4 牛顿第二定律的应用――连接体问题

合集下载

牛二定律应用——连接体专题

牛二定律应用——连接体专题

牛顿第二定律——连接体问题(整体法与隔离法)命题:熊亮一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同 整体法问题不涉及物体间的内力使用原则系统各物体运动状态不同隔离法问题涉及物体间的内力三、连接体题型:1、连接体整体运动状态相同:(这类问题可以采用整体法求解)【例1】A、B两物体靠在一起,放在光滑水平面上,它们的质量分别为,,今用水平力推A,用水平力拉B,A、B间的作用力有多大?【练1】如图所示,质量为M的斜面A置于粗糙水平地面上,动摩擦因数为,物体B与斜面间无摩擦。

在水平向左的推力F作用下,A与B一起做匀加速直线运动,两者无相对滑动。

已知斜面的倾角为,物体B的质量为m,则它们的加速度a及推力F的大小为多少【练2】如图所示,质量为的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为的物体,与物体1相连接的绳与竖直方向成角,则( )A. 车厢的加速度为B. 绳对物体1的拉力为C. 底板对物体2的支持力为D. 物体2所受底板的摩擦力为2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)【例2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套有一个环,箱和杆的总质量为M,环的质量为m。

已知环沿着杆向下加速运动,当加速度大小为a时(a<g),则箱对地面的压力为多大?【练3】如图所示,一只质量为m的小猴抓住用绳吊在天花板上的一根质量为M的竖直杆。

当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。

则杆下降的加速度为大?【练4】如图所示,在托盘测力计的托盘内固定一个倾角为30°的光滑斜面,现将一个重4 N的物体放在斜面上,让它自由滑下,那么测力计因4 N物体的存在,而增加的读数是()A.4 NB.2 NC.0 ND.3 N【练5】如图所示,A、B的质量分别为m A=0.2kg,m B=0.4kg,盘C的质量m C=0.6kg,现悬挂于天花板O处,处于静止状态。

牛顿第二定律的应用――连接体问题

牛顿第二定律的应用――连接体问题

专题: 牛顿第二定律的应用――― 连接体【知识讲解】一、连接体与隔离体(系统与质点)两个或两个以上物体,靠绳或接触面或电磁作用相互联系组成的物体系统,称为连接体(系统,多质点)。

如果把其中某个物体隔离出来,该物体即为隔离体(单质点)。

二、外力和内力如果以物体系为研究对象,受到系统之外的物体施加的作用力,这些力是系统受到的外 力,而系统内各物体间的相互作用力为内力。

应用牛顿第二定律列方程求合力时不考虑内力。

如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。

三、连接体问题的分析方法1.整体法:整体法是物理中常用的一种思维方法。

它是将几个物体看作一个整体来作为研究对象即系统,这样就暂时回避了这些物体间的相互作用的内力,只考虑整体受到的外力,整体法列出的方程数目较少,解题变的简明快捷。

(1)连接体中的各物体如果加速度相同,求解时可以把连接体作为一个整体。

运用F 合=(m 1+m 2+m 3…..)a 列方程求解;题目只涉及内外力关系不需要求加速度时,也可以用牛顿定律在加速度相同情况下的推论:总合合合m m m 2211F F F ==(动力分配原理,即系统内各部分的合力与其质量成正比)。

(2)连接体中的各物体如果加速度不同,若系统内有几个物体,这几个物体的质量分别为m 1,m 2,m 3………m n ,,加速度分别为a 1,a 2,a 3......a n ,这个系统受到的合外力为F 合外,则对这个系统应用牛顿第二定律的表达式为1122n nF m a m a m a =++⋅⋅⋅+合外其正交分解表示式为11221122x x n nxy y n nyy F m a m a m a F m a m a m a=++⋅⋅⋅+=++⋅⋅⋅+x 外外(3)当系统内各个物体加速度均为零时,有的静止有的匀速运动,整个系统处于平衡状态,此时可用F 合外=0进行求解。

或者:0F 0F y x ==外外,联立求解。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用――― 连接体问题整体法和隔离法,临界问题学习要求:会解决两个物体具有相同加速度的动力学问题求解连接体问题时,只限于各物体加速度相同的情形一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法三、连接体题型:1【例1】A 、B ,今用水平力推【练1】如图所示,质量为M 的斜面面间无摩擦。

在水平向左的推力F 已知斜面的倾角为,物体B A. B. C. D.【练2】如图所示,质量为的物体连接的绳与竖直方向成角,则( A. 车厢的加速度为B. B. 绳对物体1的拉力为C. C. 底板对物体2的支持力为D. D. 物体2所受底板的摩擦力为 kg m B 6=N F A 6=θ()(,sin μθ+==g m M F g a θ)(,cos g m M F g a +==()(,tan μθ+==g m M F g a g m M F g a )(,cot +==μθ2m θθsin g θcos 1gm g m m )(12-θtan 2g m2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)不作要求同步练习P123 124 页3、临界问题 例2、作业本P66页例3、质量为0.2kg 的小球用细线吊在倾角为θ=060的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图4-70所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g =10 2/s m )(1) 斜面体以232/s m 的加速度向右加速运动;(2) 斜面体以432/s m ,的加速度向右加速运动;例4、如图所示,箱子的质量M =3.0 kg ,与水平地面间的动摩擦因数为μ=0.22。

在箱子底板上放一质量为ml =2 kg 的长方体铁块;在箱子顶板处系一细线,悬挂一个质量m2=2.0 kg的小球,箱子受到水平恒力F 的作用,稳定时悬线偏离竖直方向θ=030角,且此时铁块刚好相对箱子静止。

高中物理连接体问题

高中物理连接体问题

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力使用原则系统各物体运动状态不同隔离法问题涉及物体间的内力三、连接体题型:1、连接体整体运动状态相同:(这类问题可以采用整体法求解)【例 1】A、B 两物体靠在一起,放在光滑水平面上,它们的质量分别为m A3kg , m B 6kg,今用水平力FA6N推A,用水平力FB3N拉 B, A、 B 间的作用力有多大?FA F BA B【练 1】如图所示,质量为M的斜面 A 置于粗糙水平地面上,动摩擦因数为,物体B与斜面间无摩擦。

在水平向左的推力 F 作用下, A 与 B 一起做匀加速直线运动,两者无相对滑动。

已知斜面的倾角为,物体 B 的质量为 m,则它们的加速度 a 及推力 F 的大小为()A.a g sin, F(M m)g (sin)B.a g cos, F(M m) g cos B FC.a g tan, F(M m) g(tan)θAD.a g cot, F(M m)g【练 2】如图所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1 的物体,与物体 1 相连接的绳与竖直方向成角,则()A. 车厢的加速度为g sinm1 gB. 绳对物体 1 的拉力为cosC.底板对物体 2 的支持力为( m2m1) gD.物体2所受底板的摩擦力为m2g tan2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)【例 2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套有一个环,箱和杆的总质量为M,环的质量为 m。

已知环沿着杆向下加速运动,当加速度大小为 a 时( a< g),则箱对地面的压力为()A. Mg + mgB. Mg— maC. Mg + maD. Mg + mg– ma【练 3】如图所示,一只质量为m的小猴抓住用绳吊在天花板上的一根质量为M的竖直杆。

高中物理牛顿运动定律的应用_牛顿运动定律的应用之连接体问题

高中物理牛顿运动定律的应用_牛顿运动定律的应用之连接体问题

牛顿运动定律的应用-牛顿运动定律的应用之连接体问题一、连接体概述两个或两个以上物体相互连接参与运动的系统称为连接体。

如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起。

如下图所示:还有各种不同形式的连接体的模型图,不一一描述。

只以常见的模型为例。

连接体一般具有相同的运动情况(速度、加速度)。

二、连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。

1. 接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。

2. 绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;3. 弹簧连接:两个物体通过弹簧的作用连接在一起;三、连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。

轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。

四、处理连接体问题的基本方法1. 内力和外力(1)系统:相互作用的物体称为系统。

系统由两个或两个以上的物体组成。

(2)系统内部物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。

2. 整体法(1)含义:所谓整体法就是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析研究的方法。

(2)理解:牛顿第二定律F=ma,F是指研究对象所受的合外力,将连接体作为整体看待,简化了受力情况,因为连接体间的相互作用力是内力.如图所示,用水平力F拉A使A、B保持相对静止沿粗糙水平面加速滑动时,若求它们的加速度,便可把它们看做一个整体,这样它们之间相互作用的静摩擦力便不需考虑。

题目不涉及连接体的内力问题时,应优先选用整体法(3)运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3. 隔离法(1)含义:所谓隔离法就是将所研究的对象--包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法。

高考热点:牛顿第二定律

高考热点:牛顿第二定律

高考热点:牛顿第二定律的典型应用——连接体问题、超重与失重牛顿第二定律的地位不用多说了,一定是高考必考内容,可能出现在一道选择题或第一道计算题中. 那么,会以何种方式来考查牛顿第二定律的应用呢?最大的可能一定是连接体问题和超重失重现象!所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系. 实际上在物体的平衡问题中我们已经遇到了不少,只是平衡问题中的物体是没有加速度的,而在“连接体”问题中,有的物体具有加速度,所以求解的时候必须用到牛顿第二定律. 可见,牛顿第二定律是用来解决“非平衡问题”的!而处理“非平衡问题”的程序与解决平衡问题时的程序并无太大的区别:确定研究对象→受力分析(整体或隔离,或整体隔离结合使用)→力的合成或分解(常用正交分解法)→列方程求解(平衡问题列平衡方程,“非平衡问题”列动力学方程,即牛顿第二定律方程)先整体分析加速度,后隔离分析各物体之间的相互作用力是解决连接体问题的最常用思维模式,你掌握了吗?千万要记住:整体法只能分析“整体”外面其它物体对“整体”的作用力,不能分析“整体”内部各物体间的相互作用力;如果要分析“整体”内部的相互作用力,一定要用隔离法!强调这一点,只是想告诉大家,任何情况下,一定要明确研究对象!这是进行正确受力分析的根本!!读完高中,即使不高考,也要知道什么是超重,什么是失重. 要能够辨别和运用牛顿第二定律解释超重和失重现象.这可以说是一个中学生应该具备的基本能力!所以,这是一个在备考中绝对不能忽略的问题!★1.超重、失重现象(1)超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象.2.关于超重和失重的理解(1)当物体处于超重和失重状态时,物体所受的重力并没有变化.(2)物体处于超重还是失重状态,不在于物体向上运动还是向下运动,而是取决于加速度方向是向上还是向下.★①超重时物体的加速度方向竖直向上,但是物体不一定是竖直向上做加速运动,也可以是竖直向下做减速运动;②失重时物体的加速度方向竖直向下,但是物体既可以是向下做加速运动,也可以是向上做减速运动;③尽管物体不在竖直方向上运动,只要其加速度在竖直方向上有分量,即0≠y a ,则当y a 方向竖直向上时,物体处于超重状态,当y a 方向竖直向下时,物体处于失重状态.(3)当物体处于完全失重状态时,重力只产生使物体具有a =g 的加速度效果,不再产生其它效果.(4)处于超重和失重状态下的液体的浮力公式分别为)a g V F +(=排浮ρ和)a g V F -(=排浮ρ,处于完全失重状态下的液体F 浮=0即液体对浸在液体中的物体不再产生浮力.例题1解析:⑴当绳子突然断开,猫保持其相对斜面的位置不变,即相对地面位置不变,猫可视为静止状态,木板沿斜面下滑,取猫和木板整体为研究对象,如图3—31进行受力分析,由牛顿第二定律得3mgsin α=2ma ,a =23gsin α,所以C 选项正确.此解法运用了牛顿第二定律在整体法中的表达形式:当系统内各物体加速度不同时,可以整体分析系统的合外力(不能分析系统内力,即系统内部各物体之间的相互作用力),隔离分析系统内各物体的加速度,然后按照上面牛顿第二定律的表达式列方程求解!这是一个解决动力学问题的绝妙方法,好好的体会和掌握它吧!⑵此题也可以用常规方法求解,分别隔离猫和板进行受力分析,如图所示,猫相对于地面位置不变,其加速度为0,所以猫的合外力为0,有:f =mgsin α,N =mgcos α;板沿斜面向下滑动,由牛顿第二定律,有f ′+2mgsin α=2ma, 又f ′=f =mgsin α,所以a =23gsin α例题2解析:将人与吊板整体考虑,受力分析如图所示,据牛顿第二定律:2T-(m 人+m 板)g =(m 人+m 板)a,代人数据得a=1.0 m /s 2,选项C 、D 被排除.用隔离法研究人向上运动,设吊板对人的支持力为N ,则T +N - m 人g =m 人a,得N =330N ;据牛顿第三定律,人对吊板的压力N ′=N =330N ,选项B 正确.领悟:这是“先整体后隔离”思维模式的典型例子,整体分析的时候不考虑人和板之间的相互作用力,根据轻绳模型的特点:绳内张力处处相等,可知两段绳索对“整体”的拉力相等;求人对板的压力时,必须用隔离法“隔离”人或“隔离”板进行分析.例题3解析:此题是瞬间加速度的计算问题,关键是做好在这个“瞬间”研究对象受力情况的分析,然后运用牛顿第二定律列式求解.分别隔离小球和框架进行受力分析,如图所示,此“瞬间”框架对地面的压力为0,根据牛顿第三定律,地面对框架的支持力为0,故框架除了受到重力外,还应该受到弹簧提供的支持力!于是弹簧对小球的弹力应该是竖直向下的,如图所示,根据物体的平衡条件和牛顿第二定律,有N=Mg,N′+mg=ma,所以a=(M+m)g/m.领悟:受力分析的成败就是解决动力学问题的成败,所以受力分析一定要过关,要能够在任何情况下(“情况”指:静止或匀速,匀变速直线运动,匀速圆周运动,简谐运动等运动状态,即研究对象总是处于我们熟悉的运动模型中,于是掌握各种运动模型中物体受力特点是做好受力分析的必要条件!例如:匀速圆周运动需要向心力,简谐运动需要回复力.)把一个物体(即研究对象)的受力情况分析清楚!例题4解析:.容器抛出后,容器及其中的水均做加速度为g的匀变速运动,容器中的水处于失重状态,水对容器的压强为零,无论如何抛出,水都不会流出.故D项正确.领悟:本题考查对超重失重现象的理解,关键在于判断物体在竖直方向上是否具有加速度,然后根据“同失反超”确定失重还是超重!无论以何种方式抛出,容器和水抛出后都只受到重力的作用,都有竖直向下的加速度,都处于完全失重状态.超重、失重现象的解释,实际上就是牛顿第二定律的应用!关键:做好受力分析!解析:依题意,当重物的重力等于弹簧的弹力时,电压表的示数为零,飞船加速运动的过程中,重物也随之加速,则重物的和外力不为零,即当重物合外力不为零时,电压表有示数!飞船在竖直加速升空的过程中,弹簧上的重物与飞船有同样的加速度,对重物受力分析,如图所示,由牛顿第二定律,有:N-mg=ma,a竖直向上;若飞船在竖直方向上减速返回地面,则飞船的加速度方向仍是竖直向上的,故A选项的说法正确!当飞船在轨道上运动的时候,飞船处于完全失重状态,则弹簧对重物的弹力为零,地球对重物的万有引力产生一个使重物与飞船一起作圆周运动的向心加速度,当取重物受到的万有引力近似等于重物≈g.,的重力时(当忽略地球的自转时,可以认为地球表面附近物体的重力与万有引力近似相等),a向故D选项正确.。

牛顿第二定律的应用(连接体问题)

牛顿第二定律的应用(连接体问题)

牛顿第二定律的应用(连接体问题)
对于两个或多个相互连接的物体组成的物体系,若它们具有共同大小的加速度,则求出加速度往往是解决这类问题的关键。

既可以对单个物体使用隔离法运用牛顿第二定律求出加速度,也可以对整体运用牛顿第二定律求出加速度。

【例1】 光滑水平地面上有A 、B 两个滑
块,之间用细线相连,A 质量为2Kg ,B
质量为3Kg ,现用F=20N 的水平拉力拉
A ,求:
(1)A 、B 间细绳的张力。

(2)若把F 改为向左方向拉B ,A 、B 间细绳的张力又为多少?
【例2】 如图,质量为M 的光滑楔形小车在水平恒力F 的作用下向右做匀加速运动,斜面上相对静止一
质量为m 的光滑小球,倾斜角为θ,求F 的
大小
【例3】 质量为m 的重物通过细线与
质量为M 的小车连接,
求:
(1)小车加速度
(2)细线中的拉力
1
、光滑水平地面上有A 、B 两个滑块紧靠在一起,A 质量为3Kg ,B 质量为5Kg ,先用水平力F 向右
推B ,F 再改为向左推A ,求两种情况下A B 间的弹力大小之比。

2、如图,光滑水平地面上质量为M=5Kg 的小车在水平恒力F 的作用下向右匀加速运动,桅杆上用细线悬挂着质量为m=2Kg 的小球,细线与竖直方向的夹角为θ=370,求:
(1)细线拉力的大小。

(2)F 的大小
3、如图,物块A 、B 质量分别为3Kg 和2Kg ,不计摩擦,求:
(1)两物块加速度的大小
(2)绳中张力的大小。

4.7《牛顿第二定律应用:连接体问题》

4.7《牛顿第二定律应用:连接体问题》
平恒力F 向右拉木块B, 当两木块一起向右做匀加速直线运动时(
A. 两木块的加速度a 的大小为
B. 弹簧的形变量为

3

3
C. 两木块之间弹簧的弹力的大小为F
D.A 、B 两木块之间的距离为 0 +


AB

【作业2】(多选)如图所示, 5 块质量相同的木块并排放在水平地面上,它们
与地面间的动摩擦因数均相同, 当用力F 推第1 块木块使它们共同加速运动时,
【变式4】如图所示,质量分别为 mA、mB 的 A、B用弹簧相连 ,在恒
力 F 作用下 A B一起竖直向上 匀加速运动,求 A B 间的作用力。
【变式5】(多选)若将A、B 两物块用轻绳连接放在倾角为θ 的固定斜面上,用平
行于斜面向上的恒力F 拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因
A.a1<a2
B.a1=a2
C.a1>a2
D.无法判断
【练习5】如图所示,在光滑的水平桌面上有一物体A,通过绳子与物体B相连,假设
绳子的质量以及绳子与定滑轮之间的摩擦力都可以忽略不计,绳子不可伸长.如果mB
=3mA,则绳子对物体A的拉力大小为( B )
A.mBg
C.3mAg
B.3mAg/4
D.3mBg /4
上的恒力F拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ,为
了增大AB间的作用力,可行的办法是(
)
AB
A. 增大A物块的质量
B. 减小B物块的质量
C. 增大倾角θ
D. 增大动摩擦因数μ
不管是光滑还是粗糙的水面、不管是水平面还是斜面、也不管是竖
直拉着连接体运动,只要推力F、MA、MB、µ(相同)一定,且A、

物理人教版高中必修1§4.4 牛顿第二定律的应用――― 连接体问题

物理人教版高中必修1§4.4 牛顿第二定律的应用――― 连接体问题

§4.4牛顿第二定律的应用―――连接体问题【学习目标】1.知道什么是连接体与隔离体。

2.知道什么是内力和外力。

3.学会连接体问题的分析方法,并用来解决简单问题。

【自主学习】一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为。

如果把其中某个物体隔离出来,该物体即为。

二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的力,而系统内各物体间的相互作用力为。

应用牛顿第二定律列方程不考虑力。

如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的力。

三、连接体问题的分析方法1.整体法:连接体中的各物体如果,求加速度时可以把连接体作为一个整体。

运用列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用法求出,再用法求。

【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A体A 对物体B的作用力等于( )A.F m m m 211+ B.F m m m 212+C.FD.F m m 21 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图所示,倾角为α的斜面上放两物体斜面平行的力F 推m 1物体之间的作用力总为 。

例2.如图所示,质量为M 滑,木板上站着一个质量为m 的人,问(1面相对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止,木板运动的加速度是多少?α【针对训练】1.如图光滑水平面上物块A 和B 以轻弹簧相连接。

在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B) A.0、0B.a 、0C.B A A m m am +、B A A m m a m +- D.a、a m m BA - 2.如图A 、B 、C于B 上,三物体可一起匀速运动。

牛顿第二定律应用及连接体问题

牛顿第二定律应用及连接体问题

一两类常用的动力学问题1. 已知物体的受力情况,求解物体的运动情况;2. 已知物体的运动情况,求解物体的受力情况上述两种问题中,进行正确的受力分析和运动分析是关键,加速度的求解是解决此类问题的纽带,思维过程可以参照如下:解决两类动力学问题的一般步骤根据问题的需要和解题的方便,选出被研究的物体,研究对象可以是单个物体, 也可以是几个物体构成的系统画好受力分析图,必要时可以画出详细的运动情景示意图,明确物体的运动性质和运动过程通常以加速度的方向为正方向或者以加速度的方向为某一坐标的正方向若物体只受两个共点力作用,通常用合成法,若物体受到三个或是三个以上不在一条直线上的力的作用,一般要用正交分解法根据牛顿第二定律F合=ma或者F x = ma x;F y二ma y列方向求解,必要时对结论进行讨论解决两类动力学问题的关键是确定好研究对象分别进行运动分析跟受力分析,求出加速度例1 (新课标全国一2014 24 12分)公路上行驶的两汽车之间应保持一定的安全距离。

安全距离内停下而不会与前车相碰。

通常情况下,人的反应时间和汽车系统的反应时间之和为天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。

解:设路面干燥时,汽车与路面的摩擦因数为卩0,刹车加速度大小为a°,安全距离为s,反应时间为t0,由2牛顿第二定律和运动学公式得:%mg =ma ①s二v0t0仏②式中,m和v。

分别为汽车的质量和2a。

刹车钱的速度。

牛顿定律的应用当前车突然停止时,后车司机以采取刹车措施,使汽车在1s。

当汽车在晴设在雨天行驶时,汽车与地面的摩擦因数为□,依题意有例2 (新课标全国二2014 24 13分)2012年10月,奥地利极限运动员 菲利克斯•鲍姆加特纳乘 气球升至约39km 的高空后跳下,经过 4分20秒到达距地面约 1.5km 高度处,打开降落伞并成功落地,打破了跳伞运动的多项 世界纪录,取重力加速度的大小 g=10m/s 2.(1)忽略空气阻力,求该运动员从静止开始下落到 1.5km 高度 处所需要的时间及其在此处速度的大小(2) 实际上物体在空气中运动时会受到空气阻力,高速运动受 阻力大小可近似表示为 f=kv 2,其中v 为速率,k 为阻力系数,其数值与物体的形状,横截面积及空气密度有关,已知该运动员在某段时间内高速下落的 v —t 图象如图所示,着陆过程中,运动员和所携装备的总质量 m=100kg,试估算该运动员在达到最大速度时所受阻力的阻力系数(结果保留1位有效数字)。

高一物理牛顿第三定律 牛顿第二定律的应用(连接体问题)人教实验版知识精讲

高一物理牛顿第三定律  牛顿第二定律的应用(连接体问题)人教实验版知识精讲

高一物理牛顿第三定律牛顿第二定律的应用(连接体问题)人教实验版【本讲教育信息】一. 教学内容:牛顿第三定律牛顿第二定律的应用(连接体问题)二. 知识要点:1. 牛顿第三定律内容2. 作用力与反作用力的关系3. 一对作用力与反作用力与一对平衡力的区别4. 进一步理解牛顿第二定律5. 会用牛顿第二定律解决有关连接体的问题[重点、难点解析]一、牛顿第三定律(一)作用力与反作用力:1. 两个物体之间的作用力总是相互的,成对出现的,相互作用的两个物体互为施力物体和受力物体。

2. 将一对相互作用的力中的一个叫作用力,则另一个就叫做它的反作用力。

(二)牛顿第三定律:1. 内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。

这就是牛顿第三定律。

2. 理解作用力与反作用力的关系时,要注意以下几点:(1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。

(2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。

)(3)作用力与反作用力分别作用在施力物体和受力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。

(作用力与反作用力能否求和?不能)(4)作用力与反作用力一定是同种性质的力。

(平衡力的性质呢?)3. 对于牛顿第三定律要明确(1)定律揭示了相互作用的两个物体之间的作用力与反作用力的关系。

(2)作用力与反作用力具有“四个相同”。

即大小相同,性质相同、出现、存在、消失的时间相同,作用线在同一条直线上。

“三个不一样”即方向不一样。

施力物体和受力物体不一样,效果不一样。

(3)相互作用力与平衡力的区别关键点是平衡力作用在同一物体上,不一定同时产生或同时消失,也不一定是同性质的力。

例1. 马对车的作用力为F,车对马的作用力为T。

关于F和T的说法正确的是()A. F和T是一对作用力与反作用力。

B. 当马与车做加速运动时,F>T。

牛顿第二定律典例(连接体)

牛顿第二定律典例(连接体)

牛顿第二定律是经典力学的基础和核心,是分析、研究和解决力学问题的三大法宝之一,同时也是高考考查的重点和热点。

因此,深刻理解和灵活应用牛顿第二定律是力学中非常重要的内容,下面阐述应用牛顿第二定律时的几类典型问题,供大家参考。

一、连接体问题两个或两个以上物体相互连接并参与运动的系统称为有相互作用力的系统, 即为连接体问题,处理非平衡状态下的有相互作用力的系统问题常常用整体法和隔离法。

当需要求内力时,常把某个物体从系统中“隔离”出来进行研究,当系统中各物体加速度相同时,可以把系统中的所有物体看成一个整体进行研究。

例 1:如图 1所示的三个物体质量分别为 m 1、 m 2和 m 3。

带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计。

为使三个物体无相对滑动,试求水平推力 F 的大小。

解答:本题是一道典型的连接体问题。

由题意可知,三个物体具有向右的相同的加速度,设为 a ,把它们三者看成一个整体,则这个整体在水平方向只受外力 F 的作用。

由牛顿第二定律,即:F=(m 1+m2+m3a ……①隔离 m 2,受力如图 2所示在竖直方向上,应有: T=m2g ……②隔离 m 1,受力如图 3所示在水平方向上,应有: T′=m1a ……③由牛顿第三定律T′=T ……④联立以上四式解得:点评:分析处理有相互作用力的系统问题时,首先遇到的关键问题就是研究对象的选取。

其方法一般采用隔离和整体的策略。

隔离法与整体法的策略,不是相互对立的, 在一般问题的求解中随着研究对象的转化,往往两种策略交叉运用,相辅相成,所以我们必须具体问题具体分析,做到灵活运用。

二、瞬时性问题当一个物体(或系统的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统对和它有联系的物体(或系统的受力发生变化。

例 2:如图 4所示,木块 A 与 B 用一轻弹簧相连,竖直放在木块 C 上。

牛顿第二定律连接体问题

牛顿第二定律连接体问题

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力使用原则系统各物体运动状态不同隔离法问题涉及物体间的内力三、连接体题型:1【例1】A 、B kg m B 6=,今用水平力N F A6=推A ,B 间的作用力有多大?例2.两个物体A 和B ,质量分别为m 1和m 对物体A 施以水平的推力F ,则物体A A.F m m m 211+ B.F m m m 212+ 2扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于。

2.如图所示,倾角为α的斜面上放两物体m 1和m 2平行的力F 推m 1之间的作用力总为 。

【练1】如图所示,质量为M 的斜面A μ,物体B 与斜面间无摩擦。

在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。

已知斜面的倾角为θ,物体B 的质量为F 的大小为()A.)sin ()(,sin θμθ++==g m M F g aB.θθcos )(,cos g m M F g a +==C.)tan ()(,tan θμθ++==g m M F g aD.g m M F g a )(,cot +==μθ 【练2】如图所示,质量为2m 的物体2用竖直细绳通过光滑定滑轮连接质量为1m 的绳与竖直方向成θ角,则()A.车厢的加速度为θsin gB.绳对物体1的拉力为θcos 1gmC.底板对物体2的支持力为g m m )(12-D.物体22、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)【例2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套有一个环,箱和杆的总质量为M ,环的质量为m 。

已知环沿着杆向下加速运动,当加速度大小为a 时(a <g ),则箱对地面的压力为()A.Mg+mgB.Mg —maC.Mg+maD.Mg+mg –ma【练3】如图所示,一只质量为m 直杆。

第六节 牛顿第二定律的应用(连接体问题)

第六节 牛顿第二定律的应用(连接体问题)

牛顿第二定律的应用———连接体问题连接体是指在所研究的问题中涉及到的多个物体(或叠放在一起,或并排挤在一起,或用细绳,细杆联系在一起)组成的系统。

解连接体问题的基本方法是隔离法和整体法。

隔离法是把系统中的一个物体单独“取”出来,作为受力分析的对象,并对它应用牛顿第二定律列出方程,然后再对另外一个物体也单独“取”出来,进行同样的分析等。

整体法是把所有的物体作为一个整体分析,应用牛顿定律列方程。

这两种方法有时在同一个题目中可以同时采用。

不过整体法不能用来求系统内物体间的相互作用力。

如果求物体之间的相互作用力,必须要用到隔离法。

例一:在光滑的水平面上,有两个相互接触的物价,已知M>m,第一次用水平力F 向右推M,物体间相互作用力为N 1;第二次用同样大小的水平力F 向左推m,物体间的相互作用力为N 2,则N 1______ N 2练习:1. 两物体A 、B ,质量分别为m 1、m 2,互相接触,放在光滑的水平面上,对A 、B 分别施以水平推力F 1和F 2,且F>F,则A 对B 的作用力多大?若水平面粗糙,A 、B 是同种材料制成的,在推力F 1、F 2的作用下运动时,A 对B 的作用力又是多大?2.如图,A 、B 两个物体叠放在光滑的水平面上,AB 间动摩擦因数为μ用水平力F 1作用在A 上,AB 间恰好不发生相对滑动,若用水平力F 2作用在B 上,A 、B 间恰好不发生相对滑动,若m A :m B =2:3,则F 1:F 2=__________.3.一人在井下站在吊台上,用如图所示的定滑轮装置拉绳把吊台和自己提升上来,图中跨过滑轮的两面三刀段绳是竖直的且不计摩擦,跺台的质量是15kg,人的质量为55kg,起动时吊台向上的加速度是0.2m/s 2,求这时人对吊台的压力.4.如图,A 、B 两个物体用细绳连接在一起,用竖直向上的力F 将它们提起,细绳能承受的最大拉力为100N ,两个物体的质量m A =m B =5kg ,要使绳子在提起原来处于静止状态的物体时不被子拉断,拉力F 不能超过多少?(g=10m/s 2)。

牛顿第二定律应用及连接体问题

牛顿第二定律应用及连接体问题

牛顿第二定律应用及连接体问题(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--牛顿定律的应用一 两类常用的动力学问题1. 已知物体的受力情况,求解物体的运动情况;2. 已知物体的运动情况,求解物体的受力情况上述两种问题中,进行正确的受力分析和运动分析是关键,加速度的求解是解决此类问题的纽带,思维过程可以参照如下:解决两类动力学问题的一般步骤根据问题的需要和解题的方便,选出被研究的物体,研究对象可以是单个物体,也可以是几个物体构成的系统 画好受力分析图,必要时可以画出详细的运动情景示意图,明确物体的运动性质和运动过程通常以加速度的方向为正方向 或者以加速度的方向为某一坐标的正方向若物体只受两个共点力作用,通常用合成法,若物体受到三个或是三个以上不在一条直线上的力的作用,一般要用正交分解法根据牛顿第二定律=ma F 合或者x x F ma = ;y y F ma =列方向求解,必要时对结论进行讨论解决两类动力学问题的关键是确定好研究对象分别进行运动分析跟受力分析,求出加速度 例1(新课标全国一2014 24 12分)公路上行驶的两汽车之间应保持一定的安全距离。

当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。

通常情况下,人的反应时间和汽车系统的反明确研究对象受力分析和运动状态分析 选取正方向或建立坐标系 确定合外力F 合 列方程求解应时间之和为1s 。

当汽车在晴天干燥沥青路面上以108km/h 的速度匀速行驶时,安全距离为120m 。

设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m ,求汽车在雨天安全行驶的最大速度。

解:设路面干燥时,汽车与路面的摩擦因数为μ0,刹车加速度大小为a 0,安全距离为s ,反应时间为t 0,由牛顿第二定律和运动学公式得:ma mg =0μ ①020002a v t v s += ②式中,m 和v 0分别为汽车的质量和刹车钱的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4.4 牛顿第二定律的应用――― 连接体问题【学习目标】1.知道什么是连接体与隔离体。

2.知道什么是内力和外力。

3.学会连接体问题的分析方法,并用来解决简单问题。

【自主学习】一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。

如果把其中某个物体隔离出来,该物体即为 。

二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的相互作用力为 。

应用牛顿第二定律列方程不考虑 力。

如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的 力。

三、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。

运用 列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。

【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于( )A.F m m m 211+ B.F m m m 212+ C.FD.F m m 21扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。

例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少?αm 2 m 1 m 2FA BFm 1θ【针对训练】1.如图光滑水平面上物块A 和B 以轻弹簧相连接。

在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B 的加速度分别为( )A.0、0B.a 、0C.BA A m m a m +、BA A m m am +-D.a 、a m m BA -2.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用 于B 上,三物体可一起匀速运动。

撤去力F 后,三物体仍 可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作 用力为f 2,则f 1和f 2的大小为( )A.f 1=f 2=0B.f 1=0,f 2=FC.f 1=3F,f 2=F 32D.f 1=F ,f 2=03.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的 加速度前进?(g =10m/s 2)4.如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因数μ=0.22。

在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直 方向θ=30°角,则F 应为多少?(g =10m/s 2)【能力训练】1.如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数 分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( )A.等于零B.方向平行于斜面向上C.大小为μ1mgcos θD.大小为μ2mgcos θ2.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球。

小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加 速度大小为( )A.gB.g mm M - C.0 D.g mm M +FCA BV A BFθFmMBAθa3.如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( )A.T a 增大B.T b 增大C.T a 变小D.T b 不变4.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量 为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时, 竿对“底人”的压力大小为( )A.(M+m )gB.(M+m )g -maC.(M+m )g+maD.(M -m )g 5.如图,在竖直立在水平面的轻弹簧上面固定一块质量不计 的薄板,将薄板上放一重物,并用手将重物往下压,然后突 然将手撤去,重物即被弹射出去,则在弹射过程中,(即重 物与弹簧脱离之前),重物的运动情况是( )A.一直加速B.先减速,后加速C.先加速、后减速D.匀加速6.如图所示,木块A 和B 用一轻弹簧相连,竖直放在木块 C 上,三者静置于地面,它们的质量之比是1:2:3,设所有 接触面都光滑,当沿水平方向抽出木块C 的瞬时,A 和B 的加速度分别是a A = ,a B = 。

7.如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块 A 的顶端P 处,细线的另一端拴一质量为m 的小球。

当滑块至 少以加速度a = 向左运动时,小球对滑块的压力等 于零。

当滑块以a =2g 的加速度向左运动时,线的拉力大小 F = 。

8.如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 或B 上,使A 、B 保持相对静止做加速运动,则作用于A 、B 上的最大拉力F A 与F B 之比为多少?9.如图所示,质量为80kg 的物体放在安装在小车上的水平磅称上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N ,则斜面的倾角θ为多少?物体对磅秤的静摩擦力为多少?AB CT a T bMm A BC a PA45A BFMF10.如图所示,一根轻弹簧上端固定,下端挂一质量为m o 的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比自然长度伸长了L 。

今向下拉盘使弹簧再伸长△L 后停止,然后松手放开,设弹簧总处在弹性限度以内,刚刚松开手时盘对物体的支持力等于多少?【学后反思】参考答案典型例题:例1.分析:物体A 和B 加速度相同,求它们之间的相互作用力,采取先整体后隔离的方法,先求出它们共同的加速度,然后再选取A 或B 为研究对象,求出它们之间的相互作用力。

解:对A 、B 整体分析,则F =(m 1+m 2)a 所以21m m F a +=求A 、B 间弹力F N 时以B 为研究对象,则F m m m a m F N 2122+==答案:B说明:求A 、B 间弹力F N 时,也可以以A 为研究对象则: F -F N =m 1a F -F N =F m m m 211+ 故F N =F m m m 212+对A 、B 整体分析F -μ(m 1+m 2)g=(m 1+m 2)ag m m F a μ-+=21再以B 为研究对象有F N -μm 2g =m 2a F N -μm 2g =m 2gm m m F 221μ-+212m m F m F N +=提示:先取整体研究,利用牛顿第二定律,求出共同的加速度212121sin )(cos )(m m g m m g m m F a ++-+-=ααμ =ααμsin cos 21g g m m F --+再取m 2研究,由牛顿第二定律得 F N -m 2gsin α-μm 2gcos α=m 2a 整理得F m m m F N 212+=例 2.解(1)为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F 应沿斜面向上,故人应加速下跑。

现分别对人和木板应用牛顿第二定律得:对木板:Mgsin θ=F 。

对人:mgsin θ+F =ma 人(a 人为人对斜面的加速度)。

解得:a 人=θsin g mm M +,方向沿斜面向下。

(2)为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动。

现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a 木,则:对人:mgsin θ=F 。

对木板:Mgsin θ+F=Ma 木。

解得:a 木=θsin g Mm M +,方向沿斜面向下。

即人相对木板向上加速跑动,而木板沿斜面向下滑动,所以人相对斜面静止不动。

答案:(1)(M+m )gsin θ/m ,(2)(M+m )gsin θ/M 。

针对训练1.D2.C3.解:设物体的质量为m ,在竖直方向上有:mg=F ,F 为摩擦力在临界情况下,F =μF N ,F N 为物体所受水平弹力。

又由牛顿第二定律得: F N =ma由以上各式得:加速度22/5.12/8.010s m s m mmgmF a N ====μ4.解:对小球由牛顿第二定律得:mgtg θ=ma ① 对整体,由牛顿第二定律得:F -μ(M+m)g=(M+m)a ② 由①②代入数据得:F =48N能力训练1.BC2.D3.A4.B5.C6.0、g 237.g 、mg 58.解:当力F 作用于A 上,且A 、B 刚好不发生相对滑动时,对B 由牛顿第二定律得:μmg=2ma ①对整体同理得:F A =(m+2m)a ②由①②得23mgF A μ=当力F 作用于B 上,且A 、B 刚好不发生相对滑动时,对A 由牛顿第二定律得:μμmg =ma ′ ③ 对整体同理得F B =(m+2m)a ′④ 由③④得F B =3μmg 所以:F A :F B =1:29.解:取小车、物体、磅秤这个整体为研究对象,受 总重力Mg 、斜面的支持力N ,由牛顿第二定律得, Mgsin θ=Ma ,∴a=gsin θ取物体为研究对象,受力 情况如图所示。

将加速度a 沿水平和竖直方向分解,则有 f 静=macos θ=mgsin θcos θ ① mg -N =masin θ=mgsin 2θ ②由式②得:N =mg -mgsin 2θ=mgcos 2θ,则cos θ=mgN 代入数据得,θ=30°由式①得,f 静=mgsin θcos θ代入数据得f 静=346N 。

根据牛顿第三定律,物体对磅秤的静摩擦力为346N 。

10.解:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了。

相关文档
最新文档