算法设计与分析的答案 第3章

合集下载

算法设计与分析知到章节答案智慧树2023年天津大学

算法设计与分析知到章节答案智慧树2023年天津大学

算法设计与分析知到章节测试答案智慧树2023年最新天津大学第一章测试1.下列关于效率的说法正确的是()。

参考答案:提高程序效率的根本途径在于选择良好的设计方法,数据结构与算法;效率主要指处理机时间和存储器容量两个方面;效率是一个性能要求,其目标应该在需求分析时给出2.算法的时间复杂度取决于()。

参考答案:问题的规模;待处理数据的初态3.计算机算法指的是()。

参考答案:解决问题的有限运算序列4.归并排序法的时间复杂度和空间复杂度分别是()。

参考答案:O(nlog2n);O(n)5.将长度分别为m,n的两个单链表合并为一个单链表的时间复杂度为O(m+n)。

()参考答案:错6.用渐进表示法分析算法复杂度的增长趋势。

()参考答案:对7.算法分析的两个主要方面是时间复杂度和空间复杂度的分析。

()参考答案:对8.某算法所需时间由以下方程表示,求出该算法时间复杂度()。

参考答案:O(nlog2n)9.下列代码的时间复杂度是()。

参考答案:O(log2N)10.下列算法为在数组A[0,...,n-1]中找出最大值和最小值的元素,其平均比较次数为()。

参考答案:3n/2-3/2第二章测试1.可用Master方法求解的递归方程的形式为()。

参考答案:T(n)=aT(n/b)+f(n) , a≥1, b>1, 为整数, f(n)>0.2.参考答案:对3.假定,, 递归方程的解是. ( )参考答案:对4.假设数组A包含n个不同的元素,需要从数组A中找出n/2个元素,要求所找的n/2个元素的中点元素也是数组A的中点元素。

针对该问题的任何算法需要的时间复杂度的下限必为。

( )参考答案:错5.使用Master方法求解递归方程的解为().参考答案:6.考虑包含n个二维坐标点的集合S,其中n为偶数,且所有坐标点中的均不相同。

一条竖直的直线若能把S集合分成左右两部分坐标点个数相同的子集合,则称直线L为集合S的一条分界线。

若给定集合S,则可在时间内找到这条分界线L。

算法设计与分析习题答案1-6章

算法设计与分析习题答案1-6章

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

编写程序,求n 至少为多大时,n 个“1”组成的整数能被2013整除。

#include<iostream>using namespace std;int main(){double value=0;图 七桥问题for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。

为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。

算法设计与分析-第3章-蛮力法

算法设计与分析-第3章-蛮力法

哨兵
0123456789 k 10 15 24 6 12 35 40 98 55
查找方向
i
清华大学出版社
算法设计与分析
算法3.2——改进的顺序查找
int SeqSearch2(int r[ ], int n, int k) //数组r[1] ~ r[n]存放查找集合 { r[0]=k; i=n; while (r[i]!=k)
清华大学出版社
算法设计与分析
第3章 蛮力法
3.1 蛮力法的设计思想 3.2 查找问题中的蛮力法 3.3 排序问题中的蛮力法 3.4 组合问题中的蛮力法 3.5 图问题中的蛮力法 3.6 几何问题中的蛮力法 3.7 实验项目——串匹配问题
清华大学出版社
算法设计与分析
3.1 蛮力法的设计思想
蛮力法的设计思想:直接基于问题的描述。 例:计算an
52 37 65 不可行 不可行 不可行 不可行 不可行
清华大学出版社
算法设计与分析
对于一个具有n个元素的集合,其子集 数量是2n,所以,不论生成子集的算法 效率有多高,蛮力法都会导致一个Ω(2n) 的算法。
清华大学出版社
算法设计与分析
3.4.4 任务分配问题
假设有n个任务需要分配给n个人执行, 每个任务只分配给一个人,每个人只分配一 个任务,且第j个任务分配给第i个人的成本 是C[i, j](1≤i , j≤n),任务分配问题要求 找出总成本最小的分配方案。
用蛮力法解决0/1背包问题,需要考虑给定n个 物品集合的所有子集,找出所有可能的子集(总重 量不超过背包容量的子集),计算每个子集的总价 值,然后在他们中找到价值最大的子集。
清华大学出版社
算法设计与分析
10

(陈慧南 第3版)算法设计与分析——第3章课后习题答案

(陈慧南 第3版)算法设计与分析——第3章课后习题答案

第三章课后习题姓名:赵文浩学号:16111204082 班级:2016级计算机科学与技术3-2 在如下图所示的二叉搜索树上完成下列运算及随后的伸展操作,画出每次运算加伸展操作后的结果伸展树。

5030601040201585 70901)搜索80从图中可以看出,元素80不存在,因此伸展结点应为搜索过程中遇到的最后一个结点,即70,伸展过程如下图所示:503060104020158570905030601040201585709050301040201585907060状态1状态2状态32)插入80元素80插入后的状态以及将元素8作为伸展结点的伸展过程如下图所示:5030601040201585 709080插入元素80后50306010402015857090805030601040201585709080变换1变换25030601040201585908070变换33)删除30首先,将元素30结点伸展至根结点,然后删除根结点30,并将结点20(左边最大的结点、右边最小的结点)作为伸展结点,伸展过程如下图所示:3010402015709050856030102015709085605040102070908560504015709085605040变换1将30作为根结点删除结点30并变换将20作为伸展结点伸展至根节点102015。

《算法设计与分析》第3章 动态规划法

《算法设计与分析》第3章 动态规划法

最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);

算法设计与分析复习题目及答案 (3)

算法设计与分析复习题目及答案 (3)

分治法1、二分搜索算法是利用(分治策略)实现的算法。

9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

算法设计与分析智慧树知到答案章节测试2023年山东交通学院

算法设计与分析智慧树知到答案章节测试2023年山东交通学院

第一章测试1.解决一个问题通常有多种方法。

若说一个算法“有效”是指( )A:这个算法能在人的反应时间内将问题解决B:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)C:这个算法能在一定的时间和空间资源限制内将问题解决D:这个算法比其他已知算法都更快地将问题解决答案:B2.农夫带着狼、羊、白菜从河的左岸到河的右岸,农夫每次只能带一样东西过河,而且,没有农夫看管,狼会吃羊,羊会吃白菜。

请问农夫能不能过去?()A:不一定B:不能过去C:能过去答案:C3.下述()不是是算法的描述方式。

A:自然语言B:程序设计语言C:E-R图D:伪代码答案:C4.有一个国家只有6元和7元两种纸币,如果你是央行行长,你会设置()为自动取款机的取款最低限额。

A:40B:42C:29D:30答案:D5.算法是一系列解决问题的明确指令。

()A:对B:错答案:A6.程序=数据结构+算法()A:错B:对答案:B7.同一个问题可以用不同的算法解决,同一个算法也可以解决不同的问题。

()A:错答案:B8.算法中的每一条指令不需有确切的含义,对于相同的输入不一定得到相同的输出。

( )A:错B:对答案:A9.可以用同样的方法证明算法的正确性与错误性 ( )A:对B:错答案:B10.求解2个数的最大公约数至少有3种方法。

( )A:错B:对答案:A11.没有好的算法,就编不出好的程序。

()A:对B:错答案:A12.算法与程序没有关系。

( )A:错B:对答案:A13.我将来不进行软件开发,所以学习算法没什么用。

( )A:对B:错答案:B14.gcd(m,n)=gcd(n,m m od n)并不是对每一对正整数(m,n)都成立。

( )A:错B:对答案:A15.既然程序设计语言可以描述算法,所以算法就是程序。

( )A:错B:对答案:A第二章测试1.并不是所有的算法,规模更大的输入需要更长的运行时间。

( )A:对答案:B2.算法效率分析框架主要关心一个算法的基本操作次数的增长次数,并把它作为算法效率的主要指标。

《算法分析与设计》(李春葆版)课后选择题答案与解析

《算法分析与设计》(李春葆版)课后选择题答案与解析

《算法及其分析》课后选择题答案及详解第1 章——概论1.下列关于算法的说法中正确的有()。

Ⅰ.求解某一类问题的算法是唯一的Ⅱ.算法必须在有限步操作之后停止Ⅲ.算法的每一步操作必须是明确的,不能有歧义或含义模糊Ⅳ.算法执行后一定产生确定的结果A.1个B.2个C.3个D.4个2.T(n)表示当输入规模为n时的算法效率,以下算法效率最优的是()。

A.T(n)=T(n-1)+1,T(1)=1B.T(n)=2nC.T(n)= T(n/2)+1,T(1)=1D.T(n)=3nlog2n答案解析:1.答:由于算法具有有穷性、确定性和输出性,因而Ⅱ、Ⅲ、Ⅳ正确,而解决某一类问题的算法不一定是唯一的。

答案为C。

2.答:选项A的时间复杂度为O(n)。

选项B的时间复杂度为O(n)。

选项C 的时间复杂度为O(log2n)。

选项D的时间复杂度为O(nlog2n)。

答案为C。

第3 章─分治法1.分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。

这要求原问题和子问题()。

A.问题规模相同,问题性质相同B.问题规模相同,问题性质不同C.问题规模不同,问题性质相同D.问题规模不同,问题性质不同2.在寻找n个元素中第k小元素问题中,如快速排序算法思想,运用分治算法对n个元素进行划分,如何选择划分基准?下面()答案解释最合理。

A.随机选择一个元素作为划分基准B.取子序列的第一个元素作为划分基准C.用中位数的中位数方法寻找划分基准D.以上皆可行。

但不同方法,算法复杂度上界可能不同3.对于下列二分查找算法,以下正确的是()。

A.intbinarySearch(inta[],intn,int x){intlow=0,high=n-1;while(low<=high){intmid=(low+high)/2;if(x==a[mid])returnmid;if(x>a[mid])low=mid;elsehigh=mid;}return –1;}B.intbinarySearch(inta[],intn,int x) { intlow=0,high=n-1;while(low+1!=high){intmid=(low+high)/2;if(x>=a[mid])low=mid;elsehigh=mid;}if(x==a[low])returnlow;elsereturn –1;}C.intbinarySearch(inta[],intn,intx) { intlow=0,high=n-1;while(low<high-1){intmid=(low+high)/2;if(x<a[mid])high=mid;elselow=mid;}if(x==a[low])returnlow;elsereturn –1;}D.intbinarySearch(inta[],intn,int x) {if(n>0&&x>=a[0]){intlow= 0,high=n-1;while(low<high){intmid=(low+high+1)/2;if(x<a[mid])high=mid-1;elselow=mid;}if(x==a[low])returnlow;}return –1;}答案解析:1.答:C。

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。

全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。

主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。

书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。

为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。

算法分析与设计智慧树知到答案章节测试2023年黑龙江工程学院

算法分析与设计智慧树知到答案章节测试2023年黑龙江工程学院

第一章测试1.算法就是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算。

()A:对B:错答案:A2.计算机的资源最重要的是内存和运算资源。

因而,算法的复杂性有时间和空间之分。

()A:对B:错答案:A3.时间复杂度是指算法最坏情况下的运行时间。

()A:对B:错答案:B4.下面关于算法的说法中正确的是。

(1)求解某一问题的算法是唯一的。

(2)算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。

(3)算法的每一条指令是清晰无歧义的。

(4)算法可以用某种程序设计语言具体实现,所以算法和程序是等价的。

()A:(2)(3)B:(1)(3)C:(1)(2)D:(2)(4)答案:A5.描述算法的基本方法有。

(1)自然语言(2)流程图(3)伪代码(4)程序设计语言()A:(1)(2)(3)B:(1)(3)(4)C:(1)(2)(3)(4)D:(2)(3)(4)答案:C6.算法分析是()A:将算法用某种程序设计语言恰当地表示出来B:证明算法对所有可能的合法出入都能算出正确的答案C:对算法需要多少计算时间和存储空间作定量分析D:在抽象数据数据集合上执行程序,以确定是否产生错误结果答案:C7.算法是由若干条指令组成的有穷序列,而且满足以下叙述中的性质。

(1)输入:有0个或多个输入(2)输出:至少有一个输出(3)确定性:指令清晰、无歧义(4)有限性:指令执行次数有限,而且执行时间有限()A:(1)(2)(3)B:(1)(2)(4)C:(1)(2)(3)(4)D:(1)(3)(4)答案:C8.下面函数中增长率最低的是()A:n2B:log2nC:nD:2n答案:B9.下面属于算法的特性有( )。

A:有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。

B:输入:有0个或多个外部量作为算法的输入。

C:确定性:组成算法的每条指令是清晰,无歧义的。

D:输出:算法产生至少一个量作为输出。

答案:ABCD10.当m为24,n为60时,使用欧几里得算法求m和n的最大公约数,需要进行()次除法运算。

算法分析与设计第3章课后习题答案

算法分析与设计第3章课后习题答案

第3章作业解答设有4个矩阵连乘积ABCD ,设它们的维数分别为A:45×8,B:8×40,C:40×25,D:25×10,请求出它们的最优计算次序及对应的最少计算量。

解:设A 1=A, A 2=B, A 3=C, A 4=Dp 0=45,p 1=8,p 2=40,p 3=25,p 4=10 ,用两个二维数组m 和s 记录中间结果,其中,m[i][j]记录矩阵连乘积A[i:j]的最少计算量,s[i][j]记录A[i:j]的最优断开位置。

由动态规划思想,得递归式为:⎪⎩⎪⎨⎧<+++==-<≤j i p p p j k m k i m j i j i m j k i }],1[],[{min 0],[1jk i 其中,k 的取值有j-i 种可能:i,i+1,...,j-1. 计算过程如下: (1) m[i][i]=0, i=1,2,3,4 (2) 求m[i][i+1], i=1,2,3m[1][2]= p 0×p 1×p 2=45×8×40=14400 s[1][2]=1 m[2][3]= p 1×p 2×p 3=8×40×25=8000 s[2][3]=2 m[3][4]= p 2×p 3×p 4=40×25×10=10000 s[3][4]=3 (3) 求m[i][i+2], i=1,2m[1][3]=min{m[1][1]+m[2][3]+p 0×p 1×p 3, m[1][2]+m[3][3]+p 0×p 2×p 3 } =min{8000+45×8×25,14400+45×40×25} =min{17000, 59400} =17000 s[1][3]=1m[2][4]=min{m[2][2]+m[3][4]+p1×p2×p4, m[2][3]+m[4][4]+p1×p3×p4 }=min{10000+8×40×10,8000+8×25×10}=min{13200, 10000} =10000s[2][4]=3(4) 求m[i][i+3], i=1m[1][4]=min{m[1][1]+m[2][4]+p0×p1×p4 ,m[1][2]+m[3][4]+p0×p2×p4 ,m[1][3]+m[4][4]+p0×p3×p4 }=min{10000+45×8×10, 14400+10000+45×40×10, 17000+45×25×10 }=min{13600, 42400, 28250} =13600s[1][4]=1根据以上结果可得数组m, s如下:m[1][4]即A[1:4]的最少计算量,也即ABCD连乘积的最少计算量为13600。

算法设计与分析 第2版 吕国英 第三章课后习题答案

算法设计与分析 第2版 吕国英 第三章课后习题答案

3.1//计算2+22+222+...+222 (2)void main(){int i,n,sum=0;print("请输入最后一个因子的位数\n");scanf("%d",&n);for(i=1;i<=n;i++)sum=sum+((int)pow(10,i)-1)/9*2;print("2+22+222+...+222……2=%d\n",sum); }3.2显示{5,7,4,8,9,1}的方阵方式main(){int i,j,t,ori[6]={5,7,4,8,9,1};for(i=0;i<6;i++){for(j=0;j<6;j++){t=(j-i)<0?j-i+6:j-i;printf("%d ",ori[t]);}printf("\n");}}3.3main(){int n;int **up(int **array);scanf("%d",&n);int arr[1][1]={{n*n}};for(j=1;j<n;j++)arr=up(**arr,j);}int **up(int **array,n){int upN=n+1;int[upN][upN] tem;tem[1][1]=array[1][1]-pow(n+1,2);for(i=1;i<=n;i++)tem[1][i]=tem[1][i-1]+1;for(i=1;i<=n;i++)tem[n][i]=tem[n][i-1]+1;for(i=1;i<=n;i++)tem[n][n-i]=tem[n][n+1-i]+1;for(i=1;i<n;i++)tem[1][n-i]=tem[1][n-i+1]+1return **tem;}3.4main(){int i,j,t=0,next=1,n;printf("请输入n\n");scanf("%d",&n);printf("显示效果如下\n");for(i=1;i<=n;i++){for(j=1;j<=n-i+1;j++){if(j==1)t=next;elset=t+i+j-1;if(j==2)next=t-1;printf("%d ",t);}printf("\n");}}//思想:每一行的第二个数为next,下一行的第一个数为next-13.5main(){int n,i,j,k;int arr[100][100]={{0}};//动态定义数组太难,所以在系统直接定义一个100*100的方阵,可以处理部分小问题for(i=0;i<100;i++)for(j=0;j<100;j++)arr[i][j]=0;printf("请输入n\n");scanf("%d",&n);/*if(n%2==0){for(k=0;k<n/2;k++)for(i=k;i<n-k;i++)for(j=k;j<n-k;j++)arr[i][j]=k+1;}else{for(k=0;k<(n+1)/2;k++)for(i=k;i<n-k;i++)for(j=k;j<n-k;j++)arr[i][j]=k+1;}*///可将第一个for循环中的判断条件统一改为k<(n+1)/2 for(k=0;k<(n+1)/2;k++)for(i=k;i<n-k;i++)for(j=k;j<n-k;j++)arr[i][j]=k+1;printf("显示效果如下:\n")for(i=0;i<n;i++){for(j=0;j<n;j++)printf("%2d",arr[i][j]);printf("\n");}}3.7main(){int ack(int m,int n);int m,n,score;printf("请输入ackermann函数的m,n:\n");printf("m:");scanf("%d",&m);printf("n:");scanf("%d",&n);score=ack(m,n);printf("ack(%d,%d)=%d\n",m,n,score);}int ack(int m,int n){if(m==0)return n+1;elseif(n==0)return ack(m-1,1);elsereturn ack(m-1,ack(m,n-1));}3.8main(){char str[40];int i,l,t=1;printf("Please input a string!\n");scanf("%s",str);l=strlen(str);for(i=0;i<l/2;i++)if(str[i]!=str[l-i-1])t=0;if(t)printf("The string is Huiwen!\n");elseprintf("The string is not Huiwen!\n");}3.11main(){int i,n,sum=0;//sum为零的个数int zero(int pro);printf("此程序用于计算1*2*3*…*n所得的数末尾有多少个零。

算法分析与设计第二版习题答案-第三章到第五章

算法分析与设计第二版习题答案-第三章到第五章
{
int bool=1;
int min;
int j;
int i;
int k;
int flag;
for(i=0;i<count;i++)
{
if(buf[i]=='(')
push(buf[i],i);
if(buf[i]==')')
{
flag=pop();
算法设计与分析(第二版)习题答案 主编:吕国英
算法设计与分析(第二版)习题答案(第三章)
第三章:
1.#include<stdlib.h>#include<stdio.h>int main(int argc,char **argv){int n;int i,j,k;int *buf;printf("请输入n的数值:");
;}for(i=0;i<N;i++){ for(j=0;j<N;j++) printf("]",buf[i][j]); printf("\n");}return
0;}6.#include<stdio.h>#include<stdlib.h>typedef struct s_node s_list;typedef s_list *link;struct s_node{char ch;int flag;link next;};link top;void push(char ch,int flag){link newnode;newnode=(link)malloc(sizeof(s_list));newnode->ch=ch;newnode- >flag=flag;newnode-

算法设计与分析习题答案1-6章

算法设计与分析习题答案1-6章

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(LeonhardEuler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

图 七桥问题南2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。

#include<iostream>using namespace std;int main(){double value=0;for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。

为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。

算法设计与分析(安徽理工大学)智慧树知到答案章节测试2023年

算法设计与分析(安徽理工大学)智慧树知到答案章节测试2023年

第一章测试1.算法的重要特性( )。

A:能行性B:输出C:有穷性D:确定性E:输入答案:ABCDE2.语句 return sum(x,y);执行频度为1 ( )A:对B:错答案:B3.的上界函数是 ( )A:对B:错答案:A4.算法时间复杂度为O(1)说明算法执行时间是单位时间( )A:对B:错答案:B5.集合的位向量表示法,合并集合操作的时间复杂度为( )A:B:C:D:答案:A6.带加权规则的Union算法中,Parent(1)=-8,Parent(2)=-4,1、2代表的集合合并后,集合的根是1,Parent(1)=-12,Parent(2)=1( )A:对B:错答案:A7.写一个算法交换两个变量x、y的值不使用第三个变量。

答案:8.求下列函数的渐进表达式:; ; ;答案:9.的渐进表达式=____答案:10.按照渐进阶从低到高的顺序排列以下表达式:,,, ,,,。

答案:第二章测试1.递归程序每一次递归执行的语句都完全相同( )A:对B:错答案:B2.对数组ary[0:n-1]求和,采用如下递归方式:arysum(n)=ary[n-1]+arysum(n-1),递归方式是( )A:线性递归B:非线性递归答案:A3.问题规模为的全排列问题,可以看作个规模为的全排列问题,因此时间复杂度为: ( )A:错B:对答案:B4.递归程序简洁明了,因此比非递归程序执行效率高( )A:错B:对答案:A5.Master Method适应于求解形式如T(n)=aT(n/b)+f(n)的递归关系式。

其中,a表示子问题个数, n/b子问题规模,f(n)表示划分子问题或整合子问题解的时间。

( )A:对B:错答案:A6.递归关系式:F(n)=F(n-1)+F(n-2)+1是二阶齐次常系数线性递归式。

( )A:错B:对答案:A7.解形式为( )(p均为待定系数):A:B:C:D:答案:C8.求解非线性变系数递归关系式一个原则是“变换”,经过变换将其转换为线性常系数等常规可求的递归式。

算法分析与设计教程习题答案(修订版)-秦明

 算法分析与设计教程习题答案(修订版)-秦明

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(--=n n f n② )log *()(n n n f O =6. 解:算法略。

算法设计与分析第三章课后答案吕国英主编

算法设计与分析第三章课后答案吕国英主编

.2、#include<stdio.h>void main(){int a[6][6],b[6],i,j;printf("请输入6个整数:");for(i=0;i<6;i++){scanf("%d",&b[i]);}for(i=0;i<6;i++){a[0][i]=b[i];}for(i=1;i<=5;i++)a[i][0]=b[6-i];for(i=1;i<=5;i++)for(j=1;j<=5;j++){a[i][j]=a[i-1][j-1];}for(i=0;i<=5;i++){for(j=0;j<=5;j++).printf("%d ",a[i][j]);printf("\n");}}3、#include<stdio.h>void main(){int i,j,count,n;int a[100][100];printf("请输入矩阵的阶n=");scanf("%d",&n);count=1;for(i=1;i<=n/2;i++){for(j=i;j<=n-i+1;j++)//上侧{a[i][j]=count;count++;}for(j=i+1;j<=n-i;j++)//右侧{a[j][n-i+1]=count;.count++;}for(j=n-i+1;j>=i+1;j--)//下侧{a[n-i+1][j]=count;count++;}for(j=n-i+1;j>=i+1;j--)//左侧{a[j][i]=count;count++;}}if(n%2==1){i=(n+1)/2;a[i][i]=n*n;}for(i=1;i<=n;i++){for(j=1;j<=n;j++)printf("%2d ",a[i][j]);.printf("\n");}}4、#include<stdio.h>void main(){int i,j,n,a[100][100],count=1;printf("请输入方阵的阶n:");scanf("%d",&n);for(i=1;i<=n;i++)for(j=1;j<=i;j++){a[i-j+1][j]=count;count++;}for(i=1;i<=n;i++){for(j=1;j<=n-i+1;j++)printf("%4d",a[i][j]);printf("\n");}}.5、#include<stdio.h>void main(){int i,j,count,n;int a[100][100];printf("请输入矩阵的阶n=");scanf("%d",&n);count=1;for(i=1;i<=n/2;i++){for(j=i;j<=n-i+1;j++)//上侧{a[i][j]=count;}for(j=i+1;j<=n-i;j++)//右侧{a[j][n-i+1]=count;}for(j=n-i+1;j>=i+1;j--)//下侧{a[n-i+1][j]=count;}for(j=n-i+1;j>=i+1;j--)//左侧{a[j][i]=count;}count++;}if(n%2==1){i=(n+1)/2;a[i][i]=i;}for(i=1;i<=n;i++){for(j=1;j<=n;j++)printf("%2d ",a[i][j]);printf("\n");}}10、狼找兔子问题:一座山周围有n个洞,顺时针编号为0,1,2.,…,n-1。

算法设计与分析_第3章_动态规划1

算法设计与分析_第3章_动态规划1
8
引言
分治技术的问题
子问题是相互独立的
Why?
问题:
如果子问题不是相互独立的,分治方法将重复 计算公共子问题,效率很低,甚至在多项式量 级的子问题数目时也可能耗费指数时间
解决方案:动态规划
用表来保存所有已解决子问题的答案 不同算法的填表格式是相同的
9
引言
最优化问题
Why?
可能有多个可行解,每个解对应一个 值,需要找出最优值的解。
MATRIX-MULTIPLY(A, B) 1 if columns[A] ≠ rows[B] 2 then return “error: incompatible dimensions” 3 else for i ← 1 to rows[A] 4 for j ← 1 to columns[B] 5 C[i, j] ← 0 6 for k ← 1 to columns[A] 7 C[i, j]←C[i, j]+A[i, k]·B[k, j] 8 return C
(A1 (A2 (A3 A4))) , (A1 ((A2 A3) A4)) , ((A1 A2) (A3 A4)) , ((A1 (A2 A3)) A4) , (((A1 A2) A3) A4).
15
矩阵连乘问题
采用不同的加括号方式,可导致不同的、 甚至及其富有戏剧性差别的乘法开销
设有四个矩阵A,B,C,D,它们的维数分别 是: A=50×10 B=10×40 C=40×30 D=30×5 总共有五种完全加括号的方式: (A((BC)D)) ——16000 (A(B(CD))) ——10500 ((AB)(CD)) ——36000 (((AB)C)D) ——87500 ((A(BC))D) ——34500

算法分析与设计(山东联盟)智慧树知到答案章节测试2023年泰山学院

算法分析与设计(山东联盟)智慧树知到答案章节测试2023年泰山学院

绪论单元测试1.山东师范大学的管教授在哪个问题上给出了比较好的解决方法。

A:邮递员问题B:背包问题C:装载问题D:最大团问题答案:A第一章测试1.算法具备的四个基本性质是()A:输入B:有限性C:确定性D:输出答案:ABCD2.算法就是程序A:错B:对答案:A3.描述渐进上界的符号是()A:ΩB:ωC:OD:θ答案:C4.f(n)=3n2+n+1,下面不正确的是()A:f(n)=O(n3)B:f(n)=O(n2)C:f(n)=O(2n)D:f(n)=O(3n2)答案:C5.在算法分析中,我们希望找到更加高阶的上界函数A:错B:对答案:A第二章测试1.Strassen 矩阵乘法是利用()实现的算法。

A:贪心法B:分治策略C:动态规划法D:回溯法答案:B2.使用分治法求解不需要满足的条件是()A:子问题不能够重复B:子问题的解可以合并C:子问题必须是一样的D:原问题和子问题使用相同的方法解答案:C3.实现棋盘覆盖算法利用的算法是()。

A:分治法B:回溯法C:动态规划法D:贪心法答案:A4.实现循环赛日程表利用的算法是()。

A:贪心法B:回溯法C:分治策略D:动态规划法答案:C5.从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法A:对B:错答案:A第三章测试1.动态规划算法一般分成()三个阶段。

A:求解B:分析C:分段D:汇总答案:ABC2.动态规划的基本要素有()?A:备忘录方法B:最优子结构C:子问题的重叠性质答案:ABC3.用动态规划法求解的问题都可以分解为相互重叠的子问题。

A:对B:错答案:A4.动态规划法利用递推关系式()计算,实现动态规划过程。

A:循环B:递归C:自底向上D:自顶向下答案:C5.最优子结构是问题可以用动态规划法求解的前提。

A:错B:对答案:B第四章测试1.贪心算法中每次做出的贪心选择都是全局最优选择。

A:对B:错答案:B2.下面问题不能使用贪心法解决的是A:N皇后问题B:最小花费生成树问题C:背包问题D:单源最短路径问题答案:A3.背包问题的贪心算法所需的计算时间为A:O(n2n)B:O(n)C:O(nlogn)D:O(2n)答案:C4.哈夫曼编码是自底向上构造的A:错B:对答案:B5.Kruskal算法的时间复杂度是A:O(eloge)B:O(n)C:O(nlogn)D:O(2n)答案:A第五章测试1.回溯法就是穷举法A:错B:对答案:A2.回溯法使用的是广度优先遍历A:对B:错答案:B3.回溯法必须寻找一个限界函数A:对B:错答案:B4.使用回溯法时可以考虑以下哪些方面()A:约束函数B:解空间结构C:解的向量形式D:解的最优子结构性质答案:ABC5.回溯法在处理n皇后问题时,必须把解空间组织成子集树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
buf[a][j]=count;
for(j=a+1;j<=b;j++)
buf[j][b]=count;
for(j=b-1;j>=a;j--)
buf[b][j]=count;
for(j=b-1;j>a;j--)
buf[j][a]=count;
算法设计与分析(第二版)习题答案(第三章)
2010年06月15日 星期二 下午 03:51
算法设计与分析(第二版)
主编:吕国英
习题答案
第三章:
1.
#include<stdlib.h>
#include<stdio.h>
int main(int argc,char **argv)
flag=stack->flag;
free(stack);
}
return flag;
}
int op(char ch)
{
switch(ch)
{
case '+':
return 1;
break;
case '-':
printf("%d\n",ack(m,n));
printf("%d\n",count);
return 0;
}
int ack(int m,int n)
{
count++;
if(m==0)
return n+1;
printf("\n");
}
int main(void)
{
char buf[255];
int i;
for(i=0;i<255;i++)
{
scanf("%c",&buf[i]);
if(buf[i]=='\n')
break;
}
buf[i]='\0';
for(k=a+1;k<=b;k++)
{
buf[k][b]=count++;
}
for(m=b-1;m>=a;m--)
{
buf[b][m]=count++;
}
for(n=b-1;n>a;n--)
{
buf[n][a]=count++;
nirnava(buf,i);
return 0;
}
7.
#include<stdio.h>
#include<stdlib.h>
int ack(int m,int n);
int count=0;
int main(int argc,char **argv)
{
int m,n;
scanf("%d%d",&m,&n);
scanf("%d",&buf[0][i]);
for(i=0;i<5;i++)
{
for(j=0;j<5;j++)
{
buf[i+1][j+1]=buf[i][j];
}
buf[i+1][0]=buf[i][j];
}
for(i=0;i<6;i++)
}
} Biblioteka } else if(i==count-1)
{
if(flag==0)
{
buf[i]='!';
buf[flag]='!';
}
else
if(op(buf[flag-1])<=min)
buf[j][k]=count++;
n++;
}
for(i=0;i<N;i++)
{
for(j=0;j<N-i;j++)
printf("%5d",buf[i][j]);
printf("\n");
}
return 0;
}
5.
#include<stdio.h>
if(i<count-1)
{
if((buf[i+1]=='+')||(buf[i+1]=='-'))
{
if(flag==0)
{
buf[i]='!';
buf[flag]='!';
}
else
{
int n;
int i,j,k;
int *buf;
printf("请输入n的数值:");
scanf("%d",&n);
buf=(int *)malloc(n*sizeof(int));
for(i=0;i<n;i++)
{
buf[i]=2;
{
buf[i]='!';
buf[flag]='!';
}
}
}
}
for(k=0;k<count;k++)
{
if(buf[k]!='!')
printf("%c",buf[k]);
}
#include<stdlib.h>
typedef struct s_node s_list;
typedef s_list *link;
struct s_node
{
char ch;
int flag;
link next;
};
link top;
void push(char ch,int flag)
return 2;
break;
case '*':
return 3;
break;
case '/':
return 4;
break;
default:
return 5;
}
if(op(buf[flag-1])<=min)
{
buf[i]='!';
buf[flag]='!';
}
}
else
if((buf[i+1]=='*')||(buf[i+1]=='/'))
{
if(flag==0)
if(buf[j]==')')
{
pop();
bool=1;
continue;
}
if(bool==1)
{
if(min>op(buf[j]))
min=op(buf[j]);
}
}
#define N 5
int main(int argc,char **argv)
{
int buf[N][N];
int i,j;
int a=0,b=N-1;
int count=1;
for(i=0;i<N/2+N%2;i++)
{
for(j=a;j<=b;j++)
printf("\n");
return 0;
}
2.
#include<stdio.h>
int main(int argc,char **argv)
{
int buf[6][6];
int i,j;
printf("任意输入6个数字:");
for(i=0;i<6;i++)
{
int buf[N][N];
int i,j,k,m,n;
int a=0,b=N-1;
int count=1;
for(i=0;i<(N/2)+(N%2);i++)
{
for(j=a;j<=b;j++)
{
buf[a][j]=count++;
}
push(buf[i],i);
if(buf[i]==')')
{
flag=pop();
if(flag!=0)
{
if((buf[flag-1]=='(')&&(buf[i+1]==')'))
{
buf[flag]='!';
buf[i]='!';
{
if(buf[k]>=10)
{
buf[k+1]+=buf[k]/10;
buf[k]%=10;
}
}
for(i=n-1;i>=0;i--)
printf("%d",buf[i]);
相关文档
最新文档