X射线衍射的基本原理
x-射线衍射原理
x-射线衍射原理
射线衍射原理是一种通过将电磁波(一般为X射线)通过晶
体或物体的结构进行衍射,从而获得物体结构信息的方法。
射线衍射原理是基于波动理论的一个重要应用,它利用射线的相交和衍射现象来研究物体内部的晶格结构、原子间距等参数。
射线衍射实验通常使用单晶体作为衍射物,因为单晶体具有长程的周期性结构。
在实验中,将单晶体置于射线束的路径上,当射线通过单晶体时,会根据晶体结构的周期性,经历衍射现象。
根据布拉格定律,当入射射线的波长与晶格间距等条件满足时,会出现相干衍射峰。
在射线衍射实验中,探测器会检测到一系列的衍射峰,这些峰代表了不同衍射角度的衍射波。
通过测量衍射峰的位置以及强度,可以得到一些重要的信息。
首先,由布拉格定律可得,衍射峰的位置与晶胞的尺寸及结构有关。
这种方法可以用于确定晶体的晶胞参数,如晶格常数、晶胞体积等。
其次,衍射峰的强度与晶体内部的原子排列、晶格缺陷等因素密切相关。
通过分析衍射峰的强度分布,可以研究晶体的有序性、晶格缺陷的性质等。
射线衍射原理广泛应用于材料科学、晶体学、结构生物学等领域。
利用射线衍射原理,人们可以研究材料的内部结构,揭示物质的微观性质,为新材料的设计与合成提供理论指导。
同时,射线衍射还在药物研发、蛋白质结构解析等领域发挥着重要作用。
总之,射线衍射原理是一种通过射线的相交和衍射现象来研究物体结构的方法。
通过测量衍射峰的位置和强度,可以获得物体的晶格参数、结构信息等。
射线衍射原理在材料科学和生物科学等领域有着广泛的应用。
x射线衍射的工作原理
x射线衍射的工作原理x射线衍射是一种用于研究晶体结构的技术。
它利用x射线穿过物质时的散射特性来确定晶体的结构。
这种技术在物理、化学和材料科学等领域得到了广泛应用。
x射线衍射的基本原理是利用x射线在经过晶体时的衍射现象。
当x射线通过晶体时,它会与晶体中的原子发生作用。
这些原子会对射线产生干涉作用,使射线在晶体中形成一些特殊的相位关系,从而使射线在出射时发生衍射。
晶体中的各个原子之间具有特定的空间排列方式,形成了一个有规律的晶体结构。
每个晶体结构都有一个特定的晶胞,其中包含若干个原子。
当入射的x射线穿过晶胞时,它会与其中的原子相互作用,引起干涉和散射,从而在出射方向上形成一系列特定的衍射点。
这些衍射点的位置和强度与晶体结构以及入射x射线的波长有关。
由此可以通过对衍射图样的分析来确定晶体的结构。
因此可以使用x射线衍射来确定几乎所有晶体的结构。
在实际应用中,使用的x射线波长通常为0.1纳米至1纳米范围内的水平。
使用薄晶片制备样品,这可以使x射线穿过晶体的路程尽可能短,从而增加衍射的强度。
此外,通常要使用高分辨率的探测器来捕捉衍射图样中的弱信号。
由于x射线衍射技术具有许多优点,如非破坏性、精度高、可靠性强等,因此在多个领域得到了广泛应用。
在材料科学中,它可以用于研究纳米晶、薄膜等材料的结构。
在药物研究中,它可以用于确定药物的晶体结构,从而为药物设计提供重要信息。
在工业中,它可以用于研究金属、合金等材料的结构和相变行为,从而为材料的开发和制造提供帮助。
总之,x射线衍射是一种非常重要的材料研究技术,在多个领域得到了广泛应用。
x射线衍射仪的工作原理
x射线衍射仪的工作原理X射线衍射仪的工作原理是基于X射线的散射现象。
当X射线通过物质时,会与物质的原子产生相互作用,通过散射来改变其传播方向和能量。
具体工作原理如下:1. 产生X射线:X射线衍射仪使用X射线管产生X射线。
X射线管中有一个阴极和阳极,当高压施加在两个电极之间时,阴极上的电子会被加速,击中阳极,从而产生X射线。
2. 照射样品:产生的X射线通过选择性选择性照射到待测样品上。
样品中的原子核和电子会与X射线发生相互作用。
3. 散射现象:当X射线与样品中的原子相互作用时,会发生散射现象。
主要有两种类型的散射,即弹性散射和无弹性散射。
- 弹性散射(Rayleigh散射):在弹性散射中,X射线与样品中的原子表面相互作用,改变传播方向,但不改变能量。
这种散射通常被忽略,因为它对X射线衍射仪的结果没有贡献。
- 无弹性散射(Compton散射):在无弹性散射中,X射线与样品中的原子内部相互作用,改变了X射线的能量。
这种散射是X射线衍射仪中非常重要的现象,因为它提供了有关样品内部结构和晶体学信息的重要数据。
4. 衍射现象:当经过样品后的X射线进入到探测器时,会发生衍射现象。
衍射是由于入射X射线在样品中被散射后,不同方向上的散射波相互叠加形成的相干波的干涉现象。
5. 探测与记录:探测器将衍射产生的干涉图案转化为电信号,并通过信号处理和记录设备将其转化为可见图像或X射线衍射图谱。
这些图像或图谱可以用于分析样品的晶体结构、晶胞参数、晶体定向和有序结构等信息。
总的来说,X射线衍射仪的工作原理是通过利用X射线与样品中原子的相互作用和散射现象,来获取样品的晶体学信息和结构参数。
衍射图案的形状和强度可以提供关于样品原子排列和晶格结构的重要信息。
第三章 X射线衍射的基本原理
X射线衍射的基本原理
X射线的衍射实质上就是经过相互干涉而 加强的大量散射线所组成的射线 本章主要讨论内容: ⒈X射线衍射的条件? ⒉衍射线的方向? ⒊X射线衍射与晶体结构之间的关系?
§3-1 一个晶胞对X射线的散射
假设: ① 所研究的晶体是理想晶体,晶体内部没有任何缺陷或畸变. ② 不考虑温度的影响,晶体中各个原子均处于静止状态,没有热 运动. ③ 由于X射线的折射率近似等于1,可以认为X射线在传播时,光 程差等于程差. ④ 入射X射线是单色的严格平行的射线,不考虑X射线的吸收衰减 问题. ⑤ 晶体中各个原子的散射线不会再被其它原子散射. ⑥ 由于晶体的点阵常数都很小,在实验中,X射线源与试样的距离 和探测器与试样的距离相对于点阵常数均可视为无穷远.所以 衍射线和入射线相同,均是平行光.
n =1 n=2 n=3 M
λ
2d ( hkl )
θ1 θ2 θ3 M
θ3 θ2 θ3 θ2 θ1
θ1
d(hkl)
2
θ1
d (hkl ) n
sinθ = λ
θ1
θ2 θ2 θ3 θ3
d(hkl)/2 d(hkl)/1
2
r r r a(σ - σ 0 )
r r r b(σ - σ 0 )
r r r c(σ - σ 0 )
λ
从三维干涉函数中可以看出,一个单晶体的衍射线强度与衍射线的方向 有关,也与点阵常数,晶体大小有关. 如果认为,在B处接收的所接收到的散射线都是彼此加强的,强度取得最 大,则此时必须是分母为最小
r r r a (σ - σ 0 ) r r r b (σ - σ 0 ) r r r c (σ - σ 0 )
r* r r r G( HKL ) = Ha + Kb + Lc
x射线衍射 原理
x射线衍射原理x射线衍射是一种重要的物理现象,它在材料科学、结构分析和晶体学等领域具有广泛的应用。
本文将介绍x射线衍射的原理及其在科学研究和工程应用中的重要性。
一、x射线衍射的原理x射线衍射是指当x射线通过物质时,由于物质中的原子或分子对x 射线的散射作用,使得x射线在特定角度下发生衍射现象。
这种衍射现象是由于x射线与物质中的电子发生相互作用而产生的。
具体来说,当x射线通过物质时,它会与物质中的电子发生相互作用。
这种相互作用导致x射线的波长发生改变,从而使得x射线在特定角度下发生衍射。
根据衍射的特点,我们可以通过测量衍射角度和衍射强度来研究物质的结构和性质。
二、x射线衍射的应用1. 材料科学:x射线衍射在材料科学中具有重要的应用。
通过测量材料的衍射图样,可以确定材料的晶体结构、晶格常数和晶体缺陷等信息。
这对于材料的设计和性能优化非常关键。
2. 结构分析:x射线衍射在结构分析中也起着重要的作用。
通过测量物质的衍射图样,可以确定物质的分子结构、晶体结构和晶体取向等信息。
这对于研究分子和晶体的性质以及化学反应机理具有重要意义。
3. 晶体学:x射线衍射是研究晶体学的重要工具。
通过测量晶体的衍射图样,可以确定晶体的空间群、晶胞参数和晶体结构等信息。
这对于研究晶体的对称性和性质具有重要意义。
4. 工程应用:x射线衍射在工程领域也有广泛的应用。
例如,在材料加工过程中,通过测量材料的衍射图样,可以评估材料的晶粒尺寸和应力状态,从而指导工艺优化和质量控制。
三、x射线衍射的发展和挑战随着科学技术的不断发展,x射线衍射技术也在不断进步。
例如,近年来,高分辨率x射线衍射技术的发展使得我们能够更加准确地研究物质的微观结构和性质。
此外,结合计算模拟和数据处理技术,可以进一步提高衍射数据的分析和解释能力。
然而,x射线衍射技术也面临一些挑战。
例如,对于非晶态材料和纳米材料等复杂体系,衍射图样的解析和解释更加困难。
此外,x 射线衍射技术在实际应用中还存在成本高、设备复杂等问题,限制了其在一些领域的推广和应用。
x射线衍射工作原理
X射线衍射是一种利用物质对X射线的散射和干涉现象来研究晶体结构的技术。
其工作原理可以描述如下:
1.X射线源:首先需要一个产生高能X射线的源,通常使用X射线管或放射性同位素。
这
些X射线源会产生一束高能X射线。
2.射线入射:产生的X射线束被定向照射到待测物质(通常是晶体)上。
X射线的波长与
晶格间距的数量级相当,所以它们可以与晶体中的原子发生散射现象。
3.散射过程:当X射线束穿过晶体时,它们会与晶体中的原子发生散射。
根据布拉格法则,
当入射X射线的波长与晶格间距匹配时,会发生构造性干涉,形成衍射图样。
4.衍射图样:被散射的X射线会以不同的角度和强度散射出去,形成特定的衍射图样,可
以通过探测器捕捉到。
5.分析和解读:通过分析衍射图样,可以确定晶体中的原子排列和晶格结构。
根据衍射图
样中出现的衍射点的位置和强度,使用数学方法进行解析,推断晶体的结构和晶胞参数。
总之,X射线衍射利用X射线与晶体中原子的相互作用,通过测量和分析产生的衍射图样来研究晶体的结构。
这种技术在材料科学、固态物理、化学等领域有广泛应用,并为了解晶体的性质和结构提供了重要手段。
x射线衍射的基本原理
x射线衍射的基本原理X射线衍射的基本原理。
X射线衍射是一种重要的材料表征方法,它可以用来研究晶体的结构和性质,对于材料科学和固体物理学领域具有重要的意义。
X射线衍射的基本原理是利用X 射线与晶体相互作用的规律,通过衍射现象来揭示晶体结构的方法。
首先,我们需要了解X射线的特性。
X射线是一种电磁波,具有很短的波长,通常在0.01纳米到10纳米之间。
由于其波长非常短,因此X射线具有很强的穿透能力,可以穿透大部分物质。
同时,X射线也具有波动性,可以产生衍射现象。
当X射线照射到晶体上时,X射线会与晶体中的原子发生相互作用。
根据布拉格定律,当X射线入射到晶体表面时,会与晶体中的原子发生散射,形成衍射图样。
这种衍射图样的形成是由于晶体中原子的周期性排列所致。
根据布拉格定律,衍射角和晶格间距之间存在一定的关系,通过测量衍射角可以确定晶格的间距,从而揭示晶体的结构。
X射线衍射的基本原理可以用来研究晶体的结构。
通过测量衍射图样的强度和位置,可以确定晶体的晶格常数、晶胞结构、原子位置等重要参数。
这些参数对于研究材料的物理性质和化学性质具有重要的意义。
例如,通过X射线衍射可以确定材料的晶体结构类型,揭示材料的晶体缺陷和畸变,研究材料的晶体生长机制等。
除了用于研究晶体结构外,X射线衍射还可以用于分析材料的成分。
由于不同原子的散射能力不同,因此不同元素所形成的晶体在X射线衍射图样中会表现出不同的特征。
通过分析衍射图样的特征峰,可以确定材料中的元素成分,从而实现对材料成分的分析和表征。
总之,X射线衍射的基本原理是利用X射线与晶体相互作用的规律,通过测量衍射图样来揭示晶体的结构和性质。
它是一种非常重要的材料表征方法,对于材料科学和固体物理学领域具有重要的意义。
通过X射线衍射的研究,可以深入了解材料的晶体结构和成分,为材料设计和制备提供重要的参考和指导。
X射线衍射的基本原理
X射线衍射的基本原理
X射线由高能电子束轰击金属靶产生,通过一个几何配置合适的装置,在样品上产生干涉,再通过检测器测量出样品的衍射图样。
这些衍射数据
可以通过逆向算法来重建晶体结构。
X射线与晶体的相互作用可以分为两个方面:电子的散射和光的吸收。
X射线衍射的实质是由于X射线与晶体中的电子相互作用而引起的波动现象。
具体来说,X射线通过晶体时,一部分X射线会被晶体中的原子核和
电子所散射,这就是散射现象。
当入射X射线的波长与晶体的晶格常数相
当或者接近时,这些散射波的相长干涉效应就会导致衍射。
在进行X射线衍射实验时,通常使用单晶或多晶样品。
对于单晶样品,其晶格排列非常规则,因此可以在特定的衍射角度下观察到清晰的衍射斑点。
多晶样品则由许多晶粒组成,由于晶粒的排列并不规则,因此观察到
的衍射斑点会呈现出连续的圆环状分布。
通过测量衍射斑点的位置和强度,可以确定晶体中的原子排列和间距。
这是因为每个晶体平面的散射干涉波的波程差会决定衍射斑的位置,而每
个晶体平面上的原子分布会决定衍射斑的强度。
因此,通过解析衍射图样,可以得到晶体的结构信息。
总之,X射线衍射是一种重要的材料表征技术,它基于X射线与晶体
的相互作用来研究晶体结构和材料的晶体学性质。
通过测量衍射斑点的位
置和强度,可以获得样品的晶体结构信息,进而深入了解材料的物理和化
学性质。
x射线衍射仪的原理
x射线衍射仪的原理
x射线衍射仪是一种用于观察物质内部结构的重要仪器,其原理基于x射线的衍射现象。
具体原理如下:
1. 产生x射线:在x射线衍射仪中,通常使用x射线管来产生x射线。
x射线管中有一个阴极和一个阳极,当阴极受到高电压激发时,会释放出高能电子。
这些电子在阳极上的金属靶上产生碰撞,从而产生x射线。
2. 准直:产生的x射线是一个由许多不同波长的电磁波构成的连续光谱。
为了让x射线能够射向样品并形成衍射图样,需要使用准直器来滤除非衍射光线,只保留所需的波长。
3. 衍射:经过准直后的x射线会照射到样品上。
样品中的原子和晶体结构会对x射线进行散射,这种散射就是衍射。
根据布拉格公式,衍射角与晶格间距和入射角度有关。
4. 探测器:x射线衍射仪上通常装有一种特殊的探测器,如闪烁屏幕或固态探测器。
这些探测器可以测量入射x射线和散射x射线之间的角度差,从而确定晶格间距。
5. 分析和解释:通过记录散射角和强度的数据,可以通过数学算法来解析和解释衍射图样。
根据不同晶体结构和晶格参数的特征,可以确定和确认样品的内部结构。
总结起来,x射线衍射仪的原理是利用x射线的衍射现象来观察并分析物质的内部结构。
通过产生x射线、准直、衍射、探
测和分析等步骤,可以获得有关样品晶格参数和晶体结构的重要信息。
x射线衍射法基本原理
x射线衍射法基本原理X射线衍射法是一种常用的材料结构研究方法,它通过分析X射线在晶体上的散射模式,来确定晶体的结构和性质。
这种方法的基本原理是利用X射线的波动性和晶体的周期性结构之间的相互作用,从而产生衍射现象。
X射线是一种高能电磁波,具有较短的波长和较高的穿透能力。
当X射线照射到晶体上时,它们会与晶体中的原子相互作用,造成X 射线的散射。
根据散射的特点,可以推断出晶体中原子的排列方式和间距。
这样,通过分析X射线的衍射图样,就可以得到晶体的结构信息。
X射线衍射实验通常使用的装置是X射线衍射仪。
它由X射线源、样品台和衍射仪组成。
X射线源产生高能的X射线,经过准直器和滤波器后,射向样品台上的晶体。
样品台可以旋转,使得晶体可以在不同的角度下接受X射线的照射。
当X射线照射到晶体上时,会发生散射,形成衍射波。
衍射波经过衍射仪的光学系统后,最终形成衍射图样。
X射线的衍射图样是由许多亮暗相间的圆环或线条组成的。
这些衍射图样的形状和位置与晶体的结构有关。
根据布拉格方程,可以计算出不同晶面的衍射角,并通过测量衍射角的数值,推断出晶体的晶格常数和晶面的间距。
同时,根据衍射图样的强度分布,还可以得到晶体中原子的位置和排列方式。
X射线衍射法在材料科学、固体物理、化学等领域中具有广泛的应用。
它可以用来研究各种晶体材料的结构和性质,例如金属、陶瓷、聚合物等。
通过X射线衍射法,可以确定晶体的晶格常数、晶胞结构、晶面间距、晶体的对称性等重要参数,为材料的设计和制备提供了重要的依据。
除了研究晶体结构外,X射线衍射法还可以用于分析非晶态材料、薄膜、纳米材料等。
对于非晶态材料,由于其无长程有序结构,衍射图样呈现为连续的强度分布,通过分析衍射图样的形状和强度分布,可以推断出非晶态材料的局域有序性。
对于薄膜和纳米材料,由于其尺寸较小,可以通过调节X射线的入射角度和波长,来研究其表面形貌和结构特征。
X射线衍射法是一种非常重要的材料结构研究方法,它通过分析X 射线的衍射图样,可以确定晶体的结构和性质。
第三章X射线衍射原理
一、布拉格定律 1. 布拉格方程的导出:
根据图示,干涉加强的条件:
2dSin n
式中:n为整数,称为反射级数; 为入射线或反射线与反射面的夹 角,称为掠射角或布拉格角,由 于它等于入射线与衍射线夹角的 一半,故又称为半衍射角,把2 称为衍射角。
一方面是衍射线在空间的分布规律,(称之为衍射几 何),衍射线的分布规律是晶胞的大小、形状和位向决 定.另一方面是衍射线束的强度,衍射线的强度则取决于 原子的种类和它们在晶胞中的位置。
X射线衍射理论所要解决的中心问题: 在衍射现 象与晶体结构之间建立起定性和定量的关系。
3.1 x射线衍射的几何原理
s - s0
g HKL
在设计实验方法时,一定要保证反射面有充分的机会 与倒易结点相交,只有这样才能产生衍射现象。 目前的实验方法有: 转动晶体法 劳埃法 多晶体衍射法 参见教材231页
三、X射线仪的基本组成
1.X射线发生器; 2.衍射测角仪; 3.辐射探测器; 4.测量电路; 5.控制操作和运行软件的电子计算机系统。
如图3-1,设晶胞中有两个阵点O、A,取O为坐标原点, A点的位置矢量r=xa+yb+zc,即空间坐标为(x,y,z), S0和S分别为入射线和散射线的单位矢量,散射波之间 的光程差为:
ON - MA r S - r S0 r(S - S0 )
……(3-1)
其位相差为:
0,2,2 2,0,2 2,2,0 0,11,,03,3
0,3,1,3,0 3,03,1,0
55
(完整版)X射线衍射的基本原理
三.X 射线衍射的基本原理3.1 Bragg 公式晶体的空间点阵可划分为一族平行而等间距的平面点阵,两相邻点阵平面的间距为d hkl 。
晶体的外形中每个晶面都和一族平面点阵平行。
当X 射线照射到晶体上时,每个平面点阵都对X 射线射产生散射。
取晶体中任一相邻晶面P 1和P 2,如图3.1所示。
两晶面的间距为d ,当入射X 射线照射到此晶面上时,入射角为θ,散射X 射线的散射角也同样是θ。
这两个晶面产生的光程差是:θsin 2d OB AO =+=∆ 3.1当光程差为波长λ 的整数倍时,散射的X 射线将相互加强,即衍射:λθn d hkl =sin 2 3.2上式就是著名的Bragg 公式。
也就是说,X 射线照射到晶体上,当满足Bragg 公式就产生衍射。
式中:n 为任意正整数,称为衍射级数。
入射X 射线的延长线与衍射X 射线的夹角为2θ(衍射角)。
为此,在X 射线衍射的谱图上,横坐标都用2θ 表示。
图3.1 晶体对X 射线的衍射由Bragg 公式表明:d hkl 与θ 成反比关系,晶面间距越大,衍射角越小。
晶面间距的变化直接反映了晶胞的尺寸和形状。
每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小等。
晶体的衍射峰的数目、位置和强度,如同人的指纹一样,是每种物质的特征。
尽管物质的种类有成千上万,但几乎没有两种衍射谱图完全相同的物质,由此可以对物质进行物相的定性分析。
3.2 物相分析物相的定义是物质存在的状态,如同素异构体SiO2、TiO2分别有22种和5种晶体结构。
除了单质元素构成的物质如铜、银等以外,X射线衍射分析的是物相(或化合物),而不是元素成分。
对于未知试样,为了了解和确定哪些物相时,需要定性的物相分析。
正如前述,晶体粉末衍射谱图,如人的指纹一样,有它本身晶体结构特征所决定。
因而,国际上有一个组织——粉末衍射标准联合会(JCPDS)后改名为JCPDS-衍射数据国际中心专门负责收集、校订、编辑和发行粉末衍射卡片(PDF)的工作。
x射线 衍射原理
x射线衍射原理
X射线衍射原理,简称XRD(X-ray diffraction),是利用物
质对X射线的衍射现象来研究物质结构和性质的一种实验方法。
X射线是一种电磁波,在物质中传播时会受到物质的排列方式和晶胞结构的影响,发生衍射现象。
由于晶体具有高度有序的排列,因此在晶体中衍射现象尤为明显。
X射线衍射原理主要包括布拉格定律和费尔南多原理。
布拉格定律是描述X射线衍射的基本定律,它是由马克斯·冯·拉格(Max von Laue)和布拉格父子共同提出的。
根据布拉格定律,衍射峰的出现是由于X射线与晶体中的晶面发生干涉所导致的。
布拉格定律的数学表达式为:
nλ = 2d sinθ
其中,n为衍射阶数,λ为X射线的波长,d为晶面间距,θ为衍射角。
费尔南多原理则描述了X射线在晶体中的衍射方式。
根据费
尔南多原理,晶体中的每个晶面都可以看作是由一系列原子或离子组成的平行于该晶面的晶胞构成。
当入射X射线照射到
晶胞上时,不同晶胞上的X射线波将起到干涉作用,形成衍
射峰。
通过X射线衍射实验,可以得到一些重要的信息,如晶体的
晶格常数、晶胞形状和大小、晶胞中原子的排列方式等。
这些信息对于理解物质的结构和性质具有重要意义。
X射线衍射方
法已被广泛应用于材料科学、物理学、化学、地质学等领域,成为了研究物质微观结构的重要手段。
X射线的衍射原理
研究方向
生物医学应用
01
探索X射线衍射在生物医学领域的应用,如医学影像、药物研发
和疾病诊断等。
多学科交叉研究
02
结合物理学、化学、生物学等多学科,开展跨学科的衍射研究,
开拓新的研究领域。
理论和实验相结合
03
加强理论计算和实验验证的结合,提高对衍射现象的理解和预
测能力。
对社会的意义
促进科技进步
X射线衍射技术的发展将推动相关领域的技术进步, 促进科技创新。
x射线的衍射原理
目录
• 引言 • x射线衍射的基本原理 • x射线衍射的应用 • x射线衍射实验技术 • x射线衍射的未来发展
01
引言
定义与特性
定义
X射线衍射是X射线在晶体中发生折射、 反射、干涉等现象的总称,是X射线 在晶体中传播的一种方式。
特性
X射线衍射具有方向性和周期性,能 够揭示晶体中原子的排列方式和晶体 结构。
02
在航空航天、汽车制造、建筑材 料和电子设备等领域,X射线衍射 技术被广泛应用于无损检测,确 保产品的质量和安全性。
04
x射线衍射实验技术
实验设备
X射线源
探测器
用于产生X射线,通常由阴极射线管(CRT) 或激光等离子体产生。
用于接收和测量衍射后的X射线,常见的探 测器有闪烁计数器、半导体探测器和CCD 相机等。
03
x射线衍射的应用
晶体结构分析
晶体结构分析是X射线衍射技术最基本和最重要的应用领域。 通过测量衍射角,可以确定晶体中原子的排列方式和晶格结 构,从而获得晶体材料的详细结构信息。
X射线衍射技术广泛应用于矿物学、化学、生物学和材料科学 等领域,对于研究晶体材料的物理和化学性质、开发新材料 以及解决科学问题具有重要意义。
X射线衍射基本原理
– 当H、K、L中有2个奇数一个偶数或2个偶数1个奇数时, 则(H+K)、(H+L)、(K+L)中总有两项为奇数一项 为偶数,此时: F ( hkl ) 2 = f a2 (1 − 1 + 1 − 1) 2 = 0, F ( hkl ) = 0
结构消光
• 由两种以上等同点构成的点阵结构来说,一方面 要遵循点阵消光规律,另一方面,因为有附加原 子的存在,还有附加的消光,称为结构消光。 • 这些消光规律,存在于金刚石结构、密堆六方等 结构中
– 金刚石结构属于面心立方点阵,凡是H、K、L不为同性数 的反射面都不能产生衍射 – 由于金刚石型结构有附加原子存在,有另外的3种消光条件
衍射强度——结构因子F (hkl)和衍射消光规律
表述晶胞的散射能力,定义结构因子F(s)
一个晶胞的相干散射振 幅 Ec F (S ) = = 一个电子的相干散射振 幅 Ee
结构因子只与原子的种类和在原子晶胞中的位置 有关,而不受晶胞的形状和大小的影响。 物理意义:一个晶胞向由衍射矢量S规定的方向散 射的振幅等于F(S)个电子处在晶胞原点这同一方 向散射的总振幅。
2 1 1 h k l + f a2 [sin 2π ( 0 ) + sin 2π ( 1 + + )] 2 2 2
= f a2 [1 + cos π ( h + k + l )] 2 – 当H+K+L为偶数时, F ( hkl ) 2 = f a2 [1 + 1] 2 = 4 f a2 ,
X射线衍射的基本原理
三.X 射线衍射的基本原理3.1 Bragg 公式晶体的空间点阵可划分为一族平行而等间距的平面点阵,两相邻点阵平面的间距为d hkl 。
晶体的外形中每个晶面都和一族平面点阵平行。
当X 射线照射到晶体上时,每个平面点阵都对X 射线射产生散射。
取晶体中任一相邻晶面P 1和P 2,如图3.1所示。
两晶面的间距为d ,当入射X 射线照射到此晶面上时,入射角为,散射X 射线的散射角也同样是。
这两个晶面产生的光程差是:θsin 2d OB AO =+=∆ 3.1当光程差为波长 的整数倍时,散射的X 射线将相互加强,即衍射:λθn d hkl =sin 2 3.2上式就是著名的Bragg 公式。
也就是说,X 射线照射到晶体上,当满足Bragg 公式就产生衍射。
式中:n 为任意正整数,称为衍射级数。
入射X 射线的延长线与衍射X 射线的夹角为2(衍射角)。
为此,在X 射线衍射的谱图上,横坐标都用2表示。
图3.1 晶体对X 射线的衍射由Bragg 公式表明:d hkl 与 成反比关系,晶面间距越大,衍射角越小。
晶面间距的变化直接反映了晶胞的尺寸和形状。
每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小等。
晶体的衍射峰的数目、位置和强度,如同人的指纹一样,是每种物质的特征。
尽管物质的种类有成千上万,但几乎没有两种衍射谱图完全相同的物质,由此可以对物质进行物相的定性分析。
3.2 物相分析物相的定义是物质存在的状态,如同素异构体SiO2、TiO2分别有22种和5种晶体结构。
除了单质元素构成的物质如铜、银等以外,X射线衍射分析的是物相(或化合物),而不是元素成分。
对于未知试样,为了了解和确定哪些物相时,需要定性的物相分析。
正如前述,晶体粉末衍射谱图,如人的指纹一样,有它本身晶体结构特征所决定。
因而,国际上有一个组织——粉末衍射标准联合会(JCPDS)后改名为JCPDS-衍射数据国际中心专门负责收集、校订、编辑和发行粉末衍射卡片(PDF)的工作。
x射线衍射的基本原理
x射线衍射的基本原理X射线衍射是一种重要的材料表征技术,它可以用于研究晶体结构和晶体学性质。
在X射线衍射实验中,X射线通过晶体后会产生衍射现象,这种现象可以被用来确定晶体的结构,包括晶胞参数和原子排列。
本文将介绍X射线衍射的基本原理,包括X射线的衍射条件、布拉格定律以及X射线衍射图样的解析等内容。
X射线衍射的基本原理可以通过布拉格定律来描述。
布拉格定律是X射线衍射的基本原理,它描述了X射线在晶体中衍射的条件。
根据布拉格定律,当入射X射线与晶体中的晶面平行时,会出现最强的衍射峰。
这个条件可以用来确定晶体的晶胞参数和原子排列。
通过测量X射线衍射图样的特征峰,可以得到晶体的结构信息。
X射线衍射的实验通常使用X射线衍射仪来进行。
X射线衍射仪是一种专门用于测量X射线衍射图样的仪器,它由X射线源、样品台、衍射角度测量装置和X射线探测器等部件组成。
在实验中,样品台会固定待测样品,并通过调节衍射角度测量装置来测量X射线衍射图样的特征峰。
通过分析这些特征峰的位置和强度,可以得到样品的晶体结构信息。
除了布拉格定律,X射线衍射的基本原理还涉及到X射线的衍射条件。
X射线的波长通常在纳米量级,这使得X射线可以被用来研究晶体的微观结构。
另外,X射线的波长也决定了X射线在晶体中衍射的条件,只有当X射线的波长和晶格常数的比值满足布拉格定律时,才会出现衍射现象。
在X射线衍射图样的解析中,我们通常会用到X射线衍射的标准图谱。
X射线衍射的标准图谱是用来解析X射线衍射图样的重要工具,它包含了各种晶体结构的特征峰位置和强度。
通过比对实验得到的X射线衍射图样和标准图谱,可以确定样品的晶体结构。
综上所述,X射线衍射的基本原理涉及到布拉格定律、X射线的衍射条件和X射线衍射图样的解析等内容。
通过对这些内容的理解,可以更好地理解X射线衍射的原理和应用,为材料科学和晶体学的研究提供重要的实验手段。
X射线衍射技术在材料表征和结构研究中具有重要的应用价值,对于推动材料科学的发展具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.X 射线衍射的基本原理3.1 Bragg 公式晶体的空间点阵可划分为一族平行而等间距的平面点阵,两相邻点阵平面的间距为d hkl 。
晶体的外形中每个晶面都和一族平面点阵平行。
当X 射线照射到晶体上时,每个平面点阵都对X 射线射产生散射。
取晶体中任一相邻晶面P 1和P 2,如图3.1所示。
两晶面的间距为d ,当入射X 射线照射到此晶面上时,入射角为,散射X 射线的散射角也同样是。
这两个晶面产生的光程差是:θsin 2d OB AO =+=∆ 3.1当光程差为波长 的整数倍时,散射的X 射线将相互加强,即衍射:λθn d hkl =sin 2 3.2上式就是著名的Bragg 公式。
也就是说,X 射线照射到晶体上,当满足Bragg 公式就产生衍射。
式中:n 为任意正整数,称为衍射级数。
入射X 射线的延长线与衍射X 射线的夹角为2(衍射角)。
为此,在X 射线衍射的谱图上,横坐标都用2表示。
图3.1 晶体对X 射线的衍射由Bragg 公式表明:d hkl 与 成反比关系,晶面间距越大,衍射角越小。
晶面间距的变化直接反映了晶胞的尺寸和形状。
每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小等。
晶体的衍射峰的数目、位置和强度,如同人的指纹一样,是每种物质的特征。
尽管物质的种类有成千上万,但几乎没有两种衍射谱图完全相同的物质,由此可以对物质进行物相的定性分析。
3.2 物相分析物相的定义是物质存在的状态,如同素异构体SiO2、TiO2分别有22种和5种晶体结构。
除了单质元素构成的物质如铜、银等以外,X射线衍射分析的是物相(或化合物),而不是元素成分。
对于未知试样,为了了解和确定哪些物相时,需要定性的物相分析。
正如前述,晶体粉末衍射谱图,如人的指纹一样,有它本身晶体结构特征所决定。
因而,国际上有一个组织——粉末衍射标准联合会(JCPDS)后改名为JCPDS-衍射数据国际中心专门负责收集、校订、编辑和发行粉末衍射卡片(PDF)的工作。
自1941年以来,共发行衍射卡片近20万个。
为了使大量的卡片方便进行人工物相鉴定,还出版了对这些卡片进行检索的索引。
PDF卡片的标准形式如图3.2所示,对应此图编号的内容说明如表3.1所示。
图图3.2 PDF卡片的标准形式每一张卡片上不一定包括表3.1所述的所有内容,但有效数据都将一一列出。
物相分析的方法就是将未知试样与标准卡片上数据进行对比,由此来确定物相。
先测试未知试样,然后按图3.3所示的步骤从PDF索引中查找。
找出该物相的卡片号后,按卡片号查该物相的卡片,仔细核对后再判定该物相。
表3.1 PDF卡片的内容编号卡片中的内容1 卡片号。
2 1a,1b,1c是三个最强衍射峰的晶面间距;1d是该物相在衍射谱中最大晶面间距;2a,2b,2c,2d是上述三个最强衍射峰对应的相对强度,最强峰为100。
3 测试条件。
4 晶系、空间群、晶胞参数、单位晶胞内分子数等结晶学数据。
5 物理性质如密度、熔点或光学数据等。
6 化学分析值成分,试样的化学处理方法,试样来源等。
7 数据的靠性性表记(可靠性顺序是、i、c、),“c”表示此卡片数据是由计算得到的。
8 分子式和化学名称9 若是矿物,列出矿物分子式和矿物名称,若是有机物,列出结构式。
10 衍射峰的晶面间距(d)、相对强度(I/I1)和晶面指数(hkl)。
图3.3 物相分析步骤现在,已把粉末衍射卡片建立了数据库,由此可以通过计算机进行自动检索。
但是,由于试样中往往不是一个物相,而是多个物相的混合物,或者测试数据或多或少存在误差等原因,计算机会检索出许多相近的物相。
因此,最终还需人来核对衍射数据,以作最后判断。
3.3 定量物相分析化学分析或其它现代化仪器(如X射线荧光光谱仪、等离子直读光谱仪等)在定量分析方面被普遍采用。
虽然这些方法和仪器测定精度非常高,但只能进行元素分析,不能测定物相的含量,尤其对于同素异构体如金红石和锐钛矿都是TiO2,仅是晶体结构不同,更是无能为力。
这是X射线衍射定量分析所具有的、独特的优点。
物相定量分析的依据是,各物相衍射峰的积分强度随该相的含量增加而增强。
但由于试样对X射线的吸收,使这种线性关系并不恰好是直线,如图3.4所示,因此须加以修正。
对于未知试样,其中的物相必须都是晶体。
首先进行物相的定性分析,确定此试样中,有哪些物相组成。
如果其中某个物相是非晶或确定不了,此物相的定量分析就毫无意义。
对于已知物相的混合物,可以先测定一系列已知不同配比混合物的衍射谱图,作图3.4那样的相对强度与重量分数的定标曲线。
然后测定未知含量的混合物,从相对强度即可从定标曲线中得到重量分数。
图3.4相对强度与重量分数的曲线X射线衍射定量物相分析有很多种方法,在此不详细描述,请参阅有关专著。
目前,在X射线衍射定量物相分析方面用得较多的是Rietveld方法,此方法是用晶体的理论曲线与实验曲线通过计算机进行全谱拟合,由此得出物相的含量。
关键是要有Rietveld方法的软件和相应的晶体学数据库。
在此需说明的是:(1)X 射线衍射定量物相分析不能进行微量分析,有些物相由于结晶不完善,即使含有百分之几,在衍射谱图还是不能反映出来;(2)再好的物相分析方法,其结果总有2%左右的误差。
3.4 晶粒尺寸(晶粒度)的测定原理是,当晶粒尺寸等于或小于10-5cm 时,某一晶粒的晶面参与衍射的数目将显著减少(可能少于100~200个)。
当入射角与某一晶面有正或负的微小偏差时,还存在一定的衍射强度,从而引起衍射峰的宽化。
计算晶粒尺寸的公式:θβλcos ⋅⋅=K D hkl 3.3式中:hkl D 为晶粒尺寸(Å);K 为常数;λ为X 射线波长;β为半高峰宽(弧度); 为衍射角的一半,取半高峰宽中心对应的角度,如图3.5(b )所示。
计算时,应取某一单独并最强的衍射峰,在此峰的下面划出背景散射线(或称背底线)。
衍射峰有如图3.5所示的两种情况:一种背底线是平直的,如图3.5(a )所示;另一种背底线是倾斜的,对于这种情况,取半高峰宽必须与背底线平行,如图3.5(b )所示,然后换算为弧度,代入以上公式计算。
如果需计算的衍射峰很窄,可以将此峰放大,如图3.5所示那样,这样量出的半高峰宽较为精确。
(a ) (b )图3.5 半高峰宽对于一组试样,必须取同一位置的衍射峰进行计算,否则无相对比较的意义。
在此必须说明的是,实验获得的衍射峰还包含仪器引起的宽化,如X 射线光束的宽度,走纸速度等。
在相同测试条件下,先用标准试样(如单晶)测定仪器宽化的数值,然后在待测试样的数据处理中予以扣除。
但问题是,对于绝大部分的试样都无标准试样。
因此,这一步骤都未能进行。
但得到的结果并不影响晶粒尺寸的相对比较。
3.5 结晶度的测定结晶度的定义是结晶部分在试样中所占的分数。
对于同一种物质,结晶和非晶共存时,不管结晶或非晶的数量比多少,X 射线的总散射强度是一常数。
或者说,其完全非晶的散射峰积分强度与完全结晶的衍射峰积分强度是相等的。
计算结晶度的公式:%100⨯+=∑∑∑acc II I x 3.4式中:∑cI为结晶部分的衍射强度;∑aI为非晶部分的散射强度;分析步骤:1.划出背景散射线,此线以下为背景散射,如图3.6所示; 2.分峰;3.确定非晶峰,即非晶部分的散射强度∑aI。
一般非晶峰在20附近,并且很宽,如鼓包;4.一旦非晶峰被确定后,一般其余的峰应均为结晶部分的衍射峰,即∑cI;5.计算机自动拟合,并且计算出结晶度。
由于聚合物不同,非晶峰的位置和强弱也有差异。
经常遇到的情况是,非晶峰的位置和强弱难以准确确定,因此使结晶度的数值误差很大。
另外,测试的角度范围不同,也会引起结晶度的数值误差。
所以,得到的结晶度只能作相对比较。
注意:如试样中添加无机物,此无机物的峰应扣除,不能计入衍射峰的积分强度中。
图3.6结晶度的分析和计算3.6取向度的测定试样中的晶粒在外力等作用下,朝某一方向作有序排列,这种现象称为择优取向或织构。
如测试纤维试样,须疏理整齐,如图3.7那样夹在试样架中。
然后放入纤维附件中,如图3.8所示。
试样垂直于入射X射线的方向称作方位角(),如图3.9所示。
在传动电动机的带动下,试样架沿方位角作360匀速转动。
(a)(b)图3.7 纤维试样安装方式和试样架图3.8 纤维附件图3.9方位角的定义测试取向度必须用点光束,并且必须采用透射测试。
对于图3.10说明如下:1.图3.10(a)和(b)上面为照相(两维)图像。
下面为探测器记录的谱图(一维)。
照片上呈现的衍射环对应于谱图中的衍射峰。
2.如试样没有取向时,应产生均匀的衍射环。
试样在方位角0或90探测器记录的谱图是完全相同的,见图3.10(a);3.当试样存在取向时,衍射环变成弧状,见图3.10(b)。
此时,弧可能出现在赤道线上,也可能出现在子午线上,还有可能出现在子午线与赤道线之间。
但不管何种情况,凡取向的试样,在方位角0或90的谱图是有所差异的;4.从方位角0或90的谱图相同与否,来确定试样是否存在取向。
图3.10方位角0和90的照相图像与谱图的对应关系测试步骤是:1.测试纤维轴平行于子午线的谱图,即方位角为0;2.测试纤维轴平行于赤道线的谱图,即方位角为90;3.将探测器固定在某一衍射峰(2)的位置上(见图3.9),试样作360旋转,测试的谱图如图3.11所示。
4.计算机程序对谱图平滑,确定背景散射线,然后按下式计算取向度:360360∑-=iH y 3.5式中:i H 为第i 峰的半高峰宽。
由上式表明,峰(对应照片中的衍射弧)越窄,取向度越高。
图3.11 测试取向度的谱图3.7 相变的测定相变的定义是物相随温度的变化。
在衍射仪上安装高温或低温试样台,可以测试相变过程,还可以测试两种以上物质混合物随温度的化学反应和化合物的分解反应。
我校的X 射线衍射仪只有高温试样台,从室温至1500℃。
在测试相变前,最好用差示扫描量热仪(DSC )等先对试样进行测试,了解该试样随温度变化的情况,以便确定和提供给X 射线衍射仪测试相变的温度点。
X 射线衍射仪的高温试样台可按某个升温速率连续升温,到达某一测试的温度点时,能够自动保温,使试样保持此温度,直至测完此衍射谱图。
也就是说,在连续升温的情况下,每间隔一定温度测试一张谱图。
3.8 指标化所谓指标化就是对各个衍射峰确定晶面指数。
一旦晶面指数被确定后,也就得到该物相的晶胞参数和点阵类型,这是一项很有意义的工作。
关于指标化,有以下几种情况:1.查找标准的粉末衍射卡片(PDF ),因卡片中都已列出晶胞参数和晶面指数等(见图3.2)。
对于这种情况,既快捷而又准确;2.如果查不到PDF ,就从此物质的有关文献中查找。
一般来说,我们的科研都是在前人的基础上进行的,文献中都有描述;3.如果已知点阵类型或晶胞参数,可以用“晶体学基础知识”中1.2~1.8式的某一点阵类型的公式计算,进行指标化;4.如果未知试样既无PDF,文献中也无记载。