效的逆变器控制方法,具有优秀的性能和效率,在现代电力系统中得到了广泛关注和应用。

1.2 文章结构本文共分为五个部分,首先是引言部分,对文章进行概述和介绍;第二部分是正文,介绍逆变器及其基本原理;第三部分是专门介绍SVPWM控制方式的应用,包括其基本原理以及在三电平三相桥式逆变器中的具体实现方法和优点;第四部分将着重讨论三电平三相桥式逆变器的特点,并与其他类型逆变器进行比较;最后一部分是结论,对前文所述内容进行总结归纳,并展望未来该领域的发展方向。

1.3 目的本文旨在深入探讨SVPWM控制方式在三电平三相桥式逆变器中的应用,并分析该控制方式的优点和适用性。

通过全面介绍和剖析,读者可以对SVPWM控制方式有一个清晰的认识,并了解其在三电平三相桥式逆变器中实际应用的效果与意义。

同时,本文还致力于为读者提供一个全面、系统且易于理解的资料,以便进一步研究和应用相关领域的技术。

(以上内容均为草稿,仅供参考)2. 正文电力电子技术在现代电力供应系统中发挥着重要的作用。

逆变器是一种将直流电转换为交流电的设备,广泛应用于工业控制、风能和太阳能发电系统等领域。

而三电平三相桥式逆变器是逆变器中一种常见且性能优越的拓扑结构。

三电平三相桥式逆变器采用了多级拓扑结构,通过控制开关管的导通与截止,可以实现对输出交流波形的精确控制。

在传统的两电平逆变器中,只能产生两个电平的交流输出;而在三电平逆变器中,通过合理选择开关管的组合方式,可以产生三个不同高度的输出电平。

这使得三相桥式逆变器具备更好的输出波形质量,并提供了更宽广阶梯数模拟交流信号。

而在控制方法方面,空间矢量脉宽调制(SVPWM)被广泛应用于三电平三相桥式逆变器中。

三电平逆变器SVPWM仿真

三电平逆变器SVPWM仿真

三电平逆变器SVPWM仿真
三电平逆变器拓扑有多种,主要有二极管钳位式、飞跨电容式、级联等。

主要分析二极管钳位式三电平逆变器的原理并进行SVPWM控制仿真。

一、三电平逆变器原理
二极管钳位式三电平逆变器基本拓扑
以A相为例,当s1、s2导通,s3、s4关断,输出端电压为Udc/2;
当s1、s4关断,s2、s3导通时,输出端电压为0;
当s1、s2关断,s3、s4导通时,输出端电压为-Udc/2;
三电平逆变器每相有三个工作状态,分别是1(Udc/2),0(0),-1(-Udc/2),仿照两电平可以定义Sx=1、0、-1,就可以类似得到三电平的矢量表达式:
由于三电平每相桥臂都有三个输出状态,所以共有27个矢量,其组合方式如矢量图所示:
二、三电平逆变器仿真
由两电平SVPWM原理推导三电平SVPWM原理,仍然要分为三步:
(1)区域判断,判断出合成矢量的三个基本矢量
(2)时间计算,也就是每个矢量的作用时间即占空比
(3)时间状态分配,将矢量状态转换到时间状态,及桥臂的开关状态
仿真原理图
SVPWM控制框图:
桥臂输出端线电压及相电压波形。

基于SVPWM的三电平逆变器中点电压控制方法

基于SVPWM的三电平逆变器中点电压控制方法

基于SVPWM的三电平逆变器中点电压控制方法1 引言在NPC 三电平电路中,直流母线是由上、下两个电容组成,共同承载直流电压,理论上应各自贡献一半直流电压,但实际中可能存在直流中点电压不平衡现象。

若不能有效控制,可能导致输出三相电流中包含低次谐波分量,电压超过器件的最大耐压值,危及开关器件安全。

NPC 三电平中点电压控制的主要方案有滞环控制和零序电压注入两种。

滞环控制操作简单,但不能精确控制到直流母线电压的一半;零序电压注入法基本可精确地将中点电位误差控制到零,但控制算法复杂。

这里在分析上述方法的基础上,提出了一种基于SVPWM 的精确中点电流控制的中点电压控制方法,该方法可精确控制中点电压,且算法比零序电压注入法简单。

2 NPC 三电平中点电压波动分析NPC 三电平电路拓扑及电流流动方向如图1 所示。

采用SVPWM 波产生法时,合成参考电压矢量所用的基本电压矢量可分为大矢量、中矢量、小矢量和零矢量。

第I 扇区所有基本矢量如图2 所示,其中U13 和U14 为大矢量,U7 为中矢量,U1 和U2 为小矢量,U0 为零矢量。

以U1 为例,图3 表示U1 作用时对应的2 个矢量,分别为p 型矢量poo 和n 型矢量onn。

p 型矢量poo 流出中点的电流为ib+ic,三相负载平衡时ib+ic=- ia,若ia0 即有电流流入中点,这会引起中点电压上升;n 型矢量onn 流出中点的电流为ia,当ia0 时会引起中点电压下降。

用同样方法分析其他电压矢量的作用效果,可得如下结论:大矢量和零矢量对中点电压无影响;中矢量有影响,但影响效果不确定;小矢量中p 型矢量和n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SVPWM控制三电平逆变器
SVPWM、三电平逆变器、仿真
1 引言
工程实际中,待控制能量的规模越来越大,而在该过程中充当主角的功率器件所能承受的关断电压和通态电流能力却受到现有功率半导体器件制作水平的限制,促使人们从逆变拓扑结构方面展开研究以满足实际需要。

自1980年日本学者A.Nabae提出三电平中点钳位式结构以来,三电平逆变器的拓扑结构主要发展有二极管钳位式、电容钳位式、单元电路级联式。

与二电平逆变器相比,三电平逆变器的主要优点是:(1)器件相对于中间回路直流电压具有2倍的正向阻断能力;
(2)同样功率等级的半导体开关器件,输出功率可以提高一倍,开关频率降低50%;
(3)三电平拓扑把输出第一组谐波移频带移至二倍开关频率的频带区,提高了谐波频率,减小了滤波器的体积,同样控制方式下,三电平逆变器的输出谐波小。

因此,三电平逆变器在高压、大功率领域得到了广泛的应用。

空间电压矢量脉宽调制(SVPWM)方法输出电流谐波成分少、低脉动转矩、具有比SPWM高15%的电源利用率,物理概念清晰,算法简单且适合数字化方案,适合于实时控制,是三电平逆变器首选的PWM控制方法。

2 三电平逆变器主电路结构
二极管钳位式三电平电压型逆变电路原理图如图1所示。

图1 二极管钳位式三电平逆变器主电路结构图
每个桥臂由两个开关管串组成,每个串由两个相匹配的管串联而成,降低管子的耐压。

每个桥臂具有三种输出状态0,1和2,以A相电路为例,当、导通时,A相为0态,输出电压
为;当、导通时,A相为1态,电压为0;当、导通时,A相为2态,输出电压为。

于是A相输出可以得到、0、个值,如表1所示。

表1 二极管钳位式三电平逆变器开关状态与输出电压的关系
对于三相三电平逆变器由于每相都有三种电平输出,故三相输出共有33=27个电平状态,对应着空间矢量控制的27个矢量状态,如图2所示。

图2 三电平逆变器电压空间矢量图
3 三电平电压空间矢量调制(SVPWM)方法
3.1 参考电压矢量位置与输出电压矢量的确定
SVPWM的首要任务就是判断参考电压矢量位于哪个区域及该区域中的哪个小三角形,然后就可以依此确定出相应的输出电压矢量。

为了防止输出电压产生很高的dv/dt,每次输出状态切换时,开关状态应该只切换一个电平,例如从111到011或从111到211。

第一象限正三角形中的矢量分区如图3所示,其他象限其他三角形中矢量的分析可参照第一象限。

首先,根据参考矢量的角度θ确定出该矢量位于如图2所示的6个正三角形区域中的哪一个,然后可以依据如下三条规则进一步地判断出位于哪个小三角形。

参考电压
矢量所在小三角形的3个顶点所对应的电压矢量就作为参考电压矢量的输出电压矢量,即这些电压矢量来合成参考电压。

图3 第一象限扇区1中的参考矢量合成图
参考电压矢量为:
规则1:
规则2:
规则3:Vrefβ-Vβ<0
3.2 输出电压矢量的作用时间的计算
在采样周期内,对于一个给定的参考电压矢量,可以利用三个基本电压矢量来合成,根据伏秒平衡原理,满足方程组:
其中分别为矢量对应的作用时间,为采样周期。

根据此方程组可以得到各基本矢量的作用时间。

然后根据基本矢量与开关状态的对应关系,结合其他要求确定所有的开关状态及其输出形式。

(1)图3中当参考矢量在1区时,由合成,作用时间分别为的计算公式如下:
(2)当参考矢量在2区时,由合成,作用时间分别为的计算公式如下:
(3)当参考矢量在3区时,由合成,作用时间分别为的计算公式如下:
(4)当参考矢量在4区时,由合成,作用时间分别为的计算公式如下:
其中。

3.3 输出电压矢量的作用顺序
在每个SVPWM控制周期中,需要合理安排输出电压矢量的作用顺序,输出电压矢量的作用顺序的确定应遵循2个原则:
(1)每相只能在状态2和1、1和0之间相互切换,不允许在2和0之间直接切换;
(2)每次只能有一相电平切换。

由此原则可得到图3中各区域输出电压矢量的作用顺序如表2所示。

表2 各区域输出电压矢量的作用顺序
3.4 中点电位的控制
三电平逆变电路中,直流侧电容电压的不平衡是个较为严重的问题,中点电流的存在会导致中点电位的振荡,引起电容电压的不平衡问题。

可以根据中点电流的方向和电容的电压大小来调整正负矢量的相对作
用时间,从而控制中点电位。

假定m为中点电压调整系数,则矢量的作用时间为,的作用
时间为,可得控制规则如下:
(1)当时,m可取0.5;
(2)当Uc1>Uc2且首发矢量中点电流的方向为流入时,m>0.5,否则,m<0.5;
(3)当Uc1<Uc2且首发矢量中点电流的方向为流入时,m<0.5,否则,m>0.5。

4 仿真结果
设置系统仿真参数如下:负载电感为10Ω、电感为20mH,直流电容C1、C2均为1000μF,系统直流测电压为2000V,控制周期为0.5ms,仿真给出了系统输出频率为50Hz、调制系数为0.8时的运行波形,如图4~图7所示。

图4 A相线电压仿真波形
图5 A相线电流仿真波形
图6 A相相电压仿真波形
图7 电容C1电压仿真波形
5 结束语
本文详细的论述了二极管钳位式三电平逆变器的空间矢量电压矢量调制方法,通过简单的几何关系确定参考矢量所在位置,给出了输出电压的作用顺序,并推导出了三角形工作矢量的作用时间,通过合理处理正负小矢量的作用时间,实现中点电位的控制。

从仿真结果可以证明SVPWM控制三电平逆变器是行之有效的。

许文斌桂武鸣
更多请访问:中国自动化网()。

相关文档
最新文档