Fortran77数值计算f1-2
fortran编程习题答案
fortran编程习题答案Fortran编程习题答案Fortran是一种古老而强大的编程语言,广泛应用于科学计算和工程领域。
在学习Fortran编程的过程中,解决习题是一种非常有效的方法。
本文将为您提供一些Fortran编程习题的答案,帮助您更好地理解和掌握这门语言。
1. 习题一:编写一个Fortran程序,计算并输出1到100之间所有整数的平方。
程序代码如下:```fortranprogram squareimplicit noneinteger :: ido i = 1, 100print *, i, i**2end doend program square```2. 习题二:编写一个Fortran程序,计算并输出斐波那契数列的前20个数。
程序代码如下:```fortranprogram fibonacciimplicit noneinteger :: i, n, fib(20)fib(1) = 0fib(2) = 1do i = 3, 20fib(i) = fib(i-1) + fib(i-2)end dodo i = 1, 20print *, fib(i)end doend program fibonacci```3. 习题三:编写一个Fortran程序,计算并输出一个给定整数的阶乘。
程序代码如下:```fortranprogram factorialimplicit noneinteger :: i, n, resultprint *, "请输入一个整数:"read *, nresult = 1do i = 1, nresult = result * iend doprint *, n, "的阶乘为:", resultend program factorial```4. 习题四:编写一个Fortran程序,计算并输出一个给定整数是否为素数。
程序代码如下:```fortranprogram primeimplicit noneinteger :: i, n, countprint *, "请输入一个整数:"read *, ncount = 0do i = 2, n-1if (mod(n, i) == 0) thencount = count + 1end ifend doif (count == 0) thenprint *, n, "是素数"elseprint *, n, "不是素数"end ifend program prime```5. 习题五:编写一个Fortran程序,计算并输出一个给定整数的所有因子。
Fortran77数值计算f0-2
Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).Computer Programs by Chapter and Section1.0flmoon calculate phases of the moon by date1.1julday Julian Day number from calendar date1.1badluk Friday the13th when the moon is full1.1caldat calendar date from Julian day number2.1gaussj Gauss-Jordan matrix inversion and linear equation solution2.3ludcmp linear equation solution,LU decomposition2.3lubksb linear equation solution,backsubstitution2.4tridag solution of tridiagonal systems2.4banmul multiply vector by band diagonal matrix2.4bandec band diagonal systems,decomposition2.4banbks band diagonal systems,backsubstitution2.5mprove linear equation solution,iterative improvement2.6svbksb singular value backsubstitution2.6svdcmp singular value decomposition of a matrix2.6pythag calculate(a2+b2)1/2without overflow2.7cyclic solution of cyclic tridiagonal systems2.7sprsin convert matrix to sparse format2.7sprsax product of sparse matrix and vector2.7sprstx product of transpose sparse matrix and vector2.7sprstp transpose of sparse matrix2.7sprspm pattern multiply two sparse matrices2.7sprstm threshold multiply two sparse matrices2.7linbcg biconjugate gradient solution of sparse systems2.7snrm used by linbcg for vector norm2.7atimes used by linbcg for sparse multiplication2.7asolve used by linbcg for preconditioner2.8vander solve Vandermonde systems2.8toeplz solve Toeplitz systems2.9choldc Cholesky decomposition2.9cholsl Cholesky backsubstitution2.10qrdcmp QR decomposition2.10qrsolv QR backsubstitution2.10rsolv right triangular backsubstitution2.10qrupdt update a QR decomposition2.10rotate Jacobi rotation used by qrupdt 3.1polint polynomial interpolation3.2ratint rational function interpolation3.3spline construct a cubic spline3.3splint cubic spline interpolation3.4locate search an ordered table by bisectionxxivComputer Programs by Chapter and Section xxv Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).3.4hunt search a table when calls are correlated3.5polcoe polynomial coefficients from table of values3.5polcof polynomial coefficients from table of values3.6polin2two-dimensional polynomial interpolation3.6bcucof construct two-dimensional bicubic3.6bcuint two-dimensional bicubic interpolation3.6splie2construct two-dimensional spline3.6splin2two-dimensional spline interpolation4.2trapzd trapezoidal rule4.2qtrap integrate using trapezoidal rule4.2qsimp integrate using Simpson’s rule4.3qromb integrate using Romberg adaptive method4.4midpnt extended midpoint rule4.4qromo integrate using open Romberg adaptive method4.4midinf integrate a function on a semi-infinite interval4.4midsql integrate a function with lower square-root singularity4.4midsqu integrate a function with upper square-root singularity4.4midexp integrate a function that decreases exponentially4.5qgaus integrate a function by Gaussian quadratures4.5gauleg Gauss-Legendre weights and abscissas4.5gaulag Gauss-Laguerre weights and abscissas4.5gauher Gauss-Hermite weights and abscissas4.5gaujac Gauss-Jacobi weights and abscissas4.5gaucof quadrature weights from orthogonal polynomials4.5orthog construct nonclassical orthogonal polynomials4.6quad3d integrate a function over a three-dimensional space5.1eulsum sum a series by Euler–van Wijngaarden algorithm5.3ddpoly evaluate a polynomial and its derivatives5.3poldiv divide one polynomial by another5.3ratval evaluate a rational function5.7dfridr numerical derivative by Ridders’method5.8chebftfit a Chebyshev polynomial to a function5.8chebev Chebyshev polynomial evaluation5.9chder derivative of a function already Chebyshevfitted5.9chint integrate a function already Chebyshevfitted5.10chebpc polynomial coefficients from a Chebyshevfit5.10pcshft polynomial coefficients of a shifted polynomial5.11pccheb inverse of chebpc;use to economize power series5.12pade Pad´e approximant from power series coefficients5.13ratlsq rationalfit by least-squares method6.1gammln logarithm of gamma function6.1factrl factorial function6.1bico binomial coefficients function6.1factln logarithm of factorial functionxxvi Computer Programs by Chapter and Section Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).6.1beta beta function6.2gammp incomplete gamma function6.2gammq complement of incomplete gamma function6.2gser series used by gammp and gammq6.2gcf continued fraction used by gammp and gammq6.2erf error function6.2erfc complementary error function6.2erfcc complementary error function,concise routine6.3expint exponential integral E n6.3ei exponential integral Ei6.4betai incomplete beta function6.4betacf continued fraction used by betai6.5bessj0Bessel function J06.5bessy0Bessel function Y06.5bessj1Bessel function J16.5bessy1Bessel function Y16.5bessy Bessel function Y of general integer order6.5bessj Bessel function J of general integer order6.6bessi0modified Bessel function I06.6bessk0modified Bessel function K06.6bessi1modified Bessel function I16.6bessk1modified Bessel function K16.6bessk modified Bessel function K of integer order6.6bessi modified Bessel function I of integer order6.7bessjy Bessel functions of fractional order6.7beschb Chebyshev expansion used by bessjy6.7bessik modified Bessel functions of fractional order6.7airy Airy functions6.7sphbes spherical Bessel functions j n and y n6.8plgndr Legendre polynomials,associated(spherical harmonics)6.9frenel Fresnel integrals S(x)and C(x)6.9cisi cosine and sine integrals Ci and Si6.10dawson Dawson’s integral6.11rf Carlson’s elliptic integral of thefirst kind6.11rd Carlson’s elliptic integral of the second kind6.11rj Carlson’s elliptic integral of the third kind6.11rc Carlson’s degenerate elliptic integral6.11ellf Legendre elliptic integral of thefirst kind6.11elle Legendre elliptic integral of the second kind6.11ellpi Legendre elliptic integral of the third kind6.11sncndn Jacobian elliptic functions6.12hypgeo complex hypergeometric function6.12hypser complex hypergeometric function,series evaluation6.12hypdrv complex hypergeometric function,derivative of7.1ran0random deviate by Park and Miller minimal standard 7.1ran1random deviate,minimal standard plus shuffleComputer Programs by Chapter and Section xxvii Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).7.1ran2random deviate by L’Ecuyer long period plus shuffle7.1ran3random deviate by Knuth subtractive method7.2expdev exponential random deviates7.2gasdev normally distributed random deviates7.3gamdev gamma-law distribution random deviates7.3poidev Poisson distributed random deviates7.3bnldev binomial distributed random deviates7.4irbit1random bit sequence7.4irbit2random bit sequence7.5psdes“pseudo-DES”hashing of64bits7.5ran4random deviates from DES-like hashing7.7sobseq Sobol’s quasi-random sequence7.8vegas adaptive multidimensional Monte Carlo integration7.8rebin sample rebinning used by vegas7.8miser recursive multidimensional Monte Carlo integration7.8ranpt get random point,used by miser8.1piksrt sort an array by straight insertion8.1piksr2sort two arrays by straight insertion8.1shell sort an array by Shell’s method8.2sort sort an array by quicksort method8.2sort2sort two arrays by quicksort method8.3hpsort sort an array by heapsort method8.4indexx construct an index for an array8.4sort3sort,use an index to sort3or more arrays8.4rank construct a rank table for an array8.5selectfind the N th largest in an array8.5selipfind the N th largest,without altering an array8.5hpselfind M largest values,without altering an array8.6eclass determine equivalence classes from list8.6eclazz determine equivalence classes from procedure9.0scrsho graph a function to search for roots9.1zbrac outward search for brackets on roots9.1zbrak inward search for brackets on roots9.1rtbisfind root of a function by bisection9.2rtflspfind root of a function by false-position9.2rtsecfind root of a function by secant method9.2zriddrfind root of a function by Ridders’method9.3zbrentfind root of a function by Brent’s method9.4rtnewtfind root of a function by Newton-Raphson9.4rtsafefind root of a function by Newton-Raphson and bisection 9.5laguerfind a root of a polynomial by Laguerre’s method9.5zroots roots of a polynomial by Laguerre’s method withdeflation9.5zrhqr roots of a polynomial by eigenvalue methods9.5qroot complex or double root of a polynomial,Bairstowxxviii Computer Programs by Chapter and Section Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).9.6mnewt Newton’s method for systems of equations9.7lnsrch search along a line,used by newt9.7newt globally convergent multi-dimensional Newton’s method9.7fdjacfinite-difference Jacobian,used by newt9.7fmin norm of a vector function,used by newt9.7broydn secant method for systems of equations10.1mnbrak bracket the minimum of a function10.1goldenfind minimum of a function by golden section search10.2brentfind minimum of a function by Brent’s method10.3dbrentfind minimum of a function using derivative information10.4amoeba minimize in N-dimensions by downhill simplex method10.4amotry evaluate a trial point,used by amoeba10.5powell minimize in N-dimensions by Powell’s method10.5linmin minimum of a function along a ray in N-dimensions10.5f1dim function used by linmin10.6frprmn minimize in N-dimensions by conjugate gradient10.6df1dim alternative function used by linmin10.7dfpmin minimize in N-dimensions by variable metric method10.8simplx linear programming maximization of a linear function10.8simp1linear programming,used by simplx10.8simp2linear programming,used by simplx10.8simp3linear programming,used by simplx10.9anneal traveling salesman problem by simulated annealing10.9revcst cost of a reversal,used by anneal10.9revers do a reversal,used by anneal10.9trncst cost of a transposition,used by anneal10.9trnspt do a transposition,used by anneal10.9metrop Metropolis algorithm,used by anneal10.9amebsa simulated annealing in continuous spaces10.9amotsa evaluate a trial point,used by amebsa11.1jacobi eigenvalues and eigenvectors of a symmetric matrix11.1eigsrt eigenvectors,sorts into order by eigenvalue11.2tred2Householder reduction of a real,symmetric matrix11.3tqli eigensolution of a symmetric tridiagonal matrix11.5balanc balance a nonsymmetric matrix11.5elmhes reduce a general matrix to Hessenberg form11.6hqr eigenvalues of a Hessenberg matrix12.2four1fast Fourier transform(FFT)in one dimension12.3twofft fast Fourier transform of two real functions 12.3realft fast Fourier transform of a single real function 12.3sinft fast sine transform12.3cosft1fast cosine transform with endpoints12.3cosft2“staggered”fast cosine transform12.4fourn fast Fourier transform in multidimensionsComputer Programs by Chapter and Section xxix Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).12.5rlft3FFT of real data in two or three dimensions12.6fourfs FFT for huge data sets on external media12.6fourew rewind and permutefiles,used by fourfs13.1convlv convolution or deconvolution of data using FFT13.2correl correlation or autocorrelation of data using FFT13.4spctrm power spectrum estimation using FFT13.6memcof evaluate maximum entropy(MEM)coefficients13.6fixrts reflect roots of a polynomial into unit circle13.6predic linear prediction using MEM coefficients13.7evlmem power spectral estimation from MEM coefficients13.8period power spectrum of unevenly sampled data13.8fasper power spectrum of unevenly sampled larger data sets13.8spread extirpolate value into array,used by fasper13.9dftcor compute endpoint corrections for Fourier integrals13.9dftint high-accuracy Fourier integrals13.10wt1one-dimensional discrete wavelet transform13.10daub4Daubechies4-coefficient waveletfilter13.10pwtset initialize coefficients for pwt13.10pwt partial wavelet transform13.10wtn multidimensional discrete wavelet transform14.1moment calculate moments of a data set14.2ttest Student’s t-test for difference of means14.2avevar calculate mean and variance of a data set14.2tutest Student’s t-test for means,case of unequal variances14.2tptest Student’s t-test for means,case of paired data14.2ftest F-test for difference of variances14.3chsone chi-square test for difference between data and model14.3chstwo chi-square test for difference between two data sets14.3ksone Kolmogorov-Smirnov test of data against model14.3kstwo Kolmogorov-Smirnov test between two data sets14.3probks Kolmogorov-Smirnov probability function14.4cntab1contingency table analysis using chi-square14.4cntab2contingency table analysis using entropy measure14.5pearsn Pearson’s correlation between two data sets14.6spear Spearman’s rank correlation between two data sets14.6crank replaces array elements by their rank14.6kendl1correlation between two data sets,Kendall’s tau14.6kendl2contingency table analysis using Kendall’s tau14.7ks2d1s K–S test in two dimensions,data vs.model14.7quadct count points by quadrants,used by ks2d1s 14.7quadvl quadrant probabilities,used by ks2d1s14.7ks2d2s K–S test in two dimensions,data vs.data14.8savgol Savitzky-Golay smoothing coefficients15.2fit least-squaresfit data to a straight linexxx Computer Programs by Chapter and Section Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).15.3fitexyfit data to a straight line,errors in both x and y15.3chixy used by fitexy to calculate aχ215.4lfit general linear least-squaresfit by normal equations15.4covsrt rearrange covariance matrix,used by lfit15.4svdfit linear least-squaresfit by singular value decomposition15.4svdvar variances from singular value decomposition15.4fpolyfit a polynomial using lfit or svdfit15.4flegfit a Legendre polynomial using lfit or svdfit15.5mrqmin nonlinear least-squaresfit,Marquardt’s method15.5mrqcof used by mrqmin to evaluate coefficients15.5fgaussfit a sum of Gaussians using mrqmin15.7medfitfit data to a straight line robustly,least absolute deviation15.7rofuncfit data robustly,used by medfit16.1rk4integrate one step of ODEs,fourth-order Runge-Kutta16.1rkdumb integrate ODEs by fourth-order Runge-Kutta16.2rkqs integrate one step of ODEs with accuracy monitoring16.2rkck Cash-Karp-Runge-Kutta step used by rkqs16.2odeint integrate ODEs with accuracy monitoring16.3mmid integrate ODEs by modified midpoint method16.4bsstep integrate ODEs,Bulirsch-Stoer step16.4pzextr polynomial extrapolation,used by bsstep16.4rzextr rational function extrapolation,used by bsstep16.5stoerm integrate conservative second-order ODEs16.6stiff integrate stiff ODEs by fourth-order Rosenbrock16.6jacobn sample Jacobian routine for stiff16.6derivs sample derivatives routine for stiff16.6simpr integrate stiff ODEs by semi-implicit midpoint rule16.6stifbs integrate stiff ODEs,Bulirsch-Stoer step17.1shoot solve two point boundary value problem by shooting17.2shootf ditto,by shooting to afitting point17.3solvde two point boundary value problem,solve by relaxation17.3bksub backsubstitution,used by solvde17.3pinvs diagonalize a sub-block,used by solvde17.3red reduce columns of a matrix,used by solvde17.4sfroid spheroidal functions by method of solvde17.4difeq spheroidal matrix coefficients,used by sfroid17.4sphoot spheroidal functions by method of shoot17.4sphfpt spheroidal functions by method of shootf18.1fred2solve linear Fredholm equations of the second kind 18.1fredin interpolate solutions obtained with fred218.2voltra linear V olterra equations of the second kind18.3wwghts quadrature weights for an arbitrarily singular kernel 18.3kermom sample routine for moments of a singular kernel 18.3quadmx sample routine for a quadrature matrixComputer Programs by Chapter and Section xxxi Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).18.3fredex example of solving a singular Fredholm equation19.5sor elliptic PDE solved by successive overrelaxation method19.6mglin linear elliptic PDE solved by multigrid method19.6rstrct half-weighting restriction,used by mglin,mgfas19.6interp bilinear prolongation,used by mglin,mgfas19.6addint interpolate and add,used by mglin19.6slvsml solve on coarsest grid,used by mglin19.6relax Gauss-Seidel relaxation,used by mglin19.6resid calculate residual,used by mglin19.6copy utility used by mglin,mgfas19.6fill0utility used by mglin19.6maloc memory allocation utility used by mglin,mgfas19.6mgfas nonlinear elliptic PDE solved by multigrid method19.6relax2Gauss-Seidel relaxation,used by mgfas19.6slvsm2solve on coarsest grid,used by mgfas19.6lop applies nonlinear operator,used by mgfas19.6matadd utility used by mgfas19.6matsub utility used by mgfas19.6anorm2utility used by mgfas20.1machar diagnose computer’sfloating arithmetic20.2igray Gray code and its inverse20.3icrc1cyclic redundancy checksum,used by icrc20.3icrc cyclic redundancy checksum20.3decchk decimal check digit calculation or verification20.4hufmak construct a Huffman code20.4hufapp append bits to a Huffman code,used by hufmak20.4hufenc use Huffman code to encode and compress a character20.4hufdec use Huffman code to decode and decompress a character20.5arcmak construct an arithmetic code20.5arcode encode or decode a character using arithmetic coding20.5arcsum add integer to byte string,used by arcode20.6mpops multiple precision arithmetic,simpler operations20.6mpmul multiple precision multiply,using FFT methods20.6mpinv multiple precision reciprocal20.6mpdiv multiple precision divide and remainder20.6mpsqrt multiple precision square root20.6mp2dfr multiple precision conversion to decimal base20.6mppi multiple precision example,compute many digits ofπ。
Fortran77教程-4逻辑运算和选择结构
read(*,*) grade if(grade.ge.80.) write(*,*) 'A' if(grade.ge.70.) write(*,*) 'B' if(grade.ge.60.) write(*,*) 'C' write(*,*) 'D' end
24
C
单价850,100以上95折优惠,求货款。 price=850 read(*,*) n if(n.ge.100) price=price*0.95 amount=n*price write(*,*) 'n=',n,' amount=',amount end
read(*,*) grade if(grade.le.60.) then write(*,*) ‘D ' else if(grade.le.70.) then write(*,*) ‘C' else if(grade.le.80.) then write(*,*) ‘B' else write(*,*) ‘A' end if end
read(*,*) grade if(grade.ge.80.) then write(*,*) 'A ' else if(grade.ge.70.) then write(*,*) 'B' else if(grade.ge.60.) then write(*,*) 'C' else write(*,*) 'D' end if end
if(grade.ge.60.) then else print *, ’No.’, num print *, ’grade’, grade end if
FORTRAN77编程基础
第三讲FORTRAN 77 编程基础1主要内容⏹FORTRAN 77 基础⏹数据结构⏹控制结构(选择与循环)⏹基本输入输出⏹函数与子程序⏹计时函数⏹文件操作FORTRAN 基础⏹FORTRAN语言发展概况●FOR mula TRAN slation●适用于工程及科学计算的一种高级程序设计语言●1951 年由约翰•贝克斯等人开始研发●1957 年第一个FORTRAN 程序在IBM704 机上运行●1966 和1978 年先后颁布FORTRAN66 和FORTRAN77●1991 和1997 年颁布了Fortran 90和Fortran 95●2004 年公布Frotran2003 标准,面向对象程序设计●2010 年公布Fortran 2008 标准FORTRAN 编译器⏹免费的FORTRAN 编译器⏹商业版FORTRAN 编译器●GNU FORTRAN /gfortran●G95●Intel Fortran 编译器(非商业版)●Power Station 、Compaq Visual Fortran (已停止更新)●Intel Fortran●PGI Fortran●Absoft Pro Fortran●Lahey Fortran程序开发环境⏹Linux 系统⏹Windows 系统●字符界面,命令行方式●Code::Blocks + GCC●Microsoft Visual Studio + Intel Visual Fortran ●Code::Blocks + GCC一个简单的编程示例parameter(n=100)real a(n, n), b(n, n), c(n, n)cdo j = 1, ndo i = 1, na(i,j) = 1.0/(i+j‐1)b(i,j) = 1.0c(i,j) = 0.0enddoenddocdo i = 1, ndo j = 1, ndo k = 1, nc(i,j) = c(i,j) + a(i,k) * b(k,j) enddoenddoenddocprint*, "c(1,1) = ", c(1,1)stopendFORTRAN 程序分析●一个FORTRAN 源程序由一个或多个程序单元组成每个独立的程序单元以“end”语句结束●每个程序单元包括若干行(一行不能写多条语句,但一条语句可以分几行写)●每个程序单元可包含语句行和非语句行(注释行)●语句行:可执行语句和非执行语句行●非执行语句在所有可执行语句行前面●语句可以根据需要设置标号●各类语句在程序单元中的位置必须满足一定规则●程序必须按规定的格式书写源程序书写格式●每行只能在72 列内书写,并把80 列分为4 个区●1~5列:标号区(1~5 位整数)如果第1 列为“* ”或“c ”,则为注释行●第6列:续行标志区续行符可以是任意非空格/非零字符最多19 个续行●7~72 列:语句区(一行只能写一条语句)●73~:被忽略,有的编译器会报错⏹FORTRAN 77 源程序必须按规定的格式书写(Fixed Format 固定格式)⏹源程序●以.f为扩展名●纯文本文件,可使用任何文本编辑器编写⏹编译与执行g77‐O2 –o输出文件名源程序文件名./输出文件名g77 ‐O2 –o hello hello.f./hellog77常用选项-o:指定生成的可执行文件的文件名,缺省为a.out -c:只编译不链接,即只生成目标文件(.o文件)-I path:指定或增加包含文件(如*.h)的搜索路径-L path:指定(增加)库文件的搜索路径-l name:与库文件lib name.a链接-O, -O1, -O2, -O3:优化开关-g:在目标码中加入更多信息,用于程序调试●英文字母:A B C D ... ... X Y Z●下划线和阿拉伯数字:_ 0 1 2 3 4 5 6 7 8 9●特殊符号:空格= + -* / ( ) , . ' : "☞FORTRAN 不区分大小写☞早期的FORTRAN 卡片不允许小写故很多FORTRAN 程序源代码都是大写的FORTRAN 数据结构⏹F77支持基本类型和构造类型的数据结构●基本类型●构造类型:数组、记录、文件●F77 不支持指针整型、实型、双精度、复型、逻辑型、字符型正、负整数和零,缺省取值范围为:[-231, 231-1]②实型常量(Real)小数或指数形式:0.876 →8.76E-1 →87.6E-2指数部分只能是整数,取值范围:[10-38, 1038]③双精度常量(Double precision)8 字节:0.125D+45,取值范围:[10-308,10308]④复型常量(Complex)8 字节:(实数,实数)⑤逻辑型常量(Logical)⑥字符型常量(Character)⏹变量类型整型、实型、双精度、复型、逻辑型、字符型⏹变量名●第一个字符必须是字母●后面可以跟1~5 个字母、下划线或数字现在的FORTRAN 编译器允许多于6 个字符(g77 最多支持约51个字符)●变量名中的空格不起作用。
fortran 77 按位操作函数
Fortran 77是一种广泛使用的高级编程语言,它对于科学计算和工程应用有着重要的作用。
在Fortran 77中,按位操作函数是一种非常有用的功能,可以用来处理二进制数据并且对位进行操作。
本文将介绍Fortran 77中的按位操作函数,包括其语法、用法和示例,并对其在实际编程中的应用进行讨论。
一、按位操作的基本概念在计算机中,数据是以二进制形式存储和处理的。
按位操作就是对这些二进制数据的每一位进行操作,包括与、或、非、异或等操作。
按位操作函数可以用来进行这些操作,从而实现对二进制数据的精确控制和处理。
二、Fortran 77中的按位操作函数在Fortran 77中,有一些内置的按位操作函数可以直接使用,包括:1. IAND:按位与操作,用来对两个数进行按位与运算。
2. IOR:按位或操作,用来对两个数进行按位或运算。
3. NOT:按位非操作,用来对一个数进行按位取反运算。
4. IEOR:按位异或操作,用来对两个数进行按位异或运算。
三、按位操作函数的语法和用法按位操作函数的语法非常简单,一般形式如下:result = IAND(a, b) // 对a和b进行按位与操作,将结果赋值给result按位操作函数的用法也很直观,只需要将需要进行按位操作的数作为参数传入即可。
例如:result = IOR(a, b) // 对a和b进行按位或操作,将结果赋值给result四、按位操作函数的示例下面是一个简单的示例,演示了按位操作函数的基本用法:program bitwise_operationimplicit noneinteger :: a, b, result_and, result_or, result_not, result_eora = 5b = 3result_and = IAND(a, b)result_or = IOR(a, b)result_not = NOT(a)result_eor = IEOR(a, b)print*, 'Result of IAND: ', result_andprint*, 'Result of IOR: ', result_orprint*, 'Result of NOT: ', result_notprint*, 'Result of IEOR: ', result_eorend program bitwise_operation在这个示例中,我们定义了两个整数a和b,然后分别对它们进行了按位与、按位或、按位非和按位异或操作,并将结果打印输出。
FORTRAN77综述
FORTRAN77综述data (num(i),i=1,500)/500*0/,(num(i),i=501,1000)/500*1/Fortran77程序书写规则:1、程序中的变量名,不分大小写;2、变量名称是以字母开头再加上1到5位字母或数字构成,即变更名字串中只有前6位有效;3、一行只能写一个语句;4、程序的第一个语句固定为program 程序名称字符串5、某行的第1个字符至第5个字符位为标号区,只能书写语句标号或空着或注释内容;6、某行的第1个字符为C或*号时,则表示该行为注释行,其后面的内容为注释内容;7、某行的第6个字符位为非空格和非0字符时,则该行为上一行的续行,一个语句最多可有19个续行;8、某行的第7至72字符位为语句区,语句区内可以任加空格以求美观;9、某行的第73至80字符位为注释区,80字符位以后不能有内容。
Fortran77关系运算符:Fortran77逻辑运算符:.gt. 大于.ge. 天于或等于.lt. 小于.le. 小于或等于.eq. 等于.ne. 不等于.and. 逻辑与.or. 逻辑或.not. 逻辑非.eqv. 逻辑等.neqv. 逻辑不等运算符优先级由高到低顺序为:()→**→*或/→+或-→.gt.或.ge.或.lt.或.le.或.eq.或.ne.→.not.→.and.→.or.→.eqv.或.neqvFortran77语句:语句说明备注write(*,*) x1,x2 输出语句第一个*号是指输入输出文件设备号或其它设备机,第二个*号是指表控格式语句的行号,如不print *,x1,x2 输出语句*号是指表控格式语句的行号,如不指定则用默read *,x1,x2 输入语句*号是指表控格式语句的行号,如不指定则用默format(格式符) 控制输入输出格式语句。
注:1.在打印输出时,每一行第1个字符不显示,用来控制纵向走纸或显示行。
第1个字符作用空格正常回车换行0 回车并跳过1行1 换页+ 只回车不换行其它通常是回车换行2.输入小数时,自带小数点优先。
Fortran77数据格式
Fortran77数据格式§7.3格式输出格式输出语句由两部分组成:输出语句和输出格式语句。
输出语句的一般形式为:WRITE(*,L)输出表列或:PRINT L输出表列其中:*代表隐含的输出设备,L指输出格式语句的标号。
输出格式语句的一般形式:L FORMAT(1X,S)其中:L输出格式语句的标号,1X纵向走纸符,S输出格式,用不同的“格式编辑符”(简称“编辑符”)来实现指定的输出格式,各格式间用逗号相隔。
FORMAT语句又叫“格式语句”,是一个非执行语句,本身不产生任何操作,只是提供输入或输出的格式。
FORMAT语句可以出现在程序的任何地方(但必须在PROGRAM语句之后和END语句之前,如果在子程序中用FORMAT 语句,则应在子程序定义语句之后)。
系统按WRITE语句或PRINT语句中指定的语句标号找到相应的FORMAT语句,并按FORMAT语句所规定的格式对数据进行输出。
注意,PRINT语句中不能再用“*”,PRINT语句中的第一个标识符是语句标号而不是要打印输出的数据。
输出格式分两类基本格式7.3.1 1格式(又叫整数格式)一般形式:Iw或:Iw.m其中:w 一个数据占的位数宽度(又称“字段宽度”),m 需要输出的最少数字位数。
例1:WRITE (*,100)M,N100 FORMAT(1X,I4,I4)如果M=40,N=-12,则输出如下:¬¬40¬-12例2:WRITE (* , 100) I,J,K100 FORMAT(1X,I5.3,I6.3,I4)若I=1234,J=-24,K=24689 则输出为:¬1234¬¬¬-24 ****(1)数字在指定的区域内向右端靠齐,如果数字位数比指定的字段宽度w小,则左边补以空格。
负数的符号也包含在字段宽度内。
(2)如果数字的位数超过了规定的字段宽度w,则不输出有效数据,而在该字段宽度范围内充满“*”符号。
fortran 77 按位操作函数
fortran 77 按位操作函数摘要:I.前言A.介绍FORTRAN 77 语言B.阐述按位操作函数的重要性II.FORTRAN 77 中的按位操作函数A.按位与操作函数1.函数定义2.函数用途3.实例演示B.按位或操作函数1.函数定义2.函数用途3.实例演示C.按位异或操作函数1.函数定义2.函数用途3.实例演示D.按位非操作函数1.函数定义2.函数用途3.实例演示III.按位操作函数的应用场景A.数字加密和解密1.加密算法介绍2.解密算法介绍3.实例演示B.图像处理1.图像二值化2.图像阈值处理3.实例演示IV.结论A.总结按位操作函数的特点和用途B.展望FORTRAN 77 语言在未来的发展正文:I.前言A.介绍FORTRAN 77 语言FORTRAN(Formula Translation,公式翻译)是一种高级编程语言,主要用于数值计算和科学计算领域。
FORTRAN 77 是FORTRAN 语言的一个版本,于1977 年推出,增加了许多新的功能,提高了程序的可读性和可维护性。
B.阐述按位操作函数的重要性按位操作函数是计算机编程中一种基本的操作,通过对二进制数的每一位进行操作,可以实现许多高级功能,如加密、解密、图像处理等。
II.FORTRAN 77 中的按位操作函数A.按位与操作函数1.函数定义按位与操作函数用于对两个二进制数进行按位与操作,返回一个新的二进制数。
2.函数用途按位与操作函数可以用于实现数字加密、解密、逻辑运算等场景。
3.实例演示```fortraninteger :: a, b, resulta = 12345b = 67890result = AND(a, b)print *, result```B.按位或操作函数1.函数定义按位或操作函数用于对两个二进制数进行按位或操作,返回一个新的二进制数。
2.函数用途按位或操作函数可以用于实现数字加密、解密、逻辑运算等场景。
3.实例演示```fortraninteger :: a, b, resulta = 12345b = 67890result = OR(a, b)print *, result```C.按位异或操作函数1.函数定义按位异或操作函数用于对两个二进制数进行按位异或操作,返回一个新的二进制数。
Fortran77教程-4逻辑运算和选择结构
2
例:计算职工工资。正常工资rate (yuan/h),一周超过 40 hours时,超过部分按1.5 rate (yuan/h) 。
3
c
Payroll with overtime program payroll read(*,*) rate, hours if(hours.gt.40.0) then regpay=rate*40.0 ovtpay=1.5*rate*(hours-40.0) else regpay=rate*hours ovtpay=0.0 end if pay=regpay+ovtpay write(*,*) 'rate=', rate, ' hours=', hours write(*,*) 'regular pay=', regpay, ' overtime pay=', ovtpay write(*,*) 'total pay=', pay end
成绩分级 A : ≥80 B : ≥70且<80 C : ≥60且<70 D : <60
15
给a, b, c三个数排序,要求从小到大输出
16
read(*,*) a,b,c if(a.le.b) then else t=a a=b b=t end if if(b.le.c) then else t=b b=c c=t if(a.le.b) then else t=a a=b b=t end if end if write(*,*) a,b,c end
第一章 算法 第二章 计算机和计算机程序 第三章 Fortran语言程序设计初步 第四章 逻辑运算和选择结构 第五章 循环结构的实现 第六章 Fortran的数据结构 第七章 数据的输入、输出 第八章 常用算法的程序设计举例
Fortran77语句和函数
―― Fortran77 结构化程序设计
第一章 FORTRAN语言程序设计初步...................................................................................................1 1.1 FORTRAN语言发展概况..........................................................................................................1 1.2 简单的FORTRAN程序分析......................................................................................................1 1.3 FORTRAN 源程序的书写格式................................................................................................1 1.4 Fortran程序的编辑与运行 ........................................................................................................1 1.5 常 量 ..........................................................................................................................................1 1.5.1 整型常量 .........................................................................................................................1 1.5.2 实型常量 .........................................................................................................................1 1.6 变 量 ..........................................................................................................................................2 1.6.1 变量的概念 .....................................................................................................................2 1.6.2 变量名 .............................................................................................................................2 1.6.3 变量类型 .........................................................................................................................2 1.7 Fortran内部函数 ........................................................................................................................2 1.8 Fortran算术表达式 ....................................................................................................................3 1.8.1 算术运算符和运算优先级 .............................................................................................3 1.8.2 表达式运算中的类型问题 .............................................................................................3 1.8.3 运算的误差问题 .............................................................................................................3 1.9 赋值语句 ....................................................................................................................................3 1.10 简单输出语句 ..........................................................................................................................3 1.11 简单输入语句 ..........................................................................................................................4 1.12 PARAMETER语句 ..................................................................................................................5 1.13 END,STOP,PAUSE语句 ....................................................................................................5 总结 ...................................................................................................................................................5
fortran 77数组最大范围
Fortran 77是一种编程语言,广泛用于科学和工程计算。
在Fortran 77中,数组是一种非常重要的数据结构,它可以用来存储大量的数据,并进行高效的计算和处理。
然而,由于Fortran 77的一些限制,数组的最大范围受到一定的限制。
本文将对Fortran 77数组的最大范围进行探讨。
1. Fortran 77数组的定义和使用在Fortran 77中,数组是一种能够存储多个相同类型的数据元素的数据结构。
数组的定义方式如下:```fortranREAL A(100)```上面的代码定义了一个包含100个实数型元素的数组A。
数组元素的下标从1开始,所以A(1)表示数组A的第一个元素,A(2)表示数组A 的第二个元素,依此类推。
在Fortran 77中,可以使用数组来进行诸如向量和矩阵运算等各种数学运算。
2. Fortran 77数组的最大范围受限于编译器和硬件Fortran 77的标准没有明确规定数组的最大范围,而其实际的最大范围取决于所使用的编译器和硬件。
一般来说,现代的Fortran 77编译器都支持比较大的数组范围,但仍然存在一些限制。
不同的编译器对数组大小的限制可能有所不同。
一些老旧的或者较为简单的编译器可能对数组大小有比较严格的限制,而一些高级的优化编译器则可以支持更大范围的数组。
硬件的限制也会对数组的最大范围产生影响。
一些32位操作系统和计算机可能对数组的最大范围有限制,而64位操作系统和计算机则可以支持更大范围的数组。
3. 如何确定Fortran 77数组的最大范围要确定Fortran 77数组的最大范围,可以通过查询所使用的编译器的文档或者手册来获取相关信息。
一般来说,编译器的文档中会有对数组大小的限制进行说明,从而可以确定数组的最大范围。
另外,也可以通过简单的试验来确定数组的最大范围。
可以编写一个简单的Fortran 77程序,定义一个非常大的数组,然后尝试进行编译和运行。
如果程序能够成功编译和运行,那么就可以确定数组的最大范围;如果编译或者运行过程中出现错误,那么就说明数组的范围超出了限制。
fortran77的if语句
fortran77的if语句Fortran77是一种编程语言,也就是说,使用Fortran77编写的程序是靠计算机实现任务的工具。
在Fortran77中,if语句是一种程序中的条件语句,它用于在程序运行时根据某些先决条件来决定程序应该向哪个分支执行。
if语句通常指定了一个布尔表达式,这个表达式的值可以是真或假。
如果这个表达式为真,那么程序就会执行if语句中被标记为为真的代码段,否则就会执行if语句中被标记为为假的代码段。
在Fortran77中,if语句通常采用如下格式:IF (logical expression) label1, label2, label3其中,logical expression是一个布尔表达式,它可以是任意一个逻辑运算式,例如x>5, y<=10等等;label1, label2, label3是完全随意的标签,它们可以由程序员自己命名。
这些标签可以位于程序中的任意位置,用于指示程序在执行完if语句后应该继续执行哪些代码。
如果if语句后面的布尔表达式的值为真,程序就会根据标记在IF语句之后的位置,跳转到相应的标签处,并开始执行标签处的代码。
如果if语句后面的布尔表达式的值为假,程序将跳过这段if语句,并继续执行代码的下一段。
if语句还有一种特殊的形式,称为if-then语句。
在Fortran77中,if-then语句的格式如下:IF (logical expression) THENstatement block…ELSEstatement block…END IF其中,statement block表示一段代码段,它可能是单个语句,也可能是多个语句的组合。
在if-then语句中,如果If后面的布尔表达式为真,就会执行Then语句块中的所有语句,在Then语句块执行完毕后,程序会跳过Else语句块,并继续执行后面的代码;如果If后面的布尔表达式为假,就会跳过Then语句块,执行Else语句块中的所有语句。
Fortran77中文帮助教程
第一章 FORTRAN语言程序设计初步...................................................................................................1 1.1 FORTRAN语言发展概况..........................................................................................................1 1.2 简单的FORTRAN程序分析......................................................................................................1 1.3 FORTRAN 源程序的书写格式................................................................................................1 1.4 Fortran程序的编辑与运行 ........................................................................................................1 1.5 常 量 ..........................................................................................................................................1 1.5.1 整型常量 .........................................................................................................................1 1.5.2 实型常量 .........................................................................................................................1 1.6 变 量 ..........................................................................................................................................2 1.6.1 变量的概念 .....................................................................................................................2 1.6.2 变量名 .............................................................................................................................2 1.6.3 变量类型 .........................................................................................................................2 1.7 Fortran内部函数 ........................................................................................................................2 1.8 Fortran算术表达式 ....................................................................................................................3 1.8.1 算术运算符和运算优先级 .............................................................................................3 1.8.2 表达式运算中的类型问题 .............................................................................................3 1.8.3 运算的误差问题 .............................................................................................................3 1.9 赋值语句 ....................................................................................................................................3 1.10 简单输出语句 ..........................................................................................................................3 1.11 简单输入语句 ..........................................................................................................................4 1.12 PARAMETER语句 ..................................................................................................................5 1.13 END,STOP,PAUSE语句 ....................................................................................................5 总结 ...................................................................................................................................................5
Fortran77 程序基础
关系表达式是最简单的一种逻辑表达式,它的一般形式为: <关系运算量> <关系运算符> <关系运算量> 关系运算量可以是算术量,也可以是字符量。算术量可以是数值型常 量、数值型变量、数值函数,还可以是算术表达式。如:
A+B>3.5 40>=40 40<C COS(B)<=0.5 (M+N)*X==0.0 X-Z.NE.(Y+X) 等价于 等价于 等价于 等价于 等价于 等价于 A+B.GT.3.5 40.GE.40 40.LT.C COS(B).LE.0.5 (M+N)*X.EQ.0.0 X-Z.NE.(Y+X)
表控格式输入、输出 格式输入、输出
格式输入输出控制符
常用控制符 i,f,a 写法: nIw;nfw.d; naw 如: integer year, month, day write(*, "(3i8)") year, month, day 又如: real runoff write (*, "(f9.2)") runoff
(A.GT.B).AND.(A.NE.C) (X.LT.-1.0).OR.(X.GT.1.0) .NOT.((A+C)*D.LE.0.0) (A.GT.B).EQV.(C.LE.D) 等价于(A>B).AND.(A/=C) 等价于(X<-1.0).OR.(X>1.0) 等价于.NOT.((A+C)*D<=0.0) 等价于(A>B).EQV.(C<=D)
逻辑表达式的一般形式为: <逻辑运算量><逻辑运算符><逻辑运算量>[<逻辑运算符><逻辑运算量>„] 同关系表达式不同,一个逻辑表达式中可以包括多个逻辑运算符,例如逻辑 表达式“A.GE.10.0.AND.A+C.GT.B+D.OR..NOT..TRUE.”中包含 了.AND.、.OR.、.NOT.三个逻辑运算符。在逻辑表达式中除了有逻辑运算符 外,还可以有关系运算符和算术运算符。 下面是一些逻辑表达式的例子:
计算机程式Fortran 77 语言
電腦與 FORTRAN 語言
12
電腦
中央處理單元CPU(central processing unit) 主記憶體Main memory:電源關閉資料 不復記憶 次記憶體Secondary memory:電源關 閉資料可記憶著,硬式磁碟機…等 輸入與輸出裝置input/output devices: Keyboard;CRT screens and Printers
T Tw TRw TLw T 報表定位設定 TRw自現在位置向右移w個位置TLw自 現在位置向左移w個位置 / / 設定跳行( ) r(…,…) r 重覆次數 ' ' 'h1h2…hn'文數資料(h1h2…hn)直 接輸出
Fortran 程式範例
33
t11.for t12.for t13.for t14.for
• Ada、Basic、C、COBOL、Pascal、 Fortran…等。
電腦語言的一面觀
16
福傳語言Fortran
language:
數值分析Numerical analysis、 工程計算Technical calculations; 超級電腦supercomputers。
編譯compile:高階語言皆須轉換成
學生 熟悉書寫電腦的高階語言, 了解邏輯判別的應用技巧; 善用矩陣迴圈的強勁功能, 設計工程計算的應用程式。 老師 ?!%#※$¥!?。
課程實施方式
6
課堂實施方式
每週之單節課程在指定教室上課,每 週之雙節課於電子計算機中心電腦教 室上機操作;
『上自天文,下至地理;大自天體,
FORTRAN 77
算法与程序设计第一章算法1、程序:一组计算机指令。
2、设计算法是程序设计的核心。
3、算法:为解决一个问题而采取的方法和步骤。
4、为完成一件工作,包括设计算法和实现算法。
5、计算计算法包括数值运算算法和非数值运算算法。
*STEP(步)6、算法具有通用性、灵活性。
7、算法发的特性:有穷性、确定性、有零个或多个输入、有一个或多个输出、有效性。
8、表示一个算法:自然语言、流程图、结构化流程图(N-S图,盒图)、伪代码、PAD图。
9、三种基本结构:顺序结构、选择结构(判断结构)、循环结构或重复结构(包括当型循环和直到型循环)10、当型循环:先判断条件是否满足,再执行循环体。
直到型循环:先执行循环体,再判断是否满足条件。
(同一件事两循环的条件互逆)第二章计算机和计算机程序1、计算机的基本组成:运算器、存储器、控制器。
2、工作原理:二进制。
二进制基本原则是“逢二进一”。
3、位是存储信息的最小单位。
又称“比特”。
4、字节:又称“拜特”,计算机8个比特为一个字节。
5、十进制转化二进制:除2取余法。
6、低级语言:机器语言。
高级语言:符号语言和算法语言。
(FORTRAN是最早的算法语言。
)7、算法语言包括语法、语义、语用。
8、算法等式:算法+数据结构=程序算法+数据结构+结构化方法+语言工具=结构化程序9、编辑语言、翻译语言(汇编语言、编译语言、解释语言)。
软件分为系统软件和应用软件。
10、程序开发:定义阶段、开发阶段、使用维护阶段。
第三章初步设计1、“C”“*”注释行,解释说明。
主子程序之分。
2、常量:整形常量(不含小数点)、实型常量、双精度常量、复型常量、逻辑型常量、字符型常量。
3、实型常量:(一)小数形式:如12.9(二)指数形式:如12.3E-54、变量是指在程序运行期间其值是可以变化的量。
5、*TOTAL、Total、total都表示同一变量。
还有尽量做到“见名知义”。
6、“I-N规则”:即I到N开头字母的变量为整型。
fortran77给二维数组赋值方法
fortran77给二维数组赋值方法Fortran77中给二维数组赋值有多种方法,下面将介绍其中的两种。
第一种方法是使用循环逐个为数组元素赋值。
假设我们有一个二维数组`arr`,其大小为n行m列。
我们可以使用两个嵌套的循环来为数组的每个元素赋值。
具体代码如下所示:```fortranprogram fortran_array_assignmentimplicit noneinteger, parameter :: n = 3 ! 数组的行数integer, parameter :: m = 4 ! 数组的列数integer :: arr(n, m)integer :: i, j, value! 使用循环为数组赋值do i = 1, ndo j = 1, mvalue = (i-1)*m + j ! 这里可以根据需要自定义赋值规则arr(i, j) = valueend doend do! 打印数组的值print *, '二维数组arr的值为:'do i = 1, ndo j = 1, mprint '(i2)', arr(i, j)end doend doend program fortran_array_assignment```上述代码中,我们使用两个嵌套循环,从1到n和从1到m,分别遍历了数组的每个元素,并给它们赋上了特定的值。
第二种方法是使用数组初始化。
在Fortran77中,我们可以在声明数组的同时直接初始化数组元素的值。
具体代码如下所示:```fortranprogram fortran_array_assignmentimplicit noneinteger, parameter :: n = 3 ! 数组的行数integer, parameter :: m = 4 ! 数组的列数integer :: arr(n, m) = reshape((/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12/), shape(arr))! 打印数组的值print *, '二维数组arr的值为:'do i = 1, ndo j = 1, mprint '(i2)', arr(i, j)end doend doend program fortran_array_assignment```上述代码中,我们使用`reshape`函数将数组初始化的值`(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)`重新整形为大小为n行m列的二维数组`arr`。
Fortran77数值计算f2-2
Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X) Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machinereadable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only), or send email to directcustserv@ (outside North America).
The usefulness of Gaussian elimination with backsubstitution is primarily pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and triangular decomposition schemes such as will be discussed in the next section. Gaussian elimination reduces a matrix not all the way to the identity matrix, but only halfway, to a matrix whose components on the diagonal and above (say) remain nontrivial. Let us now see what advantages accrue. Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at each stage subtract away rows only below the then-current pivot element. When a 22 is the pivot element, for example, we divide the second row by its value (as before), but now use the pivot row to zero only a 32 and a42 , not a12 (see equation 2.1.1). Suppose, also, that we do only partial pivoting, never interchanging columns, so that the order of the unknowns never needs to be modified. Then, when we have done this for all the pivots, we will be left with a reduced equation that looks like this (in the case of a single right-hand side vector): a11 0 0 0 a12 a22 0 0 a13 a23 a33 0 x1 b1 a14 a24 x2 b2 · = a34 x3 b3 a44 x4 b4
fortran外部函数库[大全]
FORTRAN内部函数用FORTRAN解题往往要用到一些专门运算,如求三角函数sinx, cosx,对数lnx,指数ex,求一组数中最大数和最小数等。
FORTRAN提供了一些系统函数(称为内部函数)来完成这些运算。
程序设计者不必自己设计进行这些运算的语句组(即程序段或子程序),只需写出一个函数的名字以及给出一个或若干个自变量,就可以得到所需的值,例如:SQRT(4.0)求出4.0的平方根,SIN(2.0)求出2(弧度)的正弦值,EXP(3.5)求出e3.5,LOG(3.0)求出3,常用的函数如下表,FORTRAN77提供的全部函数明细见FORTRAN77内部函数。
函数名含义应用例子相当于数学上的运算ABS 求绝对值ABS(A) |a|EXP 指数运算EXP(A) e^aSIN 正弦值SIN(X) sin xCOS 余弦值COS(X) cos xASIN 反正弦ASIN(X) sin^(-1)aACOS 反余弦ACOS(X) cos-1aTAN 正切TAN(X) tan xA TAN 反正切A TAN(A) tan^(-1)aLOG 自然对数LOG(A) lna,或loge(a)LOG10 常用对数LOG10(A) log10aINT 取整INT(A) int(a),取a的整数部分MOD 求余MOD(A1,A2) a - int(a1/a2)*a2SIGN 求符号SIGN(A1,A2) |a1|(若a2>0) -|a1|(若a2<0)REAL 转换为实型REAL(I)MAX 求最大值MAX(A1,A2,A3) max(a1,a2,a3)MIN 求最小值 MIN(A1,A2,A3) min(a1,a2,a3)说明:(1)FORTRAN77将这些系统函数分别编成一个个子程序,组成函数库,存贮于外部介质(如磁盘)上。
在完成源程序的编译之后,用LINK命令实现连接,即将已翻译成二进制指令的目标程序与函数库连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).and routines psdes and ran4in§7.5.We use a notation like Z’3F800000’,which is consistent with the new FORTRAN-90standard,but you may need to change this to,e.g.,x’3f800000’,’3F800000’X,or even16#3F800000.In extremis,you can convert the hex values to decimal integers;but note that most compilers will require a negative decimal integer as the value of a hex constant with its high-order bit set.As already mentioned in§1.0,the notation a(1:m),in program comments and in the text,denotes the array element range a(1),a(2),...,a(m).Likewise,notations like b(2:7)or c(1:m,1:n)are to be interpreted as denoting ranges of array indices.CITED REFERENCES AND FURTHER READING:Kernighan,B.W.1978,The Elements of Programming Style(New Y ork:McGraw-Hill).[1]Y ourdon,E.1975,T echniques of Program Structure and Design(Englewood Cliffs,NJ:Prentice-Hall).[2]Meissner,L.P.and Organick,E.I.1980,Fortran77Featuring Structured Programming(Reading,MA:Addison-Wesley).[3]Hoare,C.A.R.1981,Communications of the ACM,vol.24,pp.75–83.Wirth,N.1983,Programming in Modula-2,3rd ed.(New Y ork:Springer-Verlag).[4]Stroustrup,B.1986,The C++Programming Language(Reading,MA:Addison-Wesley).[5]Borland International,Inc.1989,T urbo Pascal5.5Object-Oriented Programming Guide(Scotts Valley,CA:Borland International).[6]Meeus,J.1982,Astronomical Formulae for Calculators,2nd ed.,revised and enlarged(Rich-mond,VA:Willmann-Bell).[7]Hatcher,D.A.1984,Quarterly Journal of the Royal Astronomical Society,vol.25,pp.53–55;see also op.cit.1985,vol.26,pp.151–155,and1986,vol.27,pp.506–507.[8]1.2Error,Accuracy,and Stability Although we assume no prior training of the reader in formal numerical analysis,we will need to presume a common understanding of a few key concepts.We will define these briefly in this puters store numbers not with infinite precision but rather in some ap-proximation that can be packed into afixed number of bits(binary digits)or bytes(groups of8bits).Almost all computers allow the programmer a choice among several different such representations or data types.Data types can differ in the number of bits utilized(the wordlength),but also in the more fundamental respect of whether the stored number is represented infixed-point(also called integer)or floating-point(also called real)format.A number in integer representation is exact.Arithmetic between numbers in integer representation is also exact,with the provisos that(i)the answer is not outside the range of(usually,signed)integers that can be represented,and(ii)that division is interpreted as producing an integer result,throwing away any integer remainder.Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).======11001100110000110000100000110000100001101100110000000011110101000000000000000000000000000000000000000000000000000000000000000000000000000000000000(a)(b)(c)(d)(e)(f )1⁄231⁄410−73 + 10−7antissab i tc o u ldh a n to m ”s i g n b i t 8-b i t e x p o n e n t Figure 1.2.1.Floating point representations of numbers in a typical 32-bit (4-byte)format.(a)The number 1/2(note the bias in the exponent);(b)the number 3;(c)the number 1/4;(d)the number 10−7,represented to machine accuracy;(e)the same number 10−7,but shifted so asto have the sameexponent as the number 3;with this shifting,all signi ficance is lost and 10−7becomes zero;shifting toa common exponent must occur before two numbers can be added;(f)sum of the numbers 3+10−7,which equals 3to machine accuracy.Even though 10−7can be represented accurately by itself,it cannotaccurately be added to a much larger number.In floating-point representation,a number is represented internally by a sign bit s (interpreted as plus or minus),an exact integer exponent e ,and an exact positive integer mantissa M .Taken together these represent the numbers ×M ×B e −E (1.2.1)where B is the base of the representation (usually B =2,but sometimes B =16),and E is the bias of the exponent,a fixed integer constant for any given machine and representation.An example is shown in Figure 1.2.1.Several floating-point bit patterns can represent the same number.If B =2,for example,a mantissa with leading (high-order)zero bits can be left-shifted,i.e.,multiplied by a power of 2,if the exponent is decreased by a compensating amount.Bit patterns that are “as left-shifted as they can be ”are termed normalized .Most computers always produce normalized results,since these don ’t waste any bits of the mantissa and thus allow a greater accuracy of the representation.Since the high-order bit of a properly normalized mantissa (when B =2)is always one,some computers don ’t store this bit at all,giving one extra bit of signi ficance.Arithmetic among numbers in floating-point representation is not exact,even if the operands happen to be exactly represented (i.e.,have exact values in the form of equation 1.2.1).For example,two floating numbers are added by first right-shifting (dividing by two)the mantissa of the smaller (in magnitude)one,simultaneously increasing its exponent,until the two operands have the same exponent.Low-order (least signi ficant)bits of the smaller operand are lost by this shifting.If the two operands differ too greatly in magnitude,then the smaller operand is effectively replaced by zero,since it is right-shifted to oblivion.The smallest (in magnitude)floating-point number which,when added to the floating-point number 1.0,produces a floating-point result different from 1.0is termed the machine accuracy m .A typical computer with B =2and a 32-bit wordlength has m around 3×10−8.(A more detailed discussion of machineSample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).characteristics,and a program to determine them,is given in§20.1.)Roughly speaking,the machine accuracy m is the fractional accuracy to whichfloating-point numbers are represented,corresponding to a change of one in the least significant bit of the mantissa.Pretty much any arithmetic operation amongfloating numbers should be thought of as introducing an additional fractional error of at least m.This type of error is called roundoff error.It is important to understand that m is not the smallestfloating-point number that can be represented on a machine.That number depends on how many bits there are in the exponent,while m depends on how many bits there are in the mantissa.Roundoff errors accumulate with increasing amounts of calculation.If,in the course of obtaining a calculated value,you perform N such arithmetic operations,you might be so lucky as to have a total roundoff error on the order of√N m,if the roundoff errors come in randomly up or down.(The square root comes from a random-walk.)However,this estimate can be very badly off the mark for two reasons:(i)It very frequently happens that the regularities of your calculation,or the peculiarities of your computer,cause the roundoff errors to accumulate preferentially in one direction.In this case the total will be of order N m.(ii)Some especially unfavorable occurrences can vastly increase the roundoff error of single operations.Generally these can be traced to the subtraction of two very nearly equal numbers,giving a result whose only significant bits are those(few)low-order ones in which the operands differed.You might think that such a“coincidental”subtraction is unlikely to occur.Not always so.Some mathematical expressions magnify its probability of occurrence tremendously.For example,in the familiar formula for the solution of a quadratic equation,x=−b+√b2−4ac(1.2.2)the addition becomes delicate and roundoff-prone whenever ac b2.(In§5.6we will learn how to avoid the problem in this particular case.)Roundoff error is a characteristic of computer hardware.There is another,different,kind of error that is a characteristic of the program or algorithm used,independent of the hardware on which the program is executed.Many numerical algorithms compute“discrete”approximations to some desired“continuous”quan-tity.For example,an integral is evaluated numerically by computing a function at a discrete set of points,rather than at“every”point.Or,a function may be evaluated by summing afinite number of leading terms in its infinite series,rather than all infinity terms.In cases like this,there is an adjustable parameter,e.g.,the number of points or of terms,such that the“true”answer is obtained only when that parameter goes to infinity.Any practical calculation is done with afinite,but sufficiently large,choice of that parameter.The discrepancy between the true answer and the answer obtained in a practical calculation is called the truncation error.Truncation error would persist even on a hypothetical,“perfect”computer that had an infinitely accurate representation and no roundoff error.As a general rule there is not much that a programmer can do about roundoff error,other than to choose algorithms that do not magnify it unnecessarily (see discussion of“stability”below).Truncation error,on the other hand,is entirely under the programmer’s control.In fact,it is only a slight exaggeration to saySample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)Copyright (C) 1986-1992 by Cambridge University Press.Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website or call 1-800-872-7423 (North America only),or send email to directcustserv@ (outside North America).that clever minimization of truncation error is practically the entire content of thefield of numerical analysis!Most of the time,truncation error and roundoff error do not strongly interact with one another.A calculation can be imagined as having,first,the truncation error that it would have if run on an infinite-precision computer,“plus”the roundoff error associated with the number of operations performed.Sometimes,however,an otherwise attractive method can be unstable.This means that any roundoff error that becomes“mixed into”the calculation at an early stage is successively magnified until it comes to swamp the true answer.An unstable method would be useful on a hypothetical,perfect computer;but in this imperfect world it is necessary for us to require that algorithms be stable—or if unstable that we use them with great caution.Here is a simple,if somewhat artificial,example of an unstable algorithm:Suppose that it is desired to calculate all integer powers of the so-called“Golden Mean,”the number given byφ≡√5−12≈0.61803398(1.2.3)It turns out(you can easily verify)that the powersφn satisfy a simple recursion relation,φn+1=φn−1−φn(1.2.4)Thus,knowing thefirst two valuesφ0=1andφ1=0.61803398,we can successively apply(1.2.4)performing only a single subtraction,rather than a slower multiplication byφ,at each stage.Unfortunately,the recurrence(1.2.4)also has another solution,namely the value−12(√5+1).Since the recurrence is linear,and since this undesired solution has magnitude greater than unity,any small admixture of it introduced by roundoff errors will grow exponentially.On a typical machine with32-bit wordlength,(1.2.4)starts to give completely wrong answers by about n=16,at which pointφn is down to only10−4.The recurrence(1.2.4)is unstable,and cannot be used for the purpose stated.We will encounter the question of stability in many more sophisticated guises,later in this book.CITED REFERENCES AND FURTHER READING:Stoer,J.,and Bulirsch,R.1980,Introduction to Numerical Analysis(New Y ork:Springer-Verlag),Chapter1.Kahaner,D.,Moler,C.,and Nash,S.1989,Numerical Methods and Software(Englewood Cliffs,NJ:Prentice Hall),Chapter2.Johnson,L.W.,and Riess,R.D.1982,Numerical Analysis,2nd ed.(Reading,MA:Addison-Wesley),§1.3.Wilkinson,J.H.1964,Rounding Errors in Algebraic Processes(Englewood Cliffs,NJ:Prentice-Hall).。