第1课时 一次函数与一元一次方程、不等式

合集下载

一次函数与一元一次方程不等式

一次函数与一元一次方程不等式

数学集体备课教案
不等式ax+b>c的解集就是使函数y =ax+b 的函数值大于c的对应的自变量取值范围;
不等式ax+b<c的解集就是使函数y =ax+b 的函数值小于c的对应的自变量取值范围.
三、互学展示
例2 画出函数y=-3x+6的图象,结合图象求:
(1)不等式-3x+6>0 和-3x+6<0的解集;
(2)当x取何值时,y<3?
做一做
如图,已知直线y=kx+b与x轴交于点(- 4,0),则当y>0时,x的取值范围是()
归纳总结
求kx+b>0(或<0)(k≠0)的解集,从“函数值”看y=kx+b的值大于(或小于)0时,x的取值范围
求kx+b>0(或<0)(k≠0)的解集, 从“函数图象”看确定直线y=kx+b在x轴上方(或下方)的图象所对应的x 取值范围
四、帮学提升
1.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为 .
2.学习之友p60第2题学生自行回答
组内练习,组长帮助组员解决问题
x −3
y。

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式

16.如图,在平面直角坐标系 xOy 中,一次函数 y=kx+b 的图象与 x 轴 4 交于点 A(-3,0),与 y 轴交于点 B,且与正比例函数 y=3x 的图象的交 点为 C(m,4). (1)求一次函数 y=kx+b 的解析式; (2)若点 D 在第二象限,△DAB 是以 AB 为直角边的等腰直角三角形,求 点 D 的坐标.
21 解: 图略. (1)当 x>9 时, y1>0 (2)当 x≥-1 时, y2≤3 (3)当 x≥ 8 时, y1≥y2
10.已知一次函数y=-x+3,当0≤x≤3时,函数y的最大值是(
) B
A.0 B.3
C.-3 D.无法确定 11.(2015· 荆州)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横 坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确 的是( ) A
8.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+ b>ax+3的解集为_______ x >1 .
2 9.已知函数 y1=3x-6,y2=-2x+1.利用函数图象解答下列问题: (1)当自变量 x 取何值时,y1>0? (2)当 x 取何值时,y2≤3? (3)当 x 取何值时,y1≥y2?
1 解:直线 AB 为:y=2x+1.由 y=2x+1=0 得 x=-2,∴kx+b>0, 1 故解集为 x>-2
15.如图,直线l是一次函数y=kx+b的图象,点A,B在直线l上.根据
图象回答下列问题:
(1)写出方程kx+b=0的解; (2)写出不等式kx+b>1的解集;
(3)若直线l上的点P(m,n)在线段AB上移动,则m,n应如何取值.
3.下列说法错误的是( D ) A.方程 7x+ 3=0 的解,就是直线 y=7x+ 3与 x 轴交点的横坐标 B. 方程 2x+3=4x+7 的解, 就是直线 y=2x+3 与直线 y=4x+7 交点的 横坐标 C.方程 7x+ 3=0 的解,就是一次函数 y=7x+ 3当函数值为 0 时自变 量的值 D.方程 7x+ 3=0 的解,就是直线 y=7x+ 3与 y 轴交点的纵坐标 4.已知关于 x 的方程 mx+n=0 的解为 x=-3,则直线 y=mx+n 与 x (-3,0) . 轴的交点坐标是_____________

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

04 综合练习与提高
综合练习题一
总结词
理解一次函数与方程、不等式之间的 关系
详细描述
通过解决一系列的练习题,理解一次 函数与方程、不等式之间的关系,掌 握将实际问题转化为数学模型的方法 。
综合练习题二
总结词
掌握一次函数的图像和性质
详细描述
通过绘制一次函数的图像,理解函数的增减性、截距等性质,掌握利用图像解决实际问题的技巧。
一次函数与不等式的实际应用
一次函数与不等式在实际生活中有着 广泛的应用。例如,在购物时,我们 可以通过比较商品的价格和折扣率来 选择最划算的购买方案,这需要用到 一元一次不等式的知识。
另外,在生产活动中,我们可以通过 控制生产成本和产量之间的关系来制 定最优的生产计划,这也需要用到一 元一次不等式R。
02 一次函数与方程
一次函数与一元一次方程的关系
一次函数是形如$y = kx + b$的函数,其中$k$和$b$是常数, 且$k neq 0$。一元一次方程是只含有一个变量的方程,其形式 为$ax + b = 0$,其中$a$和$b$是常数,且$a neq 0$。
一次函数与方程、不等式(共15张 ppt)
目录
• 一次函数的基本概念 • 一次函数与方程 • 一次函数与不等式 • 综合练习与提高 • 总结与回顾
01 一次函数的基本概念
一次函数的定义
一次函数
一般形式为y=kx+b(k≠0),其 中x为自变量,y为因变量,b为截 距,k为斜率。
线性函数
特殊的一次函数,形式为y=kx+b (k≠0,b=0)。
一次函数在实际问题中的应用
一次函数可以用于解决实际问题,如路程、速度和时间问题、价格和销售问题等。

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式

19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式基础题知识点1 一次函数与一元一次方程1.(1)一元一次方程-2x+4=0的解是;(2)函数y=-2x+4,当x=时,函数值y=0;(3)直线y=-2x+4与x轴的交点坐标是;(4)由上述问题可知,一元一次方程ax+b=0的解就是一次函数y=ax+b当y=0时所对应的的值;从图象上看,就是一次函数y=ax+b的图象与轴交点的.2.已知关于x的方程mx+n=0的解为x=-3,则直线y=mx+n与x轴的交点坐标是.3.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.4.如图所示,已知直线y=ax-b,则关于x的方程ax-b=1的解是.5.若一次函数y=ax+b(a,b为常数且a≠0)中x 与y的部分对应值如下表,则方程ax+b=0的解是( )x -2 -1 0 1 2 3y 6 4 2 0 -2 -4C.x=2 D.x=36.已知方程kx+b=0的解是x=3,则函数y=kx +b的图象可能是( )A B C D7.已知关于x的方程kx+b=3的解为x=7,则直线y=kx+b的图象一定过点( )A.(3,0) B.(7,0)C.(3,7) D.(7,3)知识点2 一次函数与一元一次不等式(组)8.如图,直线y=kx+3经过点(2,0),(0,3),则关于x的不等式kx+3>0的解集是( ) A.x>2B.x<2C.x≥2D.x≤29.(2019·遵义)如图所示,直线l1:y=32x+6与直线l2:y=-52x-2交于点P(-2,3),则不等式32x+6>-52x-2的解集是( )A.x>-2B.x≥-2C.x<-2D.x≤-210.如图,已知一次函数y=kx+b的图象分别与x 轴、y轴交于点(2,0)、点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②当x>2时,y<0;③当x<0时,y<3.其中正确的是( )A.①②B.①③C.②③D.①②③11.(2020·遵义)如图,直线y=kx+b(k,b是常数,k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.12.已知函数y =kx +b 的图象如图所示,利用函数图象回答:(1)当x 取何值时,kx +b =0? (2)当x 取何值时,kx +b =1.5? (3)当x 取何值时,kx +b <0? (4)当x 取何值时,0.5<kx +b <2.5?中档题13.如图是直线y =x -5的图象,点P(2,m)在该直线的下方,则m 的取值范围是( )A .m >-3B .m >-1C .m >0D .m <-314.(2020·湘潭)如图,直线y =kx +b(k <0)经过点P(1,1),当kx +b ≥x 时,则x 的取值范围为( )A .x ≤1B .x ≥1C .x <1D .x >115.(2019·娄底)如图,直线y =x +b 和y =kx +2与x 轴分别交于点A(-2,0)、点B(3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0的解集为( )A .x <-2B .x >3C .x <-2或x >3D .-2<x <316.已知一次函数y =-2x +4,完成下列问题: (1)在所给的平面直角坐标系中画出此函数的图象. (2)根据函数图象回答:①方程-2x +4=0的解是 .②当x 时,y >2.③当-4≤y ≤0时,相应x 的取值范围是 .17.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y =k 1x +b 1和y =kx +b 的图象,分别与x 轴交于点A ,B ,两直线交于点C.已知点A(-1,0),B(2,0),观察图象并回答下列问题:(1)关于x 的方程k 1x +b 1=0的解是 ,关于x 的不等式kx +b <0的解集是 .(2)直接写出关于x 的不等式组⎩⎪⎨⎪⎧kx +b >0,k 1x +b 1>0的解集.(3)若点C(1,3),求关于x 的不等式k 1x +b 1>kx +b 的解集和△ABC 的面积.答案1.(1)x=2;(2)2;(3)(2,0);(4)x;x 横坐标.2.(-3,0).3.x=2.4.x=4.5.A6.C7.D8.B9.A10.A11.x<4.12.解:(1)x=-0.5.(2)x=1.(3)x<-0.5.(4)0<x<2. 13.D14.A15.D16.(1)(2)①x=2.②x<1.③2≤x≤4.17.解:(1)x=-1,x>2.(2)-1<x<2.(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x >1.∵AB=3,∴S△ABC=12AB·y C=12×3×3=92.。

初中数学八年级下册《一次函数与一元一次方程、不等式》优秀教学设计

初中数学八年级下册《一次函数与一元一次方程、不等式》优秀教学设计

19.2.3一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式【学习目标】1.理解一次函数与一元一次方程、一元一次不等式之间的关系,会根据一次函数的图象解决一元一次方程和一元一次不等式的求解问题.2.学习用函数的观点看待方程及不等式的方法,初步感受用全面的观点处理局部问题的思想.【学习重点】用一次函数解一元一次方程、一元一次不等式.【学习难点】理解一次函数与一元一次方程、一元一次不等式之间的关系.情景导入生成问题1.已知直线经过点A(2,4)和点B(0,-2),那么这条直线的解析式是( )A.y=-2x+3B.y=3x-2C.y=-3x+2 D.y=2x-32.一个y关于x的函数同时满足两个条件:①图象过点(2,1);②当x>0时,y随x 的增大而减小,这个函数的解析式为(写出一个即可)自学互研生成能力一.阅读教材P96思考,完成下列内容:1.一元一次方程kx+b=0的解就是一次函数的图象与轴交点的坐标.2.已知一次函数y=ax+3与x轴的交点的横坐标为-4,则一元一次方程ax+3=0的解为.二.合作探究一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0 D.x=3归纳:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标的值.三.自主探究阅读教材P96思考,完成下列问题:1.一次函数与一元一次不等式的关系:一元一次不等式kx+b>0(或kx+b<0)的解集,就是一次函数的图象在x轴方(或方)相应的自变量x的取值范围.2.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b≤0的解集是.四.合作探究对照图象,请回答下列问题:(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?解:(1)由图象可知,直线y=2x-5与直线y=-x+1的交点的横坐标是,所以当x取时,2x-5=-x+1;(2)由图象可知,当时,直线y=2x-5落在直线y=-x+1的上方,即2x-5>-x+1;(3)由图象可知,当时,直线y=2x-5落在直线y=-x+1的下方,即2x-5<-x+1.五.合作探究A、B两城相距600 km,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中,y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时,两车相遇,求乙车车速.解:(1)(2)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.检测反馈达成目标一.当堂检测1.一次函数y=2x-4的图象与x轴的交点坐标为(2,0),则一元一次不等式2x-4≤0的解集应是( )A.x≤2 B.x<2 C.x≥2 D.x>22.函数y=kx+b,当x>5时,y<0;当x<5时,y>0,则y=kx+b的图象必经过点( ) A.(0,5) B.(5,0) C.(-5,0) D.(0,-5)3.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围为.二课后检测见《长江作业》课后反思查漏补缺1.我的收获:------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- 2.我的困惑:------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------。

一次函数与一元一次方程,不等式

一次函数与一元一次方程,不等式

19.2.3 一次函数与方程、不等式龙湖中学郭燕一、教学目标1.知识与技能:①使学生理解并掌握一次函数与一元一次方程,一元一次不等式的相互联系。

②是学生能初步运用函数的图像来解释一元一次方程、一元一次不等式的解集,并通过函数图像来回答一元一次方程、一元一次不等式的解集。

2.过程与方法:通过对一次函数与一元一次方程,一元一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力。

3.情感态度与价值观:探究活动中,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。

二.教学重难点:1.重点:①理解一次方程,一元一次不等式与一次函数的转化关系及本质联系。

②掌握用图像求解方程不等式的方法。

2.难点:根据一次函数的图像求解方程和不等式三.教学过程:1.探究一次函数与方程的关系问题1(1)解方程2x-4=0(2)当自变量x取何值时,函数y=2x-4的值为0?(3)画出函数y=2x-4的图像,并确定它与x轴的交点坐标。

(4)第(1)(2)问题有何关系?(1)(3)呢?[从上述问题中,你能发现一次函数与一元一次方程的关系吗?]问题(2)(3)可以看作是同一个问题的两种形式,问题(1)(2)是从数的角度看,问题(3)是从形的角度看。

学生按要求探究,并总结结论从数的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的y为0时x 的值。

从形的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的图像与x轴交点的横坐标。

2.新知构建①填写表格,使得以下的一元一次方程问题与一次函数问题是同一问题。

你能从函数的角度解方程2x+1=3吗?学生独立思考后,画出一次函数y=2x+1的图像,从数的角度,y=2x+1的函数值为3时,自变量x 的值是这个方程的解;从图像上可以看出,直线y=2x+1上纵坐标为3的点的横坐标为1,是这个方程的解。

任何以x 为未知数的一元一次方程,都可以化成ax+b=0(a,b 为常数,a ≠0)的形式,因此,方程2x+1=3的解,也可以看成直线y=2x-2与x 轴交点的横坐标。

第1讲-用一次函数看方程、不等式

第1讲-用一次函数看方程、不等式

y2 1 1 O -2 -1x第1讲-用一次函数看方程、不等式序号知识点典型练习1从函数的角度看解一元一次方程:以x 为未知数的一元一次方程可以变形为ax +b =0(a ≠0)的形式,解一元一次方程相当于在一次函数y =ax +b 的函数值为0时,求自变量x 的值.1.若关于x 的方程kx +b =0的解是x =2,则一次函数y =kx +b 与x 轴的交点坐标是 .2从函数的角度看解一元一次不等式:以x 为未知数的一元一次不等式可以变形为ax +b >0或ax +b <0(a ≠0)的形式,解一元一次不等式相当于在一次函数y =ax+b 的值大于0或小于0时,求自变量x 的取值范围.一般地,已知函数值范围求自变量x 的范围或者已知自变量范围求函数值范围时,可以通过观察图象得到(数形结合). 2.如图,一次函数y =kx +b 的图象与x 轴交于点A (-1,0)则关于x 的不等式kx +b >0的解集是 .3从函数的角度看解二元一次方程组: 由含有未知数x 和y 的两个二元一次方程组成的二元一次方程组对应两个一次函数,也对应两条直线.从“数”的角度看,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,相当于确定两条相应的直线的交点坐标. 3.已知直线y =k 1x +b 1与y =k 2x +b 2的交点坐标为(1,4),则方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为 .4.(1)直线y =x +3与x 轴的交点坐标 ,所以相应的方程x +3=0的解是 .(2)如图,直线y =kx +b :①关于x 的方程kx +b =0的解是 , ②关于x 的不等式kx +b <0的解集是 ; ③当x <0时,函数值y 的取值范围是 .5.若关于x 的方程kx +b =0的解是x =-4,则一次函数y =kx +b 的图象与x 轴的交点坐标为 .-21O yx-3Oxy -6 y 1=kx yy 2=ax+bx -2O -4 P6.已知一次函数y =kx +b 的图象,如图所示,当x <0时,y 的取值范围是( ).A .y >0B .y <0C .-2<y <0D .y <-27.如图,已知一次函数图象y =-2x -6,利用图象回答: (1)不等式-2x -6>0解集是 ,不等式-2x -6<0解集是 ;(2)函数图象与坐标轴围成的三角形的面积为 ; (3)当y =-4时,则x = ,当y =2时,则x = ;(4)如果y 的取值范围-4<y ≤2,则x 的取值范围 ;(5)如果x 的取值范围-3≤x ≤3,则y 的最大值是 ,最小值是 ; (6)若直线y =3x +4和直线y =-2x -6交于点A ,则点A 的坐标 .8.如图所示,已知直线y 2=ax +b 和直线y 1=kx 的图象交于点P ,利用图象回答:(1)关于二元一次方程组⎩⎨⎧y =ax+b ,y =kx的解是 ,则两直线的交点坐标是 ;(2)当y 2<y 1时,则x 的取值范围是 ; (3)当ax +b ≥kx 时,则x 的取值范围是 ; (4)当ax ≤kx -b 时,则x 的取值范围是 .9.(15海珠期末)直线y =x +1与直线y =-2x +a 的交点在第一象限,则a 的取值可以是( ). A .2B .1C .0D .-110.(15一中期末)如图,已知函数y1=3x+b和y2=ax-3的图象交于点P(-2,-5),则不等式3x+b>ax-3的解集为.11.(13太原期末改编)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b),直线y2与x轴交于点A(4,0).(1)求b的值并直接写出关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)求直线l2的表达式;(3)判断直线l3:y3=nx+m是否也经过点P?请说明理由.(4)若y3>y2>0,则x的取值范围是________________.12.已知一次函数y =kx+b的图象,如图所示,当y<0时,x的取值范围是().A.x>0B.x<0C.0<x<1D.x<113.(11广州)当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9 C.y>9D.y≤9 14.(15海珠期末)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是().A.B.C.D.15.如图,1l反映了某公司的销售收入与销售量的关系,2l反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量().A.小于3t B.大于3t C.小于4t D.大于4t第14题第15题16.(16天河期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确的结论的个是().A.4个B.3个C.2个D.1个-2yO1x17.(16南充)小朱和爸爸从家步行去公园,爸爸先出发一直匀速前行,小朱后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小朱所走路程s与时间t的函数关系式;(2)小朱出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小朱希望比爸爸早20min到达公园,则小朱在步行过程中停留的时间需作怎样的调整?18.(15衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,小卓卓和小越越相约到杭州市的某游乐园游玩,小卓卓乘私家车从衢州出发1小时后,小越越乘坐高铁从衢州出发,先到杭州火车站,然后再转出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当小越越达到杭州火车东站时,小卓卓距离游乐园还有多少千米?(3)若小卓卓要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?y (千米)游乐园t(小时)19.(14海珠期末)今年龙舟赛甲乙两队同时出发,其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在出发2.5小时到达终点.(假设乙队速度不变)(1)写出比赛全程多少千米?谁先到达终点?乙队花多少时间到达终点? (2)求乙队何时追上甲队?(3)求在比赛过程中,甲乙两队何时相距最远?20.(1)(12恩施州)如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式组0<kx +b<13x 的解集为 .(1) (2)(2)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式组12x >kx +b >-2的解集为 .21.(15广雅期末)若直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是( ). A .m >-1 B .m <1C .-1<m <1D .-1≤m ≤1yA 2 1 xB 0 -1 -2 -3 -2-1 1 2 322.依照题意,解答下列问题:(1)如图①,已知直线y =2x +4与x 轴,y 轴分别交于A ,B 两点,请在图①中画出直线y =-12x +4,并探究两函数的图象与x 轴围成的三角形的特点;(2)如图②,已知点M 和点N 的坐标分别为(3,4)和(-2,-1),问在y 轴上是否存在一点P ,使△MNP 是以点M 或点N 为直角顶点的直角三角形?若存在,请求出P 的坐标;若不存在,请说明理由.y xB AO(图①))yx MN O(图②))第一讲-参考答案1.(2,0) 2.x >-13.⎩⎨⎧x =1,y =44.(1)(-3,0),x =-3; (2)①x =-2;②x <-2;③y <1. 5.(-4,0)6.D 7.(1)x <-3,x >-3; (2)9;(3)-1,-4; (4)-4≤x <-1;(5)0,-12;(6)(-2,-2).8.(1)⎩⎨⎧x =-4,y =-2,(-4,-2);(2)x >-4;(3)x ≤-4;(4)x ≥-4.9.A10.x >-211.(1)b =2,12x y =⎧⎨=⎩; (2)2833y x =-+;(3)由(2)可知m =23-,n =83,∴ y =83x -23,当x =1时,y =2.∴直线l 3:y =nx +m 也经过点P . (4)1<x <4.12.D 13.B 14.A 15.D 16.D17.解:(1)s =50(020)1000(2030)50500(3060)t t t t t ⎧⎪⎨⎪-⎩≤≤<≤<≤;(2)设小朱的爸爸所走的路程s 与步行时间t 的函数关系式为:s =kt +b ,则251000250k b b +=⎧⎨=⎩,解得30250k b =⎧⎨=⎩,则小朱的爸爸所走的路程与步行时间的关系式为:s =30t +250, 当50t -500=30t +250,即t =37.5min 时,小朱与爸爸第三次相遇; (3)30t +250=2500,解得,t =75,则小朱的爸爸到达公园需要75min , ∵小朱到达公园需要的时间是60min ,∴小朱希望比爸爸早20min 到达公园,则小朱在步行过程中停留的时间需减少5min .18.解:(1)v =2402-1=240(km/h ).答:高铁的平均速度是每小时240千米; (2)设乘坐高铁时路程与时间的关系式为y =kt +b ,当t =1时,y =0,当t =2时,y =240,得:⎩⎨⎧0=k +b 240=2k +b ,解得:⎩⎨⎧k =240b =-240,故把t =1.5代入y =240t -240,得y =120, 设乘坐私家车时路程与时间的关系式为y =at , 当t =1.5,y =120,得a =80,∴y =80t , 当t =2,y =160,216-160=56(千米), ∴小卓卓距离游乐园还有56千米; (3)把y =216代入y =80t ,得t =2.7,2.7-1860=2.4(小时),216 2.4=90(千米/时).∴小卓卓要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.19.解:(1)35千米;乙;3516小时; (2)对于乙队,x =1时,y =16,所以y =16x ,对于甲队,出发1小时后,设y 与x 关系为y =kx +b ,把x =1,y =20和x =2.5,y =35代入,得⎩⎨⎧20=k +b35=2.5k +b,则y =10x +10.联立方程组,⎩⎨⎧y =16x y =10x +10,得x =53,即:出发1小时40分钟后,乙队追上甲队; (3)1小时之内,两队相距最远距离是4千米,即当x =3516时,y 甲=10×3516+10=31.875,y 乙=35,y 甲-y 乙=35-31.875=3.125; 当x =1时,y 甲-y 乙=20-16=4;∵3.125<4,所以比赛过程中,甲、乙两队在出发后1小时相距最远.20.(1)3<x <6;(2)-1<x <2. 21.C22.(1)图略;用勾股定理的逆定理可以证明两函数与x 轴围成的三角形是一个直角三角形; (2)设P (0,y ),①当PM为斜边时,PN2+MN2=PM2,即(-2)2+(-1-y)2+25+25=32+(4-y)2,解得:y=-3,即P为(0,-3);②当PN为斜边时,PM2+MN2=PN2,即32+(4-y)2+25+25=(-2)2+(-1-y)2,解得:y=7,即P为(0,7);综上所述,在y轴上存在一点P,使△MNP是直角三角形,P为(0,-3)或(0,7).。

【学案】 一次函数与一元一次方程、不等式

【学案】 一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式一、知识点导学:1.画出函数y =x +2的图像,观察图像回答问题 ①方程 20x +=的解为 ②不等式20x +>的解集为 ③不等式20x +<的解集为3.由于任何一个一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为一次函数y =ax +b (a ≠0)。

当 时,求 的值。

从图象上看,相当于已知 ,确定 的值4.解一元一次不等式可以看作:当一次函数的值大(小)于0时,求5.一次函数y=ax+b (a ≠0)的图像与x 轴交点的 就是一元一次方程ax+b=0(a ≠0)的解6.一次函数y=ax+b (a ≠0)位于x 轴 方的图像对应的x 的 就是一元一次不等式ax+b>0(a ≠0)的解集7.一次函数y=ax+b (a ≠0)位于x 轴 方的图像对应的 的取值范围就是一元一次不等式ax+b<0(a ≠0)的解集二、范例点睛:例1.如图是一个一次函数的图像,请根据图像回答问题(1)当x =0时,y = ,当y =0时,x =(2)写出直线对应的一次函数的表达式 (3)一元一次方程1202x +=和一次函数122y x =+的联系(4)一元一次不等式1202x +>和一次函数122y x =+的联系(5)一元一次不等式1202x +<和一次函数122y x =+的联系例2.画出y=-3x+3的图象,利用图像求①方程-3x+3=0的解是 ②不等式-3x+3>0的解集是 ③不等式-3x+3<0的解集是三、思考与感悟:1.在一次函数35-=x y 中,若0=x ,则=y ;若2=y ,则=x2.若点P (a ,4)在函数3+=x y 的图象上,则=a3.利用函数图象解一元一次方程:412+-=+x x4.如图所示,是某学校一电热淋浴器水箱的水量y (升)与供水时间x (分)的函数关系。

(1)求y 与x 的函数解析式(2)在(1)的条件下,经过 分钟水箱有水70升 5.一水池现有水20米3,进水管以5米3/时的速度向水池中注水 同时另一排水管以6米3/时的速度向水池外排水(1)写出水池的蓄水量V (米3)与时间t (时)之间的函数解析式 (2)经过 小时水池的水被排空6.如图,是一次函数312y x =-+的图像,观察图像思考:当0=y 时,=x 方程3120x -+=的解为 不等式3120x -+>解集为 不等式3120x -+<解集为四、练习与测试:1.在一次函数23y x =-中,若0=x ,则=y 若2=y ,则=x2.当自变量x 时,函数32y x =+的值大于0;当x 时,函数32y x =+的值小于3.已知函数36y x =-+,当x 时,4>y ;当x 时,2-≤y4.如图,直线l 是一次函数b kx y +=的图象,观察图象,可知(1)=b =k (2)当2>y 时,x 5.已知函数y 1=2x-4与y 2=-2x+2,画出图像并观察图象回答问题 (1)x 时,2x-4>0 (2)x 时,-2x+2>0 (3)x 时,2x-4<0与-2x+2<0同时成立(4)函数y 1=2x-4与y 2 =-2x+2的图象与X 轴所围成的三角形的面积为 6.某用煤单位有煤m 吨,每天烧煤n 吨,已知烧煤3天后余煤102吨,烧煤8天后余煤72吨。

一次函数与方程、不等式教案

一次函数与方程、不等式教案

《19.2 一次函数》教学设计19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式教材分析本节内容是在学生已有对一元一次方程、一元一次不等式的认识之后,从变化和对应的角度,对一次函数进行更深入的讨论,是站在更高起点上的动态分析.通过讨论一次函数与一元一次方程及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用.备课素材一、新知导入【复习导入】(1)按照“列表——描点——连线”的步骤画出一次函数y=2x-3的图象;(2)观察一次函数y=2x-3的图象与x轴的交点,指出当y=0时,自变量x的取值是多少?它与方程2x-3=0的解相同吗?它们之间有什么联系?(3)观察一次函数y=2x-3的图象在x轴上方的部分,这些点的纵坐标的符号是怎样的?(4)观察一次函数y=2x-3的图象在x轴下方的部分,这些点的纵坐标的符号是怎样的?【说明与建议】说明:复习一次函数图象的画法,把所列表格中的数据与函数图象中点的坐标结合起来,分析函数值的不同符号特征,与方程、不等式建立起联系.建议:用描点法画一次函数图象时,可以多列出几组数对,在x=1的左右两侧分别列出3~4组对称的数对,再将其与函数图象对照,发挥数形结合思想的优势,使函数值的符号特征更加明显.二、命题热点命题角度1 利用一次函数图象求一元一次方程的解1.一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为(A)A.x=-2 B.y=-2 C.x=1 D.y=1第1题图第2题图2.一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是x =3W.命题角度2 利用一次函数图象求一元一次不等式的解集3.如图,已知直线y =kx -2,根据图象可知不等式kx -2<0的解集是(C ) A .x >1 B .x >-2 C .x <1 D .x <-2第3题图 第4题图4.一次函数y =kx +b 的图象如图所示,当0<kx +b <3时,x 的取值范围为-4<x <0.命题角度3 通过解一元一次方程确定一次函数的图象与坐标轴的交点坐标 5.已知直线经过点(1,2)和点(4,5). (1)求这条直线的解析式;(2)求直线与坐标轴所围成的三角形面积. 解:(1)设直线解析式为y =kx +b ,把(1,2),(4,5)代入,得⎩⎪⎨⎪⎧k +b =2,4k +b =5, 解得⎩⎪⎨⎪⎧k =1,b =1.∴这条直线的解析式为y =x +1.(2)如图,对于直线y =x +1, 令x =0,则y =1; 令y =0,则x =-1. ∴A (0,1),B (-1,0). ∴S △AOB =12 ×1×1=12.∴直线与坐标轴所围成的三角形面积为12.教学设计课题 19.2.3 第1课时 一次函数与一元一次方程、不等式 授课人 素养目标1.会用图象法解一元一次方程、一元一次不等式.2.经历用函数图象表示方程、不等式解集的过程,进一步体会“以形表示数,以数解释形”的数形结合思想.3.通过对一次函数与一元一次方程、一元一次不等式关系的探究,发展学生辩证思维能力.4.体会数学知识的融会贯通,从不同方面认识事物的本质.教学重点理解一次函数、一元一次方程、一元一次不等式之间的联系.教学难点根据一次函数的图象求一元一次方程的解和一元一次不等式的解集.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.解方程4x+1=0;当自变量x为何值时,函数y=4x+1的值为0?2.解不等式3x+6>-2;当自变量x为何值时,函数y=3x+6的值大于-2?回顾旧知,更好地学习新知,为突破重难点做准备.活动一:创设情境、导入新课【课堂引入】(1)观察下面的一元一次方程与一元一次不等式,它们有什么共同之处?2x-2>0,2x-2=0,2x-2<0.(2)上面的一元一次方程与一元一次不等式的解或解集,与一次函数y=2x-2的图象有关系吗?师生活动:教师引导学生观察一元一次方程与一元一次不等式的左边,并与一次函数y=2x-2的右边进行比较,让学生初步感知它们之间有一定的联系.通过直观观察这三个式子与一次函数的区别,联合一次函数的意义,使学生产生深入探究的欲望,更好地进入新课.活动二:实践探究、交流新知【探究新知】1.一次函数的图象与一元一次方程的解下面三个方程有什么共同特点?你能从函数的角度对这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.观察、思考、分析、归纳,引导学生探索一元一次函数、一元一次不等式的关系,学生进一步体会数形结合思想,构建完整的知识体系.师生活动:教师引导学生从函数的角度看一元一次方程.学生小组讨论之后,派出代表汇报想法,教师帮助总结.归纳:解关于x的一元一次方程ax+b=k,就是求当y=ax +b的函数值为k时对应的自变量的值.从数的角度看:求ax+b=0(a≠0)的解⇩x为何值时,y=ax+b的值为0?从形的角度看:求ax+b=0(a≠0)的解⇩确定直线y=ax+b与x轴交点的横坐标2.一次函数的图象与一元一次不等式的解集下面三个不等式有什么共同特点?你能从函数的角度对这三个不等式进行解释吗?你能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.师生活动:教师引导学生类比一元一次方程,自主探究从函数的角度看一元一次不等式.归纳:利用图象求ax+b>0(a≠0)或ax+b<0(a≠0)的解集,就是求一次函数y=ax+b的图象在x轴上方或下方部分所有的点的横坐标所构成的集合.活动三:开放训练、体现应【典型例题】例1 一次函数y=kx+b的图象如图所示,根据图象信息可典型例题巩固新知,让学生进一步熟悉一用求得关于x的方程kx+b=3的解为(C)A.x=-1 B.x=1 C.x=2 D.x=3例1题图例2题图例2 如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是(C)A.x<1 B.x>1 C.x<3 D.x>3【变式训练】1.若一次函数y=ax+b的图象过点A(2,1),则ax+b=1的解是x=2W.2.已知关于x的方程ax+b=2的解为x=-5,则一次函数y=ax+b-2的图象与x轴交点的坐标为(-5,0)W.3.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是(B)A.x>2B.x<2C.x≥2D.x≤2师生活动:学生独立思考,举手回答,师生交流心得和方法.次函数与一元一次方程与一元一次不等式的关系,发展学生数形结合的思想,培养灵活地解决问题的能力.活动四:课堂检测【课堂检测】1.若关于x的方程4x-b=0的解是x=-2,则直线y=4x-b一定经过点(C)A.(2,0) B.(0,-2) C.(-2,0) D.(0,2)2.若直线y=2x+b与x轴交于点A(-3,0),则方程2x+b=0的解是(A)A.x=-3 B.x=-2 C.x=6 D.x=-32通过设置当堂检测,及时获知学生对所学知识的掌握情况,明确哪些学生需要在课后加强辅导,达到全面提高的目的.3.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b-1≥0的解集是(D)A.x≥2 B.x≥0 C.x≤2 D.x≤0第3题图第4题图4.如图,已知一次函数y=kx+b,观察图象回答下列问题:当x>2.5时,kx+b>0;当x>3时,kx+b>1.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结(1)本节课你学到了什么?有哪些体会与收获?(2)本节课你还有哪些疑惑?2.布置作业教材第99页第8题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思,更进一步提升.19.2 一次函数19.2.3 一次函数与方程、不等式第2课时一次函数与二元一次方程组教材分析函数、方程和不等式都是人们刻画现实世界的重要数学模型.用函数的观点看方程(组)与不等式,不仅能帮助学生加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美.本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义.备课素材一、新知导入【置疑导入】小聪和小惠去某景区游览,约好在“飞瀑”见面.上午7:00小聪乘电动汽车从“古刹”出发:沿景区公路去“飞瀑”,车速为36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多远?追问:当小聪追上小慧时,他们两个人的什么量是相同的?是否已经过了“草甸”?该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析式法?【说明与建议】 说明:通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决问题,在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.建议:在这个环节的学习过程中,如果学生入手感到困难.可用以下问题串引导学生进行分析:(1)两个人是否同时起步?(2)在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?(3)这个问题中的两个变量是什么?它们之间是什么函数关系?(4)如果用s 表示路程,t 表示时间,那么他们各自的解析式分别是什么?【情景导入】在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离y (km )与行驶时间x (min )之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是80km ;(2)已知货轮距B 码头的距离与行驶时间的函数解析式为y 1=12 x ,求客轮距B 码头的距离y 2(km )与时间x (min )之间的函数解析式;(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意义.【说明与建议】 说明:通过学生熟悉的问题导入新课,培养学生的识图能力和探究能力,调动学生学习的自主意识及学习兴趣.建议:引导学生建立函数模型,结合图象利用“数形结合”解决问题.二、命题热点命题角度1 利用两个一次函数图象求二元一次方程组的解1.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(C )A .⎩⎪⎨⎪⎧x =3y =-1B .⎩⎪⎨⎪⎧x =-3y =-1C .⎩⎪⎨⎪⎧x =-3y =1D .⎩⎪⎨⎪⎧x =3y =1第1题图 第3题图2.在平面直角坐标系中,直线y =-2x +11与直线y =13 x +53的交点坐标是(4,3),则方程组⎩⎪⎨⎪⎧2x +y =11,x -3y =-5 的解为⎩⎪⎨⎪⎧x =4y =3 .命题角度2 利用两个一次函数图象求一元一次不等式的解集3.函数y =kx 与y =-x +3的图象如图所示,根据图象可知,不等式kx >-x +3的解集是x >1.命题角度3 利用一次函数与方程、不等式的联系解决实际问题4.某电信公司有两种上网费用的计算方式,方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基本费20元外,再以每分钟0.05元的价格按上网时间计费.设上网时间为x 分钟,所需费用为y 元.用函数方法解答何时两种计费方式费用相等.解:y A =0.1x ,y B =0.05x +20.函数图象如图所示.∴当每月上网时间为400分钟时,两种计费方式费用相等.教学设计课题19.2.3第2课时 一次函数与二元一次方程组授课人素养目标 1.理解一次函数的图象与二元一次方程(组)的关系.2.经历用函数观点分析二元一次方程(组)的过程,进一步体会类比思想、分类讨论思想.3.利用一次函数图象的性质,解决实际问题.4.体会数学知识的融会贯通,发现数学的美,激发学生的学习兴趣.教学重点借助两个一次函数图象求二元一次方程(组)的解或一元一次不等式的解集.教学难点借助四个一次[一次函数、一元一次方程、二元一次方程(组)的解、一元一次不等式]之间的关系,解决实际问题.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾 1.解二元一次方程组2.一次函数y=5x+6与y=3x+10的交点坐标是多少?复习旧知,引发思考,为突破本节课重难点做铺垫.活动一:创设情境、导入新课【课堂引入】1号探测气球从海拔5 m出发,以1 m/min的速度上升,与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都上升了1小时.用式子分别表示两个气球所在位置的海拔y(单位:m)关于上升时间t(单位:min)的函数关系;1号气球:y=x+5,2号气球:y=0.5x+15.从实际问题抽象出数学问题,一方面有助于发展学生抽象逻辑能力,另一方面可以激发学生的学习兴趣,更好地开展新课.活动二:实践探究、交流新知【探究新知】针对【课堂引入】的问题,继续思考在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多少时间?位于什么高度?问题1 从数的角度看,二元一次方程组与一次函数有什么关系?问题2 从形的角度看,二元一次方程组与一次函数有什么关系?师生活动:教师引导学生类比一次函数与一元一次方程的关系,结合两个一次函数的图象,探求与二元一次方程组之间的关系.最后,教师帮助学生总结.归纳:(2)图象法解方程组的步骤:①将方程组中各方程化为y=ax+b的形式;②画出各函数的图象;通过类比一次函数与一元一次方程,分别从数和形两个角度分析二元一次方程组与一次函数之间的关系,进一步开拓学生的思维,感受数形结合思想以及分类讨论思想,体会数学思想的应用价值.③由交点坐标得出方程组的解.自主探究:在什么时候,1号气球比2号气球高?在什么时候,2号气球比1号气球高?活动三:开放训练、体现应用【典型例题】例1 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=x+2的解是(B)A.x=1 B.x=2 C.x=3 D.x=4例2 如图,在平面直角坐标系中,直线y=-2x和y=ax+2相交于点A(m,1),则不等式-2x<ax+2的解集为(D)A.x<12B.x<1 C.x>1 D.x>-12【变式训练】在同一平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,解决下列问题:(1)求方程-x+4=2x-5的解;(2)求二元一次方程组的解;(3)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?解:画函数图象如图所示.(1)∵一次函数y1=-x+4和y2=2x-5的图象相交于点(3,1),通过典型例题和变式训练.进一步感受两个一次函数与二元一次方程组的解之间的联系.由形判数,培养数形结合思想,体会数学知识的融会贯通.∴方程-x +4=2x -5的解为x =3.(2)由图可知,二元一次方程组(3)由图可知,当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.师生活动:学生独立思考,举手回答,师生交流心得和方法. 活动四:课堂检测 【课堂检测】1.如图,在平面直角坐标系中,直线y =-2x 和y =ax +2相交于点A (m ,1),则关于x ,y 的二元一次方程组的解为(C )第1题图 第2题图 第3题图2.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象交于点A (3,2),它们与x 轴的交点横坐标分别为1和-1,则不等式k 2x +b 2>0>k 1x +b 1的解集为(D )A.x>3 B .x<-1 C .x>1 D .-1<x<13.一次函数y 1=mx +n 与y 2=-x +a 的图象如图所示,则不等式mx +n >-x +a 的解集为(A )A.x >3 B .x <3 C .x <2 D .x >24.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x ,y 的方程组请你直接写出它的解.学以致用,课堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,帮助每个学生有所收获、有所提高.解:(1)∵P(1,b)在直线l1上,∴b=1+1,即b=2.(2)师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结1.如何用一次函数的图象解二元一次方程组?2.你是否从中体会到了某种数学思想?2.布置作业教材第98页练习题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。

一次函数的图像为一条直线,具有特定的斜率和截距。

一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。

2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。

解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。

求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。

通过以上步骤,可以求得一元一次方程的解。

3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。

求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。

求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。

需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。

4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。

掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。

一次函数与一元一次方程、一元一次不等式PPT

一次函数与一元一次方程、一元一次不等式PPT
函数值与不等式解的范围
通过观察函数值的正负变化,可以确定不等式解的范围。当函数值从负数变为正数时, 对应的x值范围即为不等式的解集。
函数图像与不等式解的关系
函数图像与不等式解的交点
一次函数图像与不等式的交点即为满足不等式条件的x值。在图像上表现为直线上的某些点。
函数图像与不等式解的个数
函数图像与不等式的交点个数即为满足不等式条件的x值的个数。若只有一个交点,则不等式有一个 解;若有多个交点,则不等式有多个解。
详细描述
一元一次方程的标准形式是 ax + b = 0, 其中 a 和 b 是常数,且 a ≠ 0。这个方 程只有一个未知数 x,且 x 的最高次数 为1。
一元一次方程的解法
总结词
求解一元一次方程通常涉及移项、合并同类项和系数化为1等 步骤。
详细描述
解一元一次方程时,首先将方程中的未知数项移到等式的一侧, 常数项移到另一侧。然后合并同类项,最后将方程两边的系数 化为1,即可得到未知数的解。
一次函数与一元一次方程、一元一 次不等式
目录
• 一次函数 • 一元一次方程 • 一元一次不等式 • 一次函数与一元一次方程、一元一次不等
式的关系 • 综合应用
01 一次函数
一次函数的定义
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是常数,
且 $k neq 0$。
$k$ 称为函数的斜率,$b$ 称为 函数的截距。
一元一次方程与一元一次不等式的综合应用
一元一次方程与一元一次不等式在形式上具有相似性,可 以通过对方程或不等式进行变形,转化为对方的形式,从 而利用对方的形式进行求解。
例如,对于方程 $y = kx + b$ 和不等式 $y < kx + b$,可 以通过将方程变形为 $y - kx - b = 0$,将不等式变形为 $y - kx - b < 0$,从而利用对方的形式进行求解。

2020版八年级数学下册第十九章一次函数19.2一次函数19.2.3一次函数与方程、不等式(第1课时)教案(新版)

2020版八年级数学下册第十九章一次函数19.2一次函数19.2.3一次函数与方程、不等式(第1课时)教案(新版)

19.2.3一次函数与方程、不等式第1课时【教学目标】知识与技能:认识一次函数与一元一次方程之间的联系.会用函数观点解释一元一次方程的意义.过程与方法:经历用函数图象表示一元一次方程解的过程,学习用联系的观点看待数学问题的辩证思想,进一步体会“以形表示数,以数解释形”的数形结合思想.情感态度与价值观:培养数形结合的数学思想,积极参与交流,积极发表意见,让学生体会数学的应用价值.【重点难点】重点:会根据一次函数图象求一元一次方程的解.难点:会根据一次函数图象求一元一次方程的解.【教学过程】一、创设情境,导入新课我们来看下面两个问题:1.解方程2x+20=0.2.当自变量x为何值时,函数y=2x+20的值为0?这两个问题之间有什么联系吗?我们这节课就来研究这个问题,并学习利用这种关系解决相关问题的方法.二、探究归纳活动1: 一次函数与一元一次方程的关系1.问题:填空:(1)解方程2x+6=0,得x=________.(2)从函数图象上看,直线y=2x+6与x轴交点的坐标为________ ,这也说明函数y=2x+6值为________,对应的自变量x为__________,即方程2x+6=0的解是________.答案:(1)-3(2)(-3,0)0 -3x=-32.思考:直线y=2x+6与x轴的交点坐标和方程2x+6=0的解有什么关系?提示:直线y=2x+6与x轴的交点的横坐标,就是方程2x+6=0的解.3.归纳:一次函数与一元一次方程的关系(1)由于任何一个以x为未知数的一元一次方程都可转化为ax+b=0(a,b为常数,a≠0)的形式.所以解一元一次方程相当于在某个一次函数y=ax+b(a≠0)的函数值为0时,求自变量x的值.(2)一元一次方程ax+b=0的解,是直线y=ax+b与x轴交点的横坐标值.活动2:例题讲解【例1】利用函数图象解下列方程:(1)0.5x-3=1. (2)3x-2=x+4.分析:将方程转化为kx+b=0的形式,画出y=kx+b的图象,由直线与x轴的交点坐标确定原方程的解.解:(1)原方程可化为0.5x-4=0.画出一次函数y=0.5x-4的图象,由图象看出直线y=0.5x-4与x轴的交点为(8,0),所以方程0.5x-3=1的解为x=8.(2)原方程可化为2x-6=0.画出一次函数y=2x-6的图象,由图象看出直线y=2x-6与x轴的交点为(3,0),所以方程3x-2=x+4的解为x=3.总结:一次函数与一元一次方程的关系一个一次函数,当已知函数值求其自变量的值时,就可看成是解一元一次方程;而一个具体的一元一次方程,实际上是已知一次函数的函数值,求其自变量的值.即一次函数是一般意义的一元一次方程,而一元一次方程是具体意义的一次函数.【例2】甲、乙两地距离300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了______ h.(2)求线段DE对应的函数解析式.(3)求轿车从甲地出发后经过多长时间追上货车.分析:(1)根据图象中点C,点D的横坐标求出轿车在途中停留的时间.(2)设线段DE对应的函数解析式为y=kx+b(k≠0),由图象得出D点坐标(2.5,80),与E点坐标(4.5,300),代入y=kx+b列方程组求解.(3)两车在行驶中路程相同时,说明轿车追上货车;在两个图象的交点处说明轿车追上货车.解:(1)CD平行于x轴,说明轿车离甲地的距离没发生变化,即轿车停留,时间为C,D两点横坐标的差,2.5-2=0.5(小时).(2)设线段DE对应的函数解析式为y=kx+b(k≠0),由图象可得在线段DE上,D点坐标(2.5,80),E点坐标(4.5,300),由题意得解得所以线段DE对应的函数解析式为:y=110x-195(2.5≤x≤4.5).(3)两车在行驶中路程相同时,说明轿车追上货车;在两个图象的交点处说明轿车追上货车.∵A点坐标为(5,300),代入解析式y=ax得300=5a,解得a=60,故y=60x,当60x=110x-195时,解得x=3.9,故3.9-1=2.9(小时),答:轿车从甲地出发后经过2.9小时追上货车.总结:用一次函数与方程的关系解决实际问题的步骤(1)分析题目中的数量关系及等量关系.(2)列出函数关系式.(3)利用函数与方程的关系求解.(4)验证所求的解是否符合题意,并作答.三、交流反思这节课我们学习了一次函数与一元一次方程之间的联系.能把解方程kx+b=0(k≠0)与求自变量x为何值时,一次函数y=kx+b的值为0看成是一个问题.利用图象法解一元一次方程,并能应用它们的关系解决实际问题.理解数形结合的内涵.四、检测反馈1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为 ()A.x=2B.y=2C.x=-1D.y=-12.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是()A.x=2B.x=4C.x=8D.x=103.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()4.如图,直线y=kx+b分别交x轴,y轴于点A,B,则关于x的方程kx+b=0的解为()A.x=-2B.x=0C.x=2D.x=35.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x-1=2x+5,其中正确的是()6.如图所示,是某航空公司托运行李的费用y(元)与行李重量x(千克)的关系图象,由图中可知,乘客可以免费托运行李的最大重量为()A.20千克B.30千克C.40千克D.50千克7.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程是2x+b=0的解是x=________.8.科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2 000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式.(2)已知某山的海拔高度为1 200米,请你求出该山山顶处的空气含氧量约为多少?五、布置作业教科书第99页习题19.2第8题六、板书设计七、教学反思这节课学习了一次函数与一元一次方程的关系,关于一次函数与一元一次方程的关系,教师通过引导学生观察分析图象与x轴交点或一次函数解析式与一元一次方程的关系,引导学生得出一次函数与一元一次方程的关系:一个一次函数,当已知函数值求其自变量的值时,就可看成是解一元一次方程;而一个具体的一元一次方程,实际上是已知一次函数的函数值,求其自变量的值.即一次函数是一般意义的一元一次方程,而一元一次方程是具体意义的一次函数.让学生明确有关方程问题可用函数的方法来解决,反之,有关函数问题也可用方程的方法来解决.。

一次函数与一元一次方程、一元一次不等式的教学设计范文.doc

一次函数与一元一次方程、一元一次不等式的教学设计范文.doc

《13.3一次函数与一次方程、一次不等式》(第一课时)安徽省合肥市庐阳中学陈光宇教具安排学生课堂自主探究材料、多媒体课件。

课时安排这节内容安排两个课时,本节课是第一课时,主要通过探究活动领悟一次函数与一元一次方程、一次不等式之间的联系。

教学过程设计问题与情境师生活动设计意图复习旧知、学前热身小明的爸爸应邀来到合肥投资,在庐阳工业园投资300万元成本建成一个小型家电生产工厂。

建成投产后,不考虑材料费等其他因素,每年盈利75万元。

回答下面两个问题,1:该工厂投产几年刚好收回成本?2:该工厂从哪一年后盈利开始超过300万元以上?师:从小学到现在我们学过哪些解决问题的方法?生:小学的算术法和初中学过的方程、不等式。

师:怎样利用函数图象解决上面的问题呢?贴切的生活情境可以让大多数同学想到解决问题的方法,除了能激发学生的求知欲,也让学生初步感受一次方程和一元一次不等式与一次函数是有联系的,引入课题。

合作交流、探究新知活动一:探究一次函数与一元一次方程之间的联系。

1.解方程 3x+6=0。

2.直线y=3x+6与x轴交点的坐标是什么?3.讨论:图象与方程的解之间的关系。

4.不解方程:你能说出方程3x+6=6的解吗?学生口答三个问题。

师:课前让大家准备了任意的一次函数的图象,观察你的图象,在图象中也有类似的联系吗?学生举例说明。

师:将刚才的思考概括为一般形式呢?归纳:一次函数y=kx+b(k、b为常数,k≠0)与x轴交点的横坐标就是方程kx+b=0的解。

一元一次方程kx+b=0(k、b为常数,k≠0)的解就是一次函数y=kx+b(k0)与x轴交点的横坐标。

引题分解难度,给学生提供了思考的角度和方向。

通过学生反复实践和教师引导,学生从“形”到“数”,或者从“数”到“形”,自己探究一次函数的图象与一元一次方程解的关系,体验知识生成的过程。

5.合作交流(一)你还能利用图象求出哪些一元一次方程的解?6.合作交流(二)通过以上探究,你能总结一次函数与一元一次方程之间的联系吗?师:请写出几个这样的一元一次方程和同伴进行交流。

一次函数与一元一次方程、一元一次不等式

一次函数与一元一次方程、一元一次不等式
一次函数与一元一次方程、一 元一次不等式
本次演讲将探讨一次函数、一元一次方程和一元一次不等式的定义、性质以 及它们在实际问题中的应用举例。
一次函数的定义和性质
一次函数是指函数表达式为一次多项式的函数,如y = ax + b。它具有线性关系和常比例性质,是数学中最基本的函 数之一。 一次函数图像通常表现为一条直线,斜率代表变化率,截距表示函数与y轴的交点。
通过解不等式,我们可以找到满足不等式关系的未知数的值,来描述实际问 题中的范围和限制。
一元一次方程与一元一次不等式的比较
一元一次方程和一元一次不等式都是一次项的代数表达式,但方程是等式,而不等式则是具有不等关系。 方程的解表示使等式成立的未知数值,而不等式的解表示使不等式关系满足的未知数值集合。
一次函数与一元一次方程的关 联
一次函数与一元一次方程有密切的关联。通过一次函数的图像,可以获得方 程的斜率和截距,进而求解方程。
反过来,给定一元一次方程,可以绘制出对应的一次函数图像,并分析函数 在不同区间的特点。
一次函数与一元一次不等式的 关联
一次函数与一元一次不等式也存在关联。通过一次函数的图像,可以判断不 等ห้องสมุดไป่ตู้在不同区间的解集。
类似地,给定一元一次不等式,可以绘制出对应的一次函数图像,并找到使 不等式关系成立的区间。
实际问题中的应用举例
一次函数、一元一次方程和一元一次不等式在现实生活中有广泛的应用。
例如,使用一次函数模型可以预测商品的销售量,解决线性规划问题,而一 元一次方程和一元一次不等式可以用来计算、规划和优化各类实际场景,如 成本估计、收益预测和资源分配。
一元一次方程的定义和求解方法
一元一次方程是指只有一个未知数的一次方程,如2x + 3 = 7。求解一元一次方程的方法包括图解法、等式性质法和 系数分离法。 通过解方程,我们可以找到使等式成立的未知数的值,从而解决实际生活中的问题。

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式

(1)X取何值时,2x-5=0
y=0
分析:
1 2 3 4 5
x
(2.5 , 0)

x=2.5, 2x-5=0
观察图象回答下列问题: (2)X取哪些值时,2x-5>0 分析: ∴ x>2.5,
y
4 3 2 1 0 -2 -1 -1 -2 -3 -4 -5
y=2x-5
y>0
2x-5>0
1 2 3 4 5
y =x+3
−3
O
x
解一元一次方程ax+b=0 (a ,b为常数)可以 转化为:当某个一次函数的值为0时,求相应的 自变量的值.从图象上看,这相当于已知直线 y=ax+b,确定它与x轴交点的横坐标的值.
观察图象回答下列问题:
y
4 3 2 1 0 -2 -1 -1 -2 -3 -4 -5
y=2x-5
4 3 2 1 0 -2 -1 -1
y=2x-5
1 2 3 4 5
x
分析: ∴ x>4,
y=3 2x-5>3
-2 -3 -4 -5
名校练习
课堂反思 本节课你学会了什么? 1. 一元一次不等式与一次函数的关系. 2. 运用一次函数图象求解不等式.
(3)从函数图象上看,直线y=2x+20与x轴交 y 点的横坐标是 10
20
10
O
y 2 x 20
x
说明了方程2x+20=0的解是直线 y=2x+20与x轴交点的横坐标。
从“形”上看
由上面两个问题的关系,能进一步得到
“解方程ax+b=0(a,b为常数, a≠0)”与“求自变 量 x 为何值时,一次函数y=ax+b的值为0”有什么 关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的图象所对应的x的取值范围
谢谢!
y
y=2x+20
20
X = - 10 直线y=2x+20与x轴的交点 坐标为(-10,0)
-10
0
x
方程的解 x= -10 是直线y=2x+20 与x轴交点的横坐标.
练习2:根据图象,请写出图象所对应的一元 一次方程的解. y y
X=0
0
y=5x
y=x+2
X= - 2
x
-2 0
x
y=-2.5x+5
情况.
那么你能从函数的角度对解这三个方程进行解释吗? (1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.
上面的三个方程可以看成函数 y=2x+1的一种具体情况. 当y=3时,x=1; 1 当y=0时,x=- ; 2 当y=-1时,x= -1.
而这三个方程的解则刚 好是自变量x的一个值. 3 y
(1)3x+2>2; (2)3x+2<0; (3)3x+2<-1. y>2, x>0
3 2 1 y
2 y<0, x< 3
y =3x+2
y<-1, x<-1
三个不等式的左边都是 代数式 ,而右边分别是 2,0,-1.它们可以看成y =3x+2 的函数值y大于2、 小于0、小于-1 时自变量 x的取值范围(如右图).
时,自变量x的的值.
kx+b=0 的形式. 一元一次方程常常转化为_________ 求方程kx+b=0的解
也就是求y=kx+b当 y= 0
时,自变量x的的值.
也是求直线y=kx+b与 x轴 的交点的 横 坐标.
练习1:根据函数y=2x+20的图象,说出它与x轴的交 点坐标;说出方程2x+20=0的解.
y =2
1 2 3
y =0
-2
-1 O -1
x
y =-1
练习:根据图象来解决:2x-4>0
y=2x-4
通过图象可以看出,不等式 是求y>0时,自变量x的取值 范围. ∴x>2.

y
0
2
x
-4
从数的角度看
求ax+b>0(a≠0)的解 x为何值时y=ax+b的值大于0
从形的角度看
求ax+b>0(a≠0)的解 确定直线y=ax+b在x轴上方
y =2x+1
2
2x +1=0 的解 1 2x +1=3 的解 x 3 2 1
-2 -1 O 2x +1=-1 的解 -1
kx+b=c 的形式. 一元一次方程都可以转化为_________ 求方程kx+b=4的解
也就是求y=kx+b当 y= 4
时,自变量x的的值.
求方程kx+b= -5的解
也就是求y=kx+b当 y= -5
0
y
y
0
y=x-3
3
x
X=2
2
x
X=3
:
已知一次函数y=3x+2, 求函数值y>2、y<0、
y<-1时,自变量x的取值范围. 根据题意得:
3x 2 2
3x 2 0
3 x 2 1
思考:刚才我们类比一次函数和一元一次方程的关系,能用函
数观点看一元一次不等式吗?
思考: 下面三个不等式有什么共同特点?你能从函 数的角度对解这三个不等式进行解释吗?
19.2.3 一次函数与方程、不等式
第1课时 一次函数与一元一次方程、不等式
已知一次函数y=2x+1,求当函数值y =3、y =0、
y = -1时,自变量x的值.
根据题意得:2 x 1 3
2x 1 0
2 x 1 1
由上可知,当一个一次函数y=kx确定了y的值, 它就变成了一个一元一次方程.也就是说,每一个 一元一次方程都可以看成是一次函数的一种具体
相关文档
最新文档