第4章放大电路中的反馈

合集下载

放大电路中的反馈电路(反馈)

放大电路中的反馈电路(反馈)

放大电路中的反馈电路(反馈)基本概念及判断
输出量影响输入量
正,负反馈
负反馈
交,直流反馈
交流反馈在交流通路直流反馈在直流通路
反馈的判断
一。

反馈的判断
二。

反馈的存在与否
结构上
是因为负反馈而始终虚地,而不是虚地所以有无负反馈
二。

反馈的极性
1.
负反馈不是绝对负信号的反馈,而是减弱了原参考点信号的相对变化趋势,正反馈反之
因为开环增益趋于无穷,净输入量只要有微小差值就会使输出趋向饱和
Aod越大误差越小
判断
相异是串联相同是并联
有电阻的时候,电阻左右会有压降,电位不一样,反馈电路会影响这点电位,纯电压源,这点电位和电压源直接相连,不会改变
R3本级中存在负反馈
交直流反馈
电压反馈和电流反馈
电压负反馈
相同的端子是并联反馈(只能kcl比电流)相异是串联
输出置零,回流不存在=》电压反馈
输出置零,回流存在=》电流反馈
前面加电流源
负反馈放大电路的方框图
近似值其实是忽略了输入量
在运放里面净输入量是:ud=up-un;up=un就对应ud=0;所以忽略净输入量就是up=un
虚短必须在引入深度负反馈的条件下
在反相放大电路中,信号电压通过反馈电阻Rf反馈到运放的反相
输入端,构成电压并联负反馈放大电路。

运放的同相端接地=0V,反相端和同相端虚短,所以也是0V,反相输入端输入电阻很高,虚断,几乎没有电流注
电压串联负反馈
输出电压和输入电压的关系
闭环放大倍数(深度负反馈下)
电流串联负反馈
电压放大为电流
电压并联负反馈。

放大电路中的负反馈

放大电路中的负反馈

第4章放大电路中的负反馈许多电子设备对放大电路除了要求具有较高的增益外,对其他方面的性能要求也很高。

例如高保真音响放大器要求失真度要很低,精密测量仪器要求增益的稳定性和准确度要很高。

因此,在实用放大电路中,总是要引入不同形式的反馈以改善各方面的性能。

在放大电路中,将输出量(电压或电流)的一部分或全部,经过一定的电路(反馈网络)反过来送回到输入回路,并与原来的输入量(电压或电流)共同控制该电路,这种连接形式称为反馈。

在电子电路中,反馈现象是普遍存在的。

反馈有正负之分。

在放大电路中,通常引入负反馈以改善放大电路的性能,如在分压式偏置电路中利用负反馈稳定放大电路的工作点。

此外,负反馈还可以提高增益的稳定性、减少非线性失真、扩展频带以及控制输入和输出阻抗等。

当然,所有这些性能的改善是以牺牲放大电路的增益为代价的。

至于正反馈,在放大电路中很少采用,常用于振荡电路中。

本章从反馈的基本概念和分类入手,抽象出反馈放大器的方框图,分析负反馈对放大器性能的影响,介绍负反馈放大器的分析计算方法,总结出引入负反馈的一般原则,最后讨论负反馈放大器的自激振荡及其稳定的措施。

4.1 反馈的基本概念及判断方法4.1.1 反馈的基本概念1.反馈放大器的原理框图含有反馈电路的放大器称为反馈放大器。

根据反馈放大器各部分电路的主要功能,可将其分为基本放大电路和反馈网络两部分,如图4-1所示。

整个反馈放大电路的输入信号称为输入量,其输出信号称为输出量;反馈网络的输入信号就是放大电路的输出量,其输出信号称为反馈量;基本放大器的输入信号称为净输入量,它是输入量和反馈量叠加的结果。

图4-1反馈放大器的原理框图由图4-1可见,基本放大电路放大输入信号产生输出信号,而输出信号又经反馈网络反向传输到输入端,形成闭合环路,这种情况称为闭环,所以反馈放大器又称为闭环放大器。

如果一个放大器不存在反馈,即只存在放大器放大输入信号的传输途径,则不会形成闭合环路,这种情况称为开环。

第四章放大电路中的负反馈

第四章放大电路中的负反馈
m
结论:引入负反馈后,放大电路的上限频率 提高,下限频率降低,因而通频带展宽。
ɺ ɺ BWf ≈ (1 + Am F ) BW
在下图中可以较直观看出负反馈对通频 带和放大倍数的影响
§4.2.4 改变输入电阻和输出电阻
一、负反馈对输入电阻的影响 1、串联负反馈使输入电阻增大
ɺ U i′ Ri = ɺ Ii
.
ɺ ɺ 若 1 + AF > 1 ɺ ɺ 若 1 + AF < 1
这种反馈为负反馈 这种反馈为正反馈 电路自激振荡
.
ɺ ɺ ɺ 若 1 + AF = 0 ,则 Af = ∞
ɺ ɺ 若 1 + A F >> 1 Af =
.
A A 1 ɺ F ≈ AF = F ɺ ɺ ɺ 1+ A ɺ
§4.2 负反馈对放大电路性能的影响
2、正反馈 和负反馈 正反馈:反馈信号增强了外加输入信号, 使放大电路的放大倍数提高。 负反馈:反馈信号削弱了外加输入信号, 使放大电路的放大倍数减小。 反馈极性的判断方法:瞬时极性法。 在放大电路的输入端,假设一个输入信 号对地的极性,可用“+”、“-” 表示。 按信号传输方向依次判断相关点的瞬时极性, 直至判断出反馈信号的瞬时极性。
§4.2.1提高放大倍数的稳定性 4.2.1提高放大倍数的稳定性
ɺ A 根据反馈的一般表达式ɺ f = A ɺ ɺ 1 + AF
在中频范围内, Af =
A 1 + AF
求出放大倍数的相对变化量: dAf =
Af
1 dA × 1 + AF A
由于 1+AF >1,可见引入负反馈后,放大倍 数的稳定性提高了(1+AF) 倍

放大电路中的负反馈解读

放大电路中的负反馈解读

第四章放大电路中的负反馈习题4.1 判断图4-24所示各电路中有无反馈?是直流反馈还是交流反馈?哪些构成了级间反馈?哪些构成了本级反馈?4.1解答:(a)R e1:本级直流反馈R e2:本级交直流反馈R f,C f:级间交流反馈(因为直流信号被C f隔直)(b)Re:本级直流反馈R b:本级直流反馈(因为交流信号被C2短路到地)(c)RR e2 :本级交直流反馈R e3:本级直流反馈(因为交流被C3短路)R f:级间交直流反馈(d)R1,R2,R3为级间交直流反馈R3:本级交直流反馈4-1解答续:(e)R2,R4:本级交直流反馈R L,R6:为级间交直流反馈(f)R e :本级直流反馈(∵交流信号被C e短路)R1, R2 :本级直流反馈(∵交流信号被C短路到地)(g)R1, R2 :级间交直流反馈(h)(i) R e2 :本级直流反馈R e1, R e3 :级间交流反馈(ii)R f1, R b :级间交直流反馈R f2, R e1 :级间交直流反馈4.2指出图4-24所示各电路中反馈的类型和极性,并在图中标出瞬时极性以及反馈电压或反馈电流。

(a)解答:R f,C f引入电压并联交流负反馈瞬间极性如图示:∵I b↓=I i-I f↑故为负反馈(b)解答,R b引入电压并联直流负反馈,瞬时极性如图示∵I b↓=I i-I f↑故为负反馈(C)解答:R f, R e1 :引入电压串联交流正反馈(∵直流被C2隔直),瞬时极性如图示:U be=U i+U f, U f与U i极性相同,故为正反馈(d)解答:R1,R2引入电压串联交直流正反馈,瞬时极性如图示:U 'i=U i+U f, U f与U i极性相同,故为正反馈(e)解答:R L,R6 引入电流串联交直流负反馈,(即ΔU i=(U+-U i)↓)(即同相端与反相端电位差下降,∴为负反馈)(f)解答:R1,R e 引电容并联直流负反馈(交流被C短路到地)瞬时极性为图示(因I b↓=I i-I f ↑)I f上升,I b下降(g)解答:R1,R2引入电压并联交直流负反馈瞬时极性如图示:∵I b↓=I i-I f↑(h)(i)解答:R b,R f1引入电压并联交直流负反馈瞬时极性为图示∵I b↓=I i-I f↑故为负反馈(ii)解答:R f2, R e1引入电流串联交直流负反馈瞬时极性为图示∵U be↓=U i-U f2↑= U i-U e1↑(U e1上升,U be下降)∴为负反馈4.3某放大电器输入电压信号为20mV 时,输出电压为2V 。

负反馈放大电路

负反馈放大电路

Xo
uf
反馈信号与输入信号电压叠加 R1 b. 并联反馈 + ui 放大电路 ii iid – if 反馈网络并联于 输入回路 反馈网络 特 反馈信号为电流 点 反馈信号与输入信号电流叠加
Xo
并、串联反馈的两种形式:
i
if ib
ib=i-if ui ube uf
串联反馈
ube=ui-uf
求和点
求和点
+EC
角度: 目的:
+ ui
RB1 C1
RC1 C2
RB21
RC2
C3
+ uo

ui uf C2 R
T1
T2 RB22 RE2 CE
E1

Rf 、RE1组成反馈网络 Rf
C1
减小非线性失真 xi
xid=xi
xid=xi- xf
xo
xi
+
xid xf
A
xo
B
直流通路 交流通路
输 入 回 路
反馈网络
简单判断:采样点是输出端的话,一定是电压反馈 电压反馈采样的两种形式: 取样点 uo RL 取样点
uo
RL
电流反馈采样的形式: io 取样点 RL Rf
取样点
io RL
iE
iE
取样点 io
iE
RL
2、串联反馈和并联反馈
a. 串联反馈
特 点 反馈网络串联于 ui 输入回路 反馈信号为电压
uid
放大电路 反馈网络
放大电路
反馈网络
c. 判断电压和电流反馈的方法 Xi
+
Xid
A 基本放大电路
B 反馈网络

第4章负反馈放大电路

第4章负反馈放大电路

Ec.
1. 找反馈网络:
Rf - Rc
If
+
Ui
Uo
存在反向传输渠道(Rf)。 2. 电压与电流反馈:
用前述的方法判断(电压反馈)。
3. 串联与并联反馈:
用前述的方法判断(并联反馈)。
4. 反馈极性:用瞬时极性法判断
电压并联负反馈电路图
Idi(=Ii-If)减小,故为负反馈.
结论:此电路为电压并联负反馈。
一 电流串联负反馈
(一)判断反馈类型: (步骤)
Rb +
Ui Uf
Ucc Rc
+
Uo
Re
1. 找反馈网络: 存在反向传输渠道(Re)。 2. 电压与电流反馈: 令u0=0时,Uf0,故为电流反馈 3. 串联与并联反馈: Uf串入输入回路,故为串联反馈。 4. 反馈极性:(瞬时极性法)
Udi(=Ui-Uf)减小,故为负反馈
Af=A/(1+AB)A/AB=1/B
第二节 负反馈的分类
负反馈类型有四种: 一 电流串联负反馈 二 电压串联负反馈 三 电流并联负反馈 四 电压并联负反馈 •分析反馈的属性、求电压增益等动态参数。
判断反馈类型(或组态)的方法
1.判断是电流反馈还是电压反馈—用输出电压短路法:
输出电压短路法:令输出电压u0=0,若Xf=0,则为电压反馈;否 则为电流反馈。
第六章 负反馈放大器
第一节 负反馈的基本概念 第二节 负反馈放大器的分类及判断方法 第三节 负反馈对放大电路性能的影响 第四节 负反馈放大器的分析法
第一节 反馈的基本概念
一 反馈的基本概念:
(一 ) 反馈的定义:
反馈——是将输出信号的一部分或全部通过一定的电路 馈送回到放大电路的输入端,并对输入信号产生影响。

放大电路中的反馈工作原理

放大电路中的反馈工作原理

放大电路中的反馈工作原理放大电路是指通过放大器将输入信号放大为更大的输出信号的电路。

而反馈是指将输出信号的一部分返回到放大器的输入端,以实现特定的放大效果或调节放大器的性能。

下面是对放大电路中反馈工作原理的详细解释。

放大电路中的反馈可以分为正反馈和负反馈两种情况。

正反馈是指将放大器输出信号的一部分经过反馈回路返回到放大器的输入端,而负反馈则是指将放大器输出信号的一部分经过反馈回路返回到放大器的输入端,但反相。

首先,我们来看负反馈。

在负反馈中,输入信号经过放大器放大后的输出信号被引导回到放大器的输入端。

这样做的目的是为了抑制放大器的非线性失真、提高放大器的稳定性、扩展放大器的频率响应范围以及减小输出阻抗等。

在负反馈中,反馈信号的相位与输入信号的相位相反,使得输出信号与输入信号间的相位差减小,这有助于提高放大器的线性度。

此外,负反馈还可以使得放大器的增益更稳定,减小放大器对元器件参数变化的敏感度,从而提高整个电路的性能。

负反馈可以分为电压型负反馈和电流型负反馈。

电压型负反馈中,放大器的输入为电压信号,反馈信号也为电压信号;而电流型负反馈中,放大器的输入为电流信号,反馈信号也为电流信号。

不同类型的负反馈在实际应用中有不同的使用方式和效果。

比如,电压型负反馈可以改变放大器的放大倍数,而电流型负反馈可以改变放大器的输出阻抗。

而正反馈则是将部分输出信号回馈到输入端,与负反馈相比,正反馈会增强放大器的非线性特点,使得放大器的输出更容易失真。

实际应用中,正反馈常用于振荡器、比较器等电路中。

正反馈可以增大放大器的增益,提高放大器的灵敏度,但也容易产生自激振荡等不稳定问题。

总之,反馈在放大电路中具有重要的作用。

通过反馈,可以有效地改善放大器的线性度、稳定性和频率响应,使得输出信号更加稳定、准确和可靠。

负反馈是应用最广泛的一种反馈方式,可以提高系统的稳定性和性能,但也要注意适度使用,避免带来不必要的问题。

而正反馈虽然在某些特定的应用中有重要的作用,但也要注意控制好反馈系数,避免引起不稳定性和失真等问题。

04负反馈放大电路

04负反馈放大电路
信号波形得以改善。如图所示。
4.2 负反馈对放大器性能的影响
4.2.3 展宽频带
放大器引入负反馈后,在中频区,放大器的放大倍数下 降多,在高、低频区,放大倍数下降得少,结果是放大器的 幅频特性变得平坦,上限频率由 fH 移至 fHf,下限频率由 fL 移至 fLf 。如图所示。
4.2 负反馈对放大器性能的影响
4.3 振荡的基本概念与原理
[例 4-5] 分析图示各电路能否构成正弦波振荡器?试 说明原因。图中,Cb 、 Ce、 Cc 均为隔直电容或旁路电容, 它们在振荡频率上的容抗很小,近似短路。
4.3 振荡的基本概念与原理
解 (a)图中,没有基极偏置电路,无基极偏流,故三 极管不能进行放大,因此无法产生振荡。
故为负反馈。
4.1 反馈的基本概念
2.电压反馈与电流反馈
电压反馈:反馈信号取自输出电压,并与输出电压成正 比。
4.1 反馈的基本概念
电流反馈:反馈网络的输出信号与输出电流成正比。
判断方法:设想把输出端短路,如果反馈信号消失,则为 电压反馈。如反馈信号依然存在,则为电流反馈。
4.1 反馈的基本概念
④ 从输入回路分析反馈信号与原输入信号是串联还是并 联,以判断它是串联反馈还是并联反馈。
4.1 反馈的基本概念
具体分析: ① 通过 Re 的不仅有输出信号,而且也有输入信号。因而 它能将输出信号的一部分取出来馈送给输入回路,从而影响原输 入信号。由此,Re 是该电路的反馈元件,电路存在着反馈。 ② 设信号源瞬时极性为上正下负,加到三极管发射极电压 亦为上正下负,三极管的射极电压就是反馈信号电压,它使加到 发射结的纯输入信号电压比原输入信号电压小,故是负反馈。
4.3 振荡的基本概念与原理

放大电路中的反馈电路分析

放大电路中的反馈电路分析

放大电路中的反馈电路分析在电子领域中,放大电路是非常重要的部分,它能够将弱信号放大为较强的信号。

而在放大电路中,反馈电路则起到了至关重要的作用。

本文将对放大电路中的反馈电路进行分析,并介绍其原理和应用。

一、反馈电路的分类反馈电路可以分为正反馈和负反馈两类。

正反馈将输出信号的一部分或全部反馈到输入端,使得输出信号增强,常用于产生振荡和比较器等电路中。

负反馈则是将部分输出信号反馈到输入端,从而抑制放大器的非线性失真,提高放大器的性能。

二、负反馈电路的原理负反馈电路是放大电路中最常见的一种反馈方式。

它的基本原理是将部分输出信号经过一个反馈网络,与输入信号相混合后再输入到放大器,从而调整放大器的放大倍数和频率响应。

负反馈电路的作用主要体现在以下几个方面:1. 改善放大器的线性特性:负反馈能够抑制放大器的非线性失真,减少谐波的产生,使得输出信号更加接近输入信号。

2. 扩展频率响应:负反馈可以降低放大器的低频截止频率和高频截止频率,从而使得放大器的频率响应更加宽广。

3. 提高稳定性:负反馈可以提高放大器的稳定性,降低对参数和温度的敏感性。

4. 减小输出阻抗:负反馈能够降低放大器的输出阻抗,使得放大器更容易与外部负载匹配。

三、负反馈的应用负反馈在实际应用中有广泛的用途,下面列举几个常见的应用场景:1. 放大器:负反馈电路在放大器中起到了关键的作用,能够提高放大器的性能和稳定性。

2. 滤波器:负反馈电路可以用于构建各种类型的滤波器,如低通滤波器、高通滤波器等。

3. 调节器:负反馈电路可以用于构建调节器,实现对输出信号的精确调节。

4. 自动控制系统:负反馈电路在自动控制系统中应用广泛,能够实现对系统参数的稳定控制。

四、反馈电路的设计与分析方法在设计和分析反馈电路时,需要考虑以下几个关键因素:1. 反馈电阻的选择:反馈电阻的选择对反馈电路的增益和频率响应有重要影响,需要根据具体情况进行合理选择。

2. 反馈桥设定:反馈桥设定要根据放大器的输入和输出特性来确定,以实现所需的放大倍数和频率响应。

第4章 放大电路中的负反馈

第4章 放大电路中的负反馈

第4章 放大电路中的负反馈
图4-4 交流反馈和直流反馈 (a) 交流反馈;(b) 直流反馈; (c) 交、 直流反馈
第4章 放大电路中的负反馈
3.电压反馈和电流反馈 由于基本放大电路和反馈网络均是四端双口, 因
此基本放大电路 A 与反馈网络 F 的端口连接方式就
有串联和并联的区别。
基本放大电路 A 与反馈网络 F 在反馈放大电路
路。 假设输入信号瞬时极性为⊕, 则V1的集电极电位
, V2
, 因为电阻不改变信号的极
性, 所以通过Rf送回原输入端反馈信号的瞬时极性为
。 根据图中标出的各点瞬时极性, 反馈信号回到V1
的基极, 与原输入信号在同一点并且极性相反, 因此,
净输入信号减小, 为负反馈。
第4章 放大电路中的负反馈
图4-9 电流并联负反馈
阻Rf上的电流就是反馈电流, 方向按照瞬时极性从⊕ 。
第4章 放大电路中的负反馈
图4-10 电压并联负反馈
第4章 放大电路中的负反馈
4) 电流串联负反馈 图4-11为分压式偏置共发射极放大电路。 反馈元 件为Re1 、 Re2和Ce, 由于旁路电容的存在, Re1 和Re2 构成直流反馈, 交流反馈仅由Re1构成。 由瞬时极性看 出, 净输入信号减小, 为负反馈。
输入端的连接方式, 叫做比较方式, 根据比较方式的 不同, 分为串联反馈和并联反馈, 如图4-6所示。
第4章 放大电路中的负反馈
图4-6 串联反馈和并联反馈(比较方式) (a) 串联反馈; (b) 并联反馈
第4章 放大电路中的负反馈
4.1.3 负反馈的四种基本类型与判别方法 因为不同的反馈类型对放大电路性能的影响大不
第4章 放大电路中的负反馈

第4章 负反馈放大电路

第4章 负反馈放大电路

模拟电子线路
• 直流负反馈对放大电路性能的影响
稳定静态工作点
模拟电子线路
• 交流负反馈:是改善放大电路性能的重要技 术措施。
1 交流负反馈对增益的影响 2 交流负反馈对输入电阻的影响 3 交流负反馈对输出电阻的影响 4 交流负反馈对通频带的影响 5 交流负反馈对非线性失真的影响
模拟电子线路
1 负反馈对增益的影响
即:if∝uo
为电压反馈
组态的判断
模拟电子线路
串联反馈:反馈信号没有直接引回输入端
• 输入端
的反馈
并联反馈:反馈信号直接引回输入端的反馈
电压反馈:输出短路(uo=0)反馈元件上无 • 输出端 反馈信号的反馈
电流反馈:输出短路(uo=0)反馈元件上
仍有反馈信号的反馈
模拟电子线路
例:判断下列反馈的极性和组态
• 使放大倍数降低:
A
Af

A
1AF
•提高放大倍数的相对稳定性
dAf
(1AF)dAAFdA dA
(1AF)2
(1AF)2
dAf 1 dA Af (1AF) A
有反馈时增益的稳定性比无反馈时提高了(1+AF)倍。
模拟电子线路
模拟电子线路
2 负反馈对输入电阻的影响
负反馈对输入电阻的影响与串联或并联反馈 有关,而与电压或电流反馈无关。
Af

xo xi
A fx x o i x iA d ix d fxx iA d iF dx o xx id A F idx iA d 1 x A AF
•反馈深度
模拟电子线路
1+AF称为反馈深度
当AF>>1时,称为深度负反馈

数字电路 第四章 负反馈放大器

数字电路 第四章 负反馈放大器
1、直流负反馈能稳定静态工作点 2、串联负反馈使得输入电阻升高
并联负反馈使得输入电阻减小 3、电压负反馈能够稳定输出电压,
使得输出电阻减小 电流负反馈能够稳定输出电流, 使得输出电阻增大 4、负反馈均能展宽通频带, 且减小非线性失真
例:判断反馈类型,若为负反馈说明反馈 对放大器性能的影响
vbe = vi − v f R1 负反馈 C1
Xo
无反馈:Ri =
加入反馈后:
Vi′ Ii
Rif
= Vi Ii
= Vi′+ V f
=
Vi′ I1i Ii
+
Vf Vi′

Xo Xo
= Ri (1+ AF)
串联负反馈使输入电阻增加(1+AF)倍
2 并联反馈
Ii
I
' i
RS V i I f Ri
Is
X o 无反馈:
Ri
=
Vi
I
' i
加入反馈后:
产生了输出信号,电路 已失去正常放大功能, 处于
“自激”状态。
(3) 环路增益
AF
当AF >> 1时
=
xf x′i
Af
=A 1+ AF

A AF
=
1 F
此时,闭环增益只取决于反馈系数F ,不受晶体管 参数以及其它干扰的影响,放大性能比较稳定。 这种情况称为“深度负反馈”
4.4 负反馈对放大器性能的影响
Vo Io
Vof
=
Vo
+
AX
' i
= Vo + A( X i
−Xf)
= Vo − AX f = Vo − AFVof

放大电路中反馈的基本概念及判断方法

放大电路中反馈的基本概念及判断方法

放大电路中反馈的基本概念及判断方法反馈是放大电路中非常重要的概念,它对于放大电路的稳定性和性能有着重要的影响。

在放大电路中,反馈分为正反馈和负反馈,其中负反馈是较为常见的一种。

本文将介绍放大电路中反馈的基本概念以及判断反馈类型的方法。

一、反馈的概念反馈是指将放大器的输出信号再次送回至其输入端口的一种技术手段。

反馈可以改变放大器的输入阻抗、输出阻抗和增益等性能指标,同时也可以提高放大器的带宽、降低噪声等。

反馈可以分为正反馈和负反馈,其中负反馈是指输出信号与输入信号相反相位的反馈,而正反馈则是输出信号与输入信号同相位的反馈。

二、判断反馈类型的方法在放大电路中,判断反馈的类型非常重要,可以帮助我们更好地设计和分析电路。

以下是几种判断反馈类型的方法:1. 观察反馈回路的拓扑结构负反馈的回路一般是串联的,而正反馈回路一般是并联的。

因此,通过观察反馈回路的拓扑结构,可以初步判断反馈的类型。

2. 计算反馈系数反馈系数是衡量反馈程度的一个指标,其大小与反馈类型有关。

若反馈系数大于1,则为正反馈;若反馈系数小于1,则为负反馈。

3. 观察相位负反馈的反馈信号是与输入信号相反相位的,而正反馈则是与输入信号同相位的。

因此,通过观察反馈信号与输入信号的相位关系,可以判断反馈的类型。

以上是几种判断反馈类型的方法,可以根据具体情况选择合适的方法进行判断。

三、总结反馈是放大电路中非常重要的概念,它对于电路性能和稳定性有着重要的影响。

通过本文的介绍,我们了解了反馈的基本概念以及判断反馈类型的方法。

在实际电路设计中,需要根据具体情况选择合适的反馈类型,以达到更好的电路性能和稳定性。

第四章 放大电路中的负反馈

第四章 放大电路中的负反馈

(+)
+
u + (-)
o
R2
解:(a)图所示的电路中,设输入电压瞬时极性 为(+),从反相端输入,所以输出端为(-), 可画出各电流的瞬时流向如图中所示,净输入电 流比没有反馈的时候小,故为负反馈。
if
Rf
ui ii
(+) R1
iid
-∞
(+)
+
u + (-)
o
R2
在输出端判断反馈的取样方式,将输出端短接, 输压出反电馈压。在uo =输0入,端反,馈反电馈流信i号f 和输Ruof入信0 号,连所接以在为同电一 节点,二者是以电流的方式求和,故为并联反馈。
电压 U f Rf Io 为反馈信号。
(+)
+
+∞ (+)
+
+
Rs
-
+
ui
(+)
us
+
io RL u o
-
-
uf
Rf
-
根据瞬时极性法判断为负反馈。
(+)
+
+∞ (+)
+
+
Rs
-
+
ui
(+)
us
+
io RL u o
-
-
uf
Rf
-
-
采用输出短路法判断取样方式,令RL为零,输出 电压 U o =0,而输出电流 Io 还在,因此反馈信号仍然 存在,所以为电流反馈。在放大电路的输入端,反馈 信号与输入信号接于不同节点,反馈信号与输入信号 是以电压的形式求和,因此是串联反馈。

4章放大电路的反馈

4章放大电路的反馈

电压反馈和电流反馈
反馈信号的大小与输出电压成比例的反馈称为电压反馈; 反馈信号的大小与输出电压成比例的反馈称为电压反馈; 反馈信号的大小与输出电流成比例的反馈称为电流反馈。 反馈信号的大小与输出电流成比例的反馈称为电流反馈。
电压反馈与电流反馈的判断: 电压反馈与电流反馈的判断:
将输出电压‘短路’ 若反馈回来的反馈信号为零, 将输出电压 ‘ 短路’, 若反馈回来的反馈信号为零,则 为电压反馈;若反馈信号仍然存在,则为电流反馈。 为电压反馈;若反馈信号仍然存在,则为电流反馈。
电压并联负反馈
电流并联负反馈
电压串联负反馈
正反馈和负反馈
正反馈和负反馈的判断法之一: 正反馈和负反馈的判断法之一:瞬时极性法 在放大电路的输入端, 假设一个输入信号的电压极性, 在放大电路的输入端 , 假设一个输入信号的电压极性 , 可用 “ +”、“-”或“ ↑”、“ ↓”表示。 按信号传输方向依次判断相 、 或 ” ”表示。 关点的瞬时极性,直至判断出反馈信号的瞬时电压极性。 关点的瞬时极性, 直至判断出反馈信号的瞬时电压极性 。 如果 反馈信号的瞬时极性使净输入减小,则为负反馈; 反馈信号的瞬时极性使净输入减小, 则为负反馈;反之为正反 馈。
Xf
反馈电路 F
几个基本概念
放大电路在未加反馈时,信号只有从输入到输出一个传递 开环放大电路,也称为基本放大电路。设A0 方向,称为开环放大电路 开环放大电路 是基本放大电路的开环电压放大倍数 开环电压放大倍数。 X = A X 开环电压放大倍数
o 0 d
放大电路加上反馈电路时,反馈电路从输出取反馈信号反 向传递到输入端,放大电路与反馈电路构成闭合环路, 这称为闭环放大电路 闭环放大电路。反馈电路一般由电阻、电容等线 闭环放大电路 性元件组成,设F是反馈电路的反馈系数。 X F = FX O 放大电路的净输入信号Xd是信号源输入信号Xi和反馈信号 Xf的差值信号 差值信号,即: X = X − X 差值信号

放大电路中的反馈教案

放大电路中的反馈教案

扩展通频带
负反馈能够扩展放大电路的通频带,使其能够适应更宽频率 范围的信号放大。
通过引入负反馈,可以减小放大电路对高频信号的衰减,从 而扩展其高频响应能力。
改变输入输出电阻
负反馈能够改变放大电路的输入电阻和输出电阻,从而影响其电压放大倍数和电 流放大倍数。
通过引入负反馈,可以增大或减小输入电阻和输出电阻,以满足不同电路设计的 需要。例如,在需要高输入阻抗的场合,可以通过引入电压串联负反馈来增大输 入电阻;在需要低输出阻抗的场合,可以通过引入电流并联负反馈来减小输出电 阻。
05 典型负反馈放大电路设计 与分析
电压串联负反馈放大电路设计实例
• 设计目标:通过引入电压串联负反馈,提高放大电路的稳 定性,减小失真,展宽频带。
电压串联负反馈放大电路设计实例
设计步骤 选择合适的放大器件,如晶体管或运算放大器。
确定放大倍数和反馈系数,以满足性能指标要求。
电压串联负反馈放大电路设计实例
混合负反馈放大电路
同时引入电压和电流的负反馈,综合改善放大电路的性能 指标。设计时需要综合考虑各项性能指标要求及设计难度。
06 实验操作与数据记录
实验目的和要求
01
02
03
04
掌握放大电路中反馈的基本概 念和分类方法。
学会分析放大电路中反馈的类 型和性质。
通过实验测量,了解放大电路 中加入反馈后对性能的影响。
数据记录表格
在实验过程中,需要记录输入信号、输出信号、反馈信号等相关数据。建议设计一张数据记录表格, 包括实验条件(如输入信号频率、幅度等)、测量数据(如输出电压、电流等)以及计算结果(如放 大倍数、反馈深度等)。
曲线图绘制方法
根据实验数据,可以绘制输入信号、输出信号以及反馈信号的波形图,以便直观地观察信号的变化情 况。同时,还可以绘制放大倍数与频率的关系曲线图,分析放大电路的频率响应特性。在绘制曲线图 时,需要注意选择合适的坐标轴范围和刻度,使得图形清晰易读。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。





3、有无反馈的判别 若放大电路中存在将输出回路与输入回路相 连接的通路,即反馈通路,并由此影响了放大电
路的净输入,则表明电路引入了反馈;否则电路
中便没有反馈。 反馈通路:自输出端至输入端的通道。
反馈元件:反馈通路中影响反馈量的元件。






图6.1.2 有无反馈的判断
负载
(b) 反馈通道:uO → uN ,反馈元件:R2
iN = iI -iF 净输入变小
用瞬时极性法判断时: 负反馈使净输入信号(X’i)减小。






三极管的瞬时极性:
uI uf
B 输入,C 反相,E同相(跟随)
集电极反相,发射极跟随
E 输入,C 同相
uI
共基电路输入输出同相
也适用于场效应管,E - S,C - D,B - G






图4.1.4 分立元件放大电路反馈极性的判断
4)减小非线性失真等。






1、稳定放大倍数 在中频段: A f
A 1 AF
(6.5.1)
U U' V UV' 根据 ' 对上式求微分得 : 2 V V ( 1 AF )dA AFdA dA dAf 2 ( 1 AF ) ( 1 AF )2 (6.5.2)






第4章 放大电路中的反馈
4.1 反馈的基本概念 4.2 负反馈放大电路的类型 4.3 负反馈对放大电路性能的影响
4.4 负反馈放大电路的估算方法 4.5* 放大电路中的自激振荡






内容简介
Home






内容简介
Home






第4章 放大电路中的反馈
4.1反馈的基本概念及判别方法
dAf 1 dA 上两式相除得: Af 1 AF A
当 A 改变时,Af 的相对变化两是A 的1∕( 1+AF )






2、 改变输入电阻和输出电阻 对输入电阻影响
串联负反馈使输入电阻增大 。 并联负反馈使输入电阻减小 。
电压负反馈使输出电阻减小。
对输出电阻影响
电流负反馈使输出电阻增大。






X i' X i X f
X f AFX i' X ' Xo Xo A i Af ' F X ' X Xi Xi 1 A i f
A Af AF
(6.3.7) 在中频段时:
判断方法:是否有从输出至输入的逆行通路。






4.1.2 正反馈与负反馈
根据净输入量的变化区分反馈的极性:
正反馈: 负反馈:
使放大电路净输入量增大的反馈。 使放大电路净输入量减小的反馈。






根据输出量的变化区分反馈的极性:
由于反馈的结果影响了净输入量,因而必然 影响输出量。所以: 正反馈的结果使输出量的变化增大; 负反馈的结果使输出量的变化减小。
电流并联负反馈: 若从输出电流取样, 通过反馈网络得到反馈电 流,然后与输入电流相比 较,求得差值作为净输入 电流进行放大。
R1 iI iO 1 R2






反馈组态的判别
串联、并联看输入;
电压、电流看输出。
规 律:
串联反馈:反馈信号与输入信号在不同节点上; 并联反馈:反馈信号与输入信号在同一个节点上。






6.2 负反馈放大电路的四种基本组态 6.2.1 负反馈放大电路分析要点
图6.2.1 负反馈放大电路
起稳定uo作用
当:Aod=∞时,
∵ uD≈0
∴ uO≈ uI
uO uN uD (ui - uN ) uO
(负反馈)








(1)交流负反馈使放大电路的输出量与输入量之
4.1.1 反馈的基本概念 1、什么是反馈 在电子电路中,将输出量 ( 输出电压或输出 电流 )的一部分或全部通过一定的电路形式作用 到输入回路,用来影响其输入量 ( 放大电路的输 入电压或输入电流 ) 的措施。






图4.1.1 反馈放大电路的方框图
Xi
Xi’
A
Xo
Xf
F
闭环放大电路


Xf F X
反馈系数: (6.3.4)
o
闭环放大倍数:
X i' X i X f
基本放大电路放大倍数:
Xo Af Xi
(6.3.5)
XO A X '
i
(6.3.3)
Xf AF X '
i
环路放大倍数: (6.3.6)
6.3.3 负反馈放大电路的一般表达式
对于具体的负反馈放大电路,首先应研究
下列问题,进而进行定量分析。
(1) 从输出端看,反馈量是取自
输出电压 输出电流 电压方式 电流方式
(2) 从输入端看,反馈量与输入量叠加






交流负反馈的四种组态:
① 当反馈量取自输出电压时称为电压反馈,取
自输出电流时称为电流反馈; ② 当反馈量与输入量以电压方式相叠加时称为串 联反馈,以电流方式相叠加时称为并联反馈; 电压串联 电压并联
电压反馈:反馈取自输出端Uo(或输出分压端); 电流反馈:反馈取自非输出端Uo。






二、串联负反馈与并联负反馈的判断
串联负反馈:输入信
号与反馈信号接在不 同的输入端上。
uD uI uF
并联负反馈:输入信
号与反馈信号接在相
同的输入端上。
iD ii if






【例1 】
间具有稳定的比例关系,任何因素引起的输出
量的变化均将得到抑制。 由于输入量的变化也同样会受到抑制,因 此交流负反馈使电路的放大能力下降。 (2) 反馈量实质上是对输出量的取样,其数值与
输出量成正比。
(3) 负反馈的基本作用是将引回的反馈量与输入 量相减,从而调整电路的净输入量和输出量。






∵ iD ≈ 0 (虚断)
∴ iI ≈iF
∴ uO ≈ -iFR ≈-iIR
(6.2.5)






三、电流串联负反馈
1 uF iO R1 (6.2.3) iO uI (6.2.4) R1
四、电流并联负反馈






uN uP 0
iI iF R2 iO R1 R2
当A→∞时:

uD ≈ 0
uI ≈ uF
(虚短)
(6.2.1)
R2 uo (1 )uI R1






二、电压并联负反馈
∵ uN ≈ uP =0
(虚短)
uO iF R
电压并联负反馈: 若从输出电压取样, 通过反馈网络得到反馈电 流,然后与输入电流相比 较,求得差值作为净输入 电流进行放大。
交流负反馈有四种组态或四种方式
电流串联 电流并联






研究负反馈两个重要条件 1. 虚短:uD ≈ 0 ; uN ≈ uP 当基本放大器的放大倍数足够大时,可以认为净输
入信号近似为 0 。
例如:运放μA741的开放大倍数约为105 ,当输出电
压为10V时,差模输入电压为:
U O 10V uD 5 1V 0 Aod 10
(6.5.5)






二、对输出电阻的影响
1、电压负反馈减小输出电阻
图6.5.4 电压负反馈电路的方框图
Rof=Uo/Io Rof=Ro/(1+AF)
(6.5.7)






2、电流负反馈增大输出电阻 图6.5.5 电流负反馈电路的方框图
Rof=Uo/Io
Rof=(1+AF)Ro
(6.5.4)






3、 展宽频带
加入负反馈将展宽频带。
fbwf=(1+AF) fbw






4、 减小非线性失真
图6.5.6 消除 ib失真的方法






图6.5.7 引入负反馈使非线性失真减小






4.5 自激振荡 1、什么是自激振荡的现象?
ui = 0
A
uo
相关文档
最新文档