指数与指数函数-必修一讲解
指数函数精讲

指数函数精讲第一篇:指数函数精讲指数函数精讲(1)一、说教材(一)教材地位和作用《指数函数》是人教版高一数学必修1第二章第一节的内容。
指数函数”的教学共分两个课时完成。
第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。
本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图象与性质,为今后进一步熟悉指数函数的性质和作用,进一步研究等比数列的性质打下坚实的基础,也为后面进一步学习对数函数的概念、图象及性质打下基础。
此外,指数函数的知识与我们日常生产、生活和科学研究有着紧密的联系。
因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。
(二)教学目标:1、知识目标:掌握指数函数的概念,图像和性质2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。
3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
(三)教学重点,难点和关键:1、重点:指数函数的定义、性质和图象2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。
3、关键:能正确描绘指数函数的图象(四)教学基本思路:在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
二、说学法1、学情分析:学生数学基础,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。
2、学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。
指数与指数函数-必修一

11 33
2
31 4 4
3
11 1 1 33 3 3
(2 3 )=2+4×27=110. 11
2 3
n m-2n
2
=m =a.
3
主页
指数函数的图象及应用 xax 【例 2】(1)函数 y= (0<a<1)图象的大致形状是 ( D ) |x|
题 型二
xx a x>0 a, x>0 x, x>0 . 函数定义域为 ∈ R, ≠ 0}, = = a , xa 函数定义域为{ {x x||x x ∈ R,x x ≠ 0}, 且 且yy = = x x x<0 |x ||= |x a , 函数定义域为{x|x∈R, x≠0}, 且 y= - - a x,x<0 |x| -a ,x<0 xx xa xax
知识要点
6.第一象限中,指数函数底数与图象的关系
y bx y a
x
y
y cx y dx
o
x=1
x
0 b a 1 d c
图象从下到上,底数逐渐变大.
主页
基础自测
题号 答案
1 2
3 4 5
x ,(a b) , m
7
2 3
3 4
5 2
( 2, 1) (1, 2)
3
主页
题 型二
指数函数的图象及应用
【例 2】 (2)若函数 y=ax+b-1 (a>0 且 a≠1)的图象经过第二、
0 a 1, b 0 . 三、四象限,则 a, b 的取值范围是__________________
(2)函数 y=a +b-1 的图象经过第二、三、四象限, 大致图象如图. 所以函数必为减函数. 所以函数必为减函数. 所以函数必为减函数. 故 0< 0<a a<1. <1. 故 故 0<a<1. 又当 x x= =0 0 时, 时,y y<0 <0, , 又当 又当0 x=0 时,y<0, 即a a0 +b b- -1<0 1<0, ,∴ ∴b b<0. <0. 0+ 即 即 a +b-1<0, ∴b<0.
高中数学 函数指数函数的概念讲义 新人教A版必修一第一册

第1课时指数函数的概念最新课程标准:(1)通过具体实例,了解指数函数的实际意义,理解指数函数的概念.(2)能用描点法或借助计算工具画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.知识点一指数函数的定义函数y=a x(a>0且a≠1)叫做指数函数,其中x是自变量.定义域为R.状元随笔指数函数解析式的3个特征(1)底数a为大于0且不等于1的常数.(2)自变量x的位置在指数上,且x的系数是1.(3)a x的系数是1.知识点二指数函数的图象与性质状元随笔底数a与1的大小关系决定了指数函数图象的“升”与“降”.当a>1时,指数函数的图象是“上升”的;当0<a<1时,指数函数的图象是“下降”的.[教材解难]规定底数a>0且a≠1的理由(1)如果a =0,则⎩⎪⎨⎪⎧当x >0时,a x恒为0;当x <0时,a x无意义.(2)如果a <0,比如y =(-2)x,这时对于x =12,14,18,116,…在实数范围内函数值不存在.(3)如果a =1,那么y =1x=1是常量,对此就没有研究的必要. [基础自测]1.下列各函数中,是指数函数的是( ) A .y =(-3)xB .y =-3xC .y =3x -1D .y =⎝ ⎛⎭⎪⎫13x解析:根据指数函数的定义y =a x(a >0且a ≠1)可知只有D 项正确. 答案:D 2.函数f (x )=12x-1的定义域为( ) A .R B .(0,+∞) C .[0,+∞) D.(-∞,0)解析:要使函数有意义,则2x-1>0,∴2x>1,∴x >0. 答案:B3.在同一坐标系中,函数y =2x与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称解析:由作出两函数图象可知,两函数图象关于y 轴对称,故选A. 答案:A4.函数f (x )=1-e x的值域为________.解析:由1-e x≥0得e x≤1,故函数f (x )的定义域为{x |x ≤0},所以0<e x≤1,-1≤-e x<0,0≤1-e x<1,函数f (x )的值域为[0,1).答案:[0,1)题型一 指数函数概念的应用[经典例题]例1 (1)若函数f (x )=(2a -1)x是R 上的减函数,则实数a 的取值范围是( ) A .(0,1) B .(1,+∞)C.⎝ ⎛⎭⎪⎫12,1 D .(-∞,1)(2)指数函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,14,那么f (4)·f (2)等于________. 【解析】 (1)由已知,得0<2a -1<1,则12<a <1,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1. (2)设y =f (x )=a x (a >0,a ≠1),所以a -2=14,所以a =2,所以f (4)·f (2)=24×22=64. 【答案】 (1)C (2)64(1)根据指数函数的定义可知,底数a>0且a≠1,a x的系数是1.(2)先设指数函数为f(x)=a x,借助条件图象过点(-2,14)求a ,最后求值.方法归纳(1)判断一个函数是指数函数的方法①看形式:只需判定其解析式是否符合y =a x(a >0,且a ≠1)这一结构特征.②明特征:指数函数的解析式具有三个特征,只要有一个特征不具备,则不是指数函数. (2)已知某函数是指数函数求参数值的基本步骤跟踪训练1 (1)若函数y =(3-2a )x为指数函数,则实数a 的取值范围是________; (2)下列函数中是指数函数的是________.(填序号)①y =2·(2)x②y =2x -1③y =⎝ ⎛⎭⎪⎫π2x ④y =x x⑤y =31x -⑥y =x13.解析:(1)若函数y =(3-2a )x为指数函数,则⎩⎪⎨⎪⎧3-2a >0,3-2a ≠1,解得a <32且a ≠1.(2)①中指数式(2)x的系数不为1,故不是指数函数;②中y =2x -1=12·2x ,指数式2x 的系数不为1,故不是指数函数;④中底数为x ,不满足底数是唯一确定的值,故不是指数函数;⑤中指数不是x ,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填③.答案:(1)(-∞,1)∪⎝ ⎛⎭⎪⎫1,32 (2)③ 1.指数函数系数为1. 2.底数>0且≠1.题型二 指数函数[教材P 114例1]例2 已知指数函数f (x )=a x(a >0,且a ≠1),且f (3)=π,求f (0),f (1),f (-3)的值.【解析】 因为f (x )=a x ,且f (3)=π,则a 3=π,解得a =π13,于是f (x )=π3x .所以,f (0)=π0=1,f (1)=π13=3π,f (-3)=π-1=1π. 状元随笔 要求f(0),f(1),f(-3)的值,应先求出f(x)=a x的解析式,即先求a 的值.教材反思求指数函数的解析式时,一般采用待定系数法,即先设出函数的解析式,然后利用已知条件,求出解析式中的参数,从而得到函数的解析式,其中掌握指数函数的概念是解决这类问题的关键.因为底数a 是大于0且不等于1的实数,所以a =-3应舍去.跟踪训练2 若指数函数f (x )的图象经过点(2,9),求f (x )的解析式及f (-1)的值. 解析:设f (x )=a x (a >0,且a ≠1),将点(2,9)代入,得a 2=9,解得a =3或a =-3(舍去).所以f (x )=3x .所以f (-1)=3-1=13.设f(x)=a x,代入(2,9)求出a.一、选择题1.下列函数中,指数函数的个数为( )①y =⎝ ⎛⎭⎪⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝ ⎛⎭⎪⎫122x -1.A .0B .1C .3D .4解析:由指数函数的定义可判定,只有②正确. 答案:B 2.已知f (x )=3x -b(b 为常数)的图象经过点(2,1),则f (4)的值为( )A .3B .6C .9D .81解析:由f (x )过定点(2,1)可知b =2, 所以f (x )=3x -2,f (4)=9.可知C 正确.答案:C3.当x ∈[-1,1]时,函数f (x )=3x-2的值域是( )A.⎣⎢⎡⎦⎥⎤1,53 B .[-1,1] C.⎣⎢⎡⎦⎥⎤-53,1 D .[0,1] 解析:因为指数函数y =3x在区间[-1,1]上是增函数,所以3-1≤3x ≤31,于是3-1-2≤3x-2≤31-2,即-53≤f (x )≤1.故选C.答案:C4.在同一平面直角坐标系中,函数f (x )=ax 与g (x )=a x的图象可能是( )解析:需要对a 讨论:①当a >1时,f (x )=ax 过原点且斜率大于1,g (x )=a x是递增的;②当0<a <1时,f (x )=ax 过原点且斜率小于1,g (x )=a x是减函数,显然B 正确.答案:B 二、填空题 5.下列函数中:①y =2·(2)x;②y =2x -1;③y =⎝ ⎛⎭⎪⎫π2x;④y =31x -;⑤y =x13.是指数函数的是________(填序号). 解析:①中指数式的系数不为1;②中y =2x -1=12·2x的系数亦不为1;④中自变量不为x ;⑤中的指数为常数且底数不是唯一确定的值.答案:③6.若指数函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,116,则f ⎝ ⎛⎭⎪⎫-32=________. 解析:设f (x )=a x(a >0且a ≠1). 因为f (x )过点⎝ ⎛⎭⎪⎫-2,116,所以116=a -2,所以a =4. 所以f (x )=4x,所以f ⎝ ⎛⎭⎪⎫-32=432-=18. 答案:187.若关于x 的方程2x-a +1=0有负根,则a 的取值范围是________. 解析:因为2x=a -1有负根, 所以x <0, 所以0<2x<1. 所以0<a -1<1. 所以1<a <2. 答案:(1,2) 三、解答题8.若函数y =(a 2-3a +3)·a x是指数函数,求a 的值.解析:由指数函数的定义知⎩⎪⎨⎪⎧a 2-3a +3=1,①a >0且a ≠1,②由①得a =1或2,结合②得a =2. 9.求下列函数的定义域和值域:(1)y =21x-1;(2)y =⎝ ⎛⎭⎪⎫13222x -.解析:(1)要使y =21x-1有意义,需x ≠0,则21x≠1;故21x-1>-1且21x-1≠0,故函数y =21x-1的定义域为{x |x ≠0},函数的值域为(-1,0)∪(0,+∞).(2)函数y =⎝ ⎛⎭⎪⎫13222x -的定义域为实数集R ,由于2x 2≥0,则2x 2-2≥-2.故0<⎝ ⎛⎭⎪⎫13222x -≤9,所以函数y =⎝ ⎛⎭⎪⎫13222x -的值域为(0,9]. [尖子生题库]10.设f (x )=3x,g (x )=⎝ ⎛⎭⎪⎫13x .(1)在同一坐标系中作出f (x ),g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?解析:(1)函数f (x )与g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝ ⎛⎭⎪⎫13-1=3;f (π)=3π,g (-π)=⎝ ⎛⎭⎪⎫13-π=3π;f (m )=3m ,g (-m )=⎝ ⎛⎭⎪⎫13-m =3m .从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.。
北师大版高中数学课件必修第1册第三章 指数运算与指数函数

2.
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
3.[江苏镇江 2021 高一期中]已知指数函数 f(x)的图象过点(-2,4),则 f(6)=( B )
3
1
4
A.
B.
C.
4
64
3
1 D.
12
解析
1
设
f(x)=ax(a>0
且
a≠1),∴f(-2)=a-2=4,解得
1 a= ,∴f(6)=
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
6.[宁夏大学附属中学 2021 高一期中]已知 f(x)=ka-x(k,a 为常数,a>0 且 a≠1)的图象过点 A(0,1),B(- 3,8). (1)求 f(x)的解析式;
f(x)-1
(2)若函数 g(x)=
,试判断 g(x)的奇偶性并给出证明.
10
解析
103x-2y=103x=(10x)3=33=27,故选 C. 102y (10y)2 42 16
§2 指数幂的运算性质
刷能力
5.已知 ab=-5,则 a
A.2 5 C.-2 5
解析
b - +b
a
a - 的值是( B )
b
B.0
D.±2 5
由题意知 ab<0,a 故选 B.
b - +b
a
a - =a
2
6=
1
.故选
B.
2
64
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
4.[福建福州第三中学 2021 高一期中]以下关于函数 f(x)=2x 的说法正确的是( D ) A.f(mn)=f(m)f(n) B.f(mn)=f(m)+f(n) C.f(m+n)=f(m)+f(n) D.f(m)f(n)=f(m+n)
高中必修人教A版高中数学必修1指数函数(一 完整版课件PPT

0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y 1 x … 8
42ຫໍສະໝຸດ 2-0.5 00.71 1
8
1.4 1
7
6
5
4
gx = 0.5x 3
2
1
0.5 1 2 3 … 1.4 2 4 8 …
在 y 2x, y 0.85 x 中指数x是自变量,
底数是一个大于0且不等于1的常量.
我们把这种自变量在指数位置上而底数是一个 大于0且不等于1的常量的函数叫做指数函数.
指数函数的定义:
函数 y a x (a 0且a 1)
叫做指数函数,其中x是自变量,函数定义域是R。
探究1:为什么要规定a>0,且a 1呢?
-1.5
-1
-0.5
-0.2
0.5
1
③ 1.70,.3 0.93.1 解③ :根据指数函数的性质,得
1.70.3 1 且
3.2 3
2.8 2.6 2.4 2.2
2 1.8
fx = 1.7x 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2
-2
-1.5
-1
-0.5
-0.2
-0.4
0.5
1
(2)m (2)n 33
1.1m 1.1n
mn mn
⑶比较下列各数的大小:
10 , 0.42.5 ,
2 0.2
1 0.42.5 0
2 0.2
课后作业:
小结:1.指数函数的定义:函数 y a x (a 0且a 1)
高一数学-1-5指数与指数函数

[例 4] 设函数 f(x)=|2x-1|的定义域和值域都是[a,
b](b>a),则 a+b 等于( )
A.1
B.2
C.3
D.4
解析:因为 f(x)=|2x-1|的值域为[a,b],所以 b>a≥0, 而函数 f(x)=|2x-1|在[0,+∞)内是单调递增函数,
因此应有||22ab--11||==ab ,解得ab= =01 , 所以有 a+b=1,选 A.
指数幂的运算
[例 1] 化简:
4 (1)(1-a)
a-1 13=________;
3 (2) xy2· xy-1· xy=________;
(3)0.25-0.5+217-
1 3
-6250.25=________.
解析:(1)原式=(1-a)(a-1)
-
3 4
=-(a-1)(a-1)
-
3 4
=-(a-1)
(2)xn=a,(n∈N,n>1)⇔x=n a,n为奇数, x=±n aa>0,n为偶数.
n (
a)n=
a
;
a2=
|a|
;
n
an=
a |a|
,n为奇数, ,n为偶数.
(3)分数指数幂
m
an
=nam; Nhomakorabea-
a
m n
=
1
m
=
1
.(a>0,m,n∈N,且
a n n am
n>1) (4)指数幂的运算性质
ar·as=ar+s,(ar)s=ar·s,
第五节
指数与指数函数
重点难点 重点:①指数幂的运算法则. ②指数函数的概念、图象与性质. 难点:①根式与分数指数幂的运算. ②a>1 与 0<a<1 时,指数函数图象、性质的区别. ③指数函数图象与性质的应用和简单指数方程、不 等式的求解.
高一数学必修一《指数函数及其性质》PPT课件

进行求解,也可以将对数方程转化为指数方程进行求解。
03
指数函数与对数函数在图像上的关系
指数函数的图像与对数函数的图像关于直线y=x对称。
02
指数函数运算规则
同底数指数运算法则
乘法法则
$a^m times a^n = a^{m+n}$,其中$a$是底数,$m$和$n$ 是指数。
除法法则
$a^m div a^n = a^{m-n}$,其中$a neq 0$。
分组让学生讨论指数函数的性质,如定义域、值域、 单调性、奇偶性等,并让他们尝试通过图像观察验证 这些性质。
问题导入
互动问答
通过具体案例,如“细菌繁殖”、“投资回报”等, 让学生应用指数函数的知识进行分析和计算,加深对
指数函数的理解。
案例分析
老师提出问题,学生抢答或点名回答,问题可以涉及 指数函数的计算、性质应用等,以检验学生的学习效 果。
放射性物质衰变模型
放射性物质衰变模型
01
N(t) = N0 * e^(-λt),其中N(t)表示t时刻的放射性物质数量,
N0表示初始放射性物质数量,λ表示衰变常数。
指数函数在放射性物质衰变模型中的应用
02
通过指数函数可以描述放射性物质数量随时间减少的规律。
放射性物质衰变模型的意义
03
对于核能利用、环境保护等领域具有重要的指导意义。
单调性
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函 数在R上是减函数。
指数函数与对数函数关系
01
指数函数与对数函数的互化关系
指数函数y=a^x(a>0且a≠1)与对数函数y=log_a x(a>0且a≠1)是
2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。
高中数学必修第一册人教A版4.2《指数函数的概念》名师课件

亡年数之间有怎样的关系?
设生物死亡年数为,死亡生物体内碳14含量为,那么
=
1
2
1
5730
( ∈ 0, +∞ )
探究新知
= .
=
这两个解析式的情势有什么共同特征?
1.等式特点:
解析式是指数式的情势
分析 要求 0 , 1 , −3 的值,应先求出() = 的解析式,即先求的值.
解析
∵() = 经过点 3, ,∴ 3 = ,解得 = ,
∴() = .
∴ 0 =
= 1, 1 = =
, −3 =
−
=
典例讲授
A.8
B.16
C.32
D.64
归纳小结
定义:情势定义
指数函数的概念
系数
结构特征
底数
指数
作
业
P115练习:2、3
B、 =1
C、
)
解析
由指数函数的概念,得2 − 3 + 3 = 1,解得 =1或 =2.当 =1时,底数是1,不符合题意,
舍去;当 =2时,符合题意.
变式训练
2、若函数 = ( + 2) + 2 − ( > 0, 且 ≠ 1)是指数函数,
则 =_____, =______.
解析
根据指数函数的定义,得ቊ
+2=1
= −1
,解得ቄ
.
2− =0
人教高中数学必修一指数函数及其性质课件

的图象经过点(3, ),求 f (0), f (1), f (3)的值.
人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
列表
x
-2 -1 0
1
2
y 2x
1 4
y
1 2
x
4
y 3x
1
9
y
1 3
x
9
1
2
1
21
1
3
1
31
24
1
1
2
4391源自139人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
描点、连线
y
y 1 x
y 1 x 3
2
y 3x y 2x
曲线都过定点(0,1) 1
人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
O1
关于y轴对称
x
人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
y
y
y
y 1 x 2
y 1 x 3
2.1.2指数函数及其性质
第1年 2棵
第2年 22棵
第3年 23棵
第4年 24棵
第x年 2x棵
人教高中数学必修一2.1.2指数函数及 其性质 课件(共27张PPT)
......
某种细胞分裂时,由1个分裂成2个,2个分
高一数学指数与指数函数

6.已知函数 f(x)=3x 且 f-1(18)=a+2, g(x)=3ax-4x 的定义域为 [0, 1]. (1)求 g(x) 的 解析式; (2)求 g(x) 的单调区间, 确定其增减性并用定义证明; (3)求 g(x) 的值域.
解: (1)∵f(x)=3x 且 f-1(18)=a+2, ∴g(x)=(3a)x-4x=2x-4x.
∵ y=e-x 是 R 上的减函数, ∴ y=-e-x 是 R 上的增函数. 又∵ y=ex 是 R 上的增函数, ∴ y=ex -e-x 是 R 上的增函数. ∴ f(x) 的反函数 f-1(x) 也是 R 上的增函数. 综上所述, f-1(x) 是奇函数, 且是 R 上的增函数.
; 泡芙妹妹女性网 塑形瑜伽 ; 2019年01月19日11:25:16 ;
∴f(a+2)=3a+2=18. 即 g(x)=2x-4x.
∴3a=2.
(2)令 t=2x, 则函数 g(x) 由 y=t-t2 及 t=2x 复合而得. 由已知 x[0, 1], 则 t[1, 2], ∵t=2x 在 [0, 1] 上单调递增, y=t-t2 在 [1, 2] 上单调递减, ∴g(x) 的定义域区间 [0, 1] 为函数的单调递减区间.
∴ -2≤g(x)≤0 .
故函数 g(x) 的值域为 [-2, 0].
x e 7.设 a>0, f(x)= a - ax 是 R 上的奇函数. (1)求 a 的值; (2)试判 e 断 f(x) 的反函数 f-1(x) 的奇偶性与单调性. 1 解: (1)∵ f(x) 是 R 上的奇函数, ∴f(0)=0, 即 a -a=0. ∴a2=1. ∵a>0, ∴a=1. 此时, f(x)=ex-e-x是 R 上的奇函数. ∴a=1 即为所求. (2)由 (1) 知 f(x)=ex-e-x, xR, f(x)R. ∵ f(x) 是奇函数, ∴ f(x) 的反函数 f-1(x) 也是奇函数.
高中数学必修一(人教版)《4.2.1 指数函数的概念》课件

[答案] B
[方法技巧] 判断一个函数是指数函数的方法
(1)需判断其解析式是否符合y=ax(a>0,且a≠1)这一结构特征. (2)看是否具备指数函数解析式所具有的所有特征.只要有一个特征不具备, 则该函数就不是指数函数.
【对点练清】
1.下列函数是指数函数的是
A.y=π2x C.y=2x-1
B.y=(-8)x D.y=x2
[方法技巧] 实际应用问题中指数函数模型的类型
(1)指数增长模型: 设原有量为N,每次的增长率为p,则经过x次增长,该量增长到y,则y=N(1 +p)x(x∈N). (2)指数减少模型: 设原有量为N,每次的减少率为p,则经过x次减少,该量减少到y,则y=N(1 -p)x(x∈N). (3)指数型函数: 把形如y=kax(k≠0,a>0,且a≠1)的函数称为指数型函数,这是非常有用 的函数模型.
[典例1] 给出下列函数:
①y=2·3x;②y=3x+1;③y=3x;
④y=x3;⑤y=(-2)x.
其中,指数函数的个数是
()
A.0
B.1
C.2
D.4
[解析] ①中,3x的系数是2,故①不是指数函数;②中,y=3x+1的指数是x +1,不是自变量x,故②不是指数函数;③中,3x的系数是1,幂的指数是自变量 x,且只有3x一项,故③是指数函数;④中,y=x3的底数为自变量,指数为常数, 故④不是指数函数.⑤中,底数-2<0,不是指数函数.
(2)若指数函数 f(x)的图象经过点(2,9),求 f(x)的解析式及 f(-1)的值.
[解析] (1)指数函数 y=f(x)=ax(a>0,且 a≠1)的图象经过点-2,14,可 得 a-2=14,解得 a=2,函数的解析式为 y=2x,f(4)f(2)=24·22=64.
人教版高一数学必修一2.指数与指数幂的运算第一、二、三课时

2.当根式的被开方数的指数不能被根指数整除 时,根式也可以写成分数指数幂的形式.
2
如: 3 a2 a3;
1
5
b b 2 (b 0); 4 c 5 c 4 (c 0).
分数指数幂
2.1.1 指数与指数幂的运算
1)规定正数的正分数指数幂的意义:
m
a n n a m (a 0, m`n N ,且n 1)
生 物 体 内 碳14含 量 与 死 亡 年 数t之 间 的 关 系
P
(
1
)
t 5730
由 此 可 知 2:
当 生 物 死 亡 了1年 ,2年 ,10年 , ,10000年 后 , 该
生 物 体 内 碳14的 含 量P的 值 分 别 是
P
(
1
)
1 5730
,
2
P
(
1
)
2 5730
,
2
P
(
1
)
10 5730
3.求下列各式的值 : (1)6 ( x y)6 ; (2)3 (27); (3) ( 2 3)2 ; (4) x6 .
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
讨论:5 2的结果?
2.1.1 指数与指数幂的运算
由上表不难发现: 当 2的不足近似值从小于 2的方向逼近 2时,
5 2的近似值从小于5 2的方向逼近5 2; 当 2的过剩近似值从大于 2的方向逼近 2时,
5 2的近似值从大于5 2的方向逼近5 2.
结论:一般地,无理指数幂a (a 0,是无理数)是一个确定
人教A版必修1指数函数及其性质知识点总结与例题讲解

指数函数及其性质知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换 知识点一 指数函数的概念一般地,函数xa y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R . 1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,xa 无意义;若0<a ,则对于x 的某些值,xa 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义. 2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R . 3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下: (1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)xa 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.例1. 已知函数()()x a a x f ⋅-=32是指数函数,求a 的值. 分析:本题考查指数函数的定义,指数函数的定义有三个特征: (1)指数的位置只有一个自变量,但不是含自变量的多项式; (2)底数是一个大于0且不等于1的常数;(3)x a 的系数必须为1.解:∵函数()()x a a x f ⋅-=32是指数函数∴⎪⎩⎪⎨⎧≠>=-10132a a a ,解之得:2=a . 例2. 已知指数函数()()32--+=a a a y x 的图象过点()4,2,则=a _________.解:由题意可得:()()⎪⎩⎪⎨⎧≠>=--10032a a a a ,解之得:2=a 或3=a .∵函数的图象经过点()4,2 ∴2=a .例3. 若指数函数()x f 的图象经过点()9,2,求()x f 的解析式及()1-f 的值. 解:设函数()x a x f =.∵其图象经过点()9,2,∴2239==a ,∴3=a . ∴()x f 的解析式为()x x f 3=. ∴()31311==--f . 例4. 函数()x a a a y 442+-=是指数函数,则a 的值是【 】 (A )4 (B )1或3 (C )3 (D )1解:由题意可得:⎪⎩⎪⎨⎧≠>=+-101442a a a a ,解之得:3=a .∴x y 3=.选择【 C 】.例5. 若函数()xa y 12-=(x 是自变量)是指数函数,则a 的取值范围是_________.解:∵函数()xa y 12-=是指数函数∴⎩⎨⎧≠->-112012a a ,解之得:21>a 且1≠a .∴a 的取值范围是⎭⎬⎫⎩⎨⎧≠>121a a a 且.例6. 若函数()xa a y 32-=是指数函数,求实数a 的取值范围.解:∵函数()xa a y 32-=是指数函数∴⎩⎨⎧≠->-130322a a a a ,解之得:⎪⎩⎪⎨⎧±≠<>213303a a a 或. ∴实数a 的取值范围是⎭⎬⎫⎩⎨⎧±≠<>213303a a a a 且或.知识点二 指数函数的图象和性质一般地,指数函数xa y =(0>a 且1≠a )的图象和性质如下表所示:指数函数函数值的特点:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数xa y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数xa y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大. (2)由于指数函数xa y =(0>a 且1≠a )的图象经过点⎪⎭⎫⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小. 2. 函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称.如下图所示,指数函数x y 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.(1)指数函数xa y =(0>a 且1≠a )与函数xa y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数xy 2=与函数xy 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数xa y --=(0>a 且1≠a )(即xa y ⎪⎭⎫ ⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数xy --=2(即xy ⎪⎭⎫ ⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数xa y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.例7. 函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点_________. 解:令01=-x ,则1=x ,2513-=-⨯=y .∴函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点()2,1-.例8. 函数1-=x a y (1,0≠>a a 且)的图象恒过定点P ,则点P 的坐标为【 】 (A )()1,0 (B )()1,1 (C )()1,1- (D )()0,1 解:令01=-x ,则1=x ,10==a y . ∴定点P 的坐标为()1,1.选择【 B 】.例9. 函数1+=x a y (1,0≠>a a 且)的图象恒过的定点坐标为_________. 解:令01=+x ,则1-=x ,10==a y .∴函数1+=x a y (1,0≠>a a 且)的图象恒过定点()1,1-.例10. 函数33+=-x a y (1,0≠>a a 且)的图象过定点_________.解:令03=-x ,则3=x ,43130=+=+=a y .∴函数33+=-x a y (1,0≠>a a 且)的图象过定点()4,3.例11. 如果指数函数()()xa x f 1-=是R 上的减函数,那么a 的取值范围是【 】(A )2<a (B )2>a (C )21<<a (D )10<<a分析 对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数的图象从左到右是下降的,函数为R 上的减函数.解:∵函数()()xa x f 1-=是R 上的减函数∴110<-<a ,解之得:21<<a . ∴a 的取值范围是()2,1.选择【 C 】.例12. 已知集合{}3<=x x A ,{}42>=x x B ,则=B A __________. 分析:指数函数x y 2=为R 上的增函数. 解:42>x ,222>x∵函数x y 2=为R 上的增函数 ∴2>x ,∴{}2>=x x B ∴{}32<<=x x B A .例13. 解不等式22112>⎪⎭⎫ ⎝⎛-x .解:()22121>--x ,2221>-x∵函数x y 2=为R 上的增函数 ∴121>-x ,解之得:0<x . ∴原不等式的解集为()0,∞-. 例14. 不等式422<-xx 的解集为__________.解:2222<-xx∵函数x y 2=为R 上的增函数 ∴22<-x x ,解之得:21<<-x . ∵原不等式的解集为()2,1-.4.指数函数xa y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快;(2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b )的图象特点(1)若1>>b a ,则当0<x 时,总有10<<<xxb a ;当0=x 时,总有1==xxb a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>xxa b ;当0=x 时,总有1==xxb a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a <.6. 指数函数xa y =(0>a 且1≠a )的图象和性质再说明 指数函数xa y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0.图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交; (2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数xa y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间. (2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.例15. 设0>x ,且x x a b <<1,则【 】(A )10<<<a b (B )10<<<b a (C )a b <<1 (D )b a <<1 解法一:∵0>x ,且x x a b <<1∴指数函数x a y =(0>a 且1≠a )和x b y =(0>b 且1≠b )在y 轴右侧的图象f x () =12(都在直线1=y 的上方,它们的的图象是上升的,∴1>a ,1>b∵在y 轴右侧,指数函数x a y =(0>a 且1≠a )的图象在x b y =(0>b 且1≠b )的图象的上方∴根据第一象限“底大图上”,有b a >. ∴1>>b a .选择【 C 】.解法二:∵x x a b <<1,∴x x a a b b <<00, ∵0>x ,∴1,1>>a b . ∵x x a b <,0>x a ,0>x∴1<⎪⎭⎫⎝⎛=xx x a b a b ,∴10<<a b ,∴b a >.∴1>>b a .例16. 已知实数b a ,满足ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121,给出下面的五种关系,则其中可能成立的序号为__________.①b a <<0; ②a b <<0; ③0<<a b ; ④0<<b a ; ⑤0==a b . 分析:采用数形结合的方法解决本题:在同一平面直角坐标系中分别画出指数函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫⎝⎛=31的草图,在画图时要注意y 轴左侧“底小图高”和y 轴右侧“底大图高”,还有指数函数的图象都经过定点()1,0.解:如下图所示,在同一平面直角坐标系中分别画出函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫ ⎝⎛=31的图象.为便于观察并发现问题,设m ba=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121.当0<x 时,有0<<b a ; 当0>x 时,有a b <<0;当0=x 时,有0==b a ,此时1=m . ∴可能成立的序号为②④⑤.例17. 设3132⎪⎭⎫ ⎝⎛=a ,3231⎪⎭⎫ ⎝⎛=b ,3131⎪⎭⎫ ⎝⎛=c ,则c b a ,,的大小关系是【 】 (A )b c a >> (B )c b a >> (C )b a c >> (D )a c b >>分析:(1)对于同底数幂比较大小,则可以利用指数函数的单调性比较.如本题中b 与c 的大小比较;(2)对于非同底数幂比较大小,则要借助于中间量或借助于指数函数的图象比较大小.如本题中a 与c 的大小比较.本题知识储备(1)对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数在R 上为减函数,即y 随x 的增大而减小.(2)对于指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b ),若b a >,则当0<x 时,xxb a <;当0>x 时,xx b a >.解:∵指数函数xy ⎪⎭⎫ ⎝⎛=31在R 上为减函数∴31323131⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛,即b c >. ∵3132>,∴31313132⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛,即c a >. ∴b c a >>,选择【 A 】.另外,也可以这样比较a 与c 的大小:∵12231323132031313131=>=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ca ,∴c a >. 例18. 设6.06.0=a ,5.16.0=b ,6.05.1=c ,则c b a ,,的大小关系是__________.解:∵指数函数xxy ⎪⎭⎫⎝⎛==536.0在R 上为减函数∴6.05.16.06.0<,即a b <. ∵16.06.006.0=<,15.15.106.0=>∴6.06.05.16.0<,即c a <. ∴c a b <<.另外,根据: 对于指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b ),若b a >,则当0<x 时,xx b a <;当0>x 时,x x b a >.可直接得到c a <.例19. 设9.014=y ,61.028=y ,5.1321-⎪⎭⎫⎝⎛=y ,则【 】(A )321y y y >> (B )312y y y >> (C )231y y y >> (D )123y y y >>分析:三个幂是不同底数的幂,但每个幂根据底数与2的关系都可以化为以2为底的幂,最后借助于指数函数的单调性即可得到三者之间的大小关系. 解:∵9.014=y ,61.028=y ,5.1321-⎪⎭⎫ ⎝⎛=y∴()8.19.02122==y ,()83.161.03222==y ,()5.15.11322==--y .∵指数函数x y 2=在R 上为增函数∴83.18.15.1222<<,即61.09.05.18421<<⎪⎭⎫⎝⎛-∴312y y y >>.选择【 B 】.例20. 设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab ,那么【 】(A )a b a b a a << (B )b a a a b a << (C )a a b b a a << (D )a a b a b a <<解:∵1212121<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<a b ,∴0121212121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a b . ∵指数函数xy ⎪⎭⎫ ⎝⎛=21为R 上的减函数∴10<<<b a .在同一平面直角坐标系中分别画出函数x a y =与x b y =的图象如下页图所示.x x由图象可得:a a b b a a <<.选择【 C 】.知识点三 指数函数的定义域和值域 1 定义域(1)指数函数xa y =(0>a 且1≠a )的定义域为R . (2)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(3)函数()xaf y =的定义域与函数()x f 的定义域不一定相同.例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R .注意:求指数型复合函数的定义域时,先观察函数是()xa f y =型还是()x f ay =型.例21. 函数()3121++-=x x f x 的定义域为【 】(A )(]0,3- (B )(]1,3-(C )()(]0,33,--∞- (D )()(]1,33,--∞-解:由题意可得:⎩⎨⎧>+≥-03021x x,解之得:x <-3≤0.∴函数()x f 的定义域为(]0,3-.选择【 A 】. 例22. 求下列函数的定义域:(1)xy ⎪⎭⎫ ⎝⎛-=211; (2)153-=x y .解:由题意可知:x⎪⎭⎫ ⎝⎛-211≥0,∴x⎪⎭⎫ ⎝⎛21≤1021⎪⎭⎫ ⎝⎛=,∴x ≥0. ∴该函数的定义域为[)+∞,0;(2)由题意可知:15-x ≥0,解之得:x ≥51.∴该函数的定义域为⎪⎭⎫⎢⎣⎡+∞,51.例23. 函数()2311-⎪⎭⎫ ⎝⎛-=x x f x的定义域为__________. 解:由题意可得:⎪⎩⎪⎨⎧≠-≥⎪⎭⎫⎝⎛-020311x x,解之得:x ≥0且2≠x .∴函数()x f 的定义域为[)()+∞,22,0 . 例24. 求函数()423212-⨯-=xxx f 的定义域.解:由题意可得:042322>-⨯-x x∴()()04212>-+x x ,解之得:12-<x (舍去),42>x . ∵函数x y 2=为R 上的增函数,2242=>x ,∴2>x . ∴函数()x f 的定义域为()+∞,2.2 值域(1)指数函数xa y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()xa f y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.例25. 求函数1241--=+x x y 的值域. 解:()122212421-⨯-=--=+x x x x y .设x t 2=,则0>t ,∴()211222--=--=t t t y .∵()+∞∈,0t∴()21min -==f y ,无最大值.∴函数1241--=+x x y 的值域为[)+∞-,2. 例26. 求函数1241-+=+x x y 的值域. 解:()122212421-⨯+=-+=+x x x x y .设x t 2=,则0>t ,∴()211222-+=-+=t t t y .∴函数在()+∞∈,0t 上为增函数 ∴函数1241-+=+x x y 的值域为()+∞-,1. 注意例25和例26的区别.例27. 已知函数()1-=x a x f (x ≥0)的图象经过点⎪⎭⎫⎝⎛21,2,其中0>a ,且1≠a .(1)求a 的值;(2)求函数()x f 的值域.分析:求指数函数x a y =(0>a 且1≠a )的解析式,只需要其图象上一个点的坐标即可.解:(1)把⎪⎭⎫⎝⎛21,2代入()1-=x a x f 得:21=a ;(2)由(1)知()121-⎪⎭⎫⎝⎛=x x f ,为R 上的减函数∵x ≥0,∴1-x ≥1-,∴()x f <0≤2211=⎪⎭⎫⎝⎛-.∴函数()x f 的值域为(]2,0.注意:指数函数x a y =(0>a 且1≠a )的图象位于x 轴的上方,并且在一个方向上无限接近于x 轴,函数的值域为()+∞,0.本题易错结果为(]2,∞-.总结 求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f ay =的值域.例28. 若函数()1-=x a x f (0>a 且1≠a )的定义域和值域都是[]2,0,求实数a 的值.分析:指数函数的单调性与底数和1的大小关系有关,若关系不明确,必要时要进行分类讨论. 解:由题意可知:当10<<a 时,函数()1-=x a x f 在[]2,0上为减函数∴⎩⎨⎧=-=-012120a a ,显然无解; 当1>a 时,函数()1-=x a x f 在[]2,0上为增函数∴⎩⎨⎧=-=-210120a a ,解之得:3=a (3-=a 舍去). 综上所述,实数a 的值为3. 例29. 求下列函数的定义域和值域: (1)412-=x y ; (2)32221--⎪⎭⎫⎝⎛=x x y .本题知识点储备 (1)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f ay =的值域.解:(1)由题意可得:04≠-x ,解之得:4≠x . ∴函数412-=x y 的定义域为()()+∞∞-,44, .∵041≠-x ,∴122041=≠=-x y ,且0>y . ∴函数412-=x y 的值域为{}10≠>y y y 且;(2)函数32221--⎪⎭⎫⎝⎛=x x y 的定义域为R .∵()413222--=--x x x ≥4-∴32221--⎪⎭⎫ ⎝⎛x x ≤16214=⎪⎭⎫ ⎝⎛-,且021322>⎪⎭⎫ ⎝⎛--x x .∴函数32221--⎪⎭⎫⎝⎛=x x y 的值域为(]16,0.例30. 求下列函数的定义域和值域:(1)xy -⎪⎭⎫⎝⎛=32; (2)222x x y -=.解:(1)函数xy -⎪⎭⎫⎝⎛=32的定义域为R .∵x ≥0,∴x -≤0. ∴1320min=⎪⎭⎫⎝⎛=y ∴函数xy -⎪⎭⎫⎝⎛=32的值域为[)+∞,1;(2)函数222x x y -=的定义域为R . ∵()11222+--=-x x x ≤1∴()2211max ===f y ,且0>y . ∴函数222x x y -=的值域为(]2,0.例31. 如果函数122-+=x x a a y (0>a 且1≠a )在[]1,1-上有最大值,且最大值为14,试求a 的值.分析:这是求()x a f y =型函数的定义域和值域.求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:()121222-+=-+=x x x x a a a a y .设x a t =,则0>t ,∴()211222-+=-+=t t t y .当1>a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t ,1.∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t ,1上为增函数∴()14122max =-+==a a a f y ,解之得:3=a (5-=a 不符合题意,舍去);当10<<a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t 1,∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t 1,上为增函数∴1412112max =-+=⎪⎭⎫ ⎝⎛=a aa f y ,解之得:31=a (51-=a 不符合题意,舍去).综上所述,3=a 或31=a . 例32. 求函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xxy 的值域.解:12121121412+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=xxxxy 设xt ⎪⎭⎫ ⎝⎛=21,则0>t ,∴4321122+⎪⎭⎫ ⎝⎛+=++=t t t y . ∴函数43212+⎪⎭⎫ ⎝⎛+=t y 在()+∞∈,0t 上为增函数.取0=t ,得1=y .∴函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xx y 的值域为()+∞,1.例33. 已知[]3,2-∈x ,求函数()12141+-=x x x f 的最值. 解:()1212112141121412+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-=xxxxx x x f .设xt ⎪⎭⎫ ⎝⎛=21,∵[]3,2-∈x ,∴⎥⎦⎤⎢⎣⎡∈4,81t .∴4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵⎥⎦⎤⎢⎣⎡∈4,81t∴()134,4321max min ===⎪⎭⎫ ⎝⎛=f y f y .例34. 若122+x ≤241-⎪⎭⎫ ⎝⎛x ,则函数x y 2=的值域是_________.解:∵122+x ≤241-⎪⎭⎫ ⎝⎛x ,∴122+x≤()x x 242222---=.∵函数x y 2=在R 上为增函数∴12+x ≤x 24-,解之得:3-≤x ≤1,即[]1,3-∈x .∴函数x y 2=在[]1,3-上的值域为⎥⎦⎤⎢⎣⎡2,81.例35. ()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2解法一:()13331331+⋅=+=+x xx x x f 设x t 3=,则()+∞∈,0t ,()()133131313+-+=+-+=+=t t t t t t f . ∵()+∞∈,0t ,∴0133<+-<-t ,∴31330<+-+<t .∴()30<<t f ,即函数()1331+=+x x x f 的值域为()3,0.选择【 B 】.解法二:()xxx xx x x f ⎪⎭⎫ ⎝⎛+=+=+⋅=+=+3113311313331331. ∵031>⎪⎭⎫ ⎝⎛x ,∴1311>⎪⎭⎫ ⎝⎛+x,∴331130<⎪⎭⎫ ⎝⎛+<x,∴()()3,0∈x f .例36. 已知定义在R 上的偶函数()x f 满足:当x ≥0时,()x x a x f 22+=,()251=f . (1)求实数a 的值;(2)用定义法证明()x f 在()+∞,0上是增函数; (3)求函数()x f 在[]2,1-上的值域. 解:(1)∵当x ≥0时,()x x a x f 22+=,()251=f ∴2522=+a ,解之得:1=a ; (2)证明:由(1)可知:()xx x f 212+=. 任取()+∞∈,0,21x x ,且21x x <,则()()()()()212121212122112122221212221221221x x x x x x x x x x x x x x x f x f ++--=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛+-+=-∵()+∞∈,0,21x x ,且21x x < ∴02,012,022212121>>-<-++x x x x x x ∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在()+∞,0上是增函数;(3)∵函数()x f 为偶函数,且在[)+∞,0上为增函数 ∴()x f 在(]0,∞-上为减函数 ∴()()20min ==f x f .∵()252211=+=-f ,()4174142=+=f ,25417> ∴在区间[]2,1-上()()4172max ==f x f .∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.利用单调性法求最值的结论(1)如果函数()x f y =在区间[]b a ,上单调递增,在区间[]c b ,上单调递减,那么函数()x f y =在区间[]c a ,上有最大值)()(max b f x f =.如下页图所示;(2)如果函数()x f y =在区间[]b a ,上单调递减,在区间[]c b ,上单调递增,那么函数()x f y =在区间[]c a ,上有最小值)()(min b f x f =.如下图所示.f x ()max = f b ()f x ()min = f b ()第(3)问另解:∵函数()x f 为定义在R 上的偶函数 ∴()x f 在区间[]0,1-和[]1,0上的值域相同 ∴()x f 在[]2,1-上的值域即在[]2,0上的值域. ∵()x f 在[)+∞,0上为增函数 ∴()x f 在[]2,0上为增函数∴()()20min ==f x f ,()()4172max ==f x f . ∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.例37. 设函数()axx f -⎪⎭⎫⎝⎛=1021,a 是不为零的常数.(1)若()213=f ,求使()x f ≥4的x 的取值范围; (2)当[]2,1-∈x 时,()x f 的最大值是16,求a 的值.解:(1)∵()axx f -⎪⎭⎫⎝⎛=1021,()213=f ∴2121310=⎪⎭⎫ ⎝⎛-a,∴1310=-a ,解之得:3=a . ∴()()103310122---==x xx f .∵()x f ≥4,∴1032-x ≥22,∴103-x ≥2,解之得:x ≥4. ∴使()x f ≥4的x 的取值范围是[)+∞,4;(2)()()10101102221----==⎪⎭⎫⎝⎛=ax axaxx f .当0>a 时,()x f 在[]2,1-上为增函数∴()()4102max 21622====-a f x f ,∴4102=-a ,解之得:7=a ; 当0<a 时,()x f 在[]2,1-上为减函数∴()()410max 21621===-=--a f x f ,∴410=--a ,解之得:14-=a . 综上所述,7=a 或14-=a .例38. 已知函数()ax a x f -=3(0>a 且1≠a ). (1)当2=a 时,()4<x f ,求x 的取值范围;(2)若()x f 在[]1,0上的最小值大于1,求a 的取值范围. 解:(1)当2=a 时,()x ax a x f 2332--==.∵()4<x f ,∴223242=<-x ,∴223<-x ,解之得:21>x . ∴x 的取值范围是⎪⎭⎫⎝⎛+∞,21;(2)∵0>a 且1≠a∴函数ax y -=3在[]1,0上为减函数. 当1>a 时,()x f 在[]1,0上为减函数∴()()03min 11a a f x f a =>==-,∴03>-a ,解之得:3<a . ∴31<<a ;当10<<a 时,()x f 在[]1,0上为增函数 ∴()()103min >==a f x f ,显然不成立. 综上所述,a 的取值范围是()3,1.例39. 已知函数()1+=-a x a x f 的图象(0>a 且1≠a )过点⎪⎭⎫⎝⎛2,21.(1)求实数a 的值;(2)若函数()121-⎪⎭⎫ ⎝⎛+=x f x g ,求函数()x g 的解析式;(3)在(2)的条件下,若函数()()()12--=x mg x g x F ,求()x F 在[]0,1-∈x 上的最小值()m h .本题知识储备 求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:(1)∵函数()1+=-a x a x f 的图象过点⎪⎭⎫⎝⎛2,21∴2121=+-a a,解之得:21=a . ∴实数a 的值为21; (2)由(1)知:()12121+⎪⎭⎫⎝⎛=-x x f∵()121-⎪⎭⎫ ⎝⎛+=x f x g∴()xx x g ⎪⎭⎫⎝⎛=-+⎪⎭⎫⎝⎛=-+2111212121;(3)∵()()()12--=x mg x g x F∴()xx x x m m x F ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-212212121212. 设xt ⎪⎭⎫⎝⎛=21,∵[]0,1-∈x ,∴[]2,1∈t∴()()2222m m t mt t t F --=-=,[]2,1∈t .①当2>m 时,()t F 在[]2,1∈t 上为减函数∴()()()442222min +-=--==m m m F t F ,∴()44+-=m m h ;②当1≤m ≤2时,()()2min m m F t F -==,∴()2m m h -=; ③当1<m 时,()t F 在[]2,1∈t 上为增函数∴()()()121122+-=--==m m m F t F ,∴()12+-=m m h .综上所述,()⎪⎩⎪⎨⎧<+-≤≤->+-=1,1221,2,442m m m m m m m h .例40. 已知函数()x a x f =,()m a x g x +=2,其中1,0,0≠>>a a m 且.当[]1,1-∈x 时,()x f y =的最大值与最小值之和为25. (1)求a 的值;(2)若1>a ,记函数()()()x mf x g x h 2-=,求当[]1,0∈x 时,()x h 的最小值()m H . 分析:(1)指数函数()x a x f =(10≠>a a 且)在其定义域内为单调函数,所以指数函数在给定闭区间上的最值在区间的端点处取得,故本问不用进行分类讨论. 解:(1)∵函数()x a x f =(10≠>a a 且)在[]1,1-上为单调函数 ∴由题意可知:()()2511=-+f f . ∴251=+a a ,解之得:2,2121==a a . ∴a 的值为21或2;(2)∵1>a ,∴2=a ,∴()()m x g x f x x +==22,2. ∵()()()x mf x g x h 2-=∴()()m m m m x h x x x x +⋅-=⋅-+=22222222.设x t 2=,∵[]1,0∈x ,∴∈t []2,1 ∴()()m m m t m mt t t h +--=+-=2222①当2>m 时,()t h 在[]2,1上为减函数 ∴()()432min +-==m h t h ,即()43+-=m m H ;②当1≤m ≤2时,()()m m m h t h +-==2min ,即()m m m H +-=2; ③当1<m 时,()t h 在[]2,1上为增函数 ∴()()11min +-==m h t h ,即()1+-=m m H .综上所述,()⎪⎩⎪⎨⎧<+-≤≤+->+-=1,121,2,432m m m m m m m m H .例41. 已知函数()1242--⋅=x x a x f . (1)当1=a 时,解不等式()0>x f ; (2)当21=a ,∈x []2,0时,求()x f 的值域. 解:(1)当1=a 时,()()122212422--=--⋅=x x x x x f . 设x t 2=,则0>t ,()122--=t t t f .∵()0>x f ,∴0122>--t t ,解之得:1>t 或21-<t .∵0>t∴1>t ,∴0212=>x ,∴0>x . ∴不等式()0>x f 的解集为()+∞,0; (2)当21=a 时,()()1221242--=--=x x x x x f . 设xt 2=,∵∈x []2,0,∴∈t []4,1,()4521122-⎪⎭⎫ ⎝⎛-=--=t t t t f∵()t f 在[]4,1上为增函数∴()()()()114,11max min ==-==f t f f t f .∴函数()t f 的值域为[]11,1-,即函数()x f 在∈x []2,0上的值域为[]11,1-. 例42. 已知函数()x x b a x f +=(其中b a ,为常数,10,10≠>≠>b b a a 且且)的图象经过点()6,1A ,⎪⎭⎫ ⎝⎛-43,1B .(1)求函数()x f 的解析式;(2)若b a >,函数()211+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=xx b a x g ,求函数()x g 在[]2,1-上的值域.解:(1)把()6,1A ,⎪⎭⎫ ⎝⎛-43,1B 分别代入()x x b a x f +=得:⎪⎩⎪⎨⎧=+=+43116b a b a ,解之得:⎩⎨⎧==42b a 或⎩⎨⎧==24b a . ∴函数()x f 的解析式为()x x x f 42+=; (2)若b a >,则2,4==b a∴()22141211+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=xx x x b a x g设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,1-,∴∈t ⎥⎦⎤⎢⎣⎡2,41,()4721222+⎪⎭⎫ ⎝⎛-=+-=t t t t g . ∴()4721min =⎪⎭⎫ ⎝⎛=g t g ,()()42max ==g t g .∴()t g 在⎥⎦⎤⎢⎣⎡2,41上的值域为⎥⎦⎤⎢⎣⎡4,47,即函数()x g 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡4,47.说明:方程组⎪⎩⎪⎨⎧=+=+43116b a b a 可以这样求解:∵⎪⎩⎪⎨⎧=+=+43116b a b a ,∴⎩⎨⎧==+86ab b a .∴b a ,是方程0862=+-x x 的两个实数根(方程思想).解之得:4,221==x x ,∴⎩⎨⎧==42b a 或⎩⎨⎧==24b a .例43. 函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xxy ,∈x []2,2-的值域是__________.解:设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,2-,∴∈t ⎥⎦⎤⎢⎣⎡4,41,41232322-⎪⎭⎫ ⎝⎛-=+-=t t t y . ∴()64,4123max min ==-=⎪⎭⎫⎝⎛=f y f y∴函数41232-⎪⎭⎫ ⎝⎛-=t y 在∈t ⎥⎦⎤⎢⎣⎡4,41上的值域为⎥⎦⎤⎢⎣⎡-6,41.∴函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xx y ,∈x []2,2-的值域是⎥⎦⎤⎢⎣⎡-6,41. 例44. 已知函数()ax xx f ++-=223(∈a R ).(1)若()271=f ,求a 的值; (2)若()x f 有最大值9,求a 的值. 解:(1)∵()271=f∴3213273==++-a ,∴31=+a ,解之得:2=a ; (2)设()()11222++--=++-=a x a x x x g∴()()11max +==a g x g∴()()21max 3933max ====+a x g x f ,∴21=+a ,解之得:1=a .例45. 若函数()m x f x -=-3的最大值为2,则实数m 的值为【 】 (A )1- (B )2- (C )3- (D )4- 解:设()x x g -=3,则()x g <0≤130=,即函数()x g 的最大值为1. ∵函数()m x f x -=-3的最大值为2 ∴()2max =-m x g ,∴21=-m 解之得:1-=m .选择【 A 】.例46. 例45的第三种解法 以下几例为求()x a f y =型函数的值域()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2 解:设x t 3=,则0>t ,()13+==t t t f y . ∴03>-=yyt ,解之得:30<<y .选择【 B 】.例47. 函数x y --=328(x ≥0)的值域为__________.不等分析法和单调性法解:∵x ≥0,∴x -≤0,∴x -3≤3 ∴x -<320≤823=,∴8-≤023<--x .∴0≤8283<--x ,0≤8<y ,即函数x y --=328(x ≥0)的值域为[)8,0.注意: 不要漏掉023>-x这一范围.例48. 函数x y 416-=的值域是__________.解:由题意可知:x 40<≤16,∴16-≤04<-x ,∴0≤16416<-x . ∴0≤4416<-x ,0≤4<y . ∴函数x y 416-=的值域是[)4,0. 例49. 函数()xxx f 242-=的定义域是__________,值域是__________. 解:由题意可知:0242>-xx,∴024>-x ,解之得:2<x . ∴函数()x f 的定义域是()2,∞-.设x t 2=,则40<<t (2<x ),()tt t t g -+-=-=4414. ∵40<<t ,∴04<-<-t ,∴440<-<t ,∴144>-t(可结合图象)∴0441>-+-t ,()0>t g ,∴()0>x f∴函数()x f 的值域为()+∞,0. 例50. 函数xx y +-=112的值域为__________.解:()xxx xx y ++-+++-+-===12112111222∵012≠+x ,∴1121-≠++-x ,∴21221121=≠-++-x ,即21≠y . ∵0>y ,∴该函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛,2121,0 .例51. 函数()xx xx x f --+-=10101010的值域是【 】(A )(][)+∞-∞-,11, (B )()()+∞-∞-,11, (C )[]1,1- (D )()1,1-解:()11021110211011011010110101101010101022222+-=+-+=+-=+-=+-=--x x x x x xx x x x x xxx f . ∵0102>x ,∴11102>+x ,∴2110202<+<x ,∴0110222<+-<-x∴11102112<+-<-x ,即()11<<-x f .∴函数()xx xx x f --+-=10101010的值域是()1,1-.选择【 D 】. 解法二:()11011010110101101010101022+-=+-=+-=--x x xxx x x x x x x f 设t x =210,则0>t ,11+-=t t y∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴函数()x f 的值域为()1,1-. 例52. 求下列函数的值域:(1)11+-=x x a a y (0>a ,且1≠a );(2)124+-=x x y .解:(1)12112111+-=+-+=+-=xx x x x a a a a a y . ∵0>x a ,∴11>+x a ,∴2120<+<x a ,∴0122<+-<-x a ∴11211<+-<-x a ,即11<<-y . ∴该函数的值域为()1,1-.解法二:设x a t =,则0>t ,11+-=t t y ∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴该函数的值域为()1,1-. (2)()1221242+-=+-=x x x x y设xt 2=,则0>t ,4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵()+∞∈,0t ,∴4321min =⎪⎭⎫ ⎝⎛=f y .∴函数124+-=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43.例53. 已知函数()b a x f x +=(10≠>a a 且)的定义域和值域都是[]0,1-,则=+b a _________.解:当10<<a 时,函数()x f 在[]0,1-上为减函数∴()()⎩⎨⎧-==-1001f f ,即⎪⎩⎪⎨⎧-=+=+1101b b a ,解之得:⎪⎩⎪⎨⎧-==221b a .∴=+b a 23-; 当1>a 时,函数()x f 在[]0,1-上为增函数∴()()⎩⎨⎧=-=-0011f f ,即⎪⎩⎪⎨⎧=+-=+0111b b a ,显然方程组无解.综上所述,=+b a 23-. 例54. 函数124--=x y 的值域为【 】 (A )[)+∞,1 (B )()1,1- (C )()+∞-,1 (D )[)1,1-解:由题意可知:x 20<≤4,∴4-≤02<-x ,∴0≤424<-x ∴0≤224<-x ,∴1-≤1124<--x ,即1-≤1<y . ∴函数124--=x y 的值域为[)1,1-,选择【 D 】. 例55. 已知函数()13-=-x x f ,则()x f 的【 】 (A )定义域是()+∞,0,值域是R (B )定义域是R ,值域是()+∞,0 (C )定义域是R ,值域是()+∞-,1 (D )定义域、值域都是R 解:函数()13-=-x x f 的定义域为R . ∵03>-x ,∴13->-x ,即()1->x f∴函数()13-=-x x f 的值域为()+∞-,1.选择【 C 】. 例56. 下列各函数中,值域为()+∞,0的是【 】 (A )22x y -= (B )x y 21-= (C )12++=x x y (D )113+=x y解:(A )函数22x y -=的定义域为R ,值域为()+∞,0,故(A )正确; (B )∵x 20<≤1,∴1-≤02<-x ,∴0≤121<-x ,∴0≤121<-x . ∴函数x y 21-=的值域为[)1,0;(C )∵4321122+⎪⎭⎫ ⎝⎛+=++=x x x y ≥43 ∴函数12++=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43;(D )对于函数113+=x y ,因为011≠+x ,所以130=≠y ,且0>y ,故该函数的值域为()()+∞,11,0 .例57. 关于x 的方程0131=--⎪⎭⎫⎝⎛a x有解,则a 的取值范围是__________.解:∵0131=--⎪⎭⎫ ⎝⎛a x,∴131+=⎪⎭⎫ ⎝⎛a x∵x ≥0,∴x⎪⎭⎫ ⎝⎛<310≤1∵方程0131=--⎪⎭⎫⎝⎛a x有解∴10+<a ≤1,解之得:a <-1≤0. ∴a 的取值范围是(]0,1-.例58. 关于x 的方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根,则实数a 的取值范围是_________. 分析:该方程有正实数根指的是0>x .解:∵方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根 ∴0>x ,∴1535300=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<x,∴15230<-+<a a . 解之得:4332<<-a ,即实数a 的取值范围是⎪⎭⎫⎝⎛-43,32. 例59. 已知方程013329=-+⋅-k x x 有两个实数解,求实数k 的取值范围. 分析:设x t 3=,则0>t ,方程可转化为关于t 的一元二次方程,且方程有两个正实数根.结论 一元二次方程()002≠=++a c bx ax 有两个正实数根的条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 解:设x t 3=,则0>t ,∵013329=-+⋅-k x x ,∴01322=-+-k t t由题意可知:方程01322=-+-k t t 有两个正实数根∴()()⎪⎩⎪⎨⎧>-=⋅>=+≥---013020134221212k t t t t k ,解之得:k <31≤32.∴实数k 的取值范围是⎥⎦⎤⎝⎛32,31.例60. 已知函数122-+=x x a a y (0>a 且1≠a ),当x ≥0时,求该函数的值域. 解:设x a t =,则0>t ,()211222-+=-+=t t t y .当1>a 时,∵x ≥0,∴t ≥1∵函数()212-+=t y 在[)+∞,1上为增函数∴()21min ==f y ,∴函数的值域为[)+∞,2; 当10<<a 时,∵x ≥0,∴t <0≤1∴()y f <0≤()1f ,∴y <-1≤2,即函数的值域为(]2,1-.综上所述,当1>a 时,函数的值域为[)+∞,2;当10<<a 时,函数的值域为(]2,1-.知识点四 指数函数的单调性及其应用 1 单调性当1>a 时,函数xa y =在R 上为增函数;当10<<a 时,函数xa y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:注意 讨论形如()x f ay =的函数的单调性,首先要确定函数()x f 的单调性,然后结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减.2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较;类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高;类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小.(2)应用于解简单不等式 不等式可化为()()x g x f a a<的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.例61. 求函数x y -=2的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数 ∴函数x y -=2在(]0,∞-上为增函数,在[)+∞,0上为减函数.例62. 求函数xy -⎪⎭⎫⎝⎛=21的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数∴函数xy -⎪⎭⎫⎝⎛=21在(]0,∞-上为减函数,在[)+∞,0上为增函数.例63. 函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间是【 】(A )[)+∞-,1 (B )(]1,-∞- (C )[)+∞,1 (D )(]1,∞-解:设()11222+--=+-=x x x t ,则函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数∵指数函数ty ⎪⎭⎫⎝⎛=21在R 上为减函数∴函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间为[)+∞,1.选择【 C 】.例64. 求函数()2222++-=x xx f 的单调区间.解:设()312222+--=++-=x x x t ,则()t y x f 2==.∵函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数,函数t y 2=在R 上为增函数 ∴函数()x f 的单调递增区间为(]1,∞-,单调递减区间为[)+∞,1. 例65. 求函数32212+-=+x x y 的单调区间. 解:()3222322212+⋅-=+-=+x x x x y设x t 2=,则0>t ,且函数x t 2=在R 上为增函数 ∴()213222+-=+-=t t t y∴函数()212+-=t y 在∈t (]1,0上为减函数,此时(]0,∞-∈x ;在[)+∞∈,1t 上为增函数,此时[)+∞∈,0x .∴函数32212+-=+x x y 的单调递增区间为[)+∞,0,单调递减区间为(]0,∞-.例66. 求函数1121+-⎪⎭⎫⎝⎛=x x y 的单调区间.解:设12112111+-=+-+=+-=x x x x x t ,()()+∞--∞-∈,11, x ,则ty ⎪⎭⎫⎝⎛=21,且1≠t .∵函数121+-=x t 在()1,-∞-和()+∞-,1上均为增函数 函数ty ⎪⎭⎫⎝⎛=21在()()+∞∞-∈,11, t 上为减函数∴函数1121+-⎪⎭⎫⎝⎛=x x y 的单调递减区间为()1,-∞-和()+∞-,1,无单调递增区间.1例67. 函数()()32212---=x x x f 的单调增区间为__________.解:∵221<<,∴1120<-< ∴函数()()32212---=x x x f 的单调增区间即函数322--=x x t 的单调减区间.∵()413222--=--=x x x t∴函数t 的单调减区间为(]1,∞- ∴函数()()32212---=x x x f 的单调增区间为(]1,∞-.例68. 若函数axxy +-=22在()1,∞-内单调递增,则a 的取值范围是__________.解:设42222a a x ax x t +⎪⎭⎫ ⎝⎛--=+-=∵函数axxy +-=22在()1,∞-内单调递增∴函数4222a a x t +⎪⎭⎫ ⎝⎛--=在()1,∞-内单调递增∴2a≥1,解之得:a ≥2,即a 的取值范围是[)+∞,2. 例69. 若函数12-=x y 在(]m ,∞-上单调递减,则m 的取值范围是__________. 解法一:设x t 2=,则0>t ,1-=t y . ∵函数1-=t y 在(]1,0∈t 上为减函数 ∴x 20<≤021=,解之得:x ≤0.∴函数12-=x y 在(]0,∞-∈x 上为减函数. ∵函数12-=x y 在(]m ,∞-上单调递减 ∴m ≤0,即m 的取值范围是(]0,∞-. 解法二:函数12-=x y 的图象大致如图所示. 由图象可知:函数12-=x y 的单调递减区间 为(]0,∞-,所以(]0,∞-∈m .。
北师版高中数学必修第一册精品课件 复习课 第3课时 指数运算与指数函数

)
解析:∵a=40.9=(22)0.9=21.8,
b=(23)0.48=21.44,c=
-.
=(2-1)-1.5=21.5,
且指数函数y=2x在R上是增函数,
∴21.8>21.5>21.44,因此,a>c>b,故选D.
答案:D
比较指数式大小的策略:
(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;
(3)若函数f(x)是指数函数,且f(1)>1,则f(x)是增函数.( √ )
(4)若函数g(x)=af(x)(a>0,且a≠1),则g(x)与f(x)的定义域与值域
相同.( × )
(5)函数y=4-|x|的单调递增区间是(0,+∞),单调递减区间是(-∞,0).
( × )
(6)若a>1,则当f(x)有最大值时,g(x)=af(x)也有最大值.( √ )
第3课时
指数运算与指数函数
知 识 网 络
要 点 梳 理
专题归纳·核心突破
指数概念
· = + ( > )
指数运算 ( ) = ( > )
() = ( > , > )
指数函数 =
( > ,且 ≠ )
指数函数概念
指数函数图象
- -
解析:∵f(-x)= =-f(x),
∴f(x)为奇函数,排除 A,令 x=10,则
排除 C,D,故选 B.
)
-
f(10)=
>1,
答案:B
考点二
指数函数的性质及应用
f(x)=
,则对任意实数
人教A版必修第一册4.2指数函数课件

y 4x
y 4x3
y 1x
y ( 3)x
y (2x)x
y x4
y ( 2)x ( 3)x
3
2
y (4)x
新知应用:指数函数的概念
[例1]若函数f (x)=(a2-7a+7)ax是指数函数,求实数a的值.
a2 7a 7 1 a 1或a 6
解 : f (x)是指数函数 ,a 0
思考:5分与0.05元不一样吗?
钱某的本意
老板的理解
y 5x
y 0.05x
描点绘图,看图索质
y 2x
y 2x与y 1 x的图象关于 y轴对称 2
y
1
x
2
减函数
增函数
新知2:指数函数y=ax的图象及性质
(3) y ax均为非奇非偶函数 .
(4)
y
a
x与y
1
x
的图象关于
y轴对称
a
,即a 0
,得a 6.
a 1
a 1
[例2]若指数函数 f (x) ax过点(3, ),求f (0), f (1), f (3)的值.
解 : 依题意得 a3
a 3
1
x
3 , f (x) 3 .
f
(0)
0
1;
f
(1)
1
3
3
;
f
(3)
1
1
.
[变式]若指数函数 f (x)的图象过点 (2,9),求f (x)及f (2).
第28天,杰米支出134万多(227)元,收入10万元。
结果,杰米在一个月(31天)得到310万元的同时,共给韦伯2100多万元!杰米破产了。
指数的故事
高中新教材数学人课件必修第一册第章指数

指数函数与对数函数的图像关于直线 y=x对称。
02 指数运算法则与技巧
Байду номын сангаас
指数运算法则介绍
同底数幂相乘,底数不变, 指数相加:$a^m times a^n = a^{m+n}$
同底数幂相除,底数不变, 指数相减:$a^m div a^n = a^{m-n}$
幂的乘方,底数不变,指数 相乘:$(a^m)^n = a^{m times n}$
指数函数的幂级数展开式
对于形如$e^x$或$a^x$的指数函数,可以利用幂级数展开式将其表示为无穷 级数的形式。
计算步骤
首先确定指数函数的底数和指数,然后根据幂级数展开式的公式,将指数函数 展开为无穷级数。最后根据收敛域和精度要求,截取有限项进行计算。
幂级数展开式在近似计算中作用
近似计算原理
在实际问题中,往往只需要求得函数的近似值。利用幂级数展开式,可以将复杂 的函数近似为简单的多项式函数,从而方便进行计算。
学习兴趣。
谢谢聆听
摩尔定律与集成电路技术进步
摩尔定律指出,在一个芯片上集成的晶体管数量每18个月翻一倍,体现了集成电路技术 的指数式发展。
人工智能算法性能提升
随着深度学习等人工智能算法的不断发展,其在图像识别、语音识别等领域的性能呈现指 数式提升。
06 总结回顾与拓展延伸
本章知识点总结回顾
指数函数的定义和性质
学习了指数函数的基本概念,包括底数、指数、幂等,以及指数 函数的图像和性质,如单调性、值域等。
例题2
求解指数不等式 $2^{x^2 - 3x + 2} > 4^{x - 1}$。
分析
该不等式可以通过换元法和分离参数法进行求解。